51
|
Cui W, Shen X, Agbas E, Tompkins B, Cameron-Carter H, Staudinger JL. Phosphorylation Modulates the Coregulatory Protein Exchange of the Nuclear Receptor Pregnane X Receptor. J Pharmacol Exp Ther 2020; 373:370-380. [PMID: 32205367 DOI: 10.1124/jpet.119.264762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023] Open
Abstract
The pregnane X receptor (PXR), or nuclear receptor (NR) 1I2, is a ligand-activated NR superfamily member that is enriched in liver and intestine in mammals. Activation of PXR regulates the expression of genes encoding key proteins involved in drug metabolism, drug efflux, and drug transport. Recent mechanistic investigations reveal that post-translational modifications (PTMs), such as phosphorylation, play a critical role in modulating the bimodal function of PXR-mediated transrepression and transactivation of target gene transcription. Upon ligand binding, PXR undergoes a conformational change that promotes dissociation of histone deacetylase-containing multiprotein corepressor protein complexes while simultaneously favoring recruitment histone acetyl transferase-containing complexes. Here we describe a novel adenoviral vector used to deliver and recover recombinant human PXR protein from primary cultures of hepatocytes. Using liquid chromatography and tandem mass spectrometry we report here that PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Biochemical analysis reveals that these two residues play an important regulatory role in the cycling of corepressor and coactivator multiprotein complexes. These data further our foundational knowledge regarding the specific role of PTMs, namely phosphorylation, in regulating the biology of PXR. Future efforts are focused on using the novel tools described here to identify additional PTMs and protein partners of PXR in primary cultures of hepatocytes, an important experimental model system. SIGNIFICANCE STATEMENT: Pregnane X receptor (PXR), or nuclear receptor 1I2, is a key master regulator of drug-inducible CYP gene expression in liver and intestine in mammals. The novel biochemical tools described in this study demonstrate for the first time that in cultures of primary hepatocytes, human PXR is phosphorylated at amino acid residues threonine 135 (T135) and serine 221 (S221). Moreover, phosphorylation of PXR promotes the transrepression of its prototypical target gene CYP3A4 through modulating its interactions with coregulatory proteins.
Collapse
Affiliation(s)
- Wenqi Cui
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Xunan Shen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Emre Agbas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Brandon Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Hadley Cameron-Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| | - Jeff L Staudinger
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (W.C.); Stowers Institute for Medical Research, Kansas City, Missouri (E.A.); Department of Bioinformatics, University of Georgia, Ethan, Georgia (X.S.); and Kansas City University of Medicine and Biosciences, Joplin, Missouri (B.T., H.C.-C., J.L.S.)
| |
Collapse
|
52
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
53
|
Regulation of hepatic P-gp expression and activity by genistein in rats. Arch Toxicol 2020; 94:1625-1635. [DOI: 10.1007/s00204-020-02708-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
|
54
|
Reduction in N-Desmethylclozapine Level Is Determined by Daily Dose But Not Serum Concentration of Valproic Acid-Indications of a Presystemic Interaction Mechanism. Ther Drug Monit 2020; 41:503-508. [PMID: 31259880 DOI: 10.1097/ftd.0000000000000619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Valproic acid (VPA) is frequently used together with clozapine (CLZ) as mood-stabilizer or for the prevention of seizures in patients with psychotic disorders. VPA is known to reduce levels of the pharmacologically active CLZ-metabolite N-desmethylclozapine (N-DMC), but factors determining the degree of this interaction are unknown. Here, we investigated the relationship between VPA dose and serum concentration on N-DMC levels in a large patient population adjusting for sex, age, and smoking habits as covariates. METHODS A total of 763 patients with steady-state serum concentrations of CLZ and N-DMC concurrently using VPA (cases, n = 76) or no interacting drugs (controls, n = 687) were retrospectively included from a therapeutic drug monitoring service at Diakonhjemmet Hospital, Oslo, between March 2005 and December 2016. In addition to information about prescribed doses, age, sex, smoking habits, and use of other interacting drugs were obtained. The effects of VPA dose and serum concentration on dose-adjusted N-DMC levels were evaluated by univariate correlation and multivariate linear mixed-model analyses adjusting for covariates. RESULTS The dose-adjusted N-DMC levels were approximately 38% lower in VPA users (cases) versus nonusers (controls) (P < 0.001). Within the VPA cases, a negatively correlation between VPA dose and dose-adjusted N-DMC levels was observed with an estimated reduction of 1.42% per 100-mg VPA dose (P = 0.033) after adjusting for sex, age, and smoking. By contrast, there was no correlation between VPA serum concentration and dose-adjusted N-DMC levels (P = 0.873). CONCLUSIONS The study shows that VPA dose, not concentration, is of relevance for the degree of reduction in N-DMC level in clozapine-treated patients. Presystemic induction of UGT enzymes or efflux transporters might underlie the reduction in N-DMC level during concurrent use of VPA. Our findings indicate that a VPA daily dose of 1500 mg or higher provides a further 21% reduction in N-DMC concentration. This is likely a relevant change in the exposure of this active metabolite where low levels are associated with implications of CLZ therapy.
