51
|
Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 2020; 83:104-123. [PMID: 33120323 DOI: 10.1016/j.seizure.2020.09.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades after its introduction as an adjuvant therapeutic option in the management of selective drug-resistant epilepsy cases (DRE), vagus nerve stimulation (VNS) retains growing interest. An implantable device was first approved for epilepsy in Europe in 1994 and in the United States (US) in 1997. Subsequent modifications improved the safety and the efficacy of the system. The most recent application of vagal neurostimulation is represented by transcutaneous devices that are claimed to have strong therapeutic potential. In this review, we sought to analyze the most meaningful available data describing the indications, safety and efficacy of the different approaches of VNS in clinical practice. Therefore, we identified studies reporting VNS efficacy and/or safety in epilepsy and its comorbidities from January 1990 to February 2020 from various databases including PubMed, Scopus, Cochrane, US government databases and VNS manufacturer published resources. In general, VNS efficacy becomes optimal around the sixth month of treatment and a 50-100 % seizure frequency reduction is achieved in approximately 45-65 % of the patients. However, some clinically relevant differences have been reported with specific factors such as epilepsy etiology or type, patient age as well as the delay of VNS therapy onset. VNS efficacy on seizure frequency has been demonstrated in both children and adults, in lesional and non-lesional cases, in focal and generalized epilepsies, on both seizures and epilepsy comorbidities. Regarding the latter, VNS can lead to an improvement of about 25-35 % in depression scores, 35 % in anxiety scores and 25 % in mood assessment scores. If non-invasive devices are undeniably safer, their efficacy is limited due to the scarcity of large cohort studies and the disparity of methodological approaches (study design and stimulation parameters). Overall, we believe that there is a progress margin for improving the safety of implantable devices and, above all, the effectiveness of the various VNS approaches.
Collapse
Affiliation(s)
- Dènahin Hinnoutondji Toffa
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada; CHUM Research Center, University of Montreal, Montreal, Canada.
| | - Lahoud Touma
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada
| | | | - Alain Bouthillier
- Department of Neurosurgery, CHUM, University of Montreal, Montreal, Canada
| | - Dang Khoa Nguyen
- Department of Neurology, CHUM, University of Montreal, Montreal, Canada; CHUM Research Center, University of Montreal, Montreal, Canada
| |
Collapse
|
52
|
Chang YC, Cracchiolo M, Ahmed U, Mughrabi I, Gabalski A, Daytz A, Rieth L, Becker L, Datta-Chaudhuri T, Al-Abed Y, Zanos TP, Zanos S. Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers. Brain Stimul 2020; 13:1617-1630. [PMID: 32956868 DOI: 10.1016/j.brs.2020.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. OBJECTIVE Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. METHODS In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. RESULTS In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, 56127, Italy
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Arielle Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Lance Becker
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
53
|
Wink J, van Delft R, Notenboom R, Wouters P, DeRuiter M, Plevier J, Jongbloed M. Human adult cardiac autonomic innervation: Controversies in anatomical knowledge and relevance for cardiac neuromodulation. Auton Neurosci 2020; 227:102674. [DOI: 10.1016/j.autneu.2020.102674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
|
54
|
Tobaldini E, Carandina A, Toschi-Dias E, Erba L, Furlan L, Sgoifo A, Montano N. Depression and cardiovascular autonomic control: a matter of vagus and sex paradox. Neurosci Biobehav Rev 2020; 116:154-161. [DOI: 10.1016/j.neubiorev.2020.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
|
55
|
Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plast 2020; 2020:8841752. [PMID: 32802039 PMCID: PMC7416299 DOI: 10.1155/2020/8841752] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) is regarded as a potential method for recovery in stroke. The effectiveness of taVNS in acute and subacute stroke should be further discussed as previously, only a few small-scale trials have focused on chronic stroke patients. The objective of this study is to investigate the effect and safety of taVNS on upper limb motor function in subacute ischemic stroke patients. Methods Twenty-one subacute ischemia stroke patients with single upper limb motor function impairment were enrolled and randomly assigned to conventional rehabilitation training with real or sham taVNS, delivered for 15 consecutive days. Electrodes were fixed to the cymba conchae of the left ear with or without electrical stimulation. Conventional rehabilitation training was performed immediately after the end of real or sham taVNS by the same therapists. Baseline assessments were performed on day 0 of enrollment, and posttreatment evaluations were performed at 15 days, 4 weeks, and 12 weeks after the first intervention. The assessment included the upper limb Fugl-Meyer assessment (FMA-U), the Wolf motor function test (WMFT), the Functional Independence Measurement (FIM), and Brunnstrom stage. Heart rate (HR) and blood pressure (BP) were measured before and after each taVNS intervention. At the same time, any adverse effects were observed during the procedure. Outcomes were assessed by a blind evaluator. Results There were no significant differences in FMA-U, WMFT, FIM, and Brunnstrom scores between the two groups at baseline (P > 0.05). At the endpoint, the FMA-U, WMFT, and FIM scores were significantly higher than before treatment (P < 0.05), and there was a significantly greater improvement of those measurements in taVNS group compared with sham-taVNS group (P < 0.05). Significant improvements in FMA-U score were found between groups at follow-up. Only one case of skin redness occurred during the study. Conclusions This study revealed that taVNS appeared to be beneficial to the recovery of upper limb motor function in subacute ischemia stroke patients without obvious adverse effects. Trial registration. This trial is registered with ChiCTR1800019635 on 20 November 2018 (http://www.chictr.org.cn/showproj.aspx?proj=32961).
Collapse
|
56
|
Alzate-Correa D, Mei-Ling Liu J, Jones M, Silva TM, Alves MJ, Burke E, Zuñiga J, Kaya B, Zaza G, Aslan MT, Blackburn J, Shimada MY, Fernandes-Junior SA, Baer LA, Stanford KI, Kempton A, Smith S, Szujewski CC, Silbaugh A, Viemari JC, Takakura AC, Garcia AJ, Moreira TS, Czeisler CM, Otero JJ. Neonatal apneic phenotype in a murine congenital central hypoventilation syndrome model is induced through non-cell autonomous developmental mechanisms. Brain Pathol 2020; 31:84-102. [PMID: 32654284 PMCID: PMC7881415 DOI: 10.1111/bpa.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.
Collapse
Affiliation(s)
- Diego Alzate-Correa
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jillian Mei-Ling Liu
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mikayla Jones
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Talita M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Burke
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Zuñiga
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Behiye Kaya
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mehmet Tahir Aslan
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marina Y Shimada
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lisa A Baer
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amber Kempton
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sakima Smith
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Abby Silbaugh
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jean-Charles Viemari
- P3M Team, Institut de Neurosciences de la Timone, UMR 7289 AMU-CNRS, Marseille, France
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Catherine M Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
57
|
Machhada A, Hosford PS, Dyson A, Ackland GL, Mastitskaya S, Gourine AV. Optogenetic Stimulation of Vagal Efferent Activity Preserves Left Ventricular Function in Experimental Heart Failure. JACC Basic Transl Sci 2020; 5:799-810. [PMID: 32875170 PMCID: PMC7452237 DOI: 10.1016/j.jacbts.2020.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
This study was designed to determine the effect of selective optogenetic simulation of vagal efferent activity on left ventricular function in an animal (rat) model of MI-induced heart failure. Optogenetic stimulation of dorsal brainstem vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved LV function and exercise capacity in animals with MI. The data suggest that activation of vagal efferents is critically important to deliver the therapeutic benefit of VNS in chronic heart failure.
Large clinical trials designed to test the efficacy of vagus nerve stimulation (VNS) in patients with heart failure did not demonstrate benefits with respect to the primary endpoints. The nonselective nature of VNS may account for the failure to translate promising results of preclinical and earlier clinical studies. This study showed that optogenetic stimulation of vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved left ventricular function and exercise capacity in a rat model of myocardial infarction−induced heart failure. These data suggested that stimulation of vagal efferent activity is critically important to deliver the therapeutic benefit of VNS in heart failure.
