51
|
Mittal A, Verma S, Natanasabapathi G, Kumar P, Verma AK. Diacetylene-Based Colorimetric Radiation Sensors for the Detection and Measurement of γ Radiation during Blood Irradiation. ACS OMEGA 2021; 6:9482-9491. [PMID: 33869928 PMCID: PMC8047693 DOI: 10.1021/acsomega.0c06184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/01/2021] [Indexed: 05/05/2023]
Abstract
Blood and its cellular components are irradiated by ionizing radiation before transfusion to prevent the proliferation of viable T lymphocytes which cause transfusion associated-graft versus host disease. The immunodeficient patients undergoing chemotherapy for various malignancies are at risk of this disease. The international guidelines for blood transfusion recommend a minimum radiation exposure of 25 Gray (Gy) to the midplane of the blood bag, while a minimum dose of 15 Gy and a maximum dose of 50 Gy should be given to each portion of the blood bag. Therefore, precise dosimetry of the blood irradiator is essential to ensure the adequate irradiation of the blood components. The paper presents the fabrication of diacetylene-based colorimetric film dosimeters for the verification of irradiated doses. The diacetylene analogues are synthesized by tailoring them with different amide-based headgroups followed by their coating to develop colorimetric film dosimeters. Among all the synthesized diacetylene analogues, aminofluorene-substituted diacetylene exhibits the most significant color transition from white to blue color at a minimum γ radiation dose of 5 Gy. The quantitative study of color change is performed by the digitization of the scanned images of film dosimeters. The digital image processing of the developed film dosimeters facilitates rapid dose measurement which enables their facile implementation and promising application in routine blood irradiator dosimetry.
Collapse
Affiliation(s)
- Apoorva Mittal
- Department
of Medical Physics, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shalini Verma
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Gopishankar Natanasabapathi
- Department
of Radiotherapy, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratik Kumar
- Department
of Medical Physics, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
52
|
Bouchard H, Billas I, Subiel A, Duane S. Eigencolor radiochromic film dosimetry. Med Phys 2021; 48:2592-2603. [PMID: 33525060 DOI: 10.1002/mp.14742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/16/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The goal of this work is to propose a new multichannel method correcting for systematic thickness disturbances and to evaluate its precision in relevant radiation dosimetry applications. METHODS The eigencolor ratio technique is introduced and theoretically developed to provide a method correcting for thickness disturbances. The method is applied to EBT3 GafchromicTM film irradiated with cobalt-60 and 6 MV photon beams and digitized with an Epson 10000XL photo scanner. Dose profiles and output factors of different field sizes are measured and analyzed. Variance analysis of the previous method of Bouchard et al. ["On the characterization and uncertainty analysis of radiochromic film dosimetry" Med Phys. 2009;36:1931-1946] is adapted to the new approach. Uncertainties are predicted for relevant applications. RESULTS Results show that systematic disturbances attributed to thickness variations are efficiently corrected. The method is shown efficient to identify and correct for dark spots which cause systematic errors in single-channel distributions. Applications of the method in the context of relative dosimetry yields standard uncertainties ranging between 0.8% and 1.9%, depending on the region of interest (ROI) size and the film irradiation. Variance analysis predicts that uncertainty levels between 0.3% and 0.6% are achievable with repeated measurements. Uncertainties are found to vary with absorbed dose and ROI size. CONCLUSIONS The proposed multichannel method is efficient for accurate dosimetry, reaching uncertainty levels comparable to previous publications with EBT film. The method is also promising for applications beyond clinical QA, such as machine characterization and other advanced dosimetry applications.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.,Centre de recherche du CHUM, 900 Rue Saint-Denis, Montréal, QC, H2X 3H8, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 rue Sanguinet, Montréal, QC, H2X 3E4, Canada
| | - Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Hampton Rd, Teddington, TW11 0LW, UK
| | - Anna Subiel
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Hampton Rd, Teddington, TW11 0LW, UK
| | - Simon Duane
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Hampton Rd, Teddington, TW11 0LW, UK
| |
Collapse
|
53
|
Akino Y, Shiomi H, Isohashi F, Suzuki O, Seo Y, Tamari K, Hirata T, Mizuno H, Ogawa K. Correction of lateral response artifacts from flatbed scanners for dual-channel radiochromic film dosimetry. JOURNAL OF RADIATION RESEARCH 2021; 62:319-328. [PMID: 33479768 PMCID: PMC7948896 DOI: 10.1093/jrr/rraa124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Indexed: 06/12/2023]
Abstract
In this study, we evaluated the inter-unit variability of the lateral response artifact for multiple flatbed scanners, focusing on the dual-channel method, and investigated the correction method of the lateral non-uniformity. Four scanners with A3+ paper-size and five scanners with A4 paper-size were evaluated. To generate the dose-response curves, small pieces of the Gafchromic EBT3 and EBT-XD films were irradiated, and five of the pieces were repeatedly scanned by moving them on the scanner to evaluate the lateral non-uniformity. To calculate the dose distribution accounting for the lateral non-uniformity, linear functions of the correction factor, representing the difference between the pixel values at offset position and the scanner midline, were calculated for red and blue color channels at each lateral position. Large variations of the lateral non-uniformity among the scanners were observed, even for the same model of scanner. For high dose, red color showed pixel value profiles similar to symmetric curves, whereas the profiles for low dose were asymmetric. The peak positions changed with dose. With correction of the lateral non-uniformity, the dose profiles of the pyramidal dose distribution measured at various scanner positions and that calculated with a treatment planning system showed almost identical profile shapes at all high-, middle- and low-dose levels. The dual-channel method used in this study showed almost identical dose profiles measured with all A3+ and A4 paper-size scanners at any positions when the corrections were applied for each color channel.
Collapse
Affiliation(s)
- Yuichi Akino
- Corresponding author. Oncology Center, Osaka University Hospital, 2-2 (D10), Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: (+81) 6-6879-3482; Fax: (+81) 6-6879-3489;
| | - Hiroya Shiomi
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| | - Fumiaki Isohashi
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| | - Osamu Suzuki
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| | - Yuji Seo
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| | - Keisuke Tamari
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| | - Takero Hirata
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| | | | - Kazuhiko Ogawa
- Osaka University Graduate School of Meidcine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
54
|
Liu PZY, Gardner M, Heng SM, Shieh CC, Nguyen DT, Debrot E, O'Brien R, Downes S, Jackson M, Keall PJ. Pre-treatment and real-time image guidance for a fixed-beam radiotherapy system. Phys Med Biol 2021; 66:064003. [PMID: 33661762 DOI: 10.1088/1361-6560/abdc12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE A radiotherapy system with a fixed treatment beam and a rotating patient positioning system could be smaller, more robust and more cost effective compared to conventional rotating gantry systems. However, patient rotation could cause anatomical deformation and compromise treatment delivery. In this work, we demonstrate an image-guided treatment workflow with a fixed beam prototype system that accounts for deformation during rotation to maintain dosimetric accuracy. METHODS The prototype system consists of an Elekta Synergy linac with the therapy beam orientated downward and a custom-built patient rotation system (PRS). A phantom that deforms with rotation was constructed and rotated within the PRS to quantify the performance of two image guidance techniques: motion compensated cone-beam CT (CBCT) for pre-treatment volumetric imaging and kilovoltage infraction monitoring (KIM) for real-time image guidance. The phantom was irradiated with a 3D conformal beam to evaluate the dosimetric accuracy of the workflow. RESULTS The motion compensated CBCT was used to verify pre-treatment position and the average calculated position was within -0.3 ± 1.1 mm of the phantom's ground truth position at 0°. KIM tracked the position of the target in real-time as the phantom was rotated and the average calculated position was within -0.2 ± 0.8 mm of the phantom's ground truth position. A 3D conformal treatment delivered on the prototype system with image guidance had a 3%/2 mm gamma pass rate of 96.3% compared to 98.6% delivered using a conventional rotating gantry linac. CONCLUSIONS In this work, we have shown that image guidance can be used with fixed-beam treatment systems to measure and account for changes in target position in order to maintain dosimetric coverage during horizontal rotation. This treatment modality could provide a viable treatment option when there insufficient space for a conventional linear accelerator or where the cost is prohibitive.
Collapse
Affiliation(s)
- Paul Z Y Liu
- ACRF Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Radiochromic Films for the Two-Dimensional Dose Distribution Assessment. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Radiochromic films are mainly used for two-dimensional dose verification in photon, electron, and proton therapy treatments. Moreover, the radiochromic film types available today allow their use in a wide dose range, corresponding to applications from low-medical diagnostics to high-dose beam profile measurements in charged particle medical accelerators. An in-depth knowledge of the characteristics of radiochromic films, of their operating principles, and of the dose reading techniques is of paramount importance to exploit all the features of this interesting and versatile radiation detection system. This short review focuses on these main aspects by considering the most recent works on the subject.
Collapse
|
56
|
Manufacturing and evaluation of multi-channel cylinder applicator with 3D printing technology. J Contemp Brachytherapy 2021; 13:80-90. [PMID: 34025740 PMCID: PMC8117717 DOI: 10.5114/jcb.2021.103590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study was designed to assess dosimetric characteristics of 3D-printed personalized multi-channel cylinder applicator (MCCA). Material and methods UnionTech RS Pro 600 (UnionTech, Inc., Shanghai, China) 3D printer was used for manufacturing MCCA. The geometry of MCCA was designed with Fusion 360 v.2.0.5827 (Autodesk, Inc.) software. The designed file was exported to Meshmixer v.3.5 (Autodesk, Inc.) to create three-dimensional model in stereolithography (STL) file format, which is the common file format for inputting data to 3D printers. We used high-temp resin, FLHTAM02 model (Formlabs Inc., MA, USA), as material in 3D printing process. This resin model has good resistance to high temperature and compatibility with various solvents. We created a simple cubic shape phantom for dosimetric evaluation of the applicator with Gafchromic EBT3 films. Also, Monte Carlo method was applied to simulate MCCA in the same configuration as in experimental test. Results The mean ± standard deviation (SD) difference between measured and calculated doses in treatment planning system (TPS) for all control points was 0.0860 ±0.0393 Gy, corresponding to 4.01 ±1.21%. The mean ±SD difference between doses calculated by Monte Carlo simulation and TPS for all control points was 0.0996 ±0.0471 Gy, corresponding to 4.58 ±1.05%. The mean ±SD of dose difference between film measurement and Monte Carlo simulation for all control points was 0.0136 ±0.0200 Gy, corresponding to 0.60 ±0.69%. P-value for dose difference between film measurement and TPS, Monte Carlo and TPS, and film measurement and Monte Carlo were 0.7, 0.66, and 0.95, respectively. Conclusions Dosimetric results and mechanical accuracy of MCCA show that high-temp resin with SLA 3D printing technique can be used for producing patient-specific MCCA in brachytherapy.
