51
|
Andrade DC, Lucero C, Toledo C, Madrid C, Marcus NJ, Schultz HD, Del Rio R. Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:467597. [PMID: 26779536 PMCID: PMC4686619 DOI: 10.1155/2015/467597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Chronic heart failure (CHF) is a global health problem affecting millions of people. Autonomic dysfunction and disordered breathing patterns are commonly observed in patients with CHF, and both are strongly related to poor prognosis and high mortality risk. Tonic activation of carotid body (CB) chemoreceptors contributes to sympathoexcitation and disordered breathing patterns in experimental models of CHF. Recent studies show that ablation of the CB chemoreceptors improves autonomic function and breathing control in CHF and improves survival. These exciting findings indicate that alterations in CB function are critical to the progression of CHF. Therefore, better understanding of the physiology of the CB chemoreflex in CHF could lead to improvements in current treatments and clinical management of patients with CHF characterized by high chemosensitivity. Accordingly, the main focus of this brief review is to summarize current knowledge of CB chemoreflex function in different experimental models of CHF and to comment on their potential translation to treatment of human CHF.
Collapse
Affiliation(s)
- David C. Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Clínica Alemana-Universidad del Desarrollo, 7500000 Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| | - Harold D. Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
- Dirección de Investigación, Universidad Científica del Sur, Lima 15067, Peru
| |
Collapse
|
52
|
Furlow PW, Zhang S, Soong TD, Halberg N, Goodarzi H, Mangrum C, Wu YG, Elemento O, Tavazoie SF. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival. Nat Cell Biol 2015; 17:943-52. [PMID: 26098574 PMCID: PMC5310712 DOI: 10.1038/ncb3194] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023]
Abstract
During metastatic progression, circulating cancer cells become lodged within the microvasculature of end organs, where most die from mechanical deformation. Although this phenomenon was first described over a half-century ago, the mechanisms enabling certain cells to survive this metastasis-suppressive barrier remain unknown. By applying whole-transcriptome RNA-sequencing technology to isogenic cancer cells of differing metastatic capacities, we identified a mutation encoding a truncated form of the pannexin-1 (PANX1) channel, PANX1(1-89), as recurrently enriched in highly metastatic breast cancer cells. PANX1(1-89) functions to permit metastatic cell survival during traumatic deformation in the microvasculature by augmenting ATP release from mechanosensitive PANX1 channels activated by membrane stretch. PANX1-mediated ATP release acts as an autocrine suppressor of deformation-induced apoptosis through P2Y-purinergic receptors. Finally, small-molecule therapeutic inhibition of PANX1 channels is found to reduce the efficiency of breast cancer metastasis. These data suggest a molecular basis for metastatic cell survival on microvasculature-induced biomechanical trauma.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Cells, Cultured
- Connexins/antagonists & inhibitors
- Connexins/genetics
- Connexins/metabolism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Immunoblotting
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin Receptor Common gamma Subunit/metabolism
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Microscopy, Confocal
- Mutation
- Neoplasm Metastasis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/prevention & control
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA Interference
- Small Molecule Libraries/pharmacology
- Stress, Mechanical
- Transcriptome
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Paul W. Furlow
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Steven Zhang
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - T. David Soong
- Department of Physiology and Biophysics, Weill Cornell Medical College
| | - Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Creed Mangrum
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Y. Gloria Wu
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College
| | - Sohail F. Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
53
|
Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 2015; 8:ra17. [PMID: 25690012 DOI: 10.1126/scisignal.2005824] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.
Collapse
Affiliation(s)
- Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thibaud Parpaite
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephanie M Mutchler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thu H Le
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
54
|
Murali S, Zhang M, Nurse CA. Angiotensin II mobilizes intracellular calcium and activates pannexin-1 channels in rat carotid body type II cells via AT1 receptors. J Physiol 2014; 592:4747-62. [PMID: 25172944 DOI: 10.1113/jphysiol.2014.279299] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sindhubarathi Murali
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| | - Min Zhang
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
55
|
Wang J, Ambrosi C, Qiu F, Jackson DG, Sosinsky G, Dahl G. The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Sci Signal 2014; 7:ra69. [PMID: 25056878 DOI: 10.1126/scisignal.2005431] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pannexin1 (Panx1) participates in several signaling events that involve adenosine triphosphate (ATP) release, including the innate immune response, ciliary beat in airway epithelia, and oxygen supply in the vasculature. The view that Panx1 forms a large ATP release channel has been challenged by the association of a low-conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes. When stimulated by potassium ions (K(+)), Panx1 formed a high-conductance channel of ~500 pS that was permeable to ATP. Various physiological stimuli can induce this ATP-permeable conformation of the channel in several cell types. In contrast, the channel had a low conductance (~50 pS) with no detectable ATP permeability when activated by voltage in the absence of K(+). The two channel states were associated with different reactivities of the terminal cysteine of Panx1 to thiol reagents, suggesting different conformations. Single-particle electron microscopic analysis revealed that K(+) stimulated the formation of channels with a larger pore diameter than those formed in the absence of K(+). These data suggest that different stimuli lead to distinct channel structures with distinct biophysical properties.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Cinzia Ambrosi
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-06083, USA
| | - Feng Qiu
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - David G Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Gina Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-06083, USA. Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-06083, USA
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
56
|
Reyes EP, Cerpa V, Corvalán L, Retamal MA. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 2014; 8:123. [PMID: 24847209 PMCID: PMC4023181 DOI: 10.3389/fncel.2014.00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.
Collapse
Affiliation(s)
- Edison Pablo Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Verónica Cerpa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Liliana Corvalán
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio Antonio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
57
|
Abstract
Mammalian carotid bodies are the main peripheral arterial chemoreceptors, strategically located at the bifurcation of the common carotid artery. When stimulated these receptors initiate compensatory respiratory and cardiovascular reflexes to maintain homeostasis. Thus, in response to low oxygen (hypoxia) or increased CO2/H(+) (acid hypercapnia), chemoreceptor type I cells depolarize and release excitatory neurotransmitters, such as ATP, which stimulate postsynaptic P2X2/3 receptors on afferent nerve terminals. The afferent discharge is shaped by autocrine and paracrine mechanisms involving both excitatory and inhibitory neuromodulators such as adenosine, serotonin (5-HT), GABA and dopamine. Recent evidence suggests that paracrine activation of P2Y2 receptors on adjacent glia-like type II cells may help boost the ATP signal via the opening of pannexin-1 channels. The presence of an inhibitory efferent innervation, mediated by release of nitric oxide, provides additional control of the afferent discharge. The broad array of neuromodulators and their receptors appears to endow the carotid body with a remarkable plasticity, most apparent during natural and pathophysiological conditions associated with chronic sustained and intermittent hypoxia.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
58
|
Innexin and pannexin channels and their signaling. FEBS Lett 2014; 588:1396-402. [PMID: 24632288 DOI: 10.1016/j.febslet.2014.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 01/24/2023]
Abstract
Innexins are bifunctional membrane proteins in invertebrates, forming gap junctions as well as non-junctional membrane channels (innexons). Their vertebrate analogues, the pannexins, have not only lost the ability to form gap junctions but are also prevented from it by glycosylation. Pannexins appear to form only non-junctional membrane channels (pannexons). The membrane channels formed by pannexins and innexins are similar in their biophysical and pharmacological properties. Innexons and pannexons are permeable to ATP, are present in glial cells, and are involved in activation of microglia by calcium waves in glia. Directional movement and accumulation of microglia following nerve injury, which has been studied in the leech which has unusually large glial cells, involves at least 3 signals: ATP is the "go" signal, NO is the "where" signal and arachidonic acid is a "stop" signal.
Collapse
|
59
|
Isakson BE, Thompson RJ. Pannexin-1 as a potentiator of ligand-gated receptor signaling. Channels (Austin) 2014; 8:118-23. [PMID: 24576994 PMCID: PMC4048300 DOI: 10.4161/chan.27978] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pannexins are a class of plasma membrane spanning proteins that presumably form a hexameric, non-selective ion channel. Although similar in secondary structure to the connexins, pannexins notably do not form endogenous gap junctions and act as bona fide ion channels. The pannexins have been primarily studied as ATP-release channels, but the overall diversity of their functions is still being elucidated. There is an intriguing theme with pannexins that has begun to develop. In this review we analyze several recent reports that converge on the idea that pannexin channels (namely Panx1) can potentiate ligand-gated receptor signaling. Although the literature remains sparse, this emerging concept appears consistent between both ionotropic and metabotropic receptors of several ligand families.
Collapse
Affiliation(s)
- Brant E Isakson
- Robert M. Berne Cardiovascular Research Center; University of Virginia School of Medicine; Charlottesville, VA USA; Department of Molecular Physiology and Biophysics; University of Virginia School of Medicine; Charlottesville, VA USA
| | - Roger J Thompson
- Hotchkiss Brain Institute; Department of Cell Biology and Anatomy; University of Calgary; Calgary, AB Canada
| |
Collapse
|
60
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
61
|
Shestopalov VI, Slepak VZ. Molecular pathways of pannexin1-mediated neurotoxicity. Front Physiol 2014; 5:23. [PMID: 24575045 PMCID: PMC3920106 DOI: 10.3389/fphys.2014.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/10/2014] [Indexed: 01/09/2023] Open
Abstract
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K(+), Zn(2+), fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca(2+). Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these "danger signals" triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways.
Collapse
Affiliation(s)
- Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine Miami, FL, USA ; Vavilov Institute of General Genetics, Moscow, Russian Federation, University of Miami Miller School of Medicine Miami, FL, USA
| | - Vladlen Z Slepak
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA ; Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
62
|
Abstract
Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, and Program in Neuroscience, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL 33136, USA.
| |
Collapse
|
63
|
Abstract
ATP released in the early inflammatory processes acts as a danger signal by binding to purinergic receptors expressed on immune cells. A major contribution of the P2Y(2) receptor of ATP/UTP to dendritic cell function and Th2 lymphocyte recruitment during asthmatic airway inflammation was previously reported. We investigated here the involvement of P2Y(2) receptor in lung inflammation initiated by pneumonia virus of mice infection. We demonstrated that P2Y(2) (-/-) mice display a severe increase in morbidity and mortality rate in response to the virus. Lower survival of P2Y(2) (-/-) mice was not significantly correlated with excessive inflammation despite the higher level of neutrophil recruiters in their bronchoalveolar fluids. Interestingly, we observed reduced ATP level and lower numbers of dendritic cells, CD4(+) T cells and CD8(+) T cells in P2Y(2) (-/-) compared to P2Y(2) (+/+) infected lungs. Lower level of IL-12 and higher level of IL-6 in bronchoalveolar fluid support an inhibition of Th1 response in P2Y(2) (-/-) infected mice. Quantification of DC recruiter expression revealed comparable IP-10 and MIP-3α levels but a reduced BRAK level in P2Y(2) (-/-) compared to P2Y(2) (+/+) bronchoalveolar fluids. The increased morbidity and mortality of P2Y(2) (-/-) mice could be the consequence of a lower viral clearance leading to a more persistent viral load correlated with the observed higher viral titer. The decreased viral clearance could result from the defective Th1 response to PVM with a lack of DC and T cell infiltration. In conclusion, P2Y(2) receptor, previously described as a target in cystic fibrosis therapy and as a mediator of Th2 response in asthma, may also regulate Th1 response protecting mice against lung viral infection.
Collapse
|
64
|
Piskuric NA, Nurse CA. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 2012; 591:415-22. [PMID: 23165772 DOI: 10.1113/jphysiol.2012.234377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.
Collapse
Affiliation(s)
- Nikol A Piskuric
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
65
|
Nurse CA, Piskuric NA. Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 2012; 24:22-30. [PMID: 23022231 DOI: 10.1016/j.semcdb.2012.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O(2), CO(2)/H(+), and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
66
|
Carroll JL, Kim I. Carotid chemoreceptor "resetting" revisited. Respir Physiol Neurobiol 2012; 185:30-43. [PMID: 22982216 DOI: 10.1016/j.resp.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
Carotid body (CB) chemoreceptors transduce low arterial O(2) tension into increased action potential activity on the carotid sinus nerves, which contributes to resting ventilatory drive, increased ventilatory drive in response to hypoxia, arousal responses to hypoxia during sleep, upper airway muscle activity, blood pressure control and sympathetic tone. Their sensitivity to O(2) is low in the newborn and increases during the days or weeks after birth to reach adult levels. This postnatal functional maturation of the CB O(2) response has been termed "resetting" and it occurs in every mammalian species studied to date. The O(2) environment appears to play a key role; the fetus develops in a low O(2) environment throughout gestation and initiation of CB "resetting" after birth is modulated by the large increase in arterial oxygen tension occurring at birth. Although numerous studies have reported age-related changes in various components of the O(2) transduction cascade, how the O(2) environment shapes normal CB prenatal development and postnatal "resetting" remains unknown. Viewing CB "resetting" as environment-driven (developmental) phenotypic plasticity raises important mechanistic questions that have received little attention. This review examines what is known (and not known) about mechanisms of CB functional maturation, with a focus on the role of the O(2) environment.
Collapse
Affiliation(s)
- John L Carroll
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, United States.
| | | |
Collapse
|