Collapse
Key Words
- ABP, arterial blood pressure
- DVMN, dorsal motor nucleus of the vagus nerve
- GRK2, G-protein−coupled receptor kinase 2
- LAD, left anterior descending coronary artery
- LV dP/dtMAX, maximum rate of rise of left ventricular pressure
- LV, left ventricle
- LVEDP, left ventricular end-diastolic pressure
- LVESP, left ventricular end-systolic pressure
- LVP, left ventricular pressure
- LVV, lentiviral vector
- MI, myocardial infarction
- VNS, vagus nerve stimulation
- autonomic nervous system
- eGFP, enhanced green fluorescent protein
- heart failure
- myocardial infarction
- neuromodulation
- vagus nerve stimulation
Collapse
Affiliation(s)
- Asif Machhada
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alex Dyson
- Clinical Physiology, Division of Medicine, University College London, London, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
58
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
59
|
Park JH, Gorky J, Ogunnaike B, Vadigepalli R, Schwaber JS. Investigating the Effects of Brainstem Neuronal Adaptation on Cardiovascular Homeostasis. Front Neurosci 2020; 14:470. [PMID: 32508573 PMCID: PMC7251082 DOI: 10.3389/fnins.2020.00470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Central coordination of cardiovascular function is accomplished, in part, by the baroreceptor reflex, a multi-input multi-output physiological control system that regulates the activity of the parasympathetic and sympathetic nervous systems via interactions among multiple brainstem nuclei. Recent single-cell analyses within the brain revealed that individual neurons within and across brain nuclei exhibit distinct transcriptional states contributing to neuronal function. Such transcriptional heterogeneity complicates the task of understanding how neurons within and across brain nuclei organize and function to process multiple inputs and coordinate cardiovascular functions within the larger context of the baroreceptor reflex. However, prior analysis of brainstem neurons revealed that single-neuron transcriptional heterogeneity reflects an adaptive response to synaptic inputs and that neurons organize into distinct subtypes with respect to synaptic inputs received. Based on these results, we hypothesize that adaptation of neuronal subtypes support robust biological function through graded cellular responses. We test this hypothesis by examining the functional impact of neuronal adaptation on parasympathetic activity within the context of short-term baroreceptor reflex regulation. In this work, we extend existing quantitative closed-loop models of the baroreceptor reflex by incorporating into the model distinct input-driven neuronal subtypes and neuroanatomical groups that modulate parasympathetic activity. We then use this extended model to investigate, via simulation, the functional role of neuronal adaptation under conditions of health and systolic heart failure. Simulation results suggest that parasympathetic activity can be modulated appropriately by the coordination of distinct neuronal subtypes to maintain normal cardiovascular functions under systolic heart failure conditions. Moreover, differing degrees of adaptation of these neuronal subtypes contribute to cardiovascular behaviors corresponding to distinct clinical phenotypes of heart failure, such as exercise intolerance. Further, our results suggest that an imbalance between sympathetic and parasympathetic activity regulating ventricular contractility contributes to exercise intolerance in systolic heart failure patients, and restoring this balance can improve the short-term cardiovascular performance of these patients.
Collapse
Affiliation(s)
- James H Park
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Jonathan Gorky
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Babatunde Ogunnaike
- Department of Chemical and Biochemical Engineering, University of Delaware, Newark, DE, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
60
|
Hamidovic A, Van Hedger K, Choi SH, Flowers S, Wardle M, Childs E. Quantitative meta-analysis of heart rate variability finds reduced parasympathetic cardiac tone in women compared to men during laboratory-based social stress. Neurosci Biobehav Rev 2020; 114:194-200. [PMID: 32320815 DOI: 10.1016/j.neubiorev.2020.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/27/2022]
Abstract
Heart rate variability (HRV) is the inter-beat interval variation between consecutive heartbeats and an autonomic reflection of emotional regulatory abilities to flexibly respond to challenges, such as psychosocial stress. Whereas there are known sex differences in stress-induced hormonal and emotional responses, we identified a gap in our understanding of sex-specific autonomic cardiac control during stress. Thus, we assessed HRV prior to, during and after administration of a public speech task in healthy participants (n = 929) according to sex. Our meta-analysis found that during stress, women had lower HRV than men, with an overall Hedges' g of 0.29 (p < 0.0001) and 0.29 (p = 0.0003) for fixed and random effects models, respectively. We did not find significant heterogeneity or evidence of publication bias. Analyses of additional timepoints showed no baseline difference and marginally lower HRV in women during anticipation and recovery. Findings of the present meta-analysis confirm sex differences in stress-induced hyperarousal and form a justification for implementation of mechanistic studies evaluating gonadal hormones, their potent metabolites and pro-inflammatory cytokines as mediators of this relationship.
Collapse
Affiliation(s)
- Ajna Hamidovic
- University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, United States.
| | | | - So Hee Choi
- University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, United States.
| | - Stephanie Flowers
- University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, United States.
| | - Margaret Wardle
- University of Illinois at Chicago 1007 W. Harrison St. Chicago IL 60607.
| | - Emma Childs
- University of Illinois at Chicago 1601 W Taylor St, Chicago, IL 60612.
| |
Collapse
|
61
|
Dale EA, Kipke J, Kubo Y, Sunshine MD, Castro PA, Ardell JL, Mahajan A. Spinal cord neural network interactions: implications for sympathetic control of the porcine heart. Am J Physiol Heart Circ Physiol 2020; 318:H830-H839. [PMID: 32108524 DOI: 10.1152/ajpheart.00635.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inherent and acquired factors determine the integrated autonomic response to cardiovascular stressors. Excessive sympathoexcitation to ischemic stress is a major contributor to the potential for sudden cardiac death. To define fundamental aspects of cardiac-related autonomic neural network interactions within the thoracic cord, specifically as related to modulating sympathetic preganglionic (SPN) neural activity. Adult, anesthetized Yorkshire pigs (n = 10) were implanted with penetrating high-density microarrays (64 electrodes) at the T2 level of the thoracic spinal cord to record extracellular potentials concurrently from left-sided dorsal horn (DH) and SPN neurons. Electrical stimulation of the T2 paravertebral chain allowed for antidromic identification of SPNs located in the intermediolateral cell column (57 of total 1,760 recorded neurons). Cardiac stressors included epicardial touch, occlusion of great vessels to transiently alter preload/afterload, and transient occlusion of the left anterior descending coronary artery (LAD). Spatial/temporal assessment of network interactions was characterized by cross-correlation analysis. While some DH neurons responded solely to changes in preload/afterload (8.5 ± 1.9%) or ischemic stress (10.5 ± 3.9%), the majority of cardiovascular-related DH neurons were multimodal (30.2 ± 4.7%) with ischemia sensitivity being one of the modalities (26.1 ± 4.7%). The sympathoexcitation associated with transient LAD occlusion was associated with increased correlations from baseline within DH neurons (2.43 ± 0.61 to 7.30 ± 1.84%, P = 0.04) and between SPN to DH neurons (1.32 ± 0.78 to 7.24 ± 1.84%, P = 0.02). DH to SPN network correlations were reduced during great vessel occlusion. In conclusion, increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.NEW & NOTEWORTHY In an in vivo pig model, we demonstrate using novel high-resolution neural electrode arrays that increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.
Collapse
Affiliation(s)
- Erica A Dale
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jasmine Kipke
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yukiko Kubo
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Peter A Castro
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Medicine, Cardiac Arrhythmia Center and Cardiac Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
62
|
Koza Y, Aydın MD, Bayram E, Sipal S, Altaş E, Soyalp C, Koza EA. The Role of Cardiac Ganglia in the Prevention of Coronary Atherosclerosis: An Analytical Examination of Cholesterol-fed Rabbits. Balkan Med J 2020; 37:79-83. [PMID: 31712246 PMCID: PMC7094178 DOI: 10.4274/balkanmedj.galenos.2019.2019.8.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background The heart is innervated by the autonomic nervous system, which contributes to the control of the heart’s rhythm and coronary circulation. It has been suggested that the cardiac fibers of the vagus nerve play important roles in controlling circulatory functions and in protecting against atherosclerotic pathologies in coronary arteries. Aims To investigate the presence of atherosclerotic differences in the coronary arteries of cholesterol-fed rabbits by measuring the density of cardiac ganglia neurons. Study Design Animal experiment. Methods This study was conducted using 45 male rabbits. Over a period of 16 weeks, they were kept on an atherogenic diet of water ad libitum and high fat (8.6%) containing saturated fatty acids with 205 mg/kg of cholesterol (1%) per day. Then, their hearts were removed and examined by histopathological methods. Atherosclerotic plaques of the main coronary arteries were examined using the Cavalieri method. Atherosclerosis index values (AIVs) were estimated as the wall surface area/plaque surface area, and the results were analyzed with the Kruskal-Wallis and Mann-Whitney U tests. Results While the average atherosclerosis index value was estimated to be ≤8% in 21 animals, the atherosclerosis index value was 9-20% in animals with minor plaque detection (n=11) and ≥20% in animals with major plaque detection (n=10). Increased atherosclerosis index values were more common in animals with low neuron densities than in animals with high neuron densities (p<0.017). Conclusion The low neuron density of the cardiac ganglia in cholesterol-fed rabbits is associated with an increased atherosclerotic plaque incidence and volume.