Collapse
|
57
|
Santos T, Ventura T, Lopes MDC. A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Lozares S, Font JA, Gandía A, Campos A, Flamarique S, Ibáñez R, Villa D, Alba V, Jiménez S, Hernández M, Casamayor C, Vicente I, Hernando E, Rubio P. In vivo dosimetry in low-voltage IORT breast treatments with XR-RV3 radiochromic film. Phys Med 2021; 81:173-181. [PMID: 33465753 DOI: 10.1016/j.ejmp.2020.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE The objectives of the study were to establish a procedure for in vivo film-based dosimetry for intraoperative radiotherapy (IORT), evaluate the typical doses delivered to organs at risk, and verify the dose prescription. MATERIALS AND METHODS In vivo dose measurements were studied using XR-RV3 radiochromic films in 30 patients with breast cancer undergoing IORT using the Axxent® device (Xoft Inc.). The stability of the radiochromic films in the energy ranges used was verified by taking measurements at different depths. The stability of the scanner response was tested, and 5 different calibration curves were constructed for different beam qualities. Six pieces of film were placed in each of the 30 patients. All the pieces were correctly sterilized and checked to ensure that the process did not affect the outcome. All calibration and dose measurements were analyzed using the Radiochromic.com software application. RESULTS The doses were measured for 30 patients. The doses in contact with the applicator (prescription zone) were 19.8 ± 0.9 Gy. In the skin areas, the doses were as follows: 1-2 cm from the applicator, 1.86 ± 0.77 Gy; 2-5 cm, 0.73 ± 0.14 Gy; and greater than 5 cm, 0.28 ± 0.17 Gy. The dose delivered to the pectoral muscle (tungsten shielding disc) was 0.51 ± 0.27 Gy. CONCLUSIONS The study demonstrated the viability of XR-RV3 films for in vivo dose measurement in the dose and energy ranges applied in a complex procedure, such as breast IORT. The doses in organs at risk were far below the tolerances for cases such as those studied.
Collapse
Affiliation(s)
- Sergio Lozares
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain.
| | - Jose A Font
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Almudena Gandía
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Arantxa Campos
- Radiation Oncology Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Sonia Flamarique
- Radiation Oncology Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Reyes Ibáñez
- Radiation Oncology Department. Miguel Servet University Hospital Zaragoza, Spain
| | - David Villa
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Verónica Alba
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Sara Jiménez
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Mónica Hernández
- Medical Physics Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Carmen Casamayor
- Endocrine, Bariatric and Breast Surgery Unit. General and Digestive Surgery Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Isabel Vicente
- Breast Unit. Gynaecology Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Ernesto Hernando
- Endocrine, Bariatric and Breast Surgery Unit. General and Digestive Surgery Department. Miguel Servet University Hospital Zaragoza, Spain
| | - Patricia Rubio
- Breast Unit. Gynaecology Department. Miguel Servet University Hospital Zaragoza, Spain
| |
Collapse
|
59
|
Mittal A, Kumar M, Gopishankar N, Kumar P, Verma AK. Quantification of narrow band UVB radiation doses in phototherapy using diacetylene based film dosimeters. Sci Rep 2021; 11:684. [PMID: 33436878 PMCID: PMC7804282 DOI: 10.1038/s41598-020-80115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022] Open
Abstract
Narrow band ultraviolet B (NB UVB) radiation doses are administered during phototherapy for various dermatological ailments. Precise quantification of these doses is vital because the absorbed irradiation can cause adverse photochemical reactions which can lead to potential phototherapeutic side effects. The paper presents development of diacetylene based dosimeter for the determination of therapeutic NB UVB doses during phototherapy. The amide terminated diacetylene analogues have been synthesized by tailoring them with different functional groups. The synthesized diacetylene monomers have been introduced in a polyvinyl alcohol binder solution to obtain a film dosimeter. The influence of different headgroups on the colorimetric response to UV radiation has been studied. Among all the synthesized diacetylene analogues, the naphthylamine substituted diacetylene exhibited excellent color transition from white to blue color at 100 mJ cm-2 NB UVB radiation dose. The developed amide films can be easily pasted on multiple sites of the patient's skin to monitor doses during phototherapy simultaneously at different anatomical regions. The digital image processing of the scanned images of the irradiated films facilitates rapid dose measurement which enables facile implementation of the developed film dosimeters and promising application in routine clinical dosimetry.
Collapse
Affiliation(s)
- Apoorva Mittal
- Department of Medical Physics, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Manoj Kumar
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | - N Gopishankar
- Department of Medical Physics, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pratik Kumar
- Department of Medical Physics, Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
60
|
Chaudhary RK, Pathan M, Kumar R, Sharma SD, Sapra BK. Probability Distribution of Pixel Intensities of EBT3 Films and its Application in the Correction of Uncertainty Budget. J Med Phys 2021; 46:26-32. [PMID: 34267486 PMCID: PMC8240913 DOI: 10.4103/jmp.jmp_94_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND AIM Modern radiotherapy modalities, such as Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy involve complex dose delivery. The dose delivery is complex as it involves beam modulation, hence, manual dose calculations for these techniques are not possible. Film dosimetry is commonly used method of dose verification for these modalities because of the advantages associated with it. The quantification of uncertainty associated with a film dosimetry system under clinical use becomes important for accurate dosimetry. The spread in the distribution of the pixel values (PV) of the irradiated film contributes to the uncertainty. The probability distribution (PD) of the PV was studied for the clinical photon beam energies of 6, 10, and 15 MV. METHODS AND MATERIALS Gafchromic EBT3 film and EPSON 10000XL flatbed scanner were used for this purpose and using the resulting PD, the uncertainty budgets for these energies in the red, green and blue color channels were estimated. RESULTS The PV of exposed films for the energies studied follows t-distribution, the sum of the squares of the deviation of the measured data from the fitted value was of the order of 10-7, this indicates the goodness of fit. The "t" value corrected combined standard uncertainty (CSU) at 1σ confidence level for exposed film and dose measurement at 200 cGy were 1.42%, 1.48%, and 1.63% and 1.99%, 3.23%, and 5.08% for 6, 10, and 15 MV energies, respectively, in the red colour channel. CONCLUSION In the case of the limited number of measurements of a quantity, the SU values must be corrected using the "t" value to get the correct CSU.
Collapse
Affiliation(s)
- Rahul Kumar Chaudhary
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Munir Pathan
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rajesh Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - S. D. Sharma
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - B. K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
61
|
Chen Q, Carlton D, Howard TJ, Izumi T, Rong Y. Technical Note: Vendor miscalibration of preclinical orthovoltage irradiator identified through independent output check. Med Phys 2020; 48:881-889. [PMID: 33283893 DOI: 10.1002/mp.14642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Accurate radiation dosimetry in radiobiological experiments is crucial for preclinical research in advancement of cancer treatment. Vendors of cell irradiators often perform calibration for end-users. However, calibration accuracy remains unclear due to missing detailed information on calibration equipment and procedures. In this study, we report our findings of a vender miscalibration of the radiation output and our investigation on the root cause of the discrepancy. METHODS Independent calibration verification for a commercial preclinical orthovoltage irradiator was conducted. Initially, in the absence of ionization chambers calibrated at kV energy, radiochromic films (EBT3) was first calibrated at MV energy. Energy correction factors from literature were used to create an in-house kV dosimetry system. The miscalibration identified with the in-house kV EBT3 dosimetry was later confirmed by ADCL calibrated ionization chambers (Exradin A1SL and PTW 30013) at kV energy. Ionization chambers were suspended in-air following TG-61 recommendation for output calibration. To investigate the root cause of the miscalibration, additional measurements were performed with ionization chambers placed on the shelf. A validated Monte Carlo simulation code was also used to investigate the impact of placing the ionization chamber on the shelf instead of suspending it in air during the vendor-performed calibration process. RESULTS Up to a 6% dosimetry error was observed when comparing the vendor calibrated output of the preclinical irradiator with our independent calibration check. Further investigation showed incorrect setups in the vendor's calibration procedure which may result in dose errors up to 11% from the backscatter of the shelf board during calibration, and up to 5% from omitting temperature and pressure corrections to ionization chamber readings. CONCLUSION Our study revealed large dose calibration errors caused by incorrect setup and the omission of temperature/pressure correction in the vendor's calibration procedure. The findings also highlighted the importance of performing an independent check of the dose calibration for preclinical kV irradiators. More absolute dosimetry training is needed for both vendors and end users for establishing accurate absolute dosimetry.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Drew Carlton
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Thaddeus J Howard
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA.,Department of Radiation Oncology, Texas Oncology, Dallas, TX, 75231, USA
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| |
Collapse
|
62
|
Ade N, du Plessis FCP. Out-of-field scattering from the Integral Quality Monitor® in megavolt photon beams. Appl Radiat Isot 2020; 168:109449. [PMID: 33317891 DOI: 10.1016/j.apradiso.2020.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate out-of-field scattered doses from the Integral Quality Monitor (IQM) transmission detector in megavoltage photon beams. MATERIALS AND METHODS We measured out-of-field point doses for 20 × 20 cm2 6-15 MV photon beams using 10 × 2 cm2 Gafchromic EBT3 film strips placed across the surfaces of 5-cm thick water-equivalent RW3 slabs. The films were placed at 10 cm intervals from the central axis (CAX) of each beam, up to 1.0 m away on opposite sides of the CAX. The measurements were conducted at 80 cm and 100 cm source-to-surface distances (SSD) without the IQM, and were repeated with the IQM in the paths of the beams. Measurements were also performed at 90 cm SSD for 20 × 20 and 30 × 30 cm2 15 MV fields. Surface dose profiles were then constructed from the measurements for each beam setup with and without the IQM to examine the differences in scattered dose off-axis. The dose profile for each beam setup was normalised to dose maximum measured on the CAX. RESULTS Overall, surface dose profiles acquired with the IQM in the paths of the beams were higher than the corresponding profiles without the IQM. The out-of-field dose increased with increase in photon energy, field size, and shorter SSDs, and decreased with off-axis distance. At 80 cm SSD for the 20 × 20 cm2 field, the IQM-induced surface dose ranged from -0.6% ÷ 1.9%, -0.3% ÷ 3.0%, and 0.3% ÷ 6.8% for 6, 10, and 15 MV beams, respectively. CONCLUSION The higher surface dose profiles measured with the IQM attached to the linac compared to the profiles without the IQM indicates that the device is acting as an additional source of scattered radiation.
Collapse
Affiliation(s)
- Nicholas Ade
- Medical Physics Department, University of the Free State, Bloemfontein, 9300, South Africa.
| | - F C P du Plessis
- Medical Physics Department, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
63
|
Santos J, Silva S, Sarmento S. Optimized method for in vivo dosimetry with small films in pelvic IOERT for rectal cancer. Phys Med 2020; 81:20-30. [PMID: 33338728 DOI: 10.1016/j.ejmp.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Intra-Operative Electron Radiation Therapy (IOERT) is used to treat rectal cancer at our institution, and in vivo measurements with Gafchromic EBT3® films were introduced as quality assurance. The purpose of this work was to quantify the uncertainties associated with digitization of very small EBT3 films irradiated simultaneously, in order to optimize in vivo dosimetry for IOERT. METHODS Film samples of different sizes - M1 (5×5cm2), M2 (1.5×1.5 cm2), M3 (1.0×1.5 cm2) and M4 (0.75×1.5 cm2) - were used to quantify typical variations (uncertainties) due to scanner fluctuations, misalignment, film inhomogeneity, long-term effect of film cutting, small rotations, film curling, edge effects and the influence of opaque templates. Fitting functions and temporal validity of sensitometric curves were also assessed. RESULTS Film curling, intra-film variability and scanner fluctuations are important effects that need to be minimized or considered in the uncertainty budget. Small rotations, misalignments and film cutting have little or no influence on the readings. Most fitting functions perform well, but the quantity used for dose quantification determines over- or under-valuation of dose in the long term. Edge effects and the influence of opaque templates need to be well understood, to allow optimization of methodology to the intended purpose. CONCLUSION The proposed method allows practical and simultaneous digitization of up to ten small irradiated film samples, with an experimental uncertainty of 1%.
Collapse
Affiliation(s)
- Joana Santos
- Physics and Astronomy Department, Faculty of Sciences, University of Porto, Portugal; Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Silva
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Medical Physics Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sandra Sarmento
- Management, Outcomes Research and Economics in Healthcare Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal; Medical Physics Service, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.
| |
Collapse
|
64
|
Ade N, du Plessis F. Feasibility of using a single transmission factor for the Integral Quality Monitor ® on dynamic 15 MV photon beams. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Rodríguez C, López-Fernández A, García-Pinto D. A new approach to radiochromic film dosimetry based on non-local means. Phys Med Biol 2020; 65:225019. [PMID: 33200749 DOI: 10.1088/1361-6560/abb71b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Radiochromic film in conjunction with flatbed scanners are frequently employed as dosimeters for advanced techniques in radiotherapy. Their strengths are as follows: light element composition, low energy dependence, near biological tissue equivalence and high spatial resolution. However, they have some weaknesses as well: non-uniformities, read out noise, and scanning artifacts. Several processing protocols have been proposed intending to correct the perturbations these weaknesses produce. The aim of this paper is to present a new processing protocol for radiochromic film dosimetry based on a non-local means denoising algorithm. Three dose distributions of open square fields and a spatial combination of these fields using different angles of incidence and monitor units have been employed to validate the protocol. The dose distributions are traceable to ionization chamber measurements. Additionally, a real dose distribution of a treatment was used to simulate scanning data with noise and scanning lateral artifact, and to study how the protocol behaves under these perturbations. The same measured raw data have been processed by means of an implementation of the multichannel protocol (multigaussian method). It has been found that the proposed protocol reduces dose uncertainty even though it uses fewer scans than the multichannel protocol.
Collapse
Affiliation(s)
- César Rodríguez
- Medical Physics and Radiation Protection Service, Fuenlabrada University Hospital, Fuenlabrada, Spain. Medical Physics, Radiology Department, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
66
|
Stanley FKT, Berger ND, Pearson DD, Danforth JM, Morrison H, Johnston JE, Warnock TS, Brenner DR, Chan JA, Pierce G, Cobb JA, Ploquin NP, Goodarzi AA. A high-throughput alpha particle irradiation system for monitoring DNA damage repair, genome instability and screening in human cell and yeast model systems. Nucleic Acids Res 2020; 48:e111. [PMID: 33010172 PMCID: PMC7641727 DOI: 10.1093/nar/gkaa782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) is environmentally prevalent and, depending on dose and linear energy transfer (LET), can elicit serious health effects by damaging DNA. Relative to low LET photon radiation (X-rays, gamma rays), higher LET particle radiation produces more disease causing, complex DNA damage that is substantially more challenging to resolve quickly or accurately. Despite the majority of human lifetime IR exposure involving long-term, repetitive, low doses of high LET alpha particles (e.g. radon gas inhalation), technological limitations to deliver alpha particles in the laboratory conveniently, repeatedly, over a prolonged period, in low doses and in an affordable, high-throughput manner have constrained DNA damage and repair research on this topic. To resolve this, we developed an inexpensive, high capacity, 96-well plate-compatible alpha particle irradiator capable of delivering adjustable, low mGy/s particle radiation doses in multiple model systems and on the benchtop of a standard laboratory. The system enables monitoring alpha particle effects on DNA damage repair and signalling, genome stability pathways, oxidative stress, cell cycle phase distribution, cell viability and clonogenic survival using numerous microscopy-based and physical techniques. Most importantly, this method is foundational for high-throughput genetic screening and small molecule testing in mammalian and yeast cells.
Collapse
Affiliation(s)
- Fintan K T Stanley
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - N Daniel Berger
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - John M Danforth
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Hali Morrison
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - James E Johnston
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Tyler S Warnock
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Darren R Brenner
- Robson DNA Science Centre, Departments of Cancer Epidemiology and Prevention Research and Community Health Sciences, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Greg Pierce
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jennifer A Cobb
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Nicolas P Ploquin
- Division of Medical Physics, Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Departments of Biochemistry and Molecular Biology and Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
67
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
68
|
Kueng R, Oborn B, Roberts N, Causer T, Stampanoni M, Manser P, Keall P, Fix M. Towards MR-guided electron therapy: Measurement and simulation of clinical electron beams in magnetic fields. Phys Med 2020; 78:83-92. [DOI: 10.1016/j.ejmp.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022] Open
|
69
|
Curry CB, Dunning CAS, Gauthier M, Chou HGJ, Fiuza F, Glenn GD, Tsui YY, Bazalova-Carter M, Glenzer SH. Optimization of radiochromic film stacks to diagnose high-flux laser-accelerated proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:093303. [PMID: 33003776 DOI: 10.1063/5.0020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Here, we extend flatbed scanner calibrations of GafChromic EBT3, MD-V3, and HD-V2 radiochromic films using high-precision x-ray irradiation and monoenergetic proton bombardment. By computing a visibility parameter based on fractional errors, optimal dose ranges and transitions between film types are identified. The visibility analysis is used to design an ideal radiochromic film stack for the proton energy spectrum expected from the interaction of a petawatt laser with a cryogenic hydrogen jet target.
Collapse
Affiliation(s)
- C B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - C A S Dunning
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - M Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - H-G J Chou
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G D Glenn
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Y Tsui
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - M Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - S H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
70
|
Moftah B, Aldelaijan S, Shehadeh M, Alzorkany F, Alrumayan F, Alsbeih G, Alshabanah M, Seuntjens J, Tomic N, Devic S. Calibration of MTT assay in proton beams using radiochromic films. Phys Med 2020; 77:146-153. [PMID: 32861190 DOI: 10.1016/j.ejmp.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect. METHODS A calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data. RESULTS The radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery. CONCLUSIONS We described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.
Collapse
Affiliation(s)
- B Moftah
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia; Medical Physics Unit, McGill University, Montréal, Québec, Canada
| | - S Aldelaijan
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - M Shehadeh
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - F Alzorkany
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - F Alrumayan
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - G Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - M Alshabanah
- Oncology Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - J Seuntjens
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - N Tomic
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec, Canada
| | - S Devic
- Medical Physics Unit, McGill University, Montréal, Québec, Canada; Department of Radiation Oncology, Jewish General Hospital, Montréal, Québec, Canada.
| |
Collapse
|
71
|
Han EY, Diagaradjane P, Luo D, Ding Y, Kalaitzakis G, Zoros E, Zourari K, Boursianis T, Pappas E, Wen Z, Wang J, Briere TM. Validation of PTV margin for Gamma Knife Icon frameless treatment using a PseudoPatient® Prime anthropomorphic phantom. J Appl Clin Med Phys 2020; 21:278-285. [PMID: 32786141 PMCID: PMC7497928 DOI: 10.1002/acm2.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
The Gamma Knife Icon allows the treatment of brain tumors mask-based single-fraction or fractionated treatment schemes. In clinic, uniform axial expansion of 1 mm around the gross tumor volume (GTV) and a 1.5 mm expansion in the superior and inferior directions are used to generate the planning target volume (PTV). The purpose of the study was to validate this margin scheme with two clinical scenarios: (a) the patient's head remaining right below the high-definition motion management (HDMM) threshold, and (b) frequent treatment interruptions followed by plan adaptation induced by large pitch head motion. A remote-controlled head assembly was used to control the motion of a PseudoPatient® Prime head phantom; for dosimetric evaluations, an ionization chamber, EBT3 films, and polymer gels were used. These measurements were compared with those from the Gamma Knife plan. For the absolute dose measurements using an ionization chamber, the percentage differences for both targets were less than 3.0% for all scenarios, which was within the expected tolerance. For the film measurements, the two-dimensional (2D) gamma index with a 2%/2 mm criterion showed the passing rates of ≥87% in all scenarios except the scenario 1. The results of Gel measurements showed that GTV (D100 ) was covered by the prescription dose and PTV (D95 ) was well above the planned dose by up to 5.6% and the largest geometric PTV offset was 0.8 mm for all scenarios. In conclusion, the current margin scheme with HDMM setting is adequate for a typical patient's intrafractional motion.