Collapse
|
55
|
Wolking S, Moreau C, Nies AT, Schaeffeler E, McCormack M, Auce P, Avbersek A, Becker F, Krenn M, Møller RS, Nikanorova M, Weber YG, Weckhuysen S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BP, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Schwab M, Krause R, Sisodiya SM, Cossette P, Girard SL, Lerche H. Testing association of rare genetic variants with resistance to three common antiseizure medications. Epilepsia 2020; 61:657-666. [DOI: 10.1111/epi.16467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Wolking
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM) University of MontrealMontreal Canada
| | - Claudia Moreau
- Department of Applied Sciences University of Quebec in Chicoutimi Saguenay Canada
| | - Anne T. Nies
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
| | - Mark McCormack
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Pauls Auce
- Walton Centre NHS Foundation Trust Liverpool UK
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
| | - Felicitas Becker
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | - Martin Krenn
- Department of Neurology Medical University of Vienna Vienna Austria
| | - Rikke S. Møller
- Danish Epilepsy Centre ‐ Filadelfia Dianalund Denmark
- Department of Regional Health Research University of Southern Denmark Odense Denmark
| | - Marina Nikanorova
- Department of Regional Health Research University of Southern Denmark Odense Denmark
| | - Yvonne G. Weber
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
- Department of Epileptology and Neurology University of Aachen Aachen Germany
| | - Sarah Weckhuysen
- Neurogenetics Group VIB‐UAntwerp Center for Molecular NeurologyAntwerp Belgium
- Laboratory of Neurogenetics Institute Born‐Bunge University of Antwerp Antwerp Belgium
- Department of Neurology Antwerp University Hospital Antwerp Belgium
| | - Gianpiero L. Cavalleri
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
- Division of Brain Sciences Imperial College Faculty of Medicine London UK
| | - Norman Delanty
- Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
- Division of Neurology Beaumont Hospital Dublin Ireland
- The FutureNeuro Research Centre Royal College of Surgeons in Ireland Dublin Ireland
| | - Chantal Depondt
- Department of Neurology Hôpital Erasme Université Libre de Bruxelles Brussels Belgium
| | - Michael R. Johnson
- Division of Brain Sciences Imperial College Faculty of Medicine London UK
| | - Bobby P.C. Koeleman
- Department of Genetics University Medical Center Utrecht Utrecht Netherlands
| | - Wolfram S. Kunz
- Institute of Experimental Epileptology and Cognition Research and Department of Epileptology University of Bonn Bonn Germany
| | - Anthony G. Marson
- Department of Molecular and Clinical Pharmacology Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Josemir W. Sander
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
- Stichting Epilepsie Instellingen Nederland (SEIN) Heemstede Netherlands
| | - Graeme J. Sills
- Department of Molecular and Clinical Pharmacology Institute of Translational Medicine University of Liverpool Liverpool UK
| | - Pasquale Striano
- IRCCS "G. Gaslini" Institute Genova Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova Genova Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genova Genova Italy
| | - Fritz Zimprich
- Department of Neurology Medical University of Vienna Vienna Austria
| | - Matthias Schwab
- Dr. Margarete Fischer‐Bosch Institute of Clinical Pharmacology Stuttgart Germany
- University of Tübingen Tübingen Germany
- Department of Clinical Pharmacology, Pharmacy and Biochemistry University Tübingen Tübingen Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK
- Chalfont Centre for Epilepsy London UK
| | - Patrick Cossette
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM) University of MontrealMontreal Canada
| | - Simon L. Girard
- Department of Applied Sciences University of Quebec in Chicoutimi Saguenay Canada
| | - Holger Lerche
- Neurology and Epileptology Hertie Institute for Clinical Brain Research University of Tübingen Tübingen Germany
| | | |
Collapse
|
56
|
Lu RB, Chang YH, Lee SY, Wang TY, Cheng SL, Chen PS, Yang YK, Hong JS, Chen SL. Dextromethorphan Protect the Valproic Acid Induced Downregulation of Neutrophils in Patients with Bipolar Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:145-152. [PMID: 31958915 PMCID: PMC7006988 DOI: 10.9758/cpn.2020.18.1.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022]
Abstract