Collapse
Affiliation(s)
- Yavuzer Koza
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Mehmet Dumlu Aydın
- Department of Neurosurgery, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ednan Bayram
- Department of Cardiology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Sare Sipal
- Department of Pathology, Atatürk University School of Medicine, Erzurum, Turkey
| | - Ender Altaş
- Clinic of Cardiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Celaleddin Soyalp
- Department of Anesthesiology, 100. Yıl University School of Medicine, Van, Turkey
| | - Enise Armağan Koza
- Clinic of Anesthesiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
63
|
Laucius O, Jucevičiūtė N, Vaitkus A, Balnytė R, Rastenytė D, Petrikonis K. Evaluating the functional and structural changes in the vagus nerve: Should the vagus nerve be tested in patients with atrial fibrillation? Med Hypotheses 2020; 138:109608. [PMID: 32044542 DOI: 10.1016/j.mehy.2020.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
One of the multiple factors believed to contribute to the initiation and maintenance of atrial fibrillation (AF) is altered activity of the autonomic nervous system. Debate continues about the role of the vagus nerve (CNX) in AF since its effect depends on the level of its activation as well as on simultaneous sympathetic activation. Surplus either vagal or sympathetic activity may rarely induce the development of AF; however, typically loss of balance between the both systems mediates the induction and maintenance of AF. Vagal stimulation has been proposed as a novel treatment approach for AF because the anti-arrhythmic effects of low-level vagus nerve stimulation have been shown both in patients and animal models. We hypothesize that in typical cases of AF without any clear trigger by either autonomic nervous system, significant changes in vagus somatosensory evoked potentials and a smaller cross-sectional area of CNX could be detected, representing functional and structural changes in CNX, respectively.
Collapse
Affiliation(s)
- Ovidijus Laucius
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Neringa Jucevičiūtė
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Antanas Vaitkus
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Renata Balnytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Daiva Rastenytė
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kęstutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
64
|
Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034173. [PMID: 31109966 DOI: 10.1101/cshperspect.a034173] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vagus nerve plays an important role in maintaining physiological homeostasis, which includes reflex pathways that regulate cardiac function. The link between vagus nerve activity and the high-frequency component of heart rate variability (HRV) has been well established, correlating with vagal tone. Recently, vagus nerve stimulation (VNS) has been investigated as a therapeutic for a multitude of diseases, such as treatment-resistant epilepsy, rheumatoid arthritis, Crohn's disease, and asthma. Because of the vagus nerve's innervation of the heart, VNS has been identified as a potential therapy for cardiovascular disorders, such as cardiac arrest, acute myocardial infarction, and stroke. Here, we review the current state of preclinical and clinical studies, as well as the potential application of VNS in relation to the cardiovascular system.
Collapse
Affiliation(s)
- Michael J Capilupi
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030
| | - Samantha M Kerath
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Lance B Becker
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030.,Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
| |
Collapse
|
65
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
66
|
Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: Mechanisms and Clinical Utility in Arrhythmia Prevention. J Am Heart Assoc 2019; 8:e013750. [PMID: 31617437 PMCID: PMC6898836 DOI: 10.1161/jaha.119.013750] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | | | - Mohamad B. Kassab
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Furrukh Sana
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Kasra Moazzami
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Omid Sayadi
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
| | - Jagmeet P. Singh
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - E. Kevin Heist
- Cardiology DivisionCardiac Arrhythmia ServiceMassachusetts General HospitalBostonMA
| | - Antonis A. Armoundas
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA
| |
Collapse
|
67
|
Jungen C, Scherschel K, Flenner F, Jee H, Rajendran P, De Jong KA, Nikolaev V, Meyer C, Ardell JL, Tompkins JD. Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. Am J Physiol Heart Circ Physiol 2019; 317:H1328-H1341. [PMID: 31625779 DOI: 10.1152/ajpheart.00249.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have a greater risk of developing life-threatening cardiac arrhythmias. Because the underlying mechanisms and potential influence of diabetic autonomic neuropathy are not well understood, we aimed to assess the relevance of a dysregulation in cardiac autonomic tone. Ventricular arrhythmia susceptibility was increased in Langendorff-perfused hearts isolated from mice with T2DM (db/db). Membrane properties and synaptic transmission were similar at cardiac postganglionic parasympathetic neurons from diabetic and control mice; however, a greater asynchronous neurotransmitter release was present at sympathetic postganglionic neurons from the stellate ganglia of db/db mice. Western blot analysis showed a reduction of tyrosine hydroxylase (TH) from the ventricles of db/db mice, which was confirmed with confocal imaging as a heterogeneous loss of TH-immunoreactivity from the left ventricular wall but not the apex. In vivo stimulation of cardiac parasympathetic (vagus) or cardiac sympathetic (stellate ganglion) nerves induced similar changes in heart rate in control and db/db mice, and the kinetics of pacing-induced Ca2+ transients (recorded from isolated cardiomyocytes) were similar in control and db/db cells. Antagonism of cardiac muscarinic receptors did not affect the frequency or severity of arrhythmias in db/db mice, but sympathetic blockade with propranolol completely inhibited arrhythmogenicity. Collectively, these findings suggest that the increased ventricular arrhythmia susceptibility of type 2 diabetic mouse hearts is due to dysregulation of the sympathetic ventricular control.NEW & NOTEWORTHY Patients with type 2 diabetes mellitus have greater risk of suffering from sudden cardiac death. We found that the increased ventricular arrhythmia susceptibility in type 2 diabetic mouse hearts is due to cardiac sympathetic dysfunction. Sympathetic dysregulation is indicated by an increased asynchronous release at stellate ganglia, a heterogeneous loss of tyrosine hydroxylase from the ventricular wall but not apex, and inhibition of ventricular arrhythmias in db/db mice after β-sympathetic blockade.
Collapse
Affiliation(s)
- Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Frederik Flenner
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Haesung Jee
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - Pradeep Rajendran
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - Kirstie A De Jong
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Germany
| | - Viacheslav Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, University of Hamburg, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP, cardiac Neuro- and Electrophysiology research group, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jeffrey L Ardell
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| | - John D Tompkins
- University of California, Los Angeles Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, Department of Medicine-Cardiology, Los Angeles, California
| |
Collapse
|
68
|
Yakovlev AE, Yakovleva MV, Chaykovskaya MK, Ardashev AV. [The First in Russia Experience of Successful Implementation of Constant Neurostimulation of the Spinal Cord in the Complex Treatment of a Patient with Permanent Form of Atrial Fibrillation Combined with Spinal Stenosis]. ACTA ACUST UNITED AC 2019; 59:83-90. [PMID: 31540579 DOI: 10.18087/cardio.2019.9.10272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022]
Abstract
This article describes for the first time in the domestic literature a clinical case of the therapeutic effect of neuromodulation on the permanent form of atrial fibrillation and chronic heart failure in an elderly patient with spinal stenosis which led to the development of pain syndrome and movement disorders. For the treatment of neurological pathology, at the beginning epidural administration of drugs was applied, followed by spinal cord stimulation trial and implantation of permanent neurostimulator. At each stage of treatment conducted by a functional neurosurgeon the patient had a spontaneous restoration of sinus rhythm, and during continuous neurostimulation a stable retention of sinus rhythm and regression of heart failure symptoms have been observed throughout a long observation period. The article also presents the data of a few experimental and clinical studies on the use of neuromodulation in cardiology, describes the method of implantation of spinal electrodes and analyzes possible mechanisms of modulation of the autonomic innervation of the heart, implemented by spinal cord stimulation.
Collapse
Affiliation(s)
- A E Yakovlev
- National Medical and Research Center of Traumatology and Orthopaedics N. N. Priorov
| | | | | | | |
Collapse
|
69
|
Neurogenic Stress Cardiomyopathy Following Subarachnoid Hemorrhage Is Associated with Vagal Complex Degeneration: First Experimental Study. World Neurosurg 2019; 129:e741-e748. [DOI: 10.1016/j.wneu.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 02/04/2023]
|
70
|
Nederhoff MGJ, Fransen DE, Verlinde SAMW, Brans MAD, Pasterkamp G, Bleys RLAW. Effect of vagus nerve stimulation on tissue damage and function loss in a mouse myocardial ischemia-reperfusion model. Auton Neurosci 2019; 221:102580. [PMID: 31491700 DOI: 10.1016/j.autneu.2019.102580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In cardiac ischemia, acute inflammatory responses further increase the detrimental effect on myocardial tissue. Since vagus nerve stimulation (VS) attenuates inflammatory responsiveness this study examines the effect of VS on myocardial damage development in a cardiac ischemia-reperfusion (IR) mouse model. METHODS 54 male C57Bl/6j mice were subjected to an IR procedure with or without prior VS. The effects on inflammatory responsiveness, infarct size, cardiac function, neutrophils, lymphocytes and vascular endothelial growth factor (VEGF) in the infarcted myocardium were measured at 48 h after intervention. Group results were compared with unpaired Mann-Whitney or Kruskall-Wallis test. RESULTS A significant decrease in inflammatory responsiveness was not verified by decreased TNFα levels in blood from VS and IR treated mice. The percentage infarct size over area at risk was smaller in the group with VS + IR compared with IR (22.4 ± 10.2% vs 37.6 ± 9.0%, p = 0.003). The degree of the reduction in cardiac function was not different between the IR groups with or without VS and no group differences were found in amounts of neutrophils, CD3+ lymphocytes and VEGF in the reperfused mouse heart. CONCLUSION The present study does not provide clear evidence of a reducing role for VS on cardiac function loss. This could mean that VS has a less inhibiting effect on myocardial inflammation than may be expected from the literature.
Collapse
Affiliation(s)
- M G J Nederhoff
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands.
| | - D E Fransen
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - S A M W Verlinde
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - M A D Brans
- Experimental Cardiology Laboratory, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - G Pasterkamp
- Experimental Cardiology Laboratory, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - R L A W Bleys
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| |
Collapse
|
71
|
Beutelstetter M, Livolsi A, Greney H, Helms P, Schmidt-Mutter C, De Melo C, Roul G, Zores F, Bolle A, Dali-Youcef N, Beaugey M, Simon A, Niederhoffer N, Regnard J, Bouhaddi M, Adamopoulos C, Schaeffer M, Sauleau E, Bousquet P. Increased expression of blood muscarinic receptors in patients with reflex syncope. PLoS One 2019; 14:e0219598. [PMID: 31318899 PMCID: PMC6638918 DOI: 10.1371/journal.pone.0219598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
AIMS Pathophysiology of reflex syncope is not fully understood but a vagal overactivity might be involved in this syncope. Previously, overexpression of muscarinic M2 receptors and acetylcholinesterase was found in particular in the heart and in lymphocytes of rabbits with vagal overactivity as well as in hearts of Sudden Infant Death Syndromes. The aim of this present study was to look at M2 receptor expression in blood of patients with reflex syncope. The second objective was to measure acetylcholinesterase expression in these patients. METHODS AND RESULTS 136 subjects were enrolled. This monocenter study pooled 45 adults exhibiting recurrent reflex syncope compared with 32 healthy adult volunteers (18-50 years) and 38 children exhibiting reflex syncope requiring hospitalization compared with 21 controls (1-17 years). One blood sample was taken from each subject and blood mRNA expression of M2 receptors was assessed by qRT-PCR. Taking into account the non-symmetric distributions of values in both groups, statistical interferences were assessed using bayesian techniques. A M2 receptor overexpression was observed in adult and pediatric patients compared to controls. The medians [q1;q3] were 0.9 [0.3;1.9] in patients versus 0.2 [0.1;1.0] in controls; the probability that M2 receptor expression was higher in patients than in controls (Pr[patients>controls]) was estimated at 0.99. Acetylcholinesterase expression was also increased 0.7 [0.4;1.6] in patients versus 0.4 [0.2;1.1] in controls; the probability that acetylcholinesterase expression was higher in patients than in controls (Pr[patients>controls]) was estimated at 0.97. Both in adults and children, the expression ratio of M2 receptors over acetylcholinesterase was greater in the patient group compared with the control group. CONCLUSION M2 receptor overexpression has been detected in the blood of both, adults and children, exhibiting reflex syncope. As in our experimental model, i.e. rabbits with vagal overactivity, acetylcholinesterase overexpression was associated with M2 receptor overexpression. For the first time, biological abnormalities are identified in vagal syncope in which only clinical signs are, so far, taken into account for differential diagnosis and therapeutic management. Further work will be needed to validate potential biomarkers of risk or severity associated with the cholinergic system.
Collapse
Affiliation(s)
- Maxime Beutelstetter
- Clinical Investigation Center, INSERM 1434, University Hospital of Strasbourg, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Angelo Livolsi
- Unit of Cardiopediatrics, University Hospital of Strasbourg, Strasbourg, France
- * E-mail:
| | - Hugues Greney
- Laboratory of Neurobiology and Cardiovascular Pharmacology, Federation of Translational Medicine, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Pauline Helms
- Unit of Cardiopediatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Catherine Schmidt-Mutter
- Clinical Investigation Center, INSERM 1434, University Hospital of Strasbourg, Strasbourg, France
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategies, INSERM U1119, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Charlie De Melo
- Unit of Neonatal Intensive Care, University Hospital of Strasbourg, Strasbourg, France
| | - Gerald Roul
- Unit of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Florian Zores
- Specialized Medical Group–The Premium, Strasbourg, France
| | - Alexandre Bolle
- Clinical Investigation Center, INSERM 1434, University Hospital of Strasbourg, Strasbourg, France
| | - Nassim Dali-Youcef
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Genetics and Molecular and Cellular Biology, Department of Functional Genomics and Cancer, Illkirch, France
| | - Magali Beaugey
- Laboratory of Neurobiology and Cardiovascular Pharmacology, Federation of Translational Medicine, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Alban Simon
- Clinical Investigation Center, INSERM 1434, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Niederhoffer
- Laboratory of Neurobiology and Cardiovascular Pharmacology, Federation of Translational Medicine, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Jacques Regnard
- Physiology-Functional Explorations, Regional University Hospital of Besançon, Besançon, France
| | - Malika Bouhaddi
- Physiology-Functional Explorations, Regional University Hospital of Besançon, Besançon, France
| | - Chris Adamopoulos
- Unit of Cardiopediatrics, University Hospital of Strasbourg, Strasbourg, France
| | - Mickael Schaeffer
- Department of Public Health, methods in clinical research, University of Strasbourg, Strasbourg, France
| | - Erik Sauleau
- Department of Public Health, methods in clinical research, University of Strasbourg, Strasbourg, France
| | - Pascal Bousquet
- Clinical Investigation Center, INSERM 1434, University Hospital of Strasbourg, Strasbourg, France
- Laboratory of Neurobiology and Cardiovascular Pharmacology, Federation of Translational Medicine, University of Strasbourg, Faculty of Medicine, Strasbourg, France
| |
Collapse
|
72
|
Aguilar-Sanchez Y, Rodriguez de Yurre A, Argenziano M, Escobar AL, Ramos-Franco J. Transmural Autonomic Regulation of Cardiac Contractility at the Intact Heart Level. Front Physiol 2019; 10:773. [PMID: 31333477 PMCID: PMC6616252 DOI: 10.3389/fphys.2019.00773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/03/2019] [Indexed: 01/14/2023] Open
Abstract
The relationship between cardiac excitability and contractility depends on when Ca2+ influx occurs during the ventricular action potential (AP). In mammals, it is accepted that Ca2+ influx through the L-type Ca2+ channels occurs during AP phase 2. However, in murine models, experimental evidence shows Ca2+ influx takes place during phase 1. Interestingly, Ca2+ influx that activates contraction is highly regulated by the autonomic nervous system. Indeed, autonomic regulation exerts multiple effects on Ca2+ handling and cardiac electrophysiology. In this paper, we explore autonomic regulation in endocardial and epicardial layers of intact beating mice hearts to evaluate their role on cardiac excitability and contractility. We hypothesize that in mouse cardiac ventricles the influx of Ca2+ that triggers excitation–contraction coupling (ECC) does not occur during phase 2. Using pulsed local field fluorescence microscopy and loose patch photolysis, we show sympathetic stimulation by isoproterenol increased the amplitude of Ca2+ transients in both layers. This increase in contractility was driven by an increase in amplitude and duration of the L-type Ca2+ current during phase 1. Interestingly, the β-adrenergic increase of Ca2+ influx slowed the repolarization of phase 1, suggesting a competition between Ca2+ and K+ currents during this phase. In addition, cAMP activated L-type Ca2+ currents before SR Ca2+ release activated the Na+-Ca2+ exchanger currents, indicating Cav1.2 channels are the initial target of PKA phosphorylation. In contrast, parasympathetic stimulation by carbachol did not have a substantial effect on amplitude and kinetics of endocardial and epicardial Ca2+ transients. However, carbachol transiently decreased the duration of the AP late phase 2 repolarization. The carbachol-induced shortening of phase 2 did not have a considerable effect on ventricular pressure and systolic Ca2+ dynamics. Interestingly, blockade of muscarinic receptors by atropine prolonged the duration of phase 2 indicating that, in isolated hearts, there is an intrinsic release of acetylcholine. In addition, the acceleration of repolarization induced by carbachol was blocked by the acetylcholine-mediated K+ current inhibition. Our results reveal the transmural ramifications of autonomic regulation in intact mice hearts and support our hypothesis that Ca2+ influx that triggers ECC occurs in AP phase 1 and not in phase 2.
Collapse
Affiliation(s)
- Yuriana Aguilar-Sanchez
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ainhoa Rodriguez de Yurre
- Laboratorio de Cardio Inmunologia, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Mariana Argenziano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, School of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
73
|
Abbott TEF, Pearse RM, Beattie WS, Phull M, Beilstein C, Raj A, Grocott MPW, Cuthbertson BH, Wijeysundera D, Ackland GL. Chronotropic incompetence and myocardial injury after noncardiac surgery: planned secondary analysis of a prospective observational international cohort study. Br J Anaesth 2019; 123:17-26. [PMID: 31029407 PMCID: PMC6676775 DOI: 10.1016/j.bja.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 03/03/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Physiological measures of heart failure are common in surgical patients, despite the absence of a diagnosis. Heart rate (HR) increases during exercise are frequently blunted in heart failure (termed chronotropic incompetence), which primarily reflects beta-adrenoreceptor dysfunction. We examined whether chronotropic incompetence was associated with myocardial injury after noncardiac surgery. METHODS This was a predefined analysis of an international cohort study where participants aged ≥40 yr underwent symptom-limited cardiopulmonary exercise testing before noncardiac surgery. Chronotropic incompetence was defined as the ratio of increase in HR during exercise to age-predicted maximal increase in HR <0.6. The primary outcome was myocardial injury within 3 days after surgery, defined by high-sensitivity troponin assays >99th centile. Explanatory variables were biomarkers for heart failure (ventilatory efficiency slope [minute ventilation/carbon dioxide production] ≥34; peak oxygen consumption ≤14 ml kg-1 min-1; HR recovery ≤6 beats min-1 decrease 1 min post-exercise; preoperative N-terminal pro-B-type natriuretic peptide [NT pro-BNP] >300 pg ml-1). Myocardial injury was compared in the presence or absence of sympathetic (i.e. chronotropic incompetence) or parasympathetic (i.e. impaired HR recovery after exercise) thresholds indicative of dysfunction. Data are presented as odds ratios (ORs) (95% confidence intervals). RESULTS Chronotropic incompetence occurred in 396/1325 (29.9%) participants; only 16/1325 (1.2%) had a heart failure diagnosis. Myocardial injury was sustained by 162/1325 (12.2%) patients. Raised preoperative NT pro-BNP was more common when chronotropic incompetence was <0.6 (OR: 1.57 [1.11-2.23]; P=0.011). Chronotropic incompetence was not significantly associated with myocardial injury (OR: 1.05 [0.74-1.50]; P=0.78), independent of rate-limiting therapy. HR recovery <12 beats min-1 decrease after exercise was associated with myocardial injury in the presence (OR: 1.62 [1.05-2.51]; P=0.03) or absence (OR: 1.60 [1.06-2.39]; P=0.02) of chronotropic incompetence. CONCLUSIONS Chronotropic incompetence is common in surgical patients. In contrast to parasympathetic dysfunction which was associated with myocardial injury, preoperative chronotropic incompetence (suggestive of sympathetic dysfunction) was not associated with postoperative myocardial injury.
Collapse
Affiliation(s)
- Tom E F Abbott
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rupert M Pearse
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - W Scott Beattie
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Mandeep Phull
- Department of Intensive Care Medicine, Queens Hospital, Romford, UK
| | - Christian Beilstein
- Department of Anaesthesiology and Pain Therapy, Bern University Hospital, Bern, Switzerland
| | - Ashok Raj
- Department of Intensive Care Medicine, Croydon University Hospital, Croydon, UK
| | - Michael P W Grocott
- Critical Care Research Group, NIHR Southampton Biomedical Research Centre, University Hospital Southampton, University of Southampton, Southampton, UK
| | - Brian H Cuthbertson
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Duminda Wijeysundera
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Gareth L Ackland
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
74
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
75
|
Carnevali L, Statello R, Sgoifo A. Resting Heart Rate Variability Predicts Vulnerability to Pharmacologically-Induced Ventricular Arrhythmias in Male Rats. J Clin Med 2019; 8:jcm8050655. [PMID: 31083474 PMCID: PMC6572182 DOI: 10.3390/jcm8050655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/03/2022] Open
Abstract
The electrical stability of the myocardium is dependent on the dynamic balance between sympathetic and parasympathetic influences on the heart, which is reflected by heart rate variability (HRV). Reduced HRV is a proposed predictor of sudden death caused by ventricular tachyarrhythmias in cardiac patients. However, the link between individual differences in HRV and ventricular tachyarrhythmic risk in populations without known pre-existing cardiac conditions is less well explored. In this study we investigated the extent to which individual differences in resting state HRV predict susceptibility to spontaneous and pharmacologically-induced ventricular arrhythmias in healthy rats. Radiotelemetric transmitters were implanted in 42 adult male Wild-type Groningen rats. ECG signals were recorded during 24-h resting conditions and under β-adrenoceptor pharmacological stimulation with isoproterenol and analyzed by means of time- and frequency-domain indexes of HRV. No significant association was found between individual differences in resting measures of HRV and spontaneous incidence of ventricular arrhythmias. However, lower resting values of HRV predicted a higher number of ventricular ectopic beats following β-adrenergic pharmacological stimulation with isoproterenol (0.02 mg/kg). Moreover, after isoproterenol administration, one rat with low resting HRV developed sustained ventricular tachycardia that led to death. The present results might be indicative of the potential utility of HRV measures of resting cardiac autonomic function for the prediction of ventricular arrhythmias, particularly during conditions of strong sympathetic activation, in populations without known cardiac disease.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| | - Rosario Statello
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43121 Parma, Italy.
| |
Collapse
|
76
|
Gourine AV, Ackland GL. Cardiac Vagus and Exercise. Physiology (Bethesda) 2019; 34:71-80. [PMID: 30540229 PMCID: PMC6383634 DOI: 10.1152/physiol.00041.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Lower resting heart rate and high autonomic vagal activity are strongly associated with superior exercise capacity, maintenance of which is essential for general well-being and healthy aging. Recent evidence obtained in experimental studies using the latest advances in molecular neuroscience, combined with human exercise physiology, physiological modeling, and genomic data suggest that the strength of cardiac vagal activity causally determines our ability to exercise.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom
| | - Gareth L Ackland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , United Kingdom
| |
Collapse
|
77
|
Ang R, Mastitskaya S, Hosford PS, Basalay M, Specterman M, Aziz Q, Li Y, Orini M, Taggart P, Lambiase PD, Gourine A, Tinker A, Gourine AV. Modulation of Cardiac Ventricular Excitability by GLP-1 (Glucagon-Like Peptide-1). Circ Arrhythm Electrophysiol 2018; 11:e006740. [PMID: 30354404 PMCID: PMC6553567 DOI: 10.1161/circep.118.006740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular outcomes in patients with type 2 diabetes mellitus. However, systemic actions of these agents cause sympathetic activation, which is generally considered to be detrimental in cardiovascular disease. Despite significant research interest in cardiovascular biology of GLP-1, the presence of GLP-1R in ventricular cardiomyocytes remains a controversial issue, and the effects of this peptide on the electrical properties of intact ventricular myocardium are unknown. We sought to determine the effects of GLP-1R agonist exendin-4 (Ex4) on ventricular action potential duration (APD) and susceptibility to ventricular arrhythmia in the rat heart in vivo and ex vivo. METHODS Ventricular monophasic action potentials were recorded in anaesthetized (urethane) rats in vivo and isolated perfused rat hearts during sinus rhythm and ventricular pacing. RESULTS In vivo, systemic administration of Ex4 (5 μg/kg intravenously) increased heart rate, and this effect was abolished by β-adrenoceptor blockade. Despite causing sympathetic activation, Ex4 increased APD at 90% repolarization during ventricular pacing by 7% ( P=0.044; n=6) and reversed the effect of β-adrenoceptor agonist dobutamine on APD at 90% repolarization. In isolated perfused hearts, Ex4 (3 nmol/L) increased APD at 90% repolarization by 14% ( P=0.015; n=6) with no effect on heart rate. Ex4 also reduced ventricular arrhythmia inducibility in conditions of β-adrenoceptor stimulation with isoproterenol. Ex4 effects on APD and ventricular arrhythmia susceptibility were prevented in conditions of muscarinic receptor blockade or inhibition of nitric oxide synthase. CONCLUSIONS These data demonstrate that GLP-1R activation effectively opposes the effects of β-adrenoceptor stimulation on cardiac ventricular excitability and reduces ventricular arrhythmic potential. The effect of GLP-1R activation on the ventricular myocardium is indirect, mediated by acetylcholine and nitric oxide and, therefore, can be explained by stimulation of cardiac parasympathetic (vagal) neurons.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Marina Basalay
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| | - Mark Specterman
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Qadeer Aziz
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Yiwen Li
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Pier D. Lambiase
- Institute of Cardiovascular Science, University College London, United Kingdom (M.O., P.T., P.D.L.)
| | - Andrey Gourine
- Division of Cardiology, Karolinska Institute, Stockholm, Sweden (A.G.)
| | - Andrew Tinker
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom (R.A., M.S., Q.A., Y.L., A.T.)
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, United Kingdom (R.A., S.M., P.S.H., M.B., A.V.G.)
| |
Collapse
|
78
|
The effects of embryonic hypoxic programming on cardiovascular function and autonomic regulation in the American alligator (Alligator mississippiensis) at rest and during swimming. J Comp Physiol B 2018; 188:967-976. [DOI: 10.1007/s00360-018-1181-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/25/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
|
79
|
Ernsberger U, Rohrer H. Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 2018; 13:20. [PMID: 30213267 PMCID: PMC6137933 DOI: 10.1186/s13064-018-0117-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
80
|
Lee SW, Anderson A, Guzman PA, Nakano A, Tolkacheva EG, Wickman K. Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Front Physiol 2018; 9:943. [PMID: 30072916 PMCID: PMC6060443 DOI: 10.3389/fphys.2018.00943] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023] Open
Abstract
Diminished parasympathetic influence is central to the pathogenesis of cardiovascular diseases, including heart failure and hypertension. Stimulation of the vagus nerve has shown promise in treating cardiovascular disease, prompting renewed interest in understanding the signaling pathway(s) that mediate the vagal influence on cardiac physiology. Here, we evaluated the contribution of G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels to the effect of vagus nerve stimulation (VNS) on heart rate (HR), HR variability (HRV), and arrhythmogenesis in anesthetized mice. As parasympathetic fibers innervate both atria and ventricle, and GIRK channels contribute to the cholinergic impact on atrial and ventricular myocytes, we collected in vivo electrocardiogram recordings from mice lacking either atrial or ventricular GIRK channels, during VNS. VNS decreased HR and increased HRV in control mice, in a muscarinic receptor-dependent manner. This effect was preserved in mice lacking ventricular GIRK channels, but was nearly completely absent in mice lacking GIRK channels in the atria. In addition, atrial-specific ablation of GIRK channels conferred resistance to arrhythmic episodes induced by VNS. These data indicate that atrial GIRK channels are the primary mediators of the impact of VNS on HR, HRV, and arrhythmogenesis in the anesthetized mouse.
Collapse
Affiliation(s)
- Steven W. Lee
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Pilar A. Guzman
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
81
|
Allen E, Coote JH, Grubb BD, Batten TFC, Pauza DH, Ng GA, Brack KE. Electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart. Heart Rhythm 2018; 15:1698-1707. [PMID: 29800749 PMCID: PMC6207532 DOI: 10.1016/j.hrthm.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Background The intrinsic cardiac nervous system is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. Objective The goals of this study were to provide a complete picture of the neurotransmitter/neuromodulator profile of the rabbit intrinsic cardiac nervous system and to determine the influence of spatially divergent ganglia on cardiac electrophysiology. Methods Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff-perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase, and/or neuronal nitric oxide synthase (nNOS) was performed using whole mount preparations. Results Stimulation within all ganglia produced either bradycardia, tachycardia, or a biphasic brady-tachycardia. Electrical stimulation of the right atrial and right neuronal cluster regions produced the largest chronotropic responses. Significant prolongation of atrioventricular conduction was predominant at the pulmonary vein-caudal vein region. Neurons immunoreactive (IR) only for ChAT, tyrosine hydroxylase, or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946 ± 668 neurons). Neurons IR only for nNOS were distributed within ganglia. Conclusion Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease.
Collapse
Affiliation(s)
- Emily Allen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| | - John H Coote
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Blair D Grubb
- Institute of Life and Human Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Dainius H Pauza
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom.
| | - Kieran E Brack
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
82
|
Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 2018; 113:22. [PMID: 29744667 DOI: 10.1007/s00395-018-0683-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against myocardial ischemia/reperfusion (I/R) injury. However, whether the cardioprotection of VNS is mainly due to direct activation through its ipsilateral efferent fibers (motor) rather than indirect effects mediated by the afferent fibers (sensory) have not been clearly understood. We hypothesized that VNS exerts cardioprotection predominantly through its efferent vagal fibers. Thirty swine (30-35 kg) were randomized into five groups: I/R no VNS (I/R), and left mid-cervical VNS with both vagal trunks intact (LC-VNS), with left vagus nerve transection (LtVNX), with right vagus nerve transection (RtVNX) and with atropine pretreatment (Atropine), respectively. VNS was applied at the onset of ischemia (60 min) and continued until the end of reperfusion (120 min). Cardiac function, infarct size, arrhythmia score, myocardial connexin43 expression, apoptotic markers, oxidative stress markers, inflammatory markers (TNF-α and IL-10) and cardiac mitochondrial function, dynamics and fatty acid oxidation (MFN2, OPA1, DRP1, PGC1α and CPT1) were determined. LC-VNS exerted cardioprotection against myocardial I/R injury via improvement of mitochondrial function and dynamics and shifted cardiac fatty acid metabolism toward beta oxidation. However, LC-VNS and LtVNX, both efferent vagal fibers are intact, produced more profound cardioprotection, particularly infarct size reduction, decreased arrhythmia score, oxidative stress and apoptosis and attenuated mitochondrial dysfunction compared to RtVNX. These beneficial effects of VNS were abolished by atropine. Our findings suggest that selective efferent VNS may potentially be effective in attenuating myocardial I/R injury. Moreover, VNS required the contralateral efferent vagal activities to fully provide its cardioprotection.
Collapse
Affiliation(s)
- Watthana Nuntaphum
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanpitak Pongkan
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwakon Wongjaikam
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Savitree Thummasorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pongpan Tanajak
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthamas Khamseekaew
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kannaporn Intachai
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
83
|
Kulkarni K, Xie X, Fernandez de Velasco EM, Anderson A, Martemyanov KA, Wickman K, Tolkacheva EG. The influences of the M2R-GIRK4-RGS6 dependent parasympathetic pathway on electrophysiological properties of the mouse heart. PLoS One 2018; 13:e0193798. [PMID: 29668674 PMCID: PMC5905881 DOI: 10.1371/journal.pone.0193798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023] Open
Abstract
A large body of work has established the prominent roles of the atrial M2R-IKACh signaling pathway, and the negative regulatory protein RGS6, in modulating critical aspects of parasympathetic influence on cardiac function, including pace-making, heart rate (HR) variability (HRV), and atrial arrhythmogenesis. Despite increasing evidence of its innervation of the ventricles, and the expression of M2R, IKACh channel subunits, and RGS6 in ventricle, the effects of parasympathetic modulation on ventricular electrophysiology are less clear. The main objective of our study was to investigate the contribution of M2R-IKACh signaling pathway elements in murine ventricular electrophysiology, using in-vivo ECG measurements, isolated whole-heart optical mapping and constitutive knockout mice lacking IKACh (Girk4–/–) or RGS6 (Rgs6-/-). Consistent with previous findings, mice lacking GIRK4 exhibited diminished HR and HRV responses to the cholinergic agonist carbachol (CCh), and resistance to CCh-induced arrhythmic episodes. In line with its role as a negative regulator of atrial M2R-IKACh signaling, loss of RGS6 correlated with a mild resting bradycardia, enhanced HR and HRV responses to CCh, and increased propensity for arrhythmic episodes. Interestingly, ventricles from mice lacking GIRK4 or RGS6 both exhibited increased action potential duration (APD) at baseline, and APD was prolonged by CCh across all genotypes. Similarly, CCh significantly increased the slope of APD restitution in all genotypes. There was no impact of genotype or CCh on either conduction velocity or heterogeneity. Our data suggests that altered parasympathetic signaling through the M2R-IKACh pathway can affect ventricular electrophysiological properties distinct from its influence on atrial physiology.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Xueyi Xie
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Allison Anderson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
84
|
Zhou W, Wan YH, Chen Q, Qiu YR, Luo XM. Effects of Tai Chi Exercise on Cancer-Related Fatigue in Patients With Nasopharyngeal Carcinoma Undergoing Chemoradiotherapy: A Randomized Controlled Trial. J Pain Symptom Manage 2018; 55:737-744. [PMID: 29122618 DOI: 10.1016/j.jpainsymman.2017.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
CONTEXT Tai Chi exercise has been shown to improve cancer-related fatigue (CRF) and autonomic nervous system (ANS) balance in some cancer patients or survivors; however, such effects are yet to be verified in nasopharyngeal carcinoma (NPC) patients undergoing chemoradiotherapy. OBJECTIVES To explore the effects of Tai Chi exercise on CRF in NPC patients undergoing chemoradiotherapy and then to evaluate ANS information indicated by heart rate variability parameters and their association with CRF. METHODS A randomized controlled trial of Tai Chi exercise was conducted from January 2014 to August 2015. Participants in the Tai Chi group practiced Tai Chi a one-hour session, five sessions/week during chemoradiotherapy. Participants in the control group received usual care. The primary end points were scores of the multidimensional fatigue symptom inventory-short form (MFSI-SF). Secondary end points were heart rate variability parameters, including normalized low-frequency (nLF) power, normalized high-frequency (nHF) power, and the nLF/nHF ratio, and their association with CRF. RESULTS One hundred fourteen patients were recruited in this study, and 83 patients completed the trial. The Tai Chi group and the control group had comparable baseline characteristics. After chemoradiotherapy, the Tai Chi group exhibited lower MFSI-SF total score and three negative subscale (general, physical, and emotional fatigue) scores and higher vigor score compared with the control group (P < 0.01 for all). The nLF/nHF ratio was significantly lower in the Tai Chi group compared to the control group after chemoradiotherapy. The MFSI-SF total score was markedly correlated with the nLF/nHF ratio. CONCLUSION Tai Chi exercise is conducive to alleviate CRF in NPC patients undergoing chemoradiotherapy. The improvement in ANS balance might fit into the process of Tai Chi for CRF management in this population.
Collapse
Affiliation(s)
- Wei Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Hui Wan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan-Ru Qiu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiao-Min Luo
- Emergency Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
85
|
Plaschke K, Do TQM, Uhle F, Brenner T, Weigand MA, Kopitz J. Ablation of the Right Cardiac Vagus Nerve Reduces Acetylcholine Content without Changing the Inflammatory Response during Endotoxemia. Int J Mol Sci 2018; 19:ijms19020442. [PMID: 29389905 PMCID: PMC5855664 DOI: 10.3390/ijms19020442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 02/06/2023] Open
Abstract
Acetylcholine is the main transmitter of the parasympathetic vagus nerve. According to the cholinergic anti-inflammatory pathway (CAP) concept, acetylcholine has been shown to be important for signal transmission within the immune system and also for a variety of other functions throughout the organism. The spleen is thought to play an important role in regulating the CAP. In contrast, the existence of a “non-neuronal cardiac cholinergic system” that influences cardiac innervation during inflammation has been hypothesized, with recent publications introducing the heart instead of the spleen as a possible interface between the immune and nervous systems. To prove this hypothesis, we investigated whether selectively disrupting vagal stimulation of the right ventricle plays an important role in rat CAP regulation during endotoxemia. We performed a selective resection of the right cardiac branch of the Nervus vagus (VGX) with a corresponding sham resection in vehicle-injected and endotoxemic rats. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg body weight, intravenously) and observed for 4 h. Intraoperative blood gas analysis was performed, and hemodynamic parameters were assessed using a left ventricular pressure-volume catheter. Rat hearts and blood were collected, and the expression and concentration of proinflammatory cytokines using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were measured, respectively. Four hours after injection, LPS induced a marked deterioration in rat blood gas parameters such as pH value, potassium, base excess, glucose, and lactate. The mean arterial blood pressure and the end-diastolic volume had decreased significantly. Further, significant increases in blood cholinesterases and in proinflammatory (IL-1β, IL-6, TNF-α) cytokine concentration and gene expression were obtained. Right cardiac vagus nerve resection (VGX) led to a marked decrease in heart acetylcholine concentration and an increase in cardiac acetylcholinesterase activity. Without LPS, VGX changed rat hemodynamic parameters, including heart frequency, cardiac output, and end-diastolic volume. In contrast, VGX during endotoxemia did not significantly change the concentration and expression of proinflammatory cytokines in the heart. In conclusion we demonstrate that right cardiac vagal innervation regulates cardiac acetylcholine content but neither improves nor worsens systemic inflammation.
Collapse
Affiliation(s)
- Konstanze Plaschke
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | - Thuc Quyen Monica Do
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany.
| | - Jürgen Kopitz
- Department of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, D-69120 Heidelberg, Germany.
| |
Collapse
|
86
|
Affiliation(s)
- Wilfrid Jänig
- Department of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
87
|
Expression and relevance of the G protein-gated K + channel in the mouse ventricle. Sci Rep 2018; 8:1192. [PMID: 29352184 PMCID: PMC5775354 DOI: 10.1038/s41598-018-19719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The atrial G protein-gated inwardly rectifying K+ (GIRK) channel is a critical mediator of parasympathetic influence on cardiac physiology. Here, we probed the details and relevance of the GIRK channel in mouse ventricle. mRNAs for the atrial GIRK channel subunits (GIRK1, GIRK4), M2 muscarinic receptor (M2R), and RGS6, a negative regulator of atrial GIRK-dependent signaling, were detected in mouse ventricle at relatively low levels. The cholinergic agonist carbachol (CCh) activated small GIRK currents in adult wild-type ventricular myocytes that exhibited relatively slow kinetics and low CCh sensitivity; these currents were absent in ventricular myocytes from Girk1-/- or Girk4-/- mice. While loss of GIRK channels attenuated the CCh-induced shortening of action potential duration and suppression of ventricular myocyte excitability, selective ablation of GIRK channels in ventricle had no effect on heart rate, heart rate variability, or electrocardiogram parameters at baseline or after CCh injection. Additionally, loss of ventricular GIRK channels did not impact susceptibility to ventricular arrhythmias. These data suggest that the mouse ventricular GIRK channel is a GIRK1/GIRK4 heteromer, and show that while it contributes to the cholinergic suppression of ventricular myocyte excitability, this influence does not substantially impact cardiac physiology or ventricular arrhythmogenesis in the mouse.
Collapse
|
88
|
Autonomic Control of the Heart. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
89
|
Biering-Sørensen F, Biering-Sørensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A. Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci 2018; 209:4-18. [DOI: 10.1016/j.autneu.2017.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 01/22/2023]
|
90
|
|
91
|
Transcutaneous Vagus Nerve Stimulation Combined with Robotic Rehabilitation Improves Upper Limb Function after Stroke. Neural Plast 2017; 2017:7876507. [PMID: 29375915 PMCID: PMC5742496 DOI: 10.1155/2017/7876507] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
The efficacy of standard rehabilitative therapy for improving upper limb functions after stroke is limited; thus, alternative strategies are needed. Vagus nerve stimulation (VNS) paired with rehabilitation is a promising approach, but the invasiveness of this technique limits its clinical application. Recently, a noninvasive method to stimulate vagus nerve has been developed. The aim of the present study was to explore whether noninvasive VNS combined with robotic rehabilitation can enhance upper limb functionality in chronic stroke. Safety and efficacy of this combination have been assessed within a proof-of-principle, double-blind, semirandomized, sham-controlled trial. Fourteen patients with either ischemic or haemorrhagic chronic stroke were randomized to robot-assisted therapy associated with real or sham VNS, delivered for 10 working days. Efficacy was evaluated by change in upper extremity Fugl–Meyer score. After intervention, there were no adverse events and Fugl–Meyer scores were significantly better in the real group compared to the sham group. Our pilot study confirms that VNS is feasible in stroke patients and can produce a slight clinical improvement in association to robotic rehabilitation. Compared to traditional stimulation, noninvasive VNS seems to be safer and more tolerable. Further studies are needed to confirm the efficacy of this innovative approach.
Collapse
|
92
|
Huang WA, Boyle NG, Vaseghi M. Cardiac Innervation and the Autonomic Nervous System in Sudden Cardiac Death. Card Electrophysiol Clin 2017; 9:665-679. [PMID: 29173409 PMCID: PMC5777242 DOI: 10.1016/j.ccep.2017.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neural remodeling in the autonomic nervous system contributes to sudden cardiac death. The fabric of cardiac excitability and propagation is controlled by autonomic innervation. Heart disease predisposes to malignant ventricular arrhythmias by causing neural remodeling at the level of the myocardium, the intrinsic cardiac ganglia, extracardiac intrathoracic sympathetic ganglia, extrathoracic ganglia, spinal cord, and the brainstem, as well as the higher centers and the cortex. Therapeutic strategies at each of these levels aim to restore the balance between the sympathetic and parasympathetic branches. Understanding this complex neural network will provide important therapeutic insights into the treatment of sudden cardiac death.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA.
| |
Collapse
|
93
|
Mijacika T, Kyhl K, Frestad D, Otto Barak F, Drvis I, Secher NH, Dujic Z, Lav Madsen P. Effect of pulmonary hyperinflation on central blood volume: An MRI study. Respir Physiol Neurobiol 2017; 243:92-96. [PMID: 28583413 DOI: 10.1016/j.resp.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
Abstract
Pulmonary hyperinflation attained by glossopharyngeal insufflation (GPI) challenges the circulation by compressing the heart and pulmonary vasculature. Our aim was to determine the amount of blood translocated from the central blood volume during GPI. Cardiac output and cardiac chamber volumes were assessed by magnetic resonance imaging in twelve breath-hold divers at rest and during apnea with GPI. Pulmonary blood volume was determined from pulmonary blood flow and transit times for gadolinium during first-pass perfusion after intravenous injection. During GPI, the lung volume increased by 0.8±0.6L (11±7%) above the total lung capacity. All cardiac chambers decreased in volume and despite a heart rate increase of 24±29 bpm (39±50%), pulmonary blood flow decreased by 2783±1820mL (43±20%). The pulmonary transit time remained unchanged at 7.5±2.2s and pulmonary blood volume decreased by 354±176mL (47±15%). In total, central blood volume decreased by 532±248mL (46±14%). Voluntary pulmonary hyperinflation leads to ∼50% decrease in pulmonary and central blood volume.
Collapse
Affiliation(s)
- Tanja Mijacika
- Dept. of Integrative Physiology, University of Split School of Medicine, Croatia
| | - Kasper Kyhl
- The Cardiac MRI group, Dept. Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Daria Frestad
- Dept. of Cardiology, Copenhagen University Hospital, Hvidovre, University of Copenhagen, Denmark
| | - F Otto Barak
- Dept. of Integrative Physiology, University of Split School of Medicine, Croatia; Dept. of Physiology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Ivan Drvis
- University of Zagreb Faculty of Kinesiology, Croatia
| | - Niels H Secher
- Dept. of Anesthesiology, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Denmark
| | - Zeljko Dujic
- Dept. of Integrative Physiology, University of Split School of Medicine, Croatia.
| | - Per Lav Madsen
- Dept. of Cardiology, Copenhagen University Hospital, Herlev, University of Copenhagen, Denmark
| |
Collapse
|
94
|
Finlay M, Harmer SC, Tinker A. The control of cardiac ventricular excitability by autonomic pathways. Pharmacol Ther 2017; 174:97-111. [PMID: 28223225 DOI: 10.1016/j.pharmthera.2017.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Central to the genesis of ventricular cardiac arrhythmia are variations in determinants of excitability. These involve individual ionic channels and transporters in cardiac myocytes but also tissue factors such as variable conduction of the excitation wave, fibrosis and source-sink mismatch. It is also known that in certain diseases and particularly the channelopathies critical events occur with specific stressors. For example, in hereditary long QT syndrome due to mutations in KCNQ1 arrhythmic episodes are provoked by exercise and in particular swimming. Thus not only is the static substrate important but also how this is modified by dynamic signalling events associated with common physiological responses. In this review, we examine the regulation of ventricular excitability by signalling pathways from a cellular and tissue perspective in an effort to identify key processes, effectors and potential therapeutic approaches. We specifically focus on the autonomic nervous system and related signalling pathways.
Collapse
Affiliation(s)
- Malcolm Finlay
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK.
| |
Collapse
|
95
|
Jungen C, Scherschel K, Eickholt C, Kuklik P, Klatt N, Bork N, Salzbrunn T, Alken F, Angendohr S, Klene C, Mester J, Klöcker N, Veldkamp MW, Schumacher U, Willems S, Nikolaev VO, Meyer C. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat Commun 2017; 8:14155. [PMID: 28128201 PMCID: PMC5290156 DOI: 10.1038/ncomms14155] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022] Open
Abstract
The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis. Catheter ablation is a common therapy for atrial fibrillation but disrupts cardiac cholinergic neurons. Here the authors report that cholinergic neurons innervate heart ventricles and show that their ablation leads to increased susceptibility to ventricular arrhythmias in mouse models and in patients.
Collapse
Affiliation(s)
- Christiane Jungen
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Katharina Scherschel
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Nadja Bork
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Tim Salzbrunn
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Fares Alken
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stephan Angendohr
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christiane Klene
- Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Janos Mester
- Department of Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Marieke W Veldkamp
- Academic Medical Center, University of Amsterdam, Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cardiac Neuro- and Electrophysiology Research Group (cNEP), University Heart Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| |
Collapse
|
96
|
Delfiner MS, Siano J, Li Y, Dedkov EI, Zhang Y. Reduced epicardial vagal nerve density and impaired vagal control in a rat myocardial infarction-heart failure model. Cardiovasc Pathol 2016; 26:21-29. [PMID: 27852001 DOI: 10.1016/j.carpath.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Autonomic remodeling, characterized by sympathetic activation and vagal withdrawal, contributes to heart failure (HF) progression. However, the exact mechanism(s) responsible for vagal withdrawal in HF remain(s) unclear, and whether HF causes epicardial autonomic nerve remodeling is unknown. METHODS AND RESULTS Myocardial infarction (MI) was produced in 14 Sprague-Dawley rats, and 10 sham surgery rats served as the control. MI-HF was confirmed 2 months after the surgery by echocardiography and hemodynamic measurement. Cervical vagal nerve stimulation was delivered to examine the heart rate slowing effect. Whole heart acetylcholinesterase histochemistry was used to examine the epicardial autonomic nerve remodeling at dorsal ventricles (remote from the infarcted area). Compared with the control animals, the same vagal nerve stimulation had less heart rate slowing effect in MI-HF group. Both epicardial nerve bundle length-density (2.56±0.60 μm/mm2 versus 1.68±0.46 μm/mm2, P=.001) and branching point-density (1.24±0.25 points/mm2 versus 0.66±0.18 points/mm2, P<.001) were lower in MI-HF rats. The chemically stained epicardial nerve bundles contain both sympathetic (tyrosine hydroxylase positive) and vagal (choline acetyltransferase positive) fibers. However, within the stained nerve bundle, the chemical color corresponds mainly with the vagal fibers. CONCLUSIONS Whole heart acetylcholinesterase histochemistry revealed a decreased ventricular epicardial vagal nerve density in MI-HF rats, which may contribute to impaired cardiac vagal control in HF.
Collapse
Affiliation(s)
- Matthew S Delfiner
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - John Siano
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Eduard I Dedkov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
97
|
Czick ME, Shapter CL, Silverman DI. Atrial Fibrillation: The Science behind Its Defiance. Aging Dis 2016; 7:635-656. [PMID: 27699086 PMCID: PMC5036958 DOI: 10.14336/ad.2016.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world, due both to its tenacious treatment resistance, and to the tremendous number of risk factors that set the stage for the atria to fibrillate. Cardiopulmonary, behavioral, and psychological risk factors generate electrical and structural alterations of the atria that promote reentry and wavebreak. These culminate in fibrillation once atrial ectopic beats set the arrhythmia process in motion. There is growing evidence that chronic stress can physically alter the emotion centers of the limbic system, changing their input to the hypothalamic-limbic-autonomic network that regulates autonomic outflow. This leads to imbalance of the parasympathetic and sympathetic nervous systems, most often in favor of sympathetic overactivation. Autonomic imbalance acts as a driving force behind the atrial ectopy and reentry that promote AF. Careful study of AF pathophysiology can illuminate the means that enable AF to elude both pharmacological control and surgical cure, by revealing ways in which antiarrhythmic drugs and surgical and ablation procedures may paradoxically promote fibrillation. Understanding AF pathophysiology can also help clarify the mechanisms by which emerging modalities aiming to correct autonomic imbalance, such as renal sympathetic denervation, may offer potential to better control this arrhythmia. Finally, growing evidence supports lifestyle modification approaches as adjuncts to improve AF control.
Collapse
Affiliation(s)
| | | | - David I. Silverman
- Echocardiography Laboratory, Hartford Hospital, Hartford, CT 06106, USA.
| |
Collapse
|
98
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
99
|
Végh AMD, Duim SN, Smits AM, Poelmann RE, Ten Harkel ADJ, DeRuiter MC, Goumans MJ, Jongbloed MRM. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. J Cardiovasc Dev Dis 2016; 3:jcdd3030028. [PMID: 29367572 PMCID: PMC5715672 DOI: 10.3390/jcdd3030028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.
Collapse
Affiliation(s)
- Anna M D Végh
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Sjoerd N Duim
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Anke M Smits
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 20, 2311 EZ Leiden, The Netherlands.
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Marie José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
100
|
Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci 2016; 199:29-37. [PMID: 27590099 PMCID: PMC5334443 DOI: 10.1016/j.autneu.2016.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
A hallmark of cardiovascular disease is cardiac autonomic dysregulation. The phenotype of impaired parasympathetic responsiveness and sympathetic hyperactivity in experimental animal models is also well documented in large scale human studies in the setting of heart failure and myocardial infarction, and is predictive of morbidity and mortality. Despite advances in emergency revascularisation strategies for myocardial infarction, device therapy for heart failure and secondary prevention pharmacotherapies, mortality from malignant ventricular arrhythmia remains high. Patients at highest risk or those with haemodynamically significant ventricular arrhythmia can be treated with catheter ablation and implantable cardioverter defibrillators, but the morbidity and reduction in quality of life due to the burden of ventricular arrhythmia and shock therapy persists. Therefore, future therapies must aim to target the underlying pathophysiology that contributes to the generation of ventricular arrhythmia. This review explores recent advances in mechanistic research in both limbs of the autonomic nervous system and potential avenues for translation into clinical therapy. In addition, we also discuss the relationship of these findings in the context of the reported efficacy of current neuromodulatory strategies in the management of ventricular arrhythmia. We review advances in mechanistic research in the cardiac autonomic nervous system. This is discussed in relation to neuromodulatory therapy for ventricular arrhythmia. Neuromodulation therapies can influence both neurotransmitters and co-transmitters. This may therefore improve on conventional medical treatment.
Collapse
Affiliation(s)
| | - Neil Herring
- Corresponding author at: Burdon Sanderson Cardiac Science Centre, Dept. of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, OX13PT, UK.Burdon Sanderson Cardiac Science CentreDept. of Physiology, Anatomy and GeneticsUniversity of OxfordParks RoadOX13PTUK
| | | |
Collapse
|