Collapse
Affiliation(s)
- Eun Young Han
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Parmeswaran Diagaradjane
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dershan Luo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Ding
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Emmanouil Zoros
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyveli Zourari
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Pappas
- Department of Biomedical Sciences, Radiology & Radiotherapy Sector, University of West Attica, Athens, Greece
| | - Zhifei Wen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Marie Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
72
|
Pócza T, Zongor Z, Melles-Bencsik B, Tatai-Szabó DZ, Major T, Pesznyák C. Comparison of three film analysis softwares using EBT2 and EBT3 films in radiotherapy. Radiol Oncol 2020; 54:505-512. [PMID: 32889796 PMCID: PMC7585333 DOI: 10.2478/raon-2020-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/27/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction The purpose of the study was to compare the results of gamma value based film analysis according to the used type of self-developer film and software product. Material and methods The films were irradiated with different treatment techniques such as 3D conformal and intensity modulated radiotherapy with static and rotational delivery. Stereotactic plans with conformal and intensity modulated arc techniques, using coplanar and non-coplanar beam setup were also evaluated. The data of irradiated film were compared with the planned planar dose distribution exported from the treatment planning system. Three film analysis software programs were evaluated: PTW Mephysto (PTW), FilmQA Pro (FQP) and radiohromic.com(RC). Both EBT2 and EBT3 types of films were examined. The comparisons of dose distributions were performed with gamma analysis using 10% cut-off level. Results The results of the gamma analysis for larger fields were between 78.3% and 98.3%, 75.7% and 100%, 80.2% and 98.8% with PTW, FQP and RC, respectively. The results of evaluation in case of stereotactic measurements were 76.8%-99.2% for PTW, 95.7%-100% for FQP and 91.2%-99.9% for RC. Conclusions All the three software programs are suitable for calibrating and evaluating films, performing gamma analysis, and can be used for patient specific quality assurance measurements. There is no direct connection between gamma passing rate and absolute accuracy or software quality, it is just a feature of the software. The interpretation of own results has to be defined on an institutional level according to given workflow and preliminary results.
Collapse
Affiliation(s)
- Tamás Pócza
- National Institute of Oncology, Centre of Radiotherapy, Budapest, Hungary
- Budapest University of Technology and Economics, Institute of Nuclear Techniques, Budapest, Hungary
| | - Zsuzsánna Zongor
- National Institute of Oncology, Centre of Radiotherapy, Budapest, Hungary
| | | | | | - Tibor Major
- National Institute of Oncology, Centre of Radiotherapy, Budapest, Hungary
- Department of Oncology, Semmelweis University, Budapest, Hungary
| | - Csilla Pesznyák
- National Institute of Oncology, Centre of Radiotherapy, Budapest, Hungary
- Budapest University of Technology and Economics, Institute of Nuclear Techniques, Budapest, Hungary
| |
Collapse
|
73
|
Kawashima M, Matsumura A, Souda H, Tashiro M. Simultaneous determination of the dose and linear energy transfer (LET) of carbon-ion beams using radiochromic films. ACTA ACUST UNITED AC 2020; 65:125002. [DOI: 10.1088/1361-6560/ab8bf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
74
|
Howard ME, Herman MG, Grams MP. Methodology for radiochromic film analysis using FilmQA Pro and ImageJ. PLoS One 2020; 15:e0233562. [PMID: 32437474 PMCID: PMC7241712 DOI: 10.1371/journal.pone.0233562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
Radiochromic film (RCF) has several advantageous characteristics which make it an attractive dosimeter for many clinical tasks in radiation oncology. However, knowledge of and strict adherence to complicated protocols in order to produce accurate measurements can prohibit RCF from being widely adopted in the clinic. The purpose of this study was to outline some simple and straightforward RCF fundamentals in order to help clinical medical physicists perform accurate RCF measurements. We describe a process and methodology successfully used in our practice with the hope that it saves time and effort for others when implementing RCF in their clinics. Two RCF analysis software programs which differ in cost and complexity, the commercially available FilmQA Pro package and the freely available ImageJ software, were used to show the accuracy, consistency and limitations of each. The process described resulted in a majority of the measurements across a wide dose range to be accurate within ± 2% of the intended dose using either FilmQA Pro or ImageJ.
Collapse
Affiliation(s)
- Michelle E. Howard
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael G. Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
75
|
Prentou E, Lekatou A, Pantelis E, Karaiskos P, Papagiannis P. On the use of EBT3 film for relative dosimetry of kilovoltage X ray beams. Phys Med 2020; 74:56-65. [PMID: 32417711 DOI: 10.1016/j.ejmp.2020.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/26/2020] [Indexed: 11/25/2022] Open
Abstract
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.
Collapse
Affiliation(s)
- E Prentou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - A Lekatou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - E Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
76
|
Selvaraj J, Rhall G, Ibrahim M, Mahmood T, Freeman N, Gromek Z, Buchanan G, Syed F, Elsaleh H, Quah BJC. Custom-designed Small Animal focal iRradiation Jig (SARJ): design, manufacture and dosimetric evaluation. BJR Open 2020; 2:20190045. [PMID: 33178966 PMCID: PMC7594899 DOI: 10.1259/bjro.20190045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/02/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Preclinical animal models allow testing and refinement of novel therapeutic strategies. The most common preclinical animal irradiators are fixed source cabinet irradiators, which are vastly inferior to clinical linear accelerators capable of delivering highly conformal and precise treatments. The purpose of this study was to design, manufacture and test an irradiation jig (small animal focal irradiation jig, SARJ) that would enable focal irradiation of subcutaneous tumours in a standard fixed source cabinet irradiator. METHODS AND MATERIALS A lead shielded SARJ was designed to rotate animal holders about the longitudinal axis and slide vertically from the base plate. Radiation dosimetry was undertaken using the built-in ion chamber and GAFChromic RTQA2 and EBT-XD films. Treatment effectiveness was determined by irradiating mice with subcutaneous melanoma lesions using a dose of 36 Gy in three fractions (12 Gy x 3) over three consecutive days. RESULTS The SARJ was tested for X-ray shielding effectiveness, verification of dose rate, total dose delivered to tumour and dose uniformity. Accurate and uniform delivery of X-ray dose was achieved. X-ray doses were limited to the tumour site when animal holders were rotated around their longitudinal axis to 15o and 195o, allowing sequential dose delivery using parallel-opposed tangential beams. Irradiation of subcutaneous melanoma tumour established on the flanks of mice showed regression. CONCLUSION SARJ enabled delivery of tangential parallel-opposed radiation beams to subcutaneous tumours in up to five mice simultaneously. SARJ allowed high throughput testing of clinically relevant dose delivery using a standard cabinet-style fixed source irradiator. ADVANCES IN KNOWLEDGE A custom designed jig has been manufactured to fit into conventional cabinet irradiators and is dosimetrically validated to deliver clinically relevant dose distributions to subcutaneous tumours in mice for preclinical studies.
Collapse
Affiliation(s)
| | - Graham Rhall
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Mounir Ibrahim
- Medical Physics and Radiation Engineering, Canberra Health Services, Canberra, ACT, Australia
| | - Talat Mahmood
- Medical Physics and Radiation Engineering, Canberra Health Services, Canberra, ACT, Australia
| | - Nigel Freeman
- Medical Physics and Radiation Engineering, Canberra Health Services, Canberra, ACT, Australia
| | - Zennon Gromek
- Medical Physics and Radiation Engineering, Canberra Health Services, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
77
|
Estimation of technical treatment accuracy in fractionated stereotactic radiosurgery. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAim:The purpose of this study was to estimate technical treatment accuracy in fractionated stereotactic radiosurgery (fSRS) using the Extend™ system (ES) of Gamma Knife (GK).Methods and materials:The fSRS with GK relies on a re-locatable ES where the reference treatment position is estimated using repositioning check tool (RCT). A patient surveillance unit (PSU) monitors the head and neck movement of the patient during treatment and imaging. The quality assurance test of RCT was performed to evaluate a standard error (SE) associated with a measurement tool called digital probe. A ‘4-mm collimator shot’ dose plan for a head–neck phantom was investigated using EBT3 films. CT and MR distortion measurement studies were combined to evaluate SEimaging. The combined uncertainty from all measurements was evaluated using statistical methods, and the resultant treatment accuracy was investigated for the ES.Results:Four sets of RCT measurements and 20 observations of associated digital probe showed SERCT of ±0·0186 mm and SEdigital probe of ±0·0002 mm. The mean positional shift of 0·2752 mm (σ = 0·0696 mm) was observed for 20 treatment settings of the phantom. The differences between radiological and predefined isocentres were 0·4650 and 0·4270 mm for two independent experiments. SEimaging and SEdiode tool were evaluated as ±0·1055 and ±0·0096 mm, respectively. An expanded uncertainty of ±0·2371 mm (at 95% confidence level) was observed with our system.Conclusions:The combined result of the positional shift and expanded uncertainty showed close agreement with film investigations.
Collapse
|
78
|
Measurements and Monte Carlo calculation of radial dose and anisotropy functions of BEBIG 60Co high-dose-rate brachytherapy source in a bounded water phantom. J Contemp Brachytherapy 2020; 11:563-572. [PMID: 31969915 PMCID: PMC6964345 DOI: 10.5114/jcb.2019.91224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose The study compared the experimentally measured radial dose function, g(r), and anisotropy function, F(r,θ), of a BEBIG 60Co (Co0.A86) high-dose-rate (HDR) source in an in-house designed water phantom with egs_brachy Monte Carlo (MC) calculated values. MC results available in the literature were only for unbounded phantoms, and there are no currently published data in the literature for experimental data compared to MC calculations for a bounded phantom. Material and methods egs_brachy is a fast EGSnrc application designed for brachytherapy applications. For unbounded phantom calculation, we considered a cylindrical phantom with a length and diameter of 80 cm and used liquid water. These egs_brachy calculated TG43U1 parameters were compared with the consensus data. Upon its validation, we experimentally measured g(r) and F(r,θ) in a precisely machined 30 × 30 × 30 cm3 water phantom using TLD-100 and EBT2 Gafchromic Film and compared it with the egs_brachy results of the same geometry. Results The TG43U1 dosimetric dataset calculated using egs_brachy was compared with published data for an unbounded phantom, and found to be in good agreement within 2%. From our experimental results of g(r) and F(r,θ), the observed variation with the egs_brachy code calculation is found to be within the acceptable experimental uncertainties of 3%. Conclusions In this study, we validated the egs_brachy calculation of the TG43U1 dataset for the BEBIG 60Co source for an unbounded geometry. Subsequently, we measured the g(r) and F(r,θ) for the same source using an in-house water phantom. In addition, we validated these experimental results with the values calculated using the egs_brachy MC code, with the same geometry and similar phantom material as used in the experimental methods.
Collapse
|
79
|
Righetto R, Clemens LP, Lorentini S, Fracchiolla F, Algranati C, Tommasino F, Dionisi F, Cianchetti M, Schwarz M, Farace P. Accurate proton treatment planning for pencil beam crossing titanium fixation implants. Phys Med 2020; 70:28-38. [PMID: 31954210 DOI: 10.1016/j.ejmp.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To present a planning strategy for proton pencil-beam scanning when titanium implants need to be crossed by the beam. METHODS We addressed three issues: the implementation of a CT calibration curve to assign to titanium the correct stopping power; the effect of artefacts on CT images and their reduction by a dedicated algorithm; the differences in dose computation depending on the dose engine, pencil-beam vs Monte-Carlo algorithms. We performed measurement tests on a simple cylinder phantom and on a real implant. These phantoms were irradiated with three geometries (single spots, uniform mono-energetic layer and uniform box), measuring the exit dose either by radio-chromic film or multi-layer ionization chamber. The procedure was then applied on two patients treated for chordoma. RESULTS We had to set in the calibration curve a mass density equal to 4.37 g/cm3 to saturated Hounsfield Units, in order to have the correct stopping power assigned to titanium in TPS. CT artefact reduction algorithm allowed a better reconstruction of the shape and size of the implant. Monte-Carlo resulted accurate in computing the dose distribution whereas the pencil-beam algorithm failed due to sharp density interfaces between titanium and the surrounding material. Finally, the treatment plans obtained on two patients showed the impact of the dose engine algorithm, with 10-20% differences between pencil-beam and Monte-Carlo in small regions distally to the titanium screws. CONCLUSION The described combination of CT calibration, artefacts reduction and Monte-Carlo computation provides a reliable methodology to compute dose in patients with titanium implants.
Collapse
Affiliation(s)
- Roberto Righetto
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy.
| | | | - Stefano Lorentini
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Francesco Fracchiolla
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Carlo Algranati
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Francesco Tommasino
- Department of Physics, University of Trento, Povo, Italy; Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), Povo, Italy
| | - Francesco Dionisi
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Marco Cianchetti
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Marco Schwarz
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy; Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), Povo, Italy
| | - Paolo Farace
- Proton Therapy Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
80
|
Minibeam radiation therapy at a conventional irradiator: Dose-calculation engine and first tumor-bearing animals irradiation. Phys Med 2020; 69:256-261. [PMID: 31918378 DOI: 10.1016/j.ejmp.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is a novel therapeutic strategy, whose exploration was hindered due to its restriction to large synchrotrons. Our recent implementation of MBRT in a wide-spread small animal irradiator offers the possibility of performing systematic radiobiological studies. The aim of this research was to develop a set of dosimetric tools to reliably guide biological experiments in the irradiator. METHODS A Monte Carlo (Geant4)-based dose calculation engine was developed. It was then benchmarked against a series of dosimetric measurements performed with gafchromic films. Two voxelized rat phantoms (ROBY, computer tomography) were used to evaluate the treatment plan of F98 tumor-bearing rats. The response of a group of 7 animals receiving a unilateral irradiation of 58 Gy was compared to a group of non-irradiated controls. RESULTS The good agreement between calculations and the experimental data allowed the validation of the dose-calculation engine. The latter was first used to compare the dose distributions in computer tomography images of a rat's head and in a digital model of a rat's head (ROBY), obtaining a good general agreement. Finally, with respect to the in vivo experiment, the increase of mean survival time of the treated group with respect to the controls was modest but statistically significant. CONCLUSIONS The developed dosimetric tools were used to reliably guide the first MBRT treatments of intracranial glioma-bearing rats outside synchrotrons. The significant tumor response obtained with respect to the non-irradiated controls, despite the heterogenous dose coverage of the target, might indicate the participation of non-targeted effects.
Collapse
|
81
|
Microdosimetric modeling of the sensitometric curve of GafChromic films in the photon fields. Phys Med 2020; 69:170-175. [PMID: 31918369 DOI: 10.1016/j.ejmp.2019.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
The sensitometric curve of EBT3 GafChromic film located at a depth 5 cm of RW3 water-equivalent phantom exposed to 6 MV X-rays is investigated. Variation of optical density for absorbed doses less than 2 Gy is determined by the experimental measurement together with the microdosimetric one-hit detector model. It is found that this model needs two fitting parameters, a maximum optical density and a saturation parameter. Both of them depend on the film structure as well as the photon spectrum. Meanwhile, the saturation parameter is a function of the microdosimetric single-event distribution of specific energy, i.e., f1(z). To calculate this distribution, irradiation of the films is simulated by the Geant4 toolkit. A sample of EBT3 film with 2 mm × 2 mm area is simulated. Active layer of the film is considered to contain 5000 cylindrical sensitive targets (SV) with 9.4 μm length and 1.62 μm diameter, located in random positions with different axial directions. The results obtained show that below an absorbed dose 1 Gy the maximum difference between the measured and the calculated optical densities is about 11%, while for the doses above 1 Gy the discrepancy is at most 3%. Eventually, it can be concluded that the sensitometric curve of EBT3 GafChromic film can satisfactorily be determined by the microdosimetric one-hit detector model, especially in the dose range above 1 Gy.
Collapse
|
82
|
Research on a wide-range biodosimeter based on the irradiation damage effect of proteins for γ radiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Guardiola C, De Marzi L, Prezado Y. Verification of a Monte Carlo dose calculation engine in proton minibeam radiotherapy in a passive scattering beamline for preclinical trials. Br J Radiol 2019; 93:20190578. [PMID: 31868523 DOI: 10.1259/bjr.20190578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the benefits of proton therapy with the remarkable normal tissue preservation observed with the use of submillimetric spatially fractionated beams. This promising technique has been implemented at the Institut Curie-Proton therapy centre (ICPO) using a first prototype of a multislit collimator. The purpose of this work was to develop a Monte Carlo-based dose calculation engine to reliably guide preclinical studies at ICPO. METHODS The whole "Y1"-passive beamline at the ICPO, including pMBRT implementation, was modelled using the Monte Carlo GATE v. 7.0 code. A clinically relevant proton energy (100 MeV) was used as starting point. Minibeam generation by means of the brass collimator used in the first experiments was modelled. A virtual source was modelled at the exit of the beamline nozzle and outcomes were compared with dosimetric measurements performed with EBT3 gafchromic films and a diamond detector in water. Dose distributions were recorded in a water phantom and in rat CT images (7-week-old male Fischer rats). RESULTS The dose calculation engine was benchmarked against experimental data and was then used to assess dose distributions in CT images of a rat, resulting from different irradiation configurations used in several experiments. It reduced computational time by an order of magnitude. This allows us to speed up simulations for in vivo trials, where we obtained peak-to-valley dose ratios of 1.20 ± 0.05 and 6.1 ± 0.2 for proton minibeam irradiations targeting the tumour and crossing the rat head. Tumour eradication was observed in the 67 and 22% of the animals treated respectively. CONCLUSION A Monte Carlo dose calculation engine for pMBRT implementation with mechanical collimation has been developed. This tool can be used to guide and interpret the results of in vivo trials. ADVANCES IN KNOWLEDGE This is the first Monte Carlo dose engine for pMBRT that is being used to guide preclinical trials in a clinical proton therapy centre.
Collapse
Affiliation(s)
- Consuelo Guardiola
- Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Orsay Cedex, 91405, France
| | - Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France.,Institut Curie, University Paris Saclay, PSL Research University, Inserm U 1021-CNRS UMR 3347, Orsay, France
| | - Yolanda Prezado
- Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Orsay Cedex, 91405, France
| |
Collapse
|
84
|
Pappas E, Kalaitzakis G, Boursianis T, Zoros E, Zourari K, Pappas EP, Makris D, Seimenis I, Efstathopoulos E, Maris TG. Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. ACTA ACUST UNITED AC 2019; 64:225009. [DOI: 10.1088/1361-6560/ab52ce] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
85
|
Woods K, Neph R, Nguyen D, Sheng K. A sparse orthogonal collimator for small animal intensity-modulated radiation therapy. Part II: hardware development and commissioning. Med Phys 2019; 46:5733-5747. [PMID: 31621091 DOI: 10.1002/mp.13870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE A dose-modulation device for small animal radiotherapy is required to use clinically analogous treatment techniques, which will likely increase the translatability of preclinical research results. Because the clinically used multileaf collimator (MLC) is impractical for miniaturization, we have developed a simpler, better-suited sparse orthogonal collimator (SOC) for delivering small animal intensity-modulated radiation therapy (IMRT) using a rectangular aperture optimization (RAO) treatment planning system. METHODS The SOC system was modeled in computer-aided design software and fabricated with machined tungsten leaves and three-dimensional (3D) printed leaf housing. A graphical user interface was developed for controlling and calibrating the SOC leaves, which are driven by Arduino-controlled stepper motors. A Winston-Lutz test was performed to assess mechanical alignment, and abutting field and grid dose patterns were created to analyze intra- and intercalibration leaf positioning error. Leaf transmission and penumbra were measured over the full range of gantry angles and leaf positions, respectively. Three SOC test plans were delivered, and film measurements were compared to the intended dose distributions. The differences in maximum, mean, and minimum, as well as pixelwise absolute dose differences, were compared for each structure, and a gamma analysis was performed for the target structures using criteria of 4% dose difference and 0.3 mm distance to agreement. RESULTS The Winston-Lutz test revealed maximum directional offsets between the SOC and primary collimator axes of 0.53 mm at 0° and 0.68 mm over the full 360°. Upper and lower abutting field patterns had maximum dose deviations of 18.8 ± 3.1% and 15.5 ± 2.9%, respectively, and grid patterns showed intra- and intercalibration repeatability of 93% and 91%, respectively. Extremely low midleaf (0.15 ± 0.05%) and interleaf (0.27 ± 0.22%) transmission was measured, with no significant rotational variation. The average penumbra was ~0.8 mm for all leaves at field center, with a range of 0.17 mm for all leaf positions. A highly concave test plan was delivered with a ~ 95% gamma analysis pass rate, and a realistic mouse phantom liver irradiation plan achieved a pass rate of ~98%. A highly complex dose distribution was also created with 551 SOC apertures averaging 2.4 mm in size. CONCLUSIONS A sparse orthogonal collimator was developed and commissioned, with promising preliminary dosimetry results. The SOC design, with its limited moving components and high dose-modulation resolution, is ideal for delivering high-quality small animal IMRT with our RAO-based treatment planning system.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ryan Neph
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dan Nguyen
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ke Sheng
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
86
|
Clausen M, Khachonkham S, Gruber S, Kuess P, Seemann R, Knäusl B, Mara E, Palmans H, Dörr W, Georg D. Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:563-573. [PMID: 31541343 PMCID: PMC6768893 DOI: 10.1007/s00411-019-00813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.
Collapse
Affiliation(s)
- Monika Clausen
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - Suphalak Khachonkham
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | | | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- University of Applied Science, Wiener Neustadt, Austria
| | - Hugo Palmans
- EBG MedAustron GmbH, Wiener Neustadt, Austria
- National Physical Laboratory, Teddington, UK
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
87
|
Ade N, van Eeden D, du Plessis FCP. Characterization of Nylon-12 as a water-equivalent solid phantom material for dosimetric measurements in therapeutic photon and electron beams. Appl Radiat Isot 2019; 155:108919. [PMID: 31622845 DOI: 10.1016/j.apradiso.2019.108919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
The tissue- or water-equivalence of dosimetry phantoms used as substitutes for water is essential for absorbed dose measurements in radiotherapy. At our institution, a heterogeneous pelvic phantom that consists of stacked Nylon-12 layers has recently been manufactured for Gafchromic film dosimetry. However, data on the use of Nylon as tissue-mimicking media for dosimetric applications are scarce. This study characterizes the water-equivalence of Nylon-12 for dosimetric measurements in therapeutic photon and electron beams. Employing an Elekta Synergy and SL25 linear accelerator (Linac), photon beam transmission measurements for 6 MV and 15 MV, acquired in narrow beam geometry with a 0.6 cm3 Farmer-type ion chamber showed that the mass attenuation coefficient μm of Nylon-12 agrees with the values of water, water-equivalent RW3 and Perspex phantom materials within 3%. For 6 MV, the μm values were 0.0477 ± 0.002 cm2/g, 0.0490 ± 0.003 cm2/g, 0.0482 ± 0.001 cm2/g and 0.0479 ± 0.002cm2/g for Nylon-12, water, RW3, and Perspex, respectively. Differences within 2% were attained between depth dose data measured in Nylon-12 slabs with Gafchromic EBT3 films and in water with a Roos ion chamber for 10 × 10 cm2 6, 12 and 20 MeV electron beams produced by the Elekta Synergy and SL25 Linacs. Also, a good agreement within 2% was obtained between percent depth doses computed by DOSXYZnrc Monte Carlo simulations in water, Nylon-12 and RW3 materials for photon spectra between 250 kV and 15 MV. The discrepancies between the ratios of average, restricted stopping powers of Nylon to air and water to air for photon spectra ranging from 2 to 45 MV are typically within 1% signifying that Nylon and water have equivalent stopping power characteristics. This study highlights that Nylon-12 can be used as a tissue-mimicking phantom material for dosimetric measurements in clinical megavoltage photon and electron beams as it exhibits good water-equivalence.
Collapse
Affiliation(s)
- Nicholas Ade
- Medical Physics Department, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - D van Eeden
- Medical Physics Department, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - F C P du Plessis
- Medical Physics Department, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
88
|
Collins C, Yoon SW, Kodra J, Coakley R, Subashi E, Sidhu K, Adamovics J, Oldham M. An investigation of a novel reusable radiochromic sheet for 2D dose measurement. Med Phys 2019; 46:5758-5769. [PMID: 31479518 DOI: 10.1002/mp.13798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Radiochromic film remains a useful and versatile clinical dosimetry tool. Current film options are single use. Here, we introduce a novel prototype two-dimensional (2D) radiochromic sheet, which optically clears naturally at room temperature after irradiation and can be reused. We evaluate the sheets for potential as a 2D dosimeter and as a radiochromic bolus with capability for dose measurement. METHODS A novel derivative of reusable Presage® was manufactured into thin sheets of 5 mm thickness. The sheets contained 2% cumin-leucomalachitegreen-diethylamine (LMG-DEA) and plasticizer (up to 25% by weight). Irradiation experiments were performed to characterize the response to megavoltage radiation, including dose sensitivity, temporal decay rate, consistency of repeat irradiations, intra and inter-sheet reproducibility, multi-modality response (electrons and photons), and temperature sensitivity (22°C to 36°C). The local change in optical-density (ΔOD), before and after radiation, was obtained with a flat-bed film scanner and extracting the red channel. Repeat scanning enabled investigation of the temporal decay of ΔOD. Additional studies investigated clinical utility of the sheets through application to IMRT treatment plans (prostate and a TG119 commissioning plan), and a chest wall electron boost treatment. In the latter test, the sheet performed as a radiochromic bolus. RESULTS The radiation induced OD change in the sheets was found to be proportional to dose and to exponentially decay to baseline in ~24 h (R2 = 0.9986). The sheet could be reused and had similar sensitivity (within 1% after the first irradiation) for at least eight irradiations. Importantly, no memory of previous irradiations was observed within measurement uncertainty. The consistency of dose response from photons (6 and 15 MV) and electrons (6-20 MeV) was found to be within calibration uncertainty (~1%). The dose sensitivity of the sheets had a temperature dependence of 0.0012 ΔOD/°C. For the short (1 min) single field IMRT QA verification, good agreement was observed between the Presage sheet and EBT film (gamma pass rate 97% at 3% 3 mm dose-difference and distance-to-agreement tolerance, with a 10% threshold). For the longer (~13 min) TG-119 9-field IMRT verification the gamma agreement was lower at 93% pass rate at 5% 3 mm, 10% threshold, when compared with Eclipse. The lower rate is attributed to uncertainty arising from signal decay during irradiation and indicates a current limitation. For the electron cutout treatment, both Presage and EBT agreed well (within 2% RMS difference) but differed from the Eclipse treatment plan (~7% RMS difference) indicating some limitations to the Eclipse modeling in this case. The worst case estimates of uncertainty introduced by the signal decay for deliveries of 2, 5, and 10 min are 0.6%, 1.4%, and 2.8% respectively. CONCLUSIONS Reusable Presage sheets show promise for 2D dose measurement and as a radiochromic bolus for in vivo dose measurement. The current prototype is suitable for deliveries of length up to 5 min, where the uncertainty introduced by signal decay is anticipated to be ~1% (worst case 1.4%), or for longer deliveries where there is no temporal modulation (e.g. physical compensators, or open beams). Additionally, spatial resolution is limited by sheet thickness and scanner resolution, resulting in a practical resolution of 0.8 mm.
Collapse
Affiliation(s)
- Cielle Collins
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Suk Whan Yoon
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Jacob Kodra
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | | | - Ergys Subashi
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| | - Kulbir Sidhu
- Duke University Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Mark Oldham
- Physics Division, Department of Radiation Oncology, Duke University Medical Center, Trent Drive, Durham, NC, 27710, USA
| |
Collapse
|
89
|
Devic S, Aldelaijan S, Bekerat H. Impact of inertia on possible fundamental drawbacks in radiochromic film dosimetry. Phys Med 2019; 66:133-134. [DOI: 10.1016/j.ejmp.2019.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 10/25/2022] Open
|
90
|
Buchapudi RR, Manickam R, Chandaraj V. Experimental Determination of Radial Dose Function and Anisotropy Function of GammaMed Plus 192Ir High-Dose-Rate Brachytherapy Source in a Bounded Water Phantom and its Comparison with egs_brachy Monte Carlo Simulation. J Med Phys 2019; 44:246-253. [PMID: 31908383 PMCID: PMC6936200 DOI: 10.4103/jmp.jmp_60_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The aim of the present study is to experimentally measure the radial dose function g(r) and anisotropy function F(r,θ) of GammaMed Plus 192Ir high-dose-rate source in a bounded water phantom using thermoluminescent dosimeter (TLD) and film dosimetry and compare the obtained results with egs_brachy Monte Carlo (MC)-calculated values for the same geometry. MATERIALS AND METHODS The recently developed egs_brachy is a fast Electron Gamma Shower National Research Council of Canada MC application which is intended for brachytherapy applications. The dosimetric dataset recommended by Task Group 43 update (TG43U1) is calculated using egs_brachy for an unbounded phantom. Subsequently, radial dose function g(r) and anisotropy function F(r,θ) are measured experimentally in a bounded water phantom using TLD-100 and Gafchromic EBT2 film. RESULTS The TG43U1 dosimetric parameters were determined using the egs_brachy MC calculation and compared with published data which are found to be in good agreement within 2%. The experimentally measured g(r) and F(r,θ) and its egs_brachy MC code-calculated values for a bounded phantom geometry are found to be good in agreement within the acceptable experimental uncertainties of 3%. CONCLUSION Our experimental phantom size represents the average patient width of 30 cm; hence, results are closer to scattering conditions in clinical situations. The experimentally measured g(r) and F(r,θ) and egs_brachy MC calculations for bounded geometry are well in agreement within experimental uncertainties. Further, the confidence level of our comparative study is enhanced by validating the egs_brachy MC code for the unbounded phantom with respect to consensus data.
Collapse
Affiliation(s)
- Rekha Reddy Buchapudi
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Ravikumar Manickam
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, Bengaluru, Karnataka, India
| | - Varatharaj Chandaraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
- Department of Physics, Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
91
|
Singh S, Semwal MK, Bhatt CP. Estimation of Backscatter from Internal Shielding in Electron Beam Radiotherapy Using Monte Carlo Simulations (EGSnrc) and Gafchromic Film Measurements. J Med Phys 2019; 44:239-245. [PMID: 31908382 PMCID: PMC6936201 DOI: 10.4103/jmp.jmp_21_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The purpose of the study was to estimate the backscatter electron dose in internal shielding during electron beam therapy using Monte Carlo (MC) simulations and Gafchromic film measurements. MATERIALS AND METHODS About 6 and 9 MeV electron beams from a Varian 2100C linac were simulated using BEAMnrc MC code. Various clinical situations of internal shielding were simulated by modeling water phantoms with 2 mm lead sheets placed at different depths. Electron backscatter factors (EBF), a ratio of dose at tissue-shielding interface to the dose at the same point without the shielding, were estimated. The role of 2 mm aluminum in reduction of backscatter was investigated. The measurements were also performed using Gafchromic films and results were compared with MC simulations. RESULTS For particular beam energy, the EBF value initially increased with depth in the buildup region and then decreased rapidly. The highest value of EBF for both the energies is nearly same though at different depths. Decreased EBF was observed for 9 MeV beam in comparison to the 6 MeV beam for the same depth of shielding placement. Two millimeter aluminum reduced the backscatter by nearly 25% at maximum backscatter condition for both the energies, though the effectiveness slightly decreased at higher energy. The range of backscatter electrons was varying from 5 to 12 mm in the upstream direction from the interface. The Gafchromic film-measured EBF and MC-simulated EBF were matching well within the clinically acceptable limits except in close vicinity of tissue-lead interface. CONCLUSIONS This study provides an important clinical data to design internal shielding at the local clinical setup and confirms applicability of MC simulations in backscatter dose calculations at interfaces where physical measurements are difficult to perform.
Collapse
Affiliation(s)
- Sukhvir Singh
- Radiological Physics and Internal Dosimetry Group, Institute of Nuclear Medicine and Allied Sciences, New Delhi, India
- Department of Radiotherapy, Army Hospital (Research and Referral), New Delhi, India
| | - Manoj Kumar Semwal
- Department of Radiotherapy, Army Hospital (Research and Referral), New Delhi, India
| | - C. P. Bhatt
- Batra Hospital and Medical Research Center, New Delhi, India
| |
Collapse
|
92
|
Aldelaijan S, Devic S, Papaconstadopoulos P, Bekerat H, Cormack RA, Seuntjens J, Buzurovic IM. Dose-response linearization in radiochromic film dosimetry based on multichannel normalized pixel value with an integrated spectral correction for scanner response variations. Med Phys 2019; 46:5336-5349. [PMID: 31529516 DOI: 10.1002/mp.13818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To introduce a model that reproducibly linearizes the response from radiochromic film (RCF) dosimetry systems at extended dose range. To introduce a correction method, generated from the same scanned images, which corrects for scanner temporal response variation and scanner bed inhomogeneity. METHODS Six calibration curves were established for different lot numbers of EBT3 GAFCHROMIC™ film model based on four EPSON scanners [10000XL (2 units), 11000XL, 12000XL] at three different centers. These films were calibrated in terms of absorbed dose to water based on TG51 protocol or TRS398 with dose ranges up to 40 Gy. The film response was defined in terms of a proposed normalized pixel value ( n P V RGB ) as a summation of first-order equations based on information from red, green, and blue channels. The fitting parameters of these equations are chosen in a way that makes the film response equal to dose at the time of calibration. An integrated set of correction factors (one per color channel) was also introduced. These factors account for the spatial and temporal changes in scanning states during calibration and measurements. The combination of n P V RGB and this "fingerprint" correction formed the basis of this new protocol and it was tested against net optical density ( n e t O D X = R , G , B ) single-channel dosimetry in terms of accuracy, precision, scanner response variability, scanner bed inhomogeneity, noise, and long-term stability. RESULTS Incorporating multichannel features (RGB) into the normalized pixel value produced linear response to absorbed dose (slope of 1) in all six RCF dosimetry systems considered in this study. The "fingerprint" correction factors of each of these six systems displayed unique patterns at the time of calibration. The application of n P V RGB to all of these six systems could achieve a level of accuracy of ± 2.0% in the dose range of interest within modeled uncertainty level of 2.0%-3.0% depending on the dose level. Consistent positioning of control and measurement film pieces and integrating the multichannel correction into the response function formalism mitigated possible scanner response variations of as much as ± 10% at lower doses and scanner bed inhomogeneity of ± 8% to the established level of uncertainty at the time of calibration. The system was also able to maintain the same level of accuracy after 3 and 6 months post calibration. CONCLUSIONS Combining response linearity with the integrated correction for scanner response variation lead to a sustainable and practical RCF dosimetry system that mitigated systematic response shifts and it has the potential to reduce errors in reporting relative information from the film response.
Collapse
Affiliation(s)
- Saad Aldelaijan
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
- Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 12713, Saudi Arabia
| | - Slobodan Devic
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
- Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | | | - Hamed Bekerat
- Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Robert A Cormack
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Ivan M Buzurovic
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
93
|
Miloichikova I, Bulavskaya A, Cherepennikov Y, Gavrikov B, Gargioni E, Belousov D, Stuchebrov S. Feasibility of clinical electron beam formation using polymer materials produced by fused deposition modeling. Phys Med 2019; 64:188-194. [PMID: 31515019 DOI: 10.1016/j.ejmp.2019.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022] Open
Abstract
The main challenge in electron external beam radiation therapy with clinical accelerators is the absence of integrated systems to form irregular fields. The current approach to provide conformal irradiation is to use additional metallic shaping blocks, with inefficient and expensive workflows. This work presents a simple method to form therapeutic electron fields using 3D printed samples. These samples are manufactured by fused deposition modeling, which can affect crucial properties, such as material homogeneity, due to the presence of residual air-filled cavities. The applicability of this method was therefore investigated with a set of experiments and Monte Carlo simulations aimed at determining the electron depth dose distribution in polymer materials. The results show that therapeutic electron beams with energies 6-20 MeV can be effectively absorbed using these polymeric samples. The model developed in this study provides a way to assess the dose distribution in such materials and to calculate the appropriate thickness of polymer samples for therapeutic electron beam formation. It is shown that for total absorption of 6 MeV electron beams the material thickness should be at least 4 cm, while this value should be at least 8 cm for 12 MeV and 11 cm for 20 MeV, respectively. The results can be used to further develop 3D printing procedures for medical electron beam profile formation, allowing the creation of a collimator or absorber with patient-specific configuration using rapid prototyping systems, thus contributing to improve the accuracy of dose delivery in electron radiotherapy within a short manufacturing time.
Collapse
Affiliation(s)
- Irina Miloichikova
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia; Cancer Research Institute of Tomsk NRMC RAS, Kooperativny Street 5, 634050 Tomsk, Russia.
| | - Angelina Bulavskaya
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
| | - Yury Cherepennikov
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
| | - Boris Gavrikov
- Moscow City Oncology Hospital №62, Istra 27, 143423 Moscow, Russia
| | - Elisabetta Gargioni
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dmitrij Belousov
- Institute of Automation and Electrometry SB RAS, Academician Koptyug Avenue 1, 630090 Novosibirsk, Russia
| | - Sergei Stuchebrov
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
| |
Collapse
|
94
|
Ataei G, Rezaei M, Gorji KE, Banaei A, Goushbolagh NA, Farhood B, Bagheri M, Firouzjah RA. Evaluation of Dose Rate and Photon Energy Dependence of Gafchromic EBT3 Film Irradiating with 6 MV and Co-60 Photon Beams. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:204-210. [PMID: 31544061 PMCID: PMC6743241 DOI: 10.4103/jmss.jmss_45_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Gafchromic films are utilized for two-dimensional dose distribution measurements, especially in radiotherapy. In this study, we investigated a close connection between energy and dose rate of Gafchromic EBT3 films irradiating with 6 MV and Co-60 photon beams over a broad dose range. EBT3 films were exposed to 6 MV and Co-60 photon beams using 4 and 2 Gy/min dose rates over a 10-400 cGy dose range. The films were scanned in red, green, and blue channels to obtain the optical density (OD)-dose curves. The OD-dose curves resulted from three-color scans for different photon energies and dose rates were compared by statistical independent t-test. For the radiations of Co-60 and 6 MV photon beams, the highest correlation was obtained between the 2 and 4 Gy/min dose rates with red and green channels, respectively. Moreover, the red channel had a greater OD response per dose value, following the green and blue channels. There was no significant difference between different photon energies' (Co-60 and 6 MV) and dose rates' (2 and 4 Gy/min) dependence on OD-dose response of EBT3 films over a broad domain of radiation dose, except for different photon energies in the blue channel. Our results revealed that the OD-dose response of EBT3 films is independent on photon energies (Co-60 and 6 MV) and dose rate (2 and 4 Gy/min) in the evaluated dose range (10-400 cGy). Therefore, the EBT3 films are suitable, consistent, and reliable instruments for dose measurements in radiotherapy.
Collapse
Affiliation(s)
- Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Maral Rezaei
- Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kourosh Ebrahimnejad Gorji
- Department of Medical Physics Radiobiology and Radiation Protection, Babol University of Medical Sciences, Babol, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Bagheri
- Department of Medical Physics and Medical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
95
|
Ghashghaei M, Niazi TM, Aguilar-Mahecha A, Klein KO, Greenwood CMT, Basik M, Muanza TM. Identification of a Radiosensitivity Molecular Signature Induced by Enzalutamide in Hormone-sensitive and Hormone-resistant Prostate Cancer Cells. Sci Rep 2019; 9:8838. [PMID: 31221986 PMCID: PMC6586860 DOI: 10.1038/s41598-019-44991-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer amongst men. A novel androgen receptor (AR) antagonist, enzalutamide (ENZA) has recently been demonstrated to enhance the effect of radiation (XRT) by impairing the DNA damage repair process. This study aimed to identify a radiosensitive gene signature induced by ENZA in the PCa cells and to elucidate the biological pathways which influence this radiosensitivity. We treated LNCaP (AR-positive, hormone-sensitive PCa cells) and C4-2 (AR-positive, hormone-resistant PCa cells) cells with ENZA alone and in combination with androgen deprivation therapy (ADT) and XRT. Using one-way ANOVA on the gene expression profiling, we observed significantly differentially expressed (DE) genes in inflammation-and metabolism-related genes in hormone-sensitive and hormone-resistant PCa cell lines respectively. Survival analysis in both the TCGA PRAD and GSE25136 datasets suggested an association between the expression of these genes and time to recurrence. These results indicated that ENZA alone or in combination with ADT enhanced the effect of XRT through immune and inflammation-related pathways in LNCaP cells and metabolic-related pathways in C4-2 cells. Kaplan–Meier analysis and Cox proportional hazard models showed that low expression of all the candidate genes except for PTPRN2 were associated with tumor progression and recurrence in a PCa cohort.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Tamim M Niazi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada
| | | | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M T Greenwood
- Segal Cancer Center, Lady Davis Institute of Research, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.,Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark Basik
- Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.,Department of Surgery and Oncology, Jewish General Hospital, Montréal, QC, Canada
| | - Thierry M Muanza
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada. .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Department of Radiation Oncology, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
96
|
Girardi A, Fiandra C, Giglioli FR, Gallio E, Ali OH, Ragona R. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones. ACTA ACUST UNITED AC 2019; 64:11NT01. [DOI: 10.1088/1361-6560/ab1f26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
97
|
Makris DN, Pappas EP, Zoros E, Papanikolaou N, Saenz DL, Kalaitzakis G, Zourari K, Efstathopoulos E, Maris TG, Pappas E. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64:105009. [PMID: 30965289 DOI: 10.1088/1361-6560/ab1758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In single-isocenter stereotactic radiosurgery/radiotherapy (SRS/SRT) intracranial applications, multiple targets are being treated concurrently, often involving non-coplanar arcs, small photon beams and steep dose gradients. In search for more rigorous quality assurance protocols, this work presents and evaluates a novel methodology for patient-specific pre-treatment plan verification, utilizing 3D printing technology. In a patient's planning CT scan, the external contour and bone structures were segmented and 3D-printed using high-density bone-mimicking material. The resulting head phantom was filled with water while a film dosimetry insert was incorporated. Patient and phantom CT image series were fused and inspected for anatomical coherence. HUs and corresponding densities were compared in several anatomical regions within the head. Furthermore, the level of patient-to-phantom dosimetric equivalence was evaluated both computationally and experimentally. A single-isocenter multi-focal SRS treatment plan was prepared, while dose distributions were calculated on both CT image series, using identical calculation parameters. Phantom- and patient-derived dose distributions were compared in terms of isolines, DVHs, dose-volume metrics and 3D gamma index (GI) analysis. The phantom was treated as if the real patient and film measurements were compared against the patient-derived calculated dose distribution. Visual inspection of the fused CT images suggests excellent geometric similarity between phantom and patient, also confirmed using similarity indices. HUs and densities agreed within one standard deviation except for the skin (modeled as 'bone') and sinuses (water-filled). GI comparison between the calculated distributions resulted in passing rates better than 97% (1%/1 mm). DVHs and dose-volume metrics were also in satisfying agreement. In addition to serving as a feasibility proof-of-concept, experimental absolute film dosimetry verified the computational study results. GI passing rates were above 90%. Results of this work suggest that employing the presented methodology, patient-equivalent phantoms (except for the skin and sinuses areas) can be produced, enabling literally patient-specific pre-treatment plan verification in intracranial applications.
Collapse
Affiliation(s)
- D N Makris
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Baghani HR, Robatjazi M, Mahdavi SR, Nafissi N, Akbari ME. Breast intraoperative electron radiotherapy: Image-based setup verification and in-vivo dosimetry. Phys Med 2019; 60:37-43. [PMID: 31000084 DOI: 10.1016/j.ejmp.2019.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Single fraction nature of intraoperative radiotherapy highly demands a quality assurance procedure to qualify both beam setup and treatment delivery. The aim of this study is to evaluate the treatment setup during breast intraoperative electron radiotherapy (IOERT) and in-vivo dose delivery verification. MATERIALS AND METHODS Twenty-five breast cancer patients were enrolled and setup verification for each case was performed using C-arm imaging. The received dose by surface and distal end of target was measured by EBT2 film. The significance level of difference between obtained dosimetry results and predicted ones was evaluated by the T statistical test. RESULTS Acquired C-arm images in two different oblique views revealed any misalignment between the applicator and shielding disk. The mean difference between the measured surface dose and expected one was 1.8% ± 1.2 (p = 0.983) while a great disagreement, 11.1% ± 1.5 (p < 0.001), was observed between the measured distal end dose and expected one. This discrepancy is mainly correlated to the backscattering effect from the shielding disk. Target depth nonuniformities can also contribute to this remarkable difference. CONCLUSION Employing the intraoperative imaging for IOERT setup verification can considerably improve the treatment quality. Therefore, it is suggested to implement this imaging procedure as a part of treatment quality assurance. Favorable agreement between the predicted and measured surface doses demonstrates the applicability of EBT2 film for dose delivery verification. The results of in-vivo dosimetry showed that the electron backscattering from employed shielding disk can affect the received dose by the distal end of tumor bed.
Collapse
Affiliation(s)
- Hamid Reza Baghani
- Physics Department, Hakim Sabzevari University, Shohada-e Hastei Blvd, P.O. 9617976487, Sabzevar, Iran.
| | - Mostafa Robatjazi
- Department of Medical Physics and Radiological Sciences, Sabzevar University of Medical Sciences, Shohada-e Hastei Blvd, Sabzevar University of Medical Sciences Campus, P.O. 9617913112, Sabzevar, Iran; Vasei Radiotherapy & Oncology Center, Vasei Hospital, P.O. 9617913113, Sabzevar, Iran.
| | - Seied Rabi Mahdavi
- Department of Medical Physics, Iran University of Medical Sciences. Hemmat Exp. Way, Faculty of Medicine, P.O. 14496141525, Tehran, Iran
| | - Nahid Nafissi
- Department of Breast Surgery, Iran University of Medical Sciences. Hemmat Exp. Way, Faculty of Medicine, P.O. 14496141525, Tehran, Iran
| | - Mohammad Esmail Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Shohadaye Tajrrish Hospital, Tajrish Sq., P.O. 19996 14414, Tehran, Iran
| |
Collapse
|
99
|
Casolaro P, Campajola L, Breglio G, Buontempo S, Consales M, Cusano A, Cutolo A, Di Capua F, Fienga F, Vaiano P. Real-time dosimetry with radiochromic films. Sci Rep 2019; 9:5307. [PMID: 30926839 PMCID: PMC6440967 DOI: 10.1038/s41598-019-41705-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Radiochromic film dosimetry has been widely employed in most of the applications of radiation physics for over twenty years. This is due to a number of appealing features of radiochromic films, such as reliability, accuracy, ease of use and cost. However, current radiochromic film reading techniques, based on the use of commercial densitometers and scanners, provide values of dose only after the exposure of the films to radiation. In this work, an innovative methodology for the real-time reading of radiochromic films is proposed for some specific applications. The new methodology is based on opto-electronic instrumentation that makes use of an optical fiber probe for the determination of optical changes of the films induced by radiation and allows measurements of dose with high degree of precision and accuracy. Furthermore, it has been demonstrated that the dynamic range of some kinds of films, such as the EBT3 Gafchromic films (intensively used in medical physics), can be extended by more than one order of magnitude. Owing to the numerous advantages with respect to the commonly used reading techniques, a National Patent was filed in January 2018.
Collapse
Affiliation(s)
- Pierluigi Casolaro
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy.
| | - Luigi Campajola
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Giovanni Breglio
- University of Napoli Federico II, Department of Electronical Engineering, I-80125, Napoli, Italy
| | - Salvatore Buontempo
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Marco Consales
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy.
| | - Andrea Cusano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Antonello Cutolo
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Francesco Di Capua
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Francesco Fienga
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy
| | - Patrizio Vaiano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| |
Collapse
|
100
|
Xu XH, Liao Q, Wu MJ, Geng YX, Li DY, Zhu JG, Li CC, Hu RH, Shou YR, Chen YH, Lu HY, Ma WJ, Zhao YY, Zhu K, Lin C, Yan XQ. Detection and analysis of laser driven proton beams by calibrated Gafchromic HD-V2 and MD-V3 radiochromic films. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033306. [PMID: 30927782 DOI: 10.1063/1.5049499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The radiochromic film (RCF) is a high-dose, high-dynamic range dosimetry detection medium. A stack of RCFs can be used to detect both spatial and energetic distribution of laser driven ion beams with a large divergence angle and continuous energy spectrum. Two types of RCFs (HD-V2 and MD-V3, from Radiation Products Design, Inc.) have been calibrated using MeV energy protons and carbon ions produced by using a 2 × 6 MV tandem electrostatic accelerator. The proportional relationship is obtained between the optical density and the irradiation dose. For protons, the responses are consistent at all energies with a variation of about 15%. For carbon ions, the responses are energy related, which should be noted for heavy ion detection. Based on the calibration, the broad energy spectrum and charge distribution of laser accelerated proton beam with energy from 3 to 8 MeV and pC charge were detected and reconstructed at the Compact LAser Plasma Accelerator at Peking University.
Collapse
Affiliation(s)
- X H Xu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Q Liao
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - M J Wu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Y X Geng
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - D Y Li
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - J G Zhu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - C C Li
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - R H Hu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Y R Shou
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Y H Chen
- State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - H Y Lu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - W J Ma
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - Y Y Zhao
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - K Zhu
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - C Lin
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| | - X Q Yan
- State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China
| |
Collapse
|