51
|
Demuro A, Parker I. Imaging single-channel calcium microdomains. Cell Calcium 2006; 40:413-22. [PMID: 17067668 PMCID: PMC1694561 DOI: 10.1016/j.ceca.2006.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
The Ca(2+) microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca(2+) signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible only by electrophysiological patch-clamp recordings. We review recent advances in single channel Ca(2+) imaging methodologies, with emphasis on total internal reflection fluorescence microscopy (TIRFM) as the technique of choice for recording SCCaFTs from voltage- and ligand-gated plasmalemmal ion channels. This technique of 'optical patch-clamp recording' is massively parallel, permitting simultaneous imaging of hundreds of channels; provides millisecond resolution of gating kinetics together with sub-micron spatial resolution of channel locations; and is applicable to diverse families of membrane channels that display partial permeability to Ca(2+) ions.
Collapse
Affiliation(s)
- Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
52
|
Abstract
The liberation of calcium ions sequestered in the endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors/channels (IP(3)Rs) results in a spatiotemporal hierarchy of calcium signaling events that range from single-channel openings to local Ca(2+) puffs believed to arise from several to tens of clustered IP(3)Rs to global calcium waves. Using high-resolution confocal linescan imaging and a sensitive Ca(2+) indicator dye (fluo-4-dextran), we show that puffs are often preceded by small, transient Ca(2+) elevations that we christen "trigger events". The magnitude of triggers is consistent with their arising from the opening of a single IP(3) receptor/channel, and we propose that they initiate puffs by recruiting neighboring IP(3)Rs within the cluster by a regenerative process of Ca(2+)-induced Ca(2+) release. Puff amplitudes (fluorescence ratio change) are on average approximately 6 times greater than that of the triggers, suggesting that at least six IP(3)Rs may simultaneously be open during a puff. Trigger events have average durations of approximately 12 ms, as compared to 19 ms for the mean rise time of puffs, and their spatial extent is approximately 3 times smaller than puffs (respective widths at half peak amplitude 0.6 and 1.6 micro m). All these parameters were relatively independent of IP(3) concentration, although the proportion of puffs showing resolved triggers was greatest (approximately 80%) at low [IP(3)]. Because Ca(2+) puffs constitute the building blocks from which cellular IP(3)-mediated Ca(2+) signals are constructed, the events that initiate them are likely to be of fundamental importance for cell signaling. Moreover, the trigger events provide a useful yardstick by which to derive information regarding the number and spatial arrangement of IP(3)Rs within clusters.
Collapse
Affiliation(s)
- Heather J Rose
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
53
|
Shuai J, Rose HJ, Parker I. The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes. Biophys J 2006; 91:4033-44. [PMID: 16980372 PMCID: PMC1635656 DOI: 10.1529/biophysj.106.088880] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium puffs are local Ca(2+) release events that arise from a cluster of inositol 1,4,5-trisphosphate receptor channels (IP(3)Rs) and serve as a basic "building block" from which global Ca(2+) waves are generated. Important questions remain as to the number of IP(3)Rs that open during a puff, their spatial distribution within a cluster, and how much Ca(2+) current flows through each channel. The recent discovery of "trigger" events-small Ca(2+) signals that immediately precede puffs and are interpreted to arise through opening of single IP(3)R channels-now provides a useful yardstick by which to calibrate the Ca(2+) flux underlying puffs. Here, we describe a deterministic numerical model to simulate puffs and trigger events. Based on confocal linescan imaging in Xenopus oocytes, we simulated Ca(2+) release in two sequential stages; representing the trigger by the opening of a single IP(3)R in the center of a cluster for 12 ms, followed by the concerted opening of some number of IP(3)Rs for 19 ms, representing the rising phase of the puff. The diffusion of Ca(2+) and Ca(2+)-bound indicator dye were modeled in a three-dimensional cytosolic volume in the presence of immobile and mobile Ca(2+) buffers, and were used to predict the observed fluorescence signal after blurring by the microscope point-spread function. Optimal correspondence with experimental measurements of puff spatial width and puff/trigger amplitude ratio was obtained assuming that puffs arise from the synchronous opening of 25-35 IP(3)Rs, each carrying a Ca(2+) current of approximately 0.4 pA, with the channels distributed through a cluster 300-800 nm in diameter.
Collapse
Affiliation(s)
- Jianwei Shuai
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | | | |
Collapse
|
54
|
Lee KW, Webb SE, Miller AL. Requirement for a localized, IP3R-generated Ca2+transient during the furrow positioning process in zebrafish zygotes. ZYGOTE 2006; 14:143-55. [PMID: 16719950 DOI: 10.1017/s0967199406003637] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/01/2005] [Indexed: 11/05/2022]
Abstract
SummaryWe report that the first localized Ca2+transient visualized in the blastodisc cortex of post-mitotic zebrafish zygotes has unique features. We confirm that this initial ‘furrow positioning’ Ca2+transient precedes the physical appearance of the first cleavage furrow at the blastodisc surface and that it has unique dynamics, which distinguish it from the subsequent furrow propagation transients that develop from it. This initial transient displays a distinct rising phase that peaks prior to the initiation of the two linear, subsurface, self-propagating Ca2+waves that constitute the subsequent furrow propagation transient. Through the carefully timed introduction of the Ca2+buffer, dibromo-BAPTA, we also demonstrate the absolute requirement of this initial rising phase Ca2+transient in positioning the furrow at the blastodisc surface: no rising phase transient, no cleavage furrow. Likewise, the introduction of the inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, 2-aminoethoxydiphenyl borate, eliminates both the rising phase transient and the appearance of the furrow at the cell surface. On the other hand, antagonists of the ryanodine receptor and NAADP-sensitive channels, or simply bathing the zygote in Ca2+-free medium, have no effect on the generation of the rising phase positioning transient or the appearance of the furrow at the surface. This suggests that like the subsequent propagation and deepening/zipping Ca2+transients, the rising phase furrow positioning transient is also generated specifically by Ca2+released via IP3Rs. We propose, however, that despite being generated by a similar Ca2+release mechanism, the unique features of this initial transient suggest that it might be a distinct signal with a specific function associated with positioning the cleavage furrow at the blastodisc surface.
Collapse
Affiliation(s)
- Karen W Lee
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
55
|
Ionescu L, Cheung KH, Vais H, Mak DOD, White C, Foskett JK. Graded recruitment and inactivation of single InsP3 receptor Ca2+-release channels: implications for quantal [corrected] Ca2+release. J Physiol 2006; 573:645-62. [PMID: 16644799 PMCID: PMC1779751 DOI: 10.1113/jphysiol.2006.109504] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Modulation of cytoplasmic free Ca2+ concentration ([Ca2+]i) by receptor-mediated generation of inositol 1,4,5-trisphosphate (InsP3) and activation of its receptor (InsP3R), a Ca2+-release channel in the endoplasmic reticulum, is a ubiquitous signalling mechanism. A fundamental aspect of InsP3-mediated signalling is the graded release of Ca2+ in response to incremental levels of stimuli. Ca2+ release has a transient fast phase, whose rate is proportional to [InsP3], followed by a much slower one even in constant [InsP3]. Many schemes have been proposed to account for quantal Ca2+ release, including the presence of heterogeneous channels and Ca2+ stores with various mechanisms of release termination. Here, we demonstrate that mechanisms intrinsic to the single InsP3R channel can account for quantal Ca2+ release. Patch-clamp electrophysiology of isolated insect Sf9 cell nuclei revealed a consistent and high probability of detecting functional endogenous InsP3R channels, enabling InsP3-induced channel inactivation to be identified as an inevitable consequence of activation, and allowing the average number of activated channels in the membrane patch (N(A)) to be accurately quantified. InsP3-activated channels invariably inactivated, with average duration of channel activity reduced by high [Ca2+]i and suboptimal [InsP3]. Unexpectedly, N(A) was found to be a graded function of both [Ca2+]i and [InsP3]. A qualitative model involving Ca2+-induced InsP3R sequestration and inactivation can account for these observations. These results suggest that apparent heterogeneous ligand sensitivity can be generated in a homogeneous population of InsP3R channels, providing a mechanism for graded Ca2+ release that is intrinsic to the InsP3R Ca2+ release channel itself.
Collapse
Affiliation(s)
- Lucian Ionescu
- Department of Physiology, B39 Anatomy-Chemistry Building, 414 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Elementary Ca(2+) signals, such as "Ca(2+) puffs", which arise from the release of Ca(2+) from endoplasmic reticulum through small clusters of inositol 1,4,5-trisphosphate receptors, are the building blocks for intracellular Ca(2+) signaling. The small number of release channels involved during a Ca(2+) puff renders the puffs stochastic, with distributed amplitudes, durations, and frequency, well characterized experimentally. We present a stochastic model that accurately describes simultaneously the statistical properties of the duration, amplitudes, frequencies, and spatial spread with a single set of parameters.
Collapse
Affiliation(s)
- Ghanim Ullah
- Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
57
|
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408. [PMID: 16371601 DOI: 10.1152/physrev.00004.2005] [Citation(s) in RCA: 889] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calcium ions are ubiquitous and versatile signaling molecules, capable of decoding a variety of extracellular stimuli (hormones, neurotransmitters, growth factors, etc.) into markedly different intracellular actions, ranging from contraction to secretion, from proliferation to cell death. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca(2+)] rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. In this review, we discuss the structural and functional bases that generate the subcellular heterogeneity in cellular Ca(2+) levels at rest and under stimulation. This complex choreography requires the concerted action of many different players; the central role is, of course, that of the calcium ion, with the main supporting characters being all the entities responsible for moving Ca(2+) between different compartments, while the cellular architecture provides a determining framework within which all the players have their exits and their entrances. In particular, we concentrate on the molecular mechanisms that lead to the generation of cytoplasmic Ca(2+) microdomains, focusing on their different subcellular location, mechanism of generation, and functional role.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
58
|
Sneyd J, Falcke M. Models of the inositol trisphosphate receptor. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 89:207-45. [PMID: 15950055 DOI: 10.1016/j.pbiomolbio.2004.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The inositol (1,4,5)-trisphosphate receptor (IPR) plays a crucial role in calcium dynamics in a wide range of cell types, and is often a central feature in quantitative models of calcium oscillations and waves. We review deterministic and stochastic mathematical models of the IPR, from the earliest ones of the 1970s and 1980s, to the most recent. The effects of IPR stochasticity on Ca2+ dynamics are briefly discussed.
Collapse
Affiliation(s)
- J Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
59
|
Li Y, Wright JM, Qian F, Germino GG, Guggino WB. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem 2005; 280:41298-306. [PMID: 16223735 DOI: 10.1074/jbc.m510082200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autosomal dominant polycystic kidney disease, a common cause of renal failure, arises from mutations in either the PKD1 or the PKD2 gene. The precise function of both PKD gene products polycystins (PCs) 1 and 2 remain controversial. PC2 has been localized to numerous cellular compartments, including the endoplasmic reticulum, plasma membrane, and cilia. It is unclear what pools are the most relevant to its physiological function as a putative Ca2+ channel. We employed a Xenopus oocyte Ca2+ imaging system to directly investigate the role of PC2 in inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling. Cytosolic Ca2+ signals were recorded following UV photolysis of caged IP3 in the absence of extracellular Ca2+. We demonstrated that overexpression of PC2, as well as type I IP3 receptor (IP3R), significantly prolonged the half-decay time (t1/2) of IP3-induced Ca2+ transients. However, overexpressing the disease-associated PC2 mutants, the point mutation D511V, and the C-terminally truncated mutation R742X did not alter the t1/2. In addition, we found that D511V overexpression significantly reduced the amplitude of IP3-induced Ca2+ transients. Interestingly, overexpression of the C terminus of PC2 not only significantly reduced the amplitude but also prolonged the t1/2. Co-immunoprecipitation assays indicated that PC2 physically interacts with IP3R through its C terminus. Taken together, our data suggest that PC2 and IP3R functionally interact and modulate intracellular Ca2+ signaling. Therefore, mutations in either PC1 or PC2 could result in the misregulation of intracellular Ca2+ signaling, which in turn could contribute to the pathology of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
60
|
Diambra L, Guisoni N. Modeling stochastic Ca2+ release from a cluster of IP3-sensitive receptors. Cell Calcium 2005; 37:321-32. [PMID: 15755493 DOI: 10.1016/j.ceca.2004.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/03/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
We focused our attention on Ca(2+) release from the endoplasmic reticulum through a cluster of inositol(1,4,5)-trisphosphate (IP(3)) receptor channels. The random opening and closing of these receptors introduce stochastic effects that have been observed experimentally. Here, we present a stochastic version of Othmer-Tang model (OTM) for IP(3) receptor clusters. We address the average behavior of the channels in response to IP(3) stimuli. In our stochastic simulation we found that the fraction of open channels versus [IP(3)] follows a Hill curve, whose associate Hill coefficient increases when intracellular Ca(2+) level increase. This finding suggests that feedback from cytosolic Ca(2+) plays a key role in the channel response to IP(3). We also study several aspects of the stochastic properties of Ca(2+) release and we compare with experimental observations.
Collapse
Affiliation(s)
- L Diambra
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, Cep 13560-970, São Carlos SP, Brazil.
| | | |
Collapse
|
61
|
Shuai J, Parker I. Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. Cell Calcium 2005; 37:283-99. [PMID: 15755490 DOI: 10.1016/j.ceca.2004.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/16/2022]
Abstract
Recent developments in microscopy and fluorescent indicators now make it possible to monitor the activity and localization of membrane ion channels by imaging Ca(2+) flux through individual channels. Such optical approaches have advantages over electrophysiological single-channel techniques in that they are less invasive, provide spatial information and can simultaneously and independently monitor hundreds of channels. However, their kinetic resolution does not yet approach that of patch-clamp recordings. To help understand the processes that determine the temporal resolution and noise level of single-channel Ca(2+) fluorescence signals (SCCaFTs), we simulated the microdomains of Ca(2+) ions and Ca(2+)-bound indicator dye that exist around the mouth of an open channel. Further, as an aid to development of improved optical techniques, we modeled the dependence of the amplitude and kinetics of SCCaFTs on parameters such as the imaging volume, the indicator concentration, affinity and mobility, and the presence of endogenous and exogenous Ca(2+) buffers. The results indicate that under optimal conditions, including the use of confocal or total-internal reflection microscopy to image from sub-femtolitre volumes, SCCaFTs should resolve channel openings as brief as 1ms with a signal-to-noise ratio >10.
Collapse
Affiliation(s)
- Jianwei Shuai
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
62
|
Demuro A, Parker I. Optical single-channel recording: imaging Ca2+ flux through individual ion channels with high temporal and spatial resolution. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:11002. [PMID: 15847568 DOI: 10.1117/1.1846074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Developments in imaging technology now enable visualization of the functioning of individual ion channels in living cells: something previously possible only by the electrophysiological patch-clamp technique. We review techniques that track channel gating via changes in intracellular [Ca2+] resulting from openings of Ca(2+)-permeable channels. Spatial and temporal resolution are optimized by monitoring Ca2+ close to the channel mouth, and we describe the use of two imaging modalities: confocal laser scan microscopy (linescan CLSM) and total internal reflection fluorescence microscopy (TIRFM). Both currently achieve a kinetic resolution of <10 ms, provide a simultaneous and independent readout from many channels, and enable their locations to be mapped with submicrometer resolution. TIRFM provides 2-D images from a very thin (approximately 100 nm) optical section, but it is restricted to channels in the plasma membrane of cells adhering close to a cover glass. In contrast, CLSM can image channels in intracellular membranes but, to achieve good temporal resolution, has been utilized only in a linescan mode with limited spatial information. We anticipate that imaging techniques will develop as a useful adjunct to patch-clamping for single-channel studies, with capabilities including simultaneous readout from multiple channels, high-resolution mapping of channel location, and mobility that is inaccessible by electrophysiological means. Optical single-channel recording is applicable to diverse voltage- and ligand-gated Ca(2+)-permeable channels and has potential for high-throughput functional analysis.
Collapse
Affiliation(s)
- Angelo Demuro
- University of California, Irvine, Department of Neurobiology and Behavior, Irvine, California 92697-4550, USA
| | | |
Collapse
|
63
|
Ferreri-Jacobia M, Mak DOD, Foskett JK. Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. J Biol Chem 2004; 280:3824-31. [PMID: 15537642 DOI: 10.1074/jbc.m409462200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.
Collapse
Affiliation(s)
- Michelle Ferreri-Jacobia
- Department of Physiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
64
|
García KD, Shah T, García J. Immunolocalization of type 2 inositol 1,4,5-trisphosphate receptors in cardiac myocytes from newborn mice. Am J Physiol Cell Physiol 2004; 287:C1048-57. [PMID: 15201137 DOI: 10.1152/ajpcell.00004.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise localization and role of inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) in cardiac muscle cells are largely unknown. It is believed that waves and oscillations in cytosolic free calcium triggered by activation of InsP3Rs underlie modifications of cellular responses that lead to changes in gene expression in other cells. However, how changes in cytosolic calcium alter gene expression in cardiac cells is unknown. Moreover, it is unclear how changes in cytosolic calcium that alter gene expression do so independently of effects of calcium on other cellular functions, such as contraction. Here we show that InsP3R type 2 is the only isoform present in cardiac myocytes isolated from neonatal mouse ventricles. We also show that type 2 InsP3Rs are associated with the nucleus and that activation of type 2 InsP3Rs with endothelin-1 or phenylephrine selectively increases transcription of atrial natriuretic factor and skeletal α-actin. Type 2 InsP3Rs are also in striations. Activation of InsP3Rs with adenophostin A in permeabilized cells induced calcium release in the nuclear domain and other regions of the cell away from the nucleus. Agonist-induced increase in gene expression and calcium release were blocked by the InsP3R inhibitors 2-aminoethoxydiphenyl borate and xestospongin C. The spatial separation of type 2 InsP3Rs provides support for the concept that microdomains of calcium discretely alter various cell processes. Our experiments suggest that calcium released by InsP3Rs in the nuclear domain provides a direct mechanism for the control of gene expression, whereas release of calcium in the cytoplasm may modulate other processes, such as contraction.
Collapse
Affiliation(s)
- Kelly D García
- Research Services, Edward Hines Jr. Department of Veterans Affairs Hospital, Hines 60141, Chicago, IL 60612, USA
| | | | | |
Collapse
|
65
|
Abstract
Ca2+ ions passing through a single or a cluster of Ca2+-permeable channels create microscopic, short-lived Ca2+ gradients that constitute the building blocks of cellular Ca2+ signaling. Over the last decade, imaging microdomain Ca2+ in muscle cells has unveiled the exquisite spatial and temporal architecture of intracellular Ca2+ dynamics and has reshaped our understanding of Ca2+ signaling mechanisms. Major advances include the visualization of "Ca2+ sparks" as the elementary events of Ca2+ release from the sarcoplasmic reticulum (SR), "Ca2+ sparklets" produced by openings of single Ca2+-permeable channels, miniature Ca2+ transients in single mitochondria ("marks"), and SR luminal Ca2+ depletion transients ("scraps"). As a model system, a cardiac myocyte contains a 3-dimensional grid of 104 spark ignition sites, stochastic activation of which summates into global Ca2+ transients. Tracking intermolecular coupling between single L-type Ca2+ channels and Ca2+ sparks has provided direct evidence validating the local control theory of Ca2+-induced Ca2+ release in the heart. In vascular smooth muscle myocytes, Ca2+ can paradoxically signal both vessel constriction (by global Ca2+ transients) and relaxation (by subsurface Ca2+ sparks). These findings shed new light on the origin of Ca2+ signaling efficiency, specificity, and versatility. In addition, microdomain Ca2+ imaging offers a novel modality that complements electrophysiological approaches in characterizing Ca2+ channels in intact cells.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/analysis
- Calcium Channels, L-Type/physiology
- Calcium Signaling/physiology
- Chelating Agents/pharmacology
- Cricetinae
- Egtazic Acid/pharmacology
- Humans
- Ion Channel Gating
- Ion Transport
- Microscopy, Confocal/methods
- Mitochondria, Heart/chemistry
- Mitochondria, Heart/ultrastructure
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Myocytes, Cardiac/chemistry
- Myocytes, Cardiac/ultrastructure
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/ultrastructure
- Patch-Clamp Techniques
- Rabbits
- Rats
- Ryanodine Receptor Calcium Release Channel/physiology
- Sarcoplasmic Reticulum/chemistry
- Sarcoplasmic Reticulum/ultrastructure
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Md 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ. Imaging calcium entering the cytosol through a single opening of plasma membrane ion channels: SCCaFTs—fundamental calcium events. Cell Calcium 2004; 35:523-33. [PMID: 15110142 DOI: 10.1016/j.ceca.2004.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/25/2004] [Indexed: 11/29/2022]
Abstract
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca(2+) permeable ion channel using Ca(2+) indicators like fluo-3. These Single Channel Ca(2+) Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca(2+) sparks and Ca(2+) puffs caused by Ca(2+) release from intracellular stores (due to the opening of ryanodine receptors and IP(3) receptors, respectively). In contrast to intracellular Ca(2+) release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca(2+) handling in the vicinity of a channel with a known Ca(2+) influx, to obtain the Ca(2+) current passing through plasma membrane cation channels in near physiological solutions, to localize Ca(2+) permeable ion channels on the plasma membrane, and to estimate the Ca(2+) currents underlying those elementary events where the Ca(2+) currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca(2+) channels, and stretch-activated channels. For the L-type Ca(2+) channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca(2+) currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.
Collapse
Affiliation(s)
- Hui Zou
- Department of Physiology and Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
67
|
McCarron JG, MacMillan D, Bradley KN, Chalmers S, Muir TC. Origin and Mechanisms of Ca2+ Waves in Smooth Muscle as Revealed by Localized Photolysis of Caged Inositol 1,4,5-Trisphosphate. J Biol Chem 2004; 279:8417-27. [PMID: 14660609 DOI: 10.1074/jbc.m311797200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytosolic Ca(2+) concentration ([Ca(2+)](c)) controls diverse cellular events via various Ca(2+) signaling patterns; the latter are influenced by the method of cell activation. Here, in single-voltage clamped smooth muscle cells, sarcolemma depolarization generated uniform increases in [Ca(2+)](c) throughout the cell entirely by Ca(2+) influx. On the other hand, the Ca(2+) signal produced by InsP(3)-generating agonists was a propagated wave. Using localized uncaged InsP(3), the forward movement of the Ca(2+) wave arose from Ca(2+)-induced Ca(2+) release at the InsP(3) receptor (InsP(3)R) without ryanodine receptor involvement. The decline in [Ca(2+)](c) (the back of the wave) occurred from a functional compartmentalization of the store, which rendered the site of InsP(3)-mediated Ca(2+) release, and only this site, refractory to the phosphoinositide. The functional compartmentalization arose by a localized feedback deactivation of InsP(3) receptors produced by an increased [Ca(2+)](c) rather than a reduced luminal [Ca(2+)] or an increased cytoplasmic [InsP(3)]. The deactivation of the InsP(3) receptor was delayed in onset, compared with the time of the rise in [Ca(2+)](c), persisted (>30 s) even when [Ca(2+)](c) had regained resting levels, and was not prevented by kinase or phosphatase inhibitors. Thus different forms of cell activation generate distinct Ca(2+) signaling patterns in smooth muscle. Sarcolemma Ca(2+) entry increases [Ca(2+)](c) uniformly; agonists activate InsP(3)R and produce Ca(2+) waves. Waves progress by Ca(2+)-induced Ca(2+) release at InsP(3)R, and persistent Ca(2+)-dependent inhibition of InsP(3)R accounts for the decline in [Ca(2+)](c) at the back of the wave.
Collapse
MESH Headings
- Animals
- Caffeine/pharmacology
- Calcium/analysis
- Calcium/metabolism
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Carbachol/pharmacology
- Cell Membrane/metabolism
- Colon
- Electric Conductivity
- Enzyme Activation
- Feedback, Physiological
- Guinea Pigs
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Male
- Muscle, Smooth/metabolism
- Photolysis
- Protein Kinase C/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Ryanodine Receptor Calcium Release Channel/physiology
- Sarcolemma/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- John G McCarron
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | | | |
Collapse
|
68
|
Zima AV, Blatter LA. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 2004; 555:607-15. [PMID: 14754996 PMCID: PMC1664857 DOI: 10.1113/jphysiol.2003.058529] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release represents the major Ca(2+) mobilizing pathway responsible for diverse functions in non-excitable cells. In the heart, however, its role is largely unknown or controversial. In intact cat atrial myocytes, endothelin (ET-1) increased basal [Ca(2+)](i) levels, enhanced action potential-evoked [Ca(2+)](i) transients, caused [Ca(2+)](i) transients with alternating amplitudes (Ca(2+) alternans), and facilitated spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) in the form of Ca(2+) sparks and arrhythmogenic Ca(2+) waves. These effects were prevented by the IP(3) receptor (IP(3)R) blocker aminoethoxydiphenyl borate (2-APB), suggesting the involvement of IP(3)-dependent SR Ca(2+) release. In saponin-permeabilized myocytes IP(3) and the more potent IP(3)R agonist adenophostin increased basal [Ca(2+)](i) and the frequency of spontaneous Ca(2+) sparks. In the presence of tetracaine to eliminate Ca(2+) release from ryanodine receptor (RyR) SR Ca(2+) release channels, IP(3) and adenophostin triggered unique elementary, non-propagating IP(3)R-dependent Ca(2+) release events with amplitudes and kinetics that were distinctly different from classical RyR-dependent Ca(2+) sparks. The effects of IP(3) and adenophostin were prevented by heparin and 2-APB. The data suggest that IP(3)-dependent Ca(2+) release increases [Ca(2+)](i) in the vicinity of RyRs and thus facilitates Ca(2+)-induced Ca(2+) release during excitation-contraction coupling. It is concluded that in the adult mammalian atrium IP(3)-dependent Ca(2+) release enhances atrial Ca(2+) signalling and exerts a positive inotropic effect. In addition, by facilitating Ca(2+) release, IP(3) may also be an important component in the development of Ca(2+)-mediated atrial arrhythmias.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Atrial Function
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cats
- Endothelin-1/pharmacology
- Female
- Heart Atria
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Intracellular Membranes/metabolism
- Male
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Osmolar Concentration
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Aleksey V Zima
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Ave., Maywood, IL 60153, USA
| | | |
Collapse
|
69
|
Demuro A, Parker I. Optical single-channel recording: imaging Ca2+ flux through individual N-type voltage-gated channels expressed in Xenopus oocytes. Cell Calcium 2003; 34:499-509. [PMID: 14572808 DOI: 10.1016/s0143-4160(03)00154-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Functional studies of single membrane ion channels were made possible by the introduction of the patch-clamp technique, which allows single-channel currents to be measured with unprecedented resolution. Nevertheless, patch clamping has some limitations: including the need for physical access of the patch pipette, possible disruption of local cellular architecture, inability to monitor multiple channels, and lack of spatial information. Here, we demonstrate the use of confocal fluorescence microscopy as a non-invasive technique to optically monitor the gating of individual Ca2+ channels. Near-membrane fluorescence signals track the gating of N-type Ca2+ channels with a kinetic resolution of about 10ms, provide a simultaneous and independent readout from several channels, and allow their locations to be mapped with sub-micrometer spatial resolution. Optical single-channel recording should be applicable to diverse voltage- and ligand-gated Ca2+-permeable channels, and has the potential for high-throughput functional analysis of single channels.
Collapse
Affiliation(s)
- Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
70
|
van Gorp RMA, Feijge MAH, Vuist WMJ, Rook MB, Heemskerk JWM. Irregular spiking in free calcium concentration in single, human platelets. Regulation by modulation of the inositol trisphosphate receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1543-52. [PMID: 11874470 DOI: 10.1046/j.1432-1033.2002.02806.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescence ratio imaging indicates that immobilized, aspirin-treated platelets, loaded with Fura-2, respond to inositol 1,4,5-trisphosphate- (InsP3)-generating agonists such as thrombin by high-frequency, irregular rises in cytosolic [Ca2+]i with spikes that vary in peak level and peak-to-peak interval. This differs from the regular [Ca2+]i oscillations observed in other, larger cells. We found that the thiol-reactive compounds thimerosal (10 microm) and U73122 (10 microm) evoked similar irregular Ca2+ responses in platelets, but in this case in the absence of InsP3 generation. Thrombin-induced spiking was acutely abolished by inhibiting phospholipase C or elevating intracellular cAMP levels, while spiking with sulfhydryl reagents was only partially blocked by cAMP elevation. Confocal laser scanning microscopy using fluo-3-loaded platelets indicated that, with all agonists or conditions, the irregular spikes were almost instantaneously raised in various regions within a single platelet. When using saponin-permeabilized platelets, we found that InsP3-induced Ca2+ release from stores was stimulated by modest Ca2+ concentrations, pointing to a mechanism of InsP3-dependent Ca2+-induced Ca2+ release (CICR). This process was completely inhibitable by heparin. The Ca2+ release by InsP3, but not the CICR sensor, was negatively regulated by cAMP elevation. Thimerosal treatment did not release Ca2+ from intracellular stores, but markedly potentiated the stimulatory effect of InsP3. In contrast, U73122 caused a heparin/cAMP-insensitive Ca2+ leak from stores that differed from those used by InsP3. Taken together, these results demonstrate that InsP3 receptor channels play a crucial role in the irregular, spiking Ca2+ signal of intact platelets, even when induced by agents such as thimerosal or U73122 which do not stimulate InsP3 formation. The irregular Ca2+ release events appear to be subjected to extensive regulation by: (a) InsP3 level, (b) the potentiating effect of elevated Ca2+ on InsP3 action via CICR, (c) InsP3 channel sensitization by sulfhydryl (thimerosal) modification, (d) InsP3 channel-independent Ca2+ leak with U73122, and (e) down-regulation via cAMP elevation. The observation that individual Ca2+ peaks were generated in various parts of a platelet at similar intervals and amplitudes points to effective cooperation of the various stores in the Ca2+-release process.
Collapse
|
71
|
Dupont G, Swillens S, Clair C, Tordjmann T, Combettes L. Hierarchical organization of calcium signals in hepatocytes: from experiments to models. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:134-52. [PMID: 11108957 DOI: 10.1016/s0167-4889(00)00090-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proper working of the liver largely depends on the fine tuning of the level of cytosolic Ca(2+) in hepatocytes. Thanks to the development of imaging techniques, our understanding of the spatio-temporal organization of intracellular Ca(2+) in this - and other - cell types has much improved. Many of these signals are mediated by a rise in the level of inositol 1,4,5-trisphosphate (InsP(3)), a second messenger which can activate the release of Ca(2+) from the endoplasmic reticulum. Besides the now well-known hepatic Ca(2+) oscillations induced by hormonal stimulation, intra- and intercellular Ca(2+) waves have also been observed. More recently, subcellular Ca(2+) increases associated with the coordinated opening of a few Ca(2+) channels have been reported. Given the complexity of the regulations involved in the generation of such processes and the variety of time and length scales necessary to describe those phenomena, theoretical models have been largely used to gain a precise and quantitative understanding of the dynamics of intracellular Ca(2+). Here, we review the various aspects of the spatio-temporal organization of cytosolic Ca(2+) in hepatocytes from the dual point of view provided by experiments and modeling. We first focus on the description and the mechanism of intracellular Ca(2+) oscillations and waves. Second, we investigate in which manner these repetitive Ca(2+) increases are coordinated among a set of hepatocytes coupled by gap junctions, a phenomenon known as 'intercellular Ca(2+) waves'. Finally, we focus on the so-called elementary Ca(2+) signals induced by low InsP(3) concentrations, leading to Ca(2+) rises having a spatial extent of a few microns. Although these small-scale events have been mainly studied in other cell types, we theoretically infer general properties of these localized intracellular Ca(2+) rises that could also apply to hepatocytes.
Collapse
Affiliation(s)
- G Dupont
- Université Libre de Bruxelles, Faculté des Sciences, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
72
|
Falcke M, Tsimring L, Levine H. Stochastic spreading of intracellular Ca(2+) release. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:2636-43. [PMID: 11088743 DOI: 10.1103/physreve.62.2636] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/1999] [Indexed: 12/13/2022]
Abstract
We study the spreading of calcium-induced calcium release with the stochastic DeYoung-Keizer-model of the inositol 1,4,5-trisphosphate receptor channel. The model shows a transition from isolated release events to steadily propagating waves with increasing IP3 concentration. A state--stochastic backfiring--was found in the regime of steady propagation. The model can be reduced by an adiabatic elimination of the partial differential equation for the Ca(2+) concentration to a lattice of stochastic channel clusters.
Collapse
Affiliation(s)
- M Falcke
- Physics Department, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319, USA
| | | | | |
Collapse
|
73
|
Boittin FX, Coussin F, Morel JL, Halet G, Macrez N, Mironneau J. Ca(2+) signals mediated by Ins(1,4,5)P(3)-gated channels in rat ureteric myocytes. Biochem J 2000; 349:323-32. [PMID: 10861244 PMCID: PMC1221153 DOI: 10.1042/0264-6021:3490323] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Localized Ca(2+)-release signals (puffs) and propagated Ca(2+) waves were characterized in rat ureteric myocytes by confocal microscopy. Ca(2+) puffs were evoked by photorelease of low concentrations of Ins(1,4,5)P(3) from a caged precursor and by low concentrations of acetylcholine; they were also observed spontaneously in Ca(2+)-overloaded myocytes. Ca(2+) puffs showed some variability in amplitude, time course and spatial spread, suggesting that Ins(1,4,5)P(3)-gated channels exist in clusters containing variable numbers of channels and that within these clusters a variable number of channels can be recruited. Immunodetection of Ins(1,4,5)P(3) receptors revealed the existence of several spots of fluorescence in the confocal cell sections, supporting the existence of clusters of Ins(1,4,5)P(3) receptors. Strong Ins(1,4,5)P(3) photorelease and high concentrations of acetylcholine induced Ca(2+) waves that originated from an initiation site and propagated in the whole cell by spatial recruitment of neighbouring Ca(2+)-release sites. Both Ca(2+) puffs and Ca(2+) waves were blocked selectively by intracellular applications of heparin and an anti-Ins(1,4,5)P(3)-receptor antibody, but were unaffected by ryanodine and intracellular application of an anti-ryanodine receptor antibody. mRNAs encoding for the three subtypes of Ins(1,4,5)P(3) receptor and subtype 3 of ryanodine receptor were detected in these myocytes, and the maximal binding capacity of [(3)H]Ins(1,4,5)P(3) was 10- to 12-fold higher than that of [(3)H]ryanodine. These results suggest that Ins(1,4,5)P(3)-gated channels mediate a continuum of Ca(2+) signalling in smooth-muscle cells expressing a high level of Ins(1,4,5)P(3) receptors and no subtypes 1 and 2 of ryanodine receptors.
Collapse
Affiliation(s)
- F X Boittin
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, CNRS UMR 5017, Université de Bordeaux II, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
74
|
Hajnóczky G, Csordás G, Krishnamurthy R, Szalai G. Mitochondrial calcium signaling driven by the IP3 receptor. J Bioenerg Biomembr 2000; 32:15-25. [PMID: 11768758 DOI: 10.1023/a:1005504210587] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many agonists bring about their effects on cellular functions through a rise in cytosolic [Ca2+] ([Ca2+]c) mediated by the second messenger inositol 1,4,5-trisphosphate (IP3). Imaging studies of single cells have demonstrated that [Ca2+]c signals display cell specific spatiotemporal organization that is established by coordinated activation of IP3 receptor Ca2+ channels. Evidence emerges that cytosolic calcium signals elicited by activation of the IP3 receptors are efficiently transmitted to the mitochondria. An important function of mitochondrial calcium signals is to activate the Ca2+-sensitive mitochondrial dehydrogenases, and thereby to meet demands for increased energy in stimulated cells. Activation of the permeability transition pore (PTP) by mitochondrial calcium signals may also be involved in the control of cell death. Furthermore, mitochondrial Ca2+ transport appears to modulate the spatiotemporal organization of [Ca2+]c responses evoked by IP3 and so mitochondria may be important in cytosolic calcium signaling as well. This paper summarizes recent research to elucidate the mechanisms and significance of IP3-dependent mitochondrial calcium signaling.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
75
|
Melamed-Book N, Kachalsky SG, Kaiserman I, Rahamimoff R. Neuronal calcium sparks and intracellular calcium "noise". Proc Natl Acad Sci U S A 1999; 96:15217-21. [PMID: 10611365 PMCID: PMC24800 DOI: 10.1073/pnas.96.26.15217] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular calcium ions are involved in many forms of cellular function. To accommodate so many control functions, a complex spatiotemporal organization of calcium signaling has developed. In both excitable and nonexcitable cells, calcium signaling was found to fluctuate. Sudden localized increases in the intracellular calcium concentration-or calcium sparks-were found in heart, striated and smooth muscle, Xenopus Laevis oocytes, and HeLa and P12 cells. In the nervous system, intracellular calcium ions were found important in key processes such as transmitter release, repetitive firing, and gene expression. Hence, we examined whether calcium sparks also exist in neurons. Using confocal laser-scanning microscopy and fluorescent probes, we found that calcium sparks exist in two types of neuronal preparations: the presynaptic boutons of the lizard neuromuscular junction and rat hippocampal neurons in cell culture. Control experiments exclude the possibility that these calcium sparks originate from instrumental or biological artifacts. Calcium sparks seem to be just the tip of the iceberg of a more general phenomenon of intracellular calcium "noise." We speculate that calcium sparks and calcium noise may be of key importance in calcium signaling in the nervous system.
Collapse
Affiliation(s)
- N Melamed-Book
- Department of Physiology, Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
76
|
Swillens S, Dupont G, Combettes L, Champeil P. From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci U S A 1999; 96:13750-5. [PMID: 10570144 PMCID: PMC24136 DOI: 10.1073/pnas.96.24.13750] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 09/17/1999] [Indexed: 11/18/2022] Open
Abstract
In the cytoplasm of cells of different types, discrete clusters of inositol 1,4,5-trisphosphate-sensitive Ca(2+) channels generate Ca(2+) signals of graded size, ranging from blips, which involve the opening of only one channel, to moderately larger puffs, which result from the concerted opening of a few channels in the same cluster. These channel clusters are of unknown size or geometrical characteristics. The aim of this study was to estimate the number of channels and the interchannel distance within such a cluster. Because these characteristics are not attainable experimentally, we performed computer stochastic simulations of Ca(2+) release events. We conclude that, to ensure efficient interchannel communication, as experimentally observed, a typical cluster should contain two or three tens of inositol 1,4,5-trisphosphate-sensitive Ca(2+) channels in close contact.
Collapse
Affiliation(s)
- S Swillens
- Institut de Recherche Interdisciplinaire, Faculté de Médecine, Université Libre de Bruxelles, CP 602, route de Lennik 808, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
77
|
Zou H, Lifshitz LM, Tuft RA, Fogarty KE, Singer JJ. Imaging Ca(2+) entering the cytoplasm through a single opening of a plasma membrane cation channel. J Gen Physiol 1999; 114:575-88. [PMID: 10498675 PMCID: PMC2229469 DOI: 10.1085/jgp.114.4.575] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 08/10/1999] [Indexed: 11/20/2022] Open
Abstract
Discrete localized fluorescence transients due to openings of a single plasma membrane Ca(2+) permeable cation channel were recorded using wide-field digital imaging microscopy with fluo-3 as the Ca(2+) indicator. These transients were obtained while simultaneously recording the unitary channel currents using the whole-cell current-recording configuration of the patch-clamp technique. This cation channel in smooth muscle cells is opened by caffeine (Guerrero, A., F.S. Fay, and J.J. Singer. 1994. J. Gen. Physiol. 104:375-394). The localized fluorescence transients appeared to occur at random locations on the cell membrane, with the duration of the rising phase matching the duration of the channel opening. Moreover, these transients were only observed in the presence of sufficient extracellular Ca(2+), suggesting that they are due to Ca(2+) influx from the bathing solution. The fluorescence transient is characterized by an initial fast rising phase when the channel opens, followed by a slower rising phase during prolonged openings. When the channel closes there is an immediate fast falling phase followed by a slower falling phase. Computer simulations of the underlying events were used to interpret the time course of the transients. The rapid phases are mainly due to the establishment or removal of Ca(2+) and Ca(2+)-bound fluo-3 gradients near the channel when the channel opens or closes, while the slow phases are due to the diffusion of Ca(2+) and Ca(2+)-bound fluo-3 into the cytoplasm. Transients due to short channel openings have a "Ca(2+) spark-like" appearance, suggesting that the rising and early falling components of sparks (due to openings of ryanodine receptors) reflect the fast phases of the fluorescence change. The results presented here suggest methods to determine the relationship between the fluorescence transient and the underlying Ca(2+) current, to study intracellular localized Ca(2+) handling as might occur from single Ca(2+) channel openings, and to localize Ca(2+) permeable ion channels on the plasma membrane.
Collapse
Affiliation(s)
- Hui Zou
- From the Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Lawrence M. Lifshitz
- From the Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- From the Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Richard A. Tuft
- From the Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- From the Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Kevin E. Fogarty
- From the Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
- From the Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Joshua J. Singer
- From the Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
78
|
Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J 1999; 77:1528-39. [PMID: 10465763 PMCID: PMC1300440 DOI: 10.1016/s0006-3495(99)77000-1] [Citation(s) in RCA: 450] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excitation contraction (e-c) coupling in skeletal and cardiac muscles involves an interaction between specialized junctional domains of the sarcoplasmic reticulum (SR) and of exterior membranes (either surface membrane or transverse (T) tubules). This interaction occurs at special structures named calcium release units (CRUs). CRUs contain two proteins essential to e-c coupling: dihydropyridine receptors (DHPRs), L-type Ca(2+) channels of exterior membranes; and ryanodine receptors (RyRs), the Ca(2+) release channels of the SR. Special CRUs in cardiac muscle are constituted by SR domains bearing RyRs that are not associated with exterior membranes (the corbular and extended junctional SR or EjSR). Functional groupings of RyRs and DHPRs within calcium release units have been named couplons, and the term is also loosely applied to the EjSR of cardiac muscle. Knowledge of the structure, geometry, and disposition of couplons is essential to understand the mechanism of Ca(2+) release during muscle activation. This paper presents a compilation of quantitative data on couplons in a variety of skeletal and cardiac muscles, which is useful in modeling calcium release events, both macroscopic and microscopic ("sparks").
Collapse
Affiliation(s)
- C Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
79
|
Boittin FX, Macrez N, Halet G, Mironneau J. Norepinephrine-induced Ca(2+) waves depend on InsP(3) and ryanodine receptor activation in vascular myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C139-51. [PMID: 10409117 DOI: 10.1152/ajpcell.1999.277.1.c139] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat portal vein myocytes, Ca(2+) signals can be generated by inositol 1,4,5-trisphosphate (InsP(3))- and ryanodine-sensitive Ca(2+) release channels, which are located on the same intracellular store. Using a laser scanning confocal microscope associated with the patch-clamp technique, we showed that propagated Ca(2+) waves evoked by norepinephrine (in the continuous presence of oxodipine) were completely blocked after internal application of an anti-InsP(3) receptor antibody. These propagated Ca(2+) waves were also reduced by approximately 50% and transformed in homogenous Ca(2+) responses after application of an anti-ryanodine receptor antibody or ryanodine. All-or-none Ca(2+) waves obtained with increasing concentrations of norepinephrine were transformed in a dose-response relationship with a Hill coefficient close to unity after ryanodine receptor inhibition. Similar effects of the ryanodine receptor inhibition were observed on the norepinephrine- and ACh-induced Ca(2+) responses in non-voltage-clamped portal vein and duodenal myocytes and on the norepinephrine-induced contraction. Taken together, these results show that ryanodine-sensitive Ca(2+) release channels are responsible for the fast propagation of Ca(2+) responses evoked by various neurotransmitters producing InsP(3) in vascular and visceral myocytes.
Collapse
MESH Headings
- Animals
- Caffeine/pharmacology
- Calcium/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Neurotransmitter Agents/pharmacology
- Norepinephrine/pharmacology
- Patch-Clamp Techniques
- Portal Vein/drug effects
- Portal Vein/metabolism
- Rats
- Rats, Wistar
- Ryanodine/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Ryanodine Receptor Calcium Release Channel/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- F X Boittin
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, Centre National de la Recherche Scientifique Enseignement Supérieur Associé 5017, Université de Bordeaux II, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
80
|
Horne JH. Regulatory and spatial aspects of inositol trisphosphate-mediated calcium signals. Cell Biochem Biophys 1999; 30:267-86. [PMID: 10356645 DOI: 10.1007/bf02738070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hormones that act to release Ca2+ from intracellular stores initiate a signaling cascade that culminates in the production of inositol 1,4,5-trisphosphate (InsP3). The Ca2+ response mediated by InsP3 is not a sustained increase in the cytosolic Ca2+ concentration, but rather a series of periodic spikes that manifest as waves in larger cells. In vitro studies have determined that the key positive feedback parameter driving spikes and waves is a highly localized direct Ca(2+)-activation of InsP3-gated Ca2+ channels. Advances in fluorescent Ca2+ imaging have facilitated the resolution of individual positive feedback units. These studies have revealed that there are several modes of channel coupling underlying global Ca2+ signals; single channel openings or Ca2+ "blips," synchronized clusters of channels or Ca2+ "puffs," and cell wide calcium waves. It appears that the channel clusters that produce Ca2+ puffs are synchronized by the highly localized positive feedback that was predicted by the in vitro studies of channel regulation. Localization of InsP3-induced Ca2+ signals has been shown to be important for activation of several cellular processes including uni-directional salt flow and mitochondrial activation.
Collapse
Affiliation(s)
- J H Horne
- Department of Biology, California Institute of Technology, Pasadena, USA.
| |
Collapse
|
81
|
Bolton TB, Prestwich SA, Zholos AV, Gordienko DV. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol 1999; 61:85-115. [PMID: 10099683 DOI: 10.1146/annurev.physiol.61.1.85] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main contributors to increases in [Ca2+]i and tension are the entry of Ca2+ through voltage-dependent channels opened by depolarization or during action potential (AP) or slow-wave discharge, and Ca2+ release from store sites in the cell by the action of IP3 or by Ca(2+)-induced Ca(2+)-release (CICR). The entry of Ca2+ during an AP triggers CICR from up to 20 or more subplasmalemmal store sites (seen as hot spots, using fluorescent indicators); Ca2+ waves then spread from these hot spots, which results in a rise in [Ca2+]i throughout the cell. Spontaneous transient releases of store Ca2+, previously detected as spontaneous transient outward currents (STOCs), are seen as sparks when fluorescent indicators are used. Sparks occur at certain preferred locations--frequent discharge sites (FDSs)--and these and hot spots may represent aggregations of sarcoplasmic reticulum scattered throughout the cytoplasm. Activation of receptors for excitatory signal molecules generally depolarizes the cell while it increases the production of IP3 (causing calcium store release) and diacylglycerols (which activate protein kinases). Activation of receptors for inhibitory signal molecules increases the activity of protein kinases through increases in cAMP or cGMP and often hyperpolarizes the cell. Other receptors link to tyrosine kinases, which trigger signal cascades interacting with trimeric G-protein systems.
Collapse
Affiliation(s)
- T B Bolton
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, London, United Kingdom.
| | | | | | | |
Collapse
|
82
|
Callamaras N, Parker I. Radial localization of inositol 1,4,5-trisphosphate-sensitive Ca2+ release sites in Xenopus oocytes resolved by axial confocal linescan imaging. J Gen Physiol 1999; 113:199-213. [PMID: 9925819 PMCID: PMC2223371 DOI: 10.1085/jgp.113.2.199] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 09/24/1998] [Indexed: 11/20/2022] Open
Abstract
The radial localization and properties of elementary calcium release events ("puffs") were studied in Xenopus oocytes using a confocal microscope equipped with a piezoelectric focussing unit to allow rapid (>100 Hz) imaging of calcium signals along a radial line into the cell with a spatial resolution of <0.7 micrometer. Weak photorelease of caged inositol 1,4,5-trisphosphate (InsP3) evoked puffs arising predominantly within a 6-micrometer thick band located within a few micrometers of the cell surface. Approximately 25% of puffs had a restricted radial spread, consistent with calcium release from a single site. Most puffs, however, exhibited a greater radial spread (3.25 micrometer), likely involving recruitment of radially neighboring release sites. Calcium waves evoked by just suprathreshold stimuli exhibited radial calcium distributions consistent with inward diffusion of calcium liberated at puff sites, whereas stronger flashes evoked strong, short-latency signals at depths inward from puff sites, indicating deep InsP3-sensitive stores activated at higher concentrations of InsP3. Immunolocalization of InsP3 receptors showed punctate staining throughout a region corresponding to the localization of puffs and subplasmalemmal endoplasmic reticulum. The radial organization of puff sites a few micrometers inward from the plasma membrane may have important consequences for activation of calcium-dependent ion channels and "capacitative" calcium influx. However, on the macroscopic (hundreds of micrometers) scale of global calcium waves, release can be considered to occur primarily within a thin, essentially two-dimensional subplasmalemmal shell.
Collapse
Affiliation(s)
- N Callamaras
- Laboratory of Cellular and Molecular Neurobiology, Department of Psychobiology, University of California Irvine, Irvine, California 92697-4550, USA
| | | |
Collapse
|
83
|
Csordás G, Thomas AP, Hajnóczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 1999; 18:96-108. [PMID: 9878054 PMCID: PMC1171106 DOI: 10.1093/emboj/18.1.96] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of cytosolic [Ca2+] ([Ca2+]c) oscillations into the mitochondrial matrix is thought to be supported by local calcium control between IP3 receptor Ca2+ channels (IP3R) and mitochondria, but study of the coupling mechanisms has been difficult. We established a permeabilized cell model in which the Ca2+ coupling between endoplasmic reticulum (ER) and mitochondria is retained, and mitochondrial [Ca2+] ([Ca2+]m) can be monitored by fluorescence imaging. We demonstrate that maximal activation of mitochondrial Ca2+ uptake is evoked by IP3-induced perimitochondrial [Ca2+] elevations, which appear to reach values >20-fold higher than the global increases of [Ca2+]c. Incremental doses of IP3 elicited [Ca2+]m elevations that followed the quantal pattern of Ca2+ mobilization, even at the level of individual mitochondria. In contrast, gradual increases of IP3 evoked relatively small [Ca2+]m responses despite eliciting similar [Ca2+]c increases. We conclude that each mitochondrial Ca2+ uptake site faces multiple IP3R, a concurrent activation of which is required for optimal activation of mitochondrial Ca2+ uptake. This architecture explains why calcium oscillations evoked by synchronized periodic activation of IP3R are particularly effective in establishing dynamic control over mitochondrial metabolism. Furthermore, our data reveal fundamental functional similarities between ER-mitochondrial Ca2+ coupling and synaptic transmission.
Collapse
Affiliation(s)
- G Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
84
|
Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature 1998; 396:81-4. [PMID: 9817204 PMCID: PMC2825878 DOI: 10.1038/23954] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (InsP3R) is the main calcium(Ca2+) release channel in most tissues. Three isoforms have been identified, but only types I and II InsP3R have been characterized. Here we examine the functional properties of the type III InsP3R because this receptor is restricted to the trigger zone from which Ca2+ waves originate and it has distinctive InsP3-binding properties. We find that type III InsP3R forms Ca2+ channels with single-channel currents that are similar to those of type I InsP3R; however, the open probability of type III InsP3R isoform increases monotonically with increased cytoplasmic Ca2+ concentration, whereas the type I isoform has a bell-shaped dependence on cytoplasmic Ca2+. The properties of type III InsP3R provide positive feedback as Ca2+ is released; the lack of negative feedback allows complete Ca2+ release from intracellular stores. Thus, activation of type III InsP3R in cells that express only this isoform results in a single transient, but global, increase in the concentration of cytosolic Ca2+. The bell-shaped Ca2+-dependence curve of type I InsP3R is ideal for supporting Ca2+ oscillations, whereas the properties of type III InsP3R are better suited to signal initiation.
Collapse
Affiliation(s)
- R E Hagar
- Department of Physiology, University of Connecticut Health Center, Farmington 06030, USA.
| | | | | | | |
Collapse
|
85
|
Thomas D, Lipp P, Berridge MJ, Bootman MD. Hormone-evoked elementary Ca2+ signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. J Biol Chem 1998; 273:27130-6. [PMID: 9765231 DOI: 10.1074/jbc.273.42.27130] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies of (InsP3)-evoked elementary Ca2+ events suggested a hierarchy of signals; fundamental events ("Ca2+ blips") arising from single InsP3 receptors (InsP3Rs), and intermediate events ("Ca2+ puffs") reflecting the coordinated opening of a cluster of InsP3Rs. The characteristics of such elementary Ca2+ release signals provide insights into the functional interaction and distribution of InsP3Rs in living cells. Therefore we investigated whether elementary Ca2+ signaling is truly represented by such stereotypic release events. A histogram of >900 events revealed a wide spread of signal amplitudes (20-600 nM; mean 216 +/- 4 nM; n = 206 cells), which cannot be explained by stochastic variation of a stereotypic Ca2+ release site. We identified elementary Ca2+ release sites with consistent amplitudes (<20% difference) and locations with variable amplitudes (approximately 500% difference). Importantly, within single cells, distinct sites displayed events with significantly different mean amplitudes. Additional determinants affecting the magnitude of elementary Ca2+ release were identified to be (i) hormone concentration, (ii) day-to-day variability, and (iii) a progressively decreasing Ca2+ release during prolonged stimulation. We therefore suggest that elementary Ca2+ events are not stereotypic, instead a continuum of signals can be achieved by either recruitment of entire clusters with different numbers of InsP3Rs or by a graded recruitment of InsP3Rs within a cluster.
Collapse
Affiliation(s)
- D Thomas
- Babraham Institute Laboratory of Molecular Signaling, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | |
Collapse
|
86
|
Lieste JR, Koopman WJ, Reynen VC, Scheenen WJ, Jenks BG, Roubos EW. Action currents generate stepwise intracellular Ca2+ patterns in a neuroendocrine cell. J Biol Chem 1998; 273:25686-94. [PMID: 9748236 DOI: 10.1074/jbc.273.40.25686] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is believed that specific patterns of changes in the cytosolic-free calcium concentration ([Ca2+]i) are used to control cellular processes such as gene transcription, cell proliferation, differentiation, and secretion. We recently showed that the Ca2+ oscillations in the neuroendocrine melanotrope cells of Xenopus laevis are built up by a number of discrete Ca2+ rises, the Ca2+ steps. The origin of the Ca2+ steps and their role in the generation of long-lasting Ca2+ patterns were unclear. By simultaneous, noninvasive measuring of melanotrope plasma membrane electrical activity and the [Ca2+]i, we show that numbers, amplitude, and frequency of Ca2+ steps are variable among individual oscillations and are determined by the firing pattern and shape of the action currents. The general Na+ channel blocker tetrodotoxin had no effect on either action currents or the [Ca2+]i. Under Na+-free conditions, a depolarizing pulse of 20 mM K+ induced repetitive action currents and stepwise increases in the [Ca2+]i. The Ca2+ channel blocker CoCl2 eliminated action currents and stepwise increases in the [Ca2+]i in both the absence and presence of high K+. We furthermore demonstrate that the speed of Ca2+ removal from the cytoplasm depends on the [Ca2+]i, also between Ca2+ steps during the rising phase of an oscillation. It is concluded that Ca2+ channels, and not Na+ channels, are essential for the generation of specific step patterns and, furthermore, that the frequency and shape of Ca2+ action currents in combination with the Ca2+ removal rate determine the oscillatory pattern.
Collapse
Affiliation(s)
- J R Lieste
- Department of Cellular Animal Physiology, Institute of Cellular Signaling and Nijmegen Institute for Neurosciences, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
87
|
Smith GD, Keizer JE, Stern MD, Lederer WJ, Cheng H. A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys J 1998; 75:15-32. [PMID: 9649364 PMCID: PMC1299676 DOI: 10.1016/s0006-3495(98)77491-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The elementary events of excitation-contraction coupling in heart muscle are Ca2+ sparks, which arise from one or more ryanodine receptors in the sarcoplasmic reticulum (SR). Here a simple numerical model is constructed to explore Ca2+ spark formation, detection, and interpretation in cardiac myocytes. This model includes Ca2+ release, cytosolic diffusion, resequestration by SR Ca2+-ATPases, and the association and dissociation of Ca2+ with endogenous Ca2+-binding sites and a diffusible indicator dye (fluo-3). Simulations in a homogeneous, isotropic cytosol reproduce the brightness and the time course of a typical cardiac Ca2+ spark, but underestimate its spatial size (approximately 1.1 micron vs. approximately 2.0 micron). Back-calculating [Ca2+]i by assuming equilibrium with indicator fails to provide a good estimate of the free Ca2+ concentration even when using blur-free fluorescence data. A parameter sensitivity study reveals that the mobility, kinetics, and concentration of the indicator are essential determinants of the shape of Ca2+ sparks, whereas the stationary buffers and pumps are less influential. Using a geometrically more complex version of the model, we show that the asymmetric shape of Ca2+ sparks is better explained by anisotropic diffusion of Ca2+ ions and indicator dye rather than by subsarcomeric inhomogeneities of the Ca2+ buffer and transport system. In addition, we examine the contribution of off-center confocal sampling to the variance of spark statistics.
Collapse
Affiliation(s)
- G D Smith
- Mathematical Research Branch, National Institutes of Health, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
88
|
Callamaras N, Marchant JS, Sun XP, Parker I. Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J Physiol 1998; 509 ( Pt 1):81-91. [PMID: 9547383 PMCID: PMC2230929 DOI: 10.1111/j.1469-7793.1998.081bo.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The activation of elementary calcium release events ('puffs') and their co-ordination to generate calcium waves was studied in Xenopus oocytes by confocal linescan imaging together with photorelease of inositol 1,4,5-trisphosphate (InsP3) from a caged precursor. 2. Weak photolysis flashes evoked no responses or isolated calcium puffs, whereas flashes of increasing strength evoked more frequent puffs, often occurring in flurries as abortive waves, and then a near-simultaneous calcium liberation originating at multiple sites. The numbers of sites activated increased initially as about the fourth power of photoreleased [InsP3]. 3. Following repeated, identical photolysis flashes, puffs arose after stochastically varying latencies of a few hundred milliseconds to several seconds. The cumulative number of events initially increased as about the third power of time. No rise in free [Ca2+] was detected preceding the puffs, suggesting that this co-operativity arises through binding of multiple InsP3 molecules, rather than through calcium feedback. 4. The mean latency to onset of calcium liberation shortened as about the square of the flash strength, and the dispersion in latencies between events reduced correspondingly. 5. Weak stimuli often evoked coupled puffs involving adjacent sites, and stronger flashes evoked saltatory calcium waves, propagating with non-constant velocity. During waves, [Ca2+] rose slowly between puff sites, but more abruptly at active sites following an initial diffusive rise in calcium. 6. Initial rates of rise of local [Ca2+] at release sites were similar during puffs and release induced by much (> 10-fold) greater [InsP3]. In contrast, macroscopic calcium measurements averaged over the scan line showed a graded dependence of rate of calcium liberation upon [InsP3], due to recruitment of additional sites and decreasing dispersion in activation latencies. 7. We conclude that the initiation of calcium liberation depends co-operatively upon [InsP3] whereas the subsequent regenerative increase in calcium flux depends upon local calcium feedback and is largely independent of [InsP3]. Wave propagation is consistent with the diffusive spread of calcium evoking regenerative liberation at heterogeneous discrete sites, the sensitivity of which is primed by InsP3.
Collapse
Affiliation(s)
- N Callamaras
- Laboratory of Cellular and Molecular Neurobiology, Department of Psychobiology, University of California Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
89
|
Sun XP, Callamaras N, Marchant JS, Parker I. A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes. J Physiol 1998; 509 ( Pt 1):67-80. [PMID: 9547382 PMCID: PMC2230949 DOI: 10.1111/j.1469-7793.1998.067bo.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1997] [Accepted: 02/05/1998] [Indexed: 11/28/2022] Open
Abstract
1. The elementary release events underlying inositol 1,4, 5-trisphosphate (InsP3)-mediated calcium signalling were investigated in Xenopus oocytes by means of high-resolution confocal linescan imaging together with flash photolysis of caged InsP3. 2. Weak photolysis flashes evoked localized, transient calcium signals that arose at specific sites following random latencies of up to several seconds. The duration, spatial spread and amplitude of these elementary events varied widely. Event durations (at half-maximal amplitude) were distributed exponentially between about 100 and 600 ms. Fluorescence magnitudes (F/F0 of Oregon Green 488 BAPTA-1) showed a skewed distribution with a peak at about 1.5 and a tail extending as high as 3.5. 3. Individual release sites exhibited both small events (blips) and large events (puffs). The spatiotemporal distribution of calcium signals during puffs was consistent with calcium diffusion from a point source (< a few hundred nanometres), rather than with propagation of a microscopic calcium wave. 4. Estimates of the calcium flux associated with individual events were made by integrating fluorescence profiles along the scan line in three dimensions to derive the 'signal mass' at each time point. The smallest resolved events corresponded to liberation of < 2 x 10-20 mol Ca2+, and large events to about 2 x 10-18 mol Ca2+. The rise of signal mass was more prolonged than that of the fluorescence intensity, suggesting that calcium liberation persists even while the fluorescence begins to decline. Rates of rise of signal mass corresponded to Ca2+ currents of 0.4-2.5 pA. 5. Measurements of signal mass from different events showed a continuous, exponential distribution, arising through variability in magnitude and duration of calcium flux. 6. We conclude that localized calcium transients in the oocyte represent a continuum of events involving widely varying amounts of calcium liberation, rather than falling into separate populations of 'fundamental' and 'elementary' events (blips and puffs) involving, respectively, single and multiple InsP3 receptor channels. This variability probably arises through stochastic variation in both the number of channels recruited and the duration of channel opening.
Collapse
Affiliation(s)
- X P Sun
- Laboratory of Cellular and Molecular Neurobiology, Department of Psychobiology, University of California Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
90
|
Swillens S, Champeil P, Combettes L, Dupont G. Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during 'blip-like' Ca2+ transients. Cell Calcium 1998; 23:291-302. [PMID: 9681192 DOI: 10.1016/s0143-4160(98)90025-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Confocal microscope studies with fluorescent dyes of inositol 1,4,5-trisphosphate (InsP3)-induced intracellular Ca2+ mobilization recently established the existence of 'elementary' events, dependent on the activity of individual InsP3-sensitive Ca2+ channels. In the present work, we try by theoretical stochastic simulation to explain the smallest signals observed in those studies, which were referred to as Ca2+ 'blips' [Parker I., Yao Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol Lond 1996; 491: 663-668]. For this purpose, we assumed a simple molecular model for the InsP3-sensitive Ca2+ channel and defined a set of parameter values accounting for the results obtained in electrophysiological bilayer experiments [Bezprozvanny I., Watras J., Ehrlich B.E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351: 751-754; Bezprozvanny I., Ehrlich B.E. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 1994; 104: 821-856]. With a stochastic procedure which considered cytosolic Ca2+ diffusion explicitly, we then simulated the behaviour of a single channel, placed in a realistic physiological environment. An attractive result was that the simulated channel exhibited bursts of activity, arising from repetitive channel openings, which were responsible for transient rises in Ca2+ concentration and were reminiscent of the relatively long-duration experimental Ca2+ blips. The influence of the values chosen for the various parameters (affinity and diffusion coefficient of the buffers, luminal Ca2+ concentration) on the kinetic characteristics of these theoretical blips is analyzed.
Collapse
Affiliation(s)
- S Swillens
- Institut de Recherche Interdisciplinaire, Faculté de Médecine, Université Libre de Bruxelles, Belgium.
| | | | | | | |
Collapse
|
91
|
Boittin FX, Coussin F, Macrez N, Mironneau C, Mironneau J. Inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes. Cell Calcium 1998; 23:303-11. [PMID: 9681193 DOI: 10.1016/s0143-4160(98)90026-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca2+ signalling events were analyzed in single myocytes from rat portal vein by using a laser confocal microscope combined with the patch-clamp technique. Increase in inositol 1,4,5-trisphosphate (InsP3) concentration was obtained by photorelease from a caged precursor or intracellular dialysis of 3F-InsP3. Low InsP3 concentrations activated either small elevations of [Ca2+]i or localized Ca2+ transients whereas high InsP3 concentrations activated either homogeneous Ca2+ responses or propagated Ca2+ waves. The InsP3-evoked localized Ca2+ transients had spatio-temporal properties characteristic of Ca2+ sparks. In addition, compounds that blocked Ca2+ sparks and Ca2+ responses activated by Ca2+ jumps reduced the global InsP3-activated Ca2+ responses and suppressed the Ca2+ transients. In contrast, Ca2+ responses evoked by flash-photolytic Ca2+ jumps or caffeine were not affected by heparin (an InsP3 receptor antagonist). These results suggest that the absence of elementary Ca2+ events evoked by InsP3 may be related to the lack of clustered InsP3 receptor units in these cells, as confirmed by immunocytochemistry. Cooperativity between InsP3- and ryanodine-sensitive Ca2+ channels may represent a novel mechanism to amplify Ca2+ release from the same intracellular store and give rise to propagated Ca2+ waves.
Collapse
MESH Headings
- Acetates/radiation effects
- Animals
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cells, Cultured
- Ethylenediamines/radiation effects
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/radiation effects
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating/drug effects
- Microinjections
- Microscopy, Confocal
- Patch-Clamp Techniques
- Photolysis
- Portal Vein/cytology
- Portal Vein/drug effects
- Portal Vein/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- F X Boittin
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, CNRS ESA 5017, Université de Bordeaux II, France
| | | | | | | | | |
Collapse
|
92
|
Neylon CB, Nickashin A, Tkachuk VA, Bobik A. Heterotrimeric Gi protein is associated with the inositol 1,4,5-trisphosphate receptor complex and modulates calcium flux. Cell Calcium 1998; 23:281-9. [PMID: 9681191 DOI: 10.1016/s0143-4160(98)90024-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vascular smooth muscle, pertussis toxin (PT) inhibits thrombin-induced Ca2+ release by a mechanism independent of its effect on IP3 formation. Thus, the possibility of a direct role of G alpha i proteins in regulating IP3-sensitive Ca2+ release was investigated by examining whether G alpha i proteins are associated with the IP3 receptor complex. Purified microsomal membranes were prepared and separated by sucrose density gradient centrifugation. The relative density of [3H]-IP3 binding sites between the microsomal fractions was inversely related to the distribution of the plasma membrane marker. The relative distribution of G alpha i3 determined by immunoblotting was closely correlated with the density of [3H]-IP3 binding. Levels of G alpha i2 were more evenly distributed with highest levels present in plasma membrane-enriched fractions. IP3 receptor immunoprecipitated from triton-solubilized microsomal membranes contained G alpha i3 immunoreactivity. To determine whether G alpha i proteins influence IP3-induced Ca2+ release, the effect of PT on Ca2+ release from digitonin-permeabilized cell suspensions using Fluo-3 was examined. Exposure to PT (0.1 microgram/ml, 5 min) attenuated the initial rate of IP3 (1 microM)-induced Ca2+ release. Together, these findings are consistent with the hypothesis that a heterotrimeric G alpha i protein directly regulates IP3-dependent Ca2+ release.
Collapse
MESH Headings
- Adenosine Diphosphate Ribose/metabolism
- Animals
- Aorta/cytology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Cell Membrane Permeability/drug effects
- Cells, Cultured
- Digitonin/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Transport/drug effects
- Macromolecular Substances
- Microsomes/drug effects
- Microsomes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Rats
- Rats, Inbred WKY
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/physiology
- Signal Transduction/physiology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- C B Neylon
- Baker Medical Research Institute, Prahran, Victoria, Australia.
| | | | | | | |
Collapse
|
93
|
Gordienko DV, Bolton TB, Cannell MB. Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells. J Physiol 1998; 507 ( Pt 3):707-20. [PMID: 9508832 PMCID: PMC2230821 DOI: 10.1111/j.1469-7793.1998.707bs.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Spontaneous, localized transient increases in [Ca2+]i ('Ca2+ sparks') were observed in about 40 % of fluo-3-loaded myocytes examined using laser scanning confocal microscopy. Ca2+ sparks persisted after application of Cd2+ (200 microM), but were abolished by ryanodine (30 microM) or thapsigargin (0.1 microM), suggesting that they arise from the spontaneous activation of ryanodine receptors (RyR) in the sarcoplasmic reticulum (SR). 2. Ca2+ sparks occurred much more frequently at certain sites (or 'frequent discharge sites', FDSs) within any confocal plane of the cell and line-scan imaging revealed a wide variation in their spatial size, amplitude and time course. Some spontaneous local transients were very similar to 'Ca2+ sparks' observed in heart, i.e. lasting approximately 200 ms with a peak fluorescence ratio of 1.75 +/- 0.23 (mean +/- s.d., n = 33). Other events were faster and smaller, lasting only approximately 40 ms with a peak normalized fluorescence of 1.36 +/- 0.09 (mean +/- s.d., n = 28). 3. Spontaneous Ca2+ waves with a wide range of propagation velocities (between 30 and 260 micron s-1) were also observed. In about 60 % of records (n = 33), Ca2+ sparks could be detected at the sites of wave initiation. Waves of elevated [Ca2+]i propagated with non-constant velocity and in some cases terminated. These observations could be explained by heterogeneity in the distribution of subcellular release sites as well as variability in the contribution of each release site to the wave. 4. Spontaneous [Ca2+]i transients in single dispersed visceral smooth muscle cells have a wide spectrum of behaviour that is likely to be the result of spatio-temporal recruitment of smaller local events, probably via a calcium-induced calcium release (CICR) mechanism. The spatial non-uniformity of SR and RyR distribution within the cell may account for the existence of 'frequent discharge sites' firing the majority of the smooth muscle Ca2+ sparks and the wide variation in the Ca2+ wave propagation velocities observed.
Collapse
Affiliation(s)
- D V Gordienko
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
94
|
Takeo T, Suga S, Wu J, Dobashi Y, Kanno T, Wakui M. Kinetics of Ca2+ release evoked by photolysis of caged InsP3 in rat submandibular cells. J Cell Physiol 1998; 174:387-97. [PMID: 9462701 DOI: 10.1002/(sici)1097-4652(199803)174:3<387::aid-jcp13>3.0.co;2-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quantitative time-resolved measurements of cytosolic Ca2+ release by photolysis of caged InsP3 have been made in single rat submandibular cells using patch clamp whole-cell recording to measure the Ca2+-activated Cl- and K+ currents. Photolytic release of InsP3 from caged InsP3 at 100 Joules caused transient inward (V(H) = 60 mV) and outward (V(H) = 0 mV) currents, which were nearly symmetric in their time course. The inward current was reduced when pipette Cl- concentration was decreased, and the outward current was suppressed by K+ channel blockers, indicating that they were carried by Cl- and K+, respectively. Intracellular pre-loading of the InsP3 receptor antagonist heparin or the Ca2+ chelator EGTA clearly prevented both inward and outward currents, indicating that activation of Ca2+-dependent Cl- and K+ currents underlies the inward and the outward currents. At low flash intensities, InsP3 caused Ca2+ release which normally activated the K+ and Cl- currents in a mono-transient manner. At higher intensities, however, InsP3 induced an additional delayed outward K+ current (I[K,(delay)]). I[K(delay)] was independent of the initial K+ current, independent of extracellular Ca2+, inhibited by TEA, and gradually prolongated by repeated flashes. The photolytic release of Ca2+ from caged Ca2+ did not mimic the I[K(delay)]. It is suggested that Ca2+ releases from the InsP3-sensitive pools in an InsP3 concentration-dependent manner. Low concentrations of InsP3 induce the transient Ca2+-dependent Cl- and K+ currents, which reflects the local Ca2+ release, whereas high concentrations of InsP3 induce a delayed Ca2+-dependent K+ current, which may reflect the Ca2+ wave propagation.
Collapse
Affiliation(s)
- T Takeo
- Department of Physiology, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Bugrim AE, Zhabotinsky AM, Epstein IR. Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys J 1997; 73:2897-906. [PMID: 9414204 PMCID: PMC1181195 DOI: 10.1016/s0006-3495(97)78318-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We study the propagation of intracellular calcium waves in a model that features Ca2+ release from discrete sites in the endoplasmic reticulum membrane and random spatial distribution of these sites. The results of our simulations qualitatively reproduce the experimentally observed behavior of the waves. When the level of the channel activator inositol trisphosphate is low, the wave undergoes fragmentation and eventually vanishes at a finite distance from the region of initiation, a phenomenon we refer to as an abortive wave. With increasing activator concentration, the mean distance of propagation increases. Above a critical level of activator, the wave becomes stable. We show that the heterogeneous distribution of Ca2+ channels is the cause of this phenomenon.
Collapse
Affiliation(s)
- A E Bugrim
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | | | |
Collapse
|
96
|
Morel JL, Boittin FX, Halet G, Arnaudeau S, Mironneau C, Mironneau J. Effect of a 14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2867-75. [PMID: 9435626 DOI: 10.1152/ajpheart.1997.273.6.h2867] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effects of a 14-day hindlimb suspension were examined on increases in cytosolic Ca2+ concentration ([Ca2+]i) evoked by vasoactive compounds and on Ca2+ channels in rat portal vein myocytes. The maximal increases in [Ca2+]i elicited by caffeine, norepinephrine, and angiotensin II were reduced by 30-50% in suspended rats, and complete recovery was obtained 4 days after suspension removal. In contrast, voltage-gated Ca2+ channels were unaffected by hindlimb suspension. Using both confocal microscopy and the patch-clamp technique, we measured local increases in [Ca2+]i which corresponded to activation of a small number of ryanodine-sensitive Ca(2+)-release channels (Ca2+ sparks) and D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-gated Ca2+ channels. After hindlimb suspension, these local Ca2+ events, as well as the Ca2+ sensitivity of ryanodine-sensitive Ca2+ release channels, remained unchanged. In contrast, the propagated Ca2+ responses (Ca2+ waves) were significantly reduced in parallel with a noticeable inhibition of [3H]ryanodine binding to vascular membranes. Taken together, these results suggest that inhibition of the vasoconstrictor-induced increases in [Ca2+]i during long-term suspension may be related to a reduction of the number of functional ryanodine-sensitive and Ins(1,4,5)P3-gated channels in the sarcoplasmic reticulum of rat portal vein myocytes.
Collapse
Affiliation(s)
- J L Morel
- Laboratoire de Physiologie Cellulaire et Pharmacologie Moléculaire, Centre National de la Recherche Scientifique ESA 5017, Université de Bordeaux II, France
| | | | | | | | | | | |
Collapse
|
97
|
Hüser J, Blatter LA. Elementary events of agonist-induced Ca2+ release in vascular endothelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1775-82. [PMID: 9374666 DOI: 10.1152/ajpcell.1997.273.5.c1775] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular spatial and temporal organization of agonist-induced Ca2+ signals was investigated in single cultured vascular endothelial cells. Extracellular application of ATP initiated a rapid increase of intracellular Ca2+ concentration ([Ca2+]i) in peripheral cytoplasmic processes from where activation propagated as a [Ca2+]i wave toward the central regions of the cell. The average propagation velocity of the [Ca2+]i wave in the peripheral processes was 20-60 microns/s, whereas in the central region the wave propagated at < 10 microns/s. The time course of the recovery of [Ca2+]i depended on the cell geometry. In the peripheral processes (i.e., regions with a high surface-to-volume ratio) [Ca2+]i declined monotonically, whereas in the central region [Ca2+]i decreased in an oscillatory fashion. Propagating [Ca2+]i waves were preceded by small, highly localized [Ca2+]i transients originating from 1- to 3-micron-wide regions. The average amplitude of these elementary events of Ca2+ release was 23 nM, and the underlying flux of Ca2+ amounted to approximately 1-2 x 10(-18) mol/s or approximately 0.3 pA, consistent with a Ca2+ flux through a single or small number of endoplasmic reticulum Ca(2+)-release channels.
Collapse
Affiliation(s)
- J Hüser
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
98
|
Bootman MD, Berridge MJ, Lipp P. Cooking with calcium: the recipes for composing global signals from elementary events. Cell 1997; 91:367-73. [PMID: 9363945 DOI: 10.1016/s0092-8674(00)80420-1] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies have suggested that global intracellular Ca2+ signals arise from the summation and coordination of subcellular elementary release events (e.g., "Ca2+ puffs"), although the modes of recruitment of such signals are unknown. In order to understand how cells utilize elementary Ca2+ release events, we imaged Ca2+ transients evoked through the phosphoinositide pathway in HeLa cells using confocal microscopy. During the pacemaker phase leading to the global Ca2+ signal, elementary Ca2+ release events were recruited in (1) frequency, (2) amplitude, and (3) spatial domains. Since each digital elementary event contributes to a small change of the analog cytosolic Ca2+ concentration, the net effect of the advancement in the three domains is to drive the ambient Ca2+ concentration toward a threshold where the signal becomes regenerative, resulting in a global Ca2+ wave.
Collapse
Affiliation(s)
- M D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
99
|
Impact of cytoplasmic calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J Neurosci 1997. [PMID: 9295382 DOI: 10.1523/jneurosci.17-19-07359.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impact of calcium buffering on the initiation and propagation of mechanically elicited intercellular Ca2+ waves was studied using astrocytes loaded with different exogenous, cell membrane-permeant Ca2+ chelators and a laser scanning confocal or video fluorescence microscope. Using an ELISA with a novel antibody to BAPTA, we showed that different cell-permeant chelators, when applied at the same concentrations, accumulate to the same degree inside the cells. Loading cultures with BAPTA, a high Ca2+ affinity chelator, almost completely blocked calcium wave occurrence. Chelators having lower Ca2+ affinities had lesser affects, as shown in their attenuation of both the radius of spread and propagation velocity of the Ca2+ wave. The chelators blocked the process of wave propagation, not initiation, because large [Ca2+]i increases elicited in the mechanically stimulated cell were insufficient to trigger the wave in the presence of high Ca2+ affinity buffers. Wave attenuation was a function of cytoplasmic Ca2+ buffering capacity; i.e., loading increasing concentrations of low Ca2+ affinity buffers mimicked the effects of lesser quantities of high-affinity chelators. In chelator-treated astrocytes, changes in calcium wave properties were independent of the Ca2+-binding rate constants of the chelators, of chelation of other ions such as Zn2+, and of effects on gap junction function. Slowing of the wave could be completely accounted for by the slowing of Ca2+ ion diffusion within the cytoplasm of individual astrocytes. The data obtained suggest that alterations in Ca2+ buffering may provide a potent mechanism by which the localized spread of astrocytic Ca2+ signals is controlled.
Collapse
|
100
|
Wang Z, Tymianski M, Jones OT, Nedergaard M. Impact of cytoplasmic calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J Neurosci 1997; 17:7359-71. [PMID: 9295382 PMCID: PMC6573438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The impact of calcium buffering on the initiation and propagation of mechanically elicited intercellular Ca2+ waves was studied using astrocytes loaded with different exogenous, cell membrane-permeant Ca2+ chelators and a laser scanning confocal or video fluorescence microscope. Using an ELISA with a novel antibody to BAPTA, we showed that different cell-permeant chelators, when applied at the same concentrations, accumulate to the same degree inside the cells. Loading cultures with BAPTA, a high Ca2+ affinity chelator, almost completely blocked calcium wave occurrence. Chelators having lower Ca2+ affinities had lesser affects, as shown in their attenuation of both the radius of spread and propagation velocity of the Ca2+ wave. The chelators blocked the process of wave propagation, not initiation, because large [Ca2+]i increases elicited in the mechanically stimulated cell were insufficient to trigger the wave in the presence of high Ca2+ affinity buffers. Wave attenuation was a function of cytoplasmic Ca2+ buffering capacity; i.e., loading increasing concentrations of low Ca2+ affinity buffers mimicked the effects of lesser quantities of high-affinity chelators. In chelator-treated astrocytes, changes in calcium wave properties were independent of the Ca2+-binding rate constants of the chelators, of chelation of other ions such as Zn2+, and of effects on gap junction function. Slowing of the wave could be completely accounted for by the slowing of Ca2+ ion diffusion within the cytoplasm of individual astrocytes. The data obtained suggest that alterations in Ca2+ buffering may provide a potent mechanism by which the localized spread of astrocytic Ca2+ signals is controlled.
Collapse
Affiliation(s)
- Z Wang
- Departments of Cell Biology and Anatomy and Neurosurgery, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | |
Collapse
|