Objective Valproic acid (VPA) is an anticonvulsant and commonly long term used as a mood stabilizer for patients with mood disorders. However its chronic effects on the hematological changes were noticed and need to be further evaluated. In this study, we evaluated, in Taiwanese Han Chinese patients with bipolar disorders (BD), the chronic effects of VPA or VPA plus dextromethorphan (DM) on the hematological molecules (white blood cell [WBCs], red blood cells [RBCs], hemoglobin, hematocrit, and platelets). Methods In a 12-week, randomized, double-blind study, we randomly assigned BD patients to one of three groups: VPA plus either placebo (VPA+P, n = 57) or DM (30 mg/day, VPA+DM30, n = 56) or 60 mg/day (VPA+DM60, n = 53). The Young Mania Rating Scale and Hamilton Depression Rating Scale were used to evaluate symptom severity, and the hematological molecules were checked. Results Paired t test showed that the WBC, neutrophils, platelets and RBCs were significantly lowered after 12 weeks of VPA+P or VPA+DM30 treatment. VPA+DM60 represented the protective effects in the WBCs, neutrophils, and RBCs but not in the platelets. We further calculated the changes of each hematological molecules after 12 weeks treatment. We found that combination use of DM60 significantly improved the decline in neutrophils induced by the long-term VPA treatment. Conclusion Hematological molecule levels were lower after long-term treatment with VPA. VPA+DM60, which yielded the protective effect in hematological change, especially in the neutrophil counts. Thus, DM might be adjunct therapy for maintaining hematological molecules in VPA treatment.
Collapse
Affiliation(s)
- Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Yun-Hsuan Chang
- Department of Psychology, Asia University, Taichung, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Shu-Li Cheng
- Dpartment of Nursing, Mackay Medical College, Taipei, Taiwan, ROC
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Yen-Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - Jau-Shyong Hong
- Neurobiology Laboratory, NIH/NIEHS, Research Triangle Park, NC, USA
| | - Shiou-Lan Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan, ROC.,Graduate Institute of Medicine & M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan, ROC.,Department of Medical Research, KMU Hospital, Kaohsiung, Taiwan, ROC
| |
Collapse
|
57
|
Yu X, Li H, Zhu M, Hu P, Liu X, Qing Y, Wang X, Wang H, Wang Z, Xu J, Tan R, Guo Q, Hui H. Involvement of p53 Acetylation in Growth Suppression of Cutaneous T-Cell Lymphomas Induced by HDAC Inhibition. J Invest Dermatol 2020; 140:2009-2022.e4. [PMID: 32119867 DOI: 10.1016/j.jid.2019.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a rare form of non-Hodgkin lymphomas characterized by an accumulation of malignant CD4+ T cells in the skin. TP53 genetic alteration is one of the most prevalent genetic abnormalities in CTCLs. Therefore, it is a promising target for innovative therapeutic approaches. We found that p53 could physically interact with histone deacetylase (HDAC) 1 and HDAC8, and was subsequently deacetylated to lose its function in CTCL cells, and the p53 downstream apoptosis-associated genes were repressed. Thus, the anti-CTCL activity displayed by HDAC inhibitors depends on p53 status. However, recent studies have reported that HDAC inhibitors could induce a wide variety of drug-resistant characteristics in cancer cells by regulating ATP-binding cassette transporters. Moreover, we discovered that Baicalein, a natural product, exhibited an inhibitory effect on HDAC1 and HDAC8. Though the inhibition of HDAC1 was mild, Baicalein could induce the degradation of HDAC1 through the ubiquitin proteasome pathway, thereby markedly upregulating the acetylation of histone H3 without promoting ATP-binding cassette transporter gene expression. In terms of the mechanism, Baicalein showed better growth inhibition than traditional HDAC inhibitors in CTCLs. This study indicates a special mechanism of HDAC1 and HDAC8 and p53 in T-cell lymphoma cells and identifies a potential and safe natural HDAC inhibitor for the treatment of CTCLs.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
58
|
Sfera A, Osorio C, Diaz EL, Maguire G, Cummings M. The Other Obesity Epidemic-Of Drugs and Bugs. Front Endocrinol (Lausanne) 2020; 11:488. [PMID: 32849279 PMCID: PMC7411001 DOI: 10.3389/fendo.2020.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic psychiatric patients with schizophrenia and related disorders are frequently treatment-resistant and may require higher doses of psychotropic drugs to remain stable. Prolonged exposure to these agents increases the risk of weight gain and cardiometabolic disorders, leading to poorer outcomes and higher medical cost. It is well-established that obesity has reached epidemic proportions throughout the world, however it is less known that its rates are two to three times higher in mentally ill patients compared to the general population. Psychotropic drugs have emerged as a major cause of weight gain, pointing to an urgent need for novel interventions to attenuate this unintended consequence. Recently, the gut microbial community has been linked to psychotropic drugs-induced obesity as these agents were found to possess antimicrobial properties and trigger intestinal dysbiosis, depleting Bacteroidetes phylum. Since germ-free animals exposed to psychotropics have not demonstrated weight gain, altered commensal flora composition is believed to be necessary and sufficient to induce dysmetabolism. Conversely, not only do psychotropics disrupt the composition of gut microbiota but the later alter the metabolism of the former. Here we review the role of gut bacterial community in psychotropic drugs metabolism and dysbiosis. We discuss potential biomarkers reflecting the status of Bacteroidetes phylum and take a closer look at nutritional interventions, fecal microbiota transplantation, and transcranial magnetic stimulation, strategies that may lower obesity rates in chronic psychiatric patients.
