51
|
Alexander B, Browse DJ, Benjamin IS. Hypoxia attenuates hepatic arterial vasodilatation and enhances portal venous vasoconstriction to ATP in the perfused rabbit liver. Eur J Pharmacol 1999; 385:181-9. [PMID: 10607874 DOI: 10.1016/s0014-2999(99)00680-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dose-related responses to acetylcholine, adenosine 5'-triphosphate (ATP), adenosine and sodium nitroprusside were studied in an in vitro perfused rabbit liver gassed with (95% N(2)/5% CO(2), Group 1) and without carbon dioxide (100% N(2), Group 2). At raised tone, achieved by addition of methoxamine to the perfusate, significantly attenuated hepatic arterial vasodilatation to sodium nitroprusside, acetylcholine, ATP and adenosine was measured in Group 1 and responses to all but sodium nitroprusside were abolished in Group 2. Portal venous responses to acetylcholine, adenosine and sodium nitroprusside were not significantly altered in either Group 1 or Group 2. However, portal venous vasoconstriction to ATP was significantly enhanced in Group 1 and less so in Group 2. It is concluded that carbon dioxide-free hypoxia attenuated hepatic arterial vasodilatation to acetylcholine and ATP and enhanced vasoconstriction to ATP. Both these effects may be characteristic of damage to the microvascular endothelium and may be the result of decreased synthesis of nitric oxide.
Collapse
Affiliation(s)
- B Alexander
- Academic Department of Surgery, Liver Sciences Unit, GKT School of Medicine, St Thomas's Hospital, Lambeth Palace Road, London, UK.
| | | | | |
Collapse
|
52
|
Leuenberger UA, Gray K, Herr MD. Adenosine contributes to hypoxia-induced forearm vasodilation in humans. J Appl Physiol (1985) 1999; 87:2218-24. [PMID: 10601170 DOI: 10.1152/jappl.1999.87.6.2218] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, hypoxia leads to increased sympathetic neural outflow to skeletal muscle. However, blood flow increases in the forearm. The mechanism of hypoxia-induced vasodilation is unknown. To test whether hypoxia-induced vasodilation is cholinergically mediated or is due to local release of adenosine, normal subjects were studied before and during acute hypoxia (inspired O(2) 10.5%; approximately 20 min). In experiment I, aminophylline (50-200 microg. min(-1). 100 ml forearm tissue(-1)) was infused into the brachial artery to block adenosine receptors (n = 9). In experiment II, cholinergic vasodilation was blocked by atropine (0.4 mg over 4 min) infused into the brachial artery (n = 8). The responses of forearm blood flow (plethysmography) and forearm vascular resistance to hypoxia in the infused and opposite (control) forearms were compared. During hypoxia (arterial O(2) saturation 77 +/- 2%), minute ventilation and heart rate increased while arterial pressure remained unchanged; forearm blood flow rose by 35 +/- 6% in the control forearm but only by 5 +/- 8% in the aminophylline-treated forearm (P < 0.02). Accordingly, forearm vascular resistance decreased by 29 +/- 5% in the control forearm but only by 9 +/- 6% in the aminophylline-treated forearm (P < 0.02). Atropine did not attenuate forearm vasodilation during hypoxia. These data suggest that adenosine contributes to hypoxia-induced vasodilation, whereas cholinergic vasodilation does not play a role.
Collapse
Affiliation(s)
- U A Leuenberger
- Section of Cardiology, Department of Medicine, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
53
|
Bangsbo J. Vasoactive substances in the interstitium of contracting skeletal muscle examined by microdialysis. Proc Nutr Soc 1999; 58:925-33. [PMID: 10817160 DOI: 10.1017/s0029665199001238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the study of the regulation of skeletal muscle blood flow during exercise it is useful to obtain information regarding the concentrations of vasoactive substances in the muscle interstitium, a site where the compounds act on the vascular and skeletal muscle cells. The microdialysis technique is a useful tool for measuring interstitial substances in the muscle at rest and during exercise in human subjects, and the technique can also be used to study the effect of both systemic and local interventions in a specific area of an exercising muscle. Probe recovery, which represents the relative amount of a substance that is diffusing to the dialysis membrane, changes from rest to exercise and can be determined by the internal-standard technique which allows for a relatively high time resolution (min). Furthermore, the use of electrodes at the microdialysis outlet makes it possible to perform continuous measurements of interstitial substances. The present review gives examples of how the microdialysis technique has been applied to study potentially important vasodilators such as adenosine, NO and K+ in human skeletal muscles and highlights areas for future research to establish the functional importance of these compounds.
Collapse
Affiliation(s)
- J Bangsbo
- Copenhagen Muscle Research Centre, The August Krogh Institute, LHF, Denmark.
| |
Collapse
|
54
|
Derave W, Hespel P. Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. J Physiol 1999; 515 ( Pt 1):255-63. [PMID: 9925895 PMCID: PMC2269136 DOI: 10.1111/j.1469-7793.1999.255ad.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The effect of A1-adenosine receptor antagonism via 8-cyclopentyl-1,3-dipropyl-xanthine (CPDPX) on the stimulation of skeletal muscle glucose uptake by contractions and hypoxia was investigated in isolated perfused rat hindquarters. The standard perfusate contained either no insulin or a submaximal insulin concentration at 100 microU ml-1. 2. Muscles were stimulated to contract for 45 min by intermittent tetanic stimulation of the sciatic nerve. Hypoxia was induced by reducing perfusate haematocrit from 30% to 10% on the one hand, and by switching the gassing of the perfusate from a 35% to a 0% O2 mixture for 60 min on the other hand. The effect of contractions and hypoxia alone, or in combination, was investigated. 3. Hypoxia-induced muscle glucose uptake was not altered by CPDPX in the absence or presence of insulin. In contrast, contraction-induced glucose uptake was reduced by approximately 25 % (P < 0.05) by exposure of muscles to CPDPX. CPDPX did not affect hindlimb glucose uptake either before or after contractions. 4. The increment of muscle glucose uptake during hypoxia combined with contractions was greater (P < 0.05) than the effect of hypoxia alone. 5. The current findings provide evidence that the mechanism by which hypoxia stimulates muscle glucose uptake is, at least in part, different from the mechanism of glucose uptake stimulation by contractions, because (i) A1-adenosine receptors regulate insulin-mediated glucose uptake in muscle during contractions but not during hypoxia and (ii) submaximal hypoxia and contractions are additive stimuli to muscle glucose uptake.
Collapse
Affiliation(s)
- W Derave
- Institute for Kinesiology and Sport Sciences, Universiteit Gent, B-9000 Gent, Belgium
| | | |
Collapse
|
55
|
Bryan PT, Marshall JM. Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia. J Physiol 1999; 514 ( Pt 1):163-75. [PMID: 9831724 PMCID: PMC2269062 DOI: 10.1111/j.1469-7793.1999.163af.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. In anaesthetized rats, we recorded arterial blood pressure (ABP), heart rate (HR), femoral blood flow (FBF) and femoral vascular conductance (FVC). We tested the effects of the nitric oxide (NO) synthesis inhibitor L-NAME (nitro-L-arginine methyl ester), or the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, on responses evoked by systemic hypoxia (breathing 8% O2 for 5 min) or i.a. infusion for 5 min of adenosine, the NO donor sodium nitroprusside (SNP), the adenosine A1 receptor agonist CCPA (2-chloro-N6-cyclopentyladenosine) or the adenosine A2A receptor agonist CGS 21680 (2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadeno sin e hydrochloride). 2. L-NAME (10 mg kg-1 i.v.) greatly reduced the increase in FVC induced by hypoxia or adenosine, as we have shown before, but had no effect on the increase in FVC evoked by SNP. In addition, L-NAME abolished the increase in FVC evoked by CCPA and greatly reduced that evoked by CGS 21680. These results substantiate the view that muscle vasodilatation induced by systemic hypoxia and infused adenosine are largely NO dependent. They also indicate that muscle dilatation induced by A1 receptor stimulation is entirely NO dependent while that induced by A2A receptors is largely NO dependent; dilatation may also be induced by direct stimulation of A2A receptors on the vascular smooth muscle. 3. Glibenclamide (10 or 20 mg kg-1 i.v.) reduced the increase in FVC induced by hypoxia, preferentially affecting the early part (< 1 min). In addition, glibenclamide greatly reduced the increase in FVC induced by adenosine, but it had no effect on that evoked by SNP. Further, glibenclamide abolished the increase in FVC evoked by CCPA and greatly reduced that evoked by CGS 21680. These results substantiate the view that hypoxia-induced muscle vasodilatation is initiated by KATP channel opening. They also indicate that NO does not induce muscle vasodilatation by opening KATP channels on the vascular smooth muscle, but indicate that the dilatation induced by adenosine and by A2A receptor stimulation is largely dependent on KATP channel opening, while that induced by A1 receptor stimulation is wholly dependent on KATP channel opening. 4. These results, together with previous evidence that hypoxia-induced vasodilatation in skeletal muscle is largely mediated by adenosine acting on A1 receptors, lead us to propose that adenosine is released from endothelium during systemic hypoxia and acts on endothelial A1 receptors to open KATP channels on the endothelial cells and cause synthesis of NO, which then acts on the vascular smooth muscle to cause dilatation. During severe systemic hypoxia we propose that adenosine may also act on A2A receptors on the endothelium to cause dilatation by a similar process and may act on A2A receptors on the vascular smooth muscle to cause dilatation by opening KATP channels.
Collapse
Affiliation(s)
- P T Bryan
- Department of Physiology, The Medical School, Birmingham B15 2TT,, UK
| | | |
Collapse
|
56
|
Bryan PT, Marshall JM. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors. J Physiol 1999; 514 ( Pt 1):151-62. [PMID: 9831723 PMCID: PMC2269047 DOI: 10.1111/j.1469-7793.1999.151af.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 09/23/1998] [Indexed: 11/26/2022] Open
Abstract
1. In anaesthetized rats we tested responses evoked by systemic hypoxia (breathing 8% O2 for 5 min) and adenosine (i.a. infusion for 5 min) before and after administration of a selective adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), or a selective adenosine A2A receptor antagonist ZM 241385. Arterial blood pressure, (ABP), heart rate (HR), femoral blood flow (FBF) and femoral vascular conductance (FVC: FBF/ABP) were recorded together with the K+ concentration in arterial blood ([K+]a) and in venous blood of hindlimb muscle ([K+]v) before and at the 5th minute of hypoxia or agonist infusion. 2. In 12 rats, DPCPX reversed the fall in ABP and HR and the increase in FVC evoked by the selective A1 agonist CCPA (2-chloro-N6-cyclopentyladenosine; i.a. infusion for 5 min). DPCPX also reduced both the increase in FVC induced by hypoxia and that induced by adenosine; the control responses to these stimuli were comparable in magnitude and both were reduced by approximately 50%. 3. In 11 rats, ZM 241385 reversed the fall in ABP and increase in FVC evoked by the selective A2A agonist CGS 21680 (2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadeno sin e hydrochloride; i.a. infusion for 5 min). ZM 241385 also reduced the increase in FVC induced by adenosine by approximately 50 %, but had no effect on the increase in FVC induced by hypoxia. 4. In these same studies, before administration of DPCPX, or ZM 241385, hypoxia had no effect on the venous-arterial difference for K+ ([K+]v-a), whereas after administration of either antagonist, hypoxia significantly reduced [K+]v-a suggesting an increase in hypoxia-induced K+ uptake, or a reduction in K+ efflux. 5. These results indicate that both A1 and A2A receptors are present in hindlimb muscle and can mediate vasodilatation and that A1 and A2A receptors contribute equally to dilatation induced by infused adenosine. However, they suggest that endogenous adenosine released during systemic hypoxia induces dilatation only by acting on A1 receptors. Given previous evidence that adenosine can stimulate receptors on skeletal muscle fibres that are coupled to ATP-sensitive K+ (KATP) channels so promoting K+ efflux, our results allow the proposal that KATP channels may be coupled to both A1 and to A2A receptors and may be stimulated to open by adenosine released during hypoxia, but indicate that, during systemic hypoxia, K+ efflux caused by either receptor subtype makes a very minor contribution to the muscle vasodilatation.
Collapse
Affiliation(s)
- P T Bryan
- Department of Physiology, The Medical School, Birmingham B15 2TT,, UK
| | | |
Collapse
|
57
|
Abstract
BACKGROUND Adenosine is a potent vasodilator that has been shown to increase in cardiac tissue in response to hypoxia. However, peripheral vasodilatation also occurs during hypoxia, and the vasoactive substance(s) responsible for skeletal muscle vasodilation have not yet been completely identified. Therefore, the purpose of this study was to measure and quantify skeletal muscle interstitial adenosine during acute systemic hypoxia. METHODS AND RESULTS Skeletal muscle interstitial adenosine concentrations were determined by the microdialysis technique, in which 4 semipermeable microdialysis probes were inserted into the vastus lateralis muscle of 6 healthy male subjects and perfused at a rate of 5 microL/min with Ringer's solution. Sixty minutes after the insertion of the microdialysis probes, systemic hypoxia was induced for 30 minutes by having the subjects breathe a mixture of 10.5% O2 in N2. Arterial oxygen saturation (fingertip oximeter) was lowered (P<0.05) from 96+/-0.7% to 74.9+/-1.4%, and forearm blood flow was increased 28%. During normoxia, the interstitial adenosine concentration was 0. 44+/-0.08 micromol/L, and it was increased to 1.03+/-0.15 (P<0.05) and 0.85+/-0.09 (P<0.05) after 15 and 30 minutes of hypoxia, respectively. CONCLUSIONS These data are consistent with the concept that during acute systemic hypoxia, interstitial adenosine plays a key role in stimulating peripheral vasodilation.
Collapse
Affiliation(s)
- D A MacLean
- Section of Cardiology, The Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA.
| | | | | |
Collapse
|
58
|
Marshall JM. Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia. Braz J Med Biol Res 1998; 31:863-88. [PMID: 9698751 DOI: 10.1590/s0100-879x1998000700002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review describes the ways in which the primary bradycardia and peripheral vasoconstriction evoked by selective stimulation of peripheral chemoreceptors can be modified by the secondary effects of a chemoreceptor-induced increase in ventilation. The evidence that strong stimulation of peripheral chemoreceptors can evoke the behavioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious stimuli is considered. The functional significance of all these influences in systemic hypoxia is then discussed with emphasis on the fact that these reflex changes can be overcome by the local effects of hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these local influences can become interdependent, so generating a positive feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodilatation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction.
Collapse
Affiliation(s)
- J M Marshall
- Department of Physiology, Medical School, Birmingham, UK.
| |
Collapse
|
59
|
Coney AM, Marshall JM. Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. J Physiol 1998; 509 ( Pt 2):507-18. [PMID: 9575299 PMCID: PMC2230973 DOI: 10.1111/j.1469-7793.1998.507bn.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1997] [Accepted: 02/16/1998] [Indexed: 11/26/2022] Open
Abstract
1. In anaesthetized rats, we have examined the role of adenosine in vasodilatation evoked in the cerebral cortex by systemic hypoxia (breathing 8 % O2). Red cell flux was recorded from the surface of the exposed parietal cortex (CoRCF) by a laser Doppler probe, cortical vascular conductance (CoVC) being computed as CoRCF divided by mean arterial blood pressure. All agonists and antagonists were applied topically to the cortex. 2. Systemic hypoxia or adenosine application for 5 or 10 min, respectively, induced an increase in CoRCF and CoVC. These responses were substantially reduced by 8-phenyltheophylline (8-PT), an adenosine receptor antagonist which is non-selective between the adenosine A1 and A2A receptor subtypes. By contrast, the adenosine receptor antagonist 8-sulphophenyltheophylline (8-SPT) which is similarly non-selective, but unlike 8-PT, does not cross the blood-brain barrier, reduced the increases in CoRCF and CoVC induced by adenosine, but had no effect on those induced by hypoxia. 3. The A2A receptor agonist CGS21680 produced a substantial increase in CoRCF and CoVC, but the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine had minimal effects. 4. The A2A receptor antagonist ZM241385 reduced the increase in CoRCF and CoVC induced by adenosine and reduced the increase in CoRCF induced by hypoxia. 5. We propose that exogenous adenosine that is topically applied to the cerebral cortex produces vasodilatation by acting on A2A receptors on the vascular smooth muscle. However, during systemic hypoxia, we propose that adenosine is released from endothelial cells and acts on endothelial A2A receptors to produce the major part of the hypoxia-induced dilatation in the cerebral cortex.
Collapse
Affiliation(s)
- A M Coney
- Department of Physiology, The Medical School, Birmingham B15 2TT, UK
| | | |
Collapse
|
60
|
Saltin B, Rådegran G, Koskolou MD, Roach RC. Skeletal muscle blood flow in humans and its regulation during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:421-36. [PMID: 9578388 DOI: 10.1046/j.1365-201x.1998.0293e.x] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regional limb blood flow has been measured with dilution techniques (cardio-green or thermodilution) and ultrasound Doppler. When applied to the femoral artery and vein at rest and during dynamical exercise these methods give similar reproducible results. The blood flow in the femoral artery is approximately 0.3 L min(-1) at rest and increases linearly with dynamical knee-extensor exercise as a function of the power output to 6-10 L min[-1] (Q= 1.94 + 0.07 load). Considering the size of the knee-extensor muscles, perfusion during peak effort may amount to 2-3 L kg(-1) min(-1), i.e. approximately 100-fold elevation from rest. The onset of hyperaemia is very fast at the start of exercise with T 1/2 of 2-10 s related to the power output with the muscle pump bringing about the very first increase in blood flow. A steady level is reached within approximately 10-150 s of exercise. At all exercise intensities the blood flow fluctuates primarily due to the variation in intramuscular pressure, resulting in a phase shift with the pulse pressure as a superimposed minor influence. Among the many vasoactive compounds likely to contribute to the vasodilation after the first contraction adenosine is a primary candidate as it can be demonstrated to (1) cause a change in limb blood flow when infused i.a., that is similar in time and magnitude as observed in exercise, and (2) become elevated in the interstitial space (microdialysis technique) during exercise to levels inducing vasodilation. NO appears less likely since NOS blockade with L-NMMA causing a reduced blood flow at rest and during recovery, it has no effect during exercise. Muscle contraction causes with some delay (60 s) an elevation in muscle sympathetic nerve activity (MSNA), related to the exercise intensity. The compounds produced in the contracting muscle activating the group IIl-IV sensory nerves (the muscle reflex) are unknown. In small muscle group exercise an elevation in MSNA may not cause vasoconstriction (functional sympatholysis). The mechanism for functional sympatholysis is still unknown. However, when engaging a large fraction of the muscle mass more intensely during exercise, the MSNA has an important functional role in maintaining blood pressure by limiting blood flow also to exercising muscles.
Collapse
Affiliation(s)
- B Saltin
- The Copenhagen Muscle Research Centre, Rigshospitalet, Tagensvei, Denmark
| | | | | | | |
Collapse
|
61
|
Thomas T, Marshall JM. The roles of adenosine in regulating the respiratory and cardiovascular systems in chronically hypoxic, adult rats. J Physiol 1997; 501 ( Pt 2):439-47. [PMID: 9192314 PMCID: PMC1159490 DOI: 10.1111/j.1469-7793.1997.439bn.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. We have investigated the roles of adenosine in regulating the respiratory and cardiovascular systems of rats that were made chronically hypoxic for 3-4 weeks from 6 weeks of age (CH rats) in an hypoxic chamber at 12% O2. They were studied under anaesthesia while breathing 12% O2 and during acute hypoxia (breathing 8% O2 for 5 min) before and after addition of the adenosine receptor antagonist 8-phenyltheophylline (8-PT, 10 mg kg-1). The results were compared with those obtained from normoxic (N) rats in a previous study. 2. CH rats breathing 12% O2 had greater minute ventilation (VP) than N rats breathing air, but their levels of arterial blood pressure (ABP), heart rate (HR), femoral vascular conductance (FVC) and cerebral vascular conductance (CVC) were fully comparable. 8-PT increased tidal volume (VT) in CH rats indicating a greater tonic central inhibitory influence of adenosine on VT than in N rats. However, 8-PT had no effect on cardiovascular variables, indicating no tonic cardioinhibitory or vasodilator influence of adenosine in CH rats. 3. Acute hypoxia in CH rats increased VE such that at the 5th minute of 8% O2 absolute VE was comparable to that of N rats breathing 8% O2. Moreover, in CH rats 8-PT increased VT at the 5th minute of 8% O2 indicating that the central inhibitory influence of adenosine limits the ability to maintain VT in acute hypoxia as it does in N rats. 4. Eight per cent O2 also produced a full in ABP in CH rats that was comparable to that induced in N rats by the larger change from air to 8% O2. However, the changes in HR were similar in CH and N rats while the increases in FVC and CVC were smaller in CH rats. This suggests that the ability of the secondary effects of hyperventilation and of the baroreceptor reflex to maintain cardiac output and thereby ABP is reduced in CH rats. 5. Whereas 8-PT substantially reduced the hypoxia-induced increases in FVC and CVC in N rats, it had a small effect in CH rats (P = 0.054 and 0.06, respectively). Further, acute hypoxia in CH rats had no effect on the K+ concentration in the venous efflux of hindlimb K+ (KV+) before or after 8-PT treatment. We suggest that in CH rats, the dilator influence of adenosine in acute hypoxia occurs via actions on the blood vessel walls: there was no evidence that adenosine can release dilator concentrations of K+ from skeletal muscle fibres in CH rats as proposed for N rats.
Collapse
Affiliation(s)
- T Thomas
- Department of Physiology, Medical School, Birmingham, UK
| | | |
Collapse
|
62
|
Sobrevia L, Yudilevich DL, Mann GE. Activation of A2-purinoceptors by adenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol 1997; 499 ( Pt 1):135-40. [PMID: 9061645 PMCID: PMC1159342 DOI: 10.1113/jphysiol.1997.sp021916] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Human umbilical vein endothelial cells were challenged acutely with adenosine and its analogues to examine whether adenosine modulates L-arginine transport (system y+) and synthesis of nitric oxide (NO) and prostacyclin (PGI2). 2. L-Arginine transport was stimulated by adenosine (10 microM, 2 min) and the A2-receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 100 nM), but not by the A1-receptor agonist N6-cyclopentyladenosine (CPA). 3. Activation of L-arginine transport was inhibited by the A2-receptor antagonists ZM-241385 and 3,7-dimethyl-1-propargylxanthine (DMPX), but unaffected by the A1-receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine and 8-phenyltheophylline or the adenosine transport inhibitor nitrobenzylthioinosine. 4. Adenosine and CGS-21680 evoked a rapid membrane hyperpolarization. 5. Adenosine and CGS-21680 induced increases in intracellular cGMP levels, whereas release of PGI2 was unaffected. NG-nitro-L-arginine methyl ester (an NO synthase inhibitor) and the A2-receptor antagonists ZM-241385 and DMPX prevented increases in cGMP accumulation. 6. Our findings provide the first evidence that activation of human fetal endothelial cell A2-purinoceptors, but not A1-purinoceptors, leads to a membrane hyperpolarization and stimulation of basal rates of L-arginine transport and NO biosynthesis.
Collapse
Affiliation(s)
- L Sobrevia
- Vascular Biology Research Centre, King's College, London, UK.
| | | | | |
Collapse
|