Collapse
Affiliation(s)
- Adonis Sfera
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
- *Correspondence: Adonis Sfera
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Eddie Lee Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Gerald Maguire
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
59
|
Papassava M, Nakou I, Siomou E, Cholevas V, Challa A, Tzoufi M. Vitamin D supplementation and bone markers in ambulatory children on long-term valproic acid therapy. A prospective interventional study. Epilepsy Behav 2019; 97:192-196. [PMID: 31252278 DOI: 10.1016/j.yebeh.2019.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Our aim was to investigate any adverse effects of long-term valproic acid (VPA) therapy on bone biochemical markers in ambulatory children and adolescents with epilepsy, and the possible benefits of vitamin D supplementation on the same markers. METHODS In this single center, the prospective interventional study levels of 25-hydroxyvitamin D (25OHD) and the bone turnover indices of Crosslaps (CTX), total alkaline phosphatase (tALP), osteoprotegerin (OPG), and the receptor activator for nuclear factor kB (RANK) ligand (sRANKL) were assessed before and after one year of vitamin D intake (400 IU/d) and were compared with those of clinically healthy controls. Fifty-four ambulatory children with mean (±standard deviation [SD]) age 9.0 ± 4.5 yrs on VPA (200-1200 mg/d) long-term monotherapy (mean: 3.2 ± 2.6 yrs) were studied, before and after a year's vitamin D intake (400 IU/d). RESULTS Nearly half of the cases were vitamin D insufficient/deficient with mean levels 23.1 ± 12.8 vs 31.8 ± 16.2 ng/mL of controls (p = 0.004) and after the year of vitamin D intake increased to 43.2 ± 21.7 ng/mL (p < 0.0001). In parallel, serum CTX and tALP had a decreasing trend approaching control levels but OPG and sRANKL did not change and were not different from controls. However, after vitamin D intake, a positive correlation was seen between 25OHD and OPG but not before. CONCLUSIONS The findings imply a higher bone turnover in the young patients on long-term VPA therapy that decreased after vitamin D intake.
Collapse
Affiliation(s)
| | - Iliada Nakou
- Division of Pediatric Neurology, University Hospital of Ioannina, Ioannina 451 10, Greece
| | - Ekaterini Siomou
- Division of Pediatric Nephrology, Department of Pediatrics, University Hospital of Ioannina, Ioannina 451 10, Greece
| | - Vasileios Cholevas
- Pediatric Research Laboratory, University of Ioannina, Ioannina 451 10, Greece
| | - Anna Challa
- Pediatric Research Laboratory, University of Ioannina, Ioannina 451 10, Greece
| | - Meropi Tzoufi
- Division of Pediatric Neurology, University Hospital of Ioannina, Ioannina 451 10, Greece
| |
Collapse
|
60
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
61
|
Valproate decreases vitamin D levels in pediatric patients with epilepsy. Seizure 2019; 71:60-65. [PMID: 31207394 DOI: 10.1016/j.seizure.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To compare Vitamin D (Vit D) levels in children with epilepsy on valproate monotherapy with healthy controls. METHODS A meta-analysis performed on articles identified from PubMed and Web of Science online databases evaluated using National Institute of Health National Heart, Lung, and Blood Institute Study Quality Assessment Tools. Subgroup analyses and publication bias assessments were also performed. RESULTS Eleven publications were eligible based on inclusion/exclusion criteria for the meta-analysis. Results noted a decrease in the mean Vit D level in children with epilepsy on valproate monotherapy compared with healthy children with a Standard Mean Difference = -0.313 [-0.457, -0.169]. Cumulative meta-analysis showed progressive negative effect of valproate therapy on Vit D levels across time. Other antiepileptic medications caused a similar effect on Vit D status. There was no evidence of publication bias in the analyses. Type of study design and country of origin introduced heterogeneities into the meta-analyses. CONCLUSION This meta-analysis provides evidence that long-term therapy with valproate causes a decrease in Vit D levels in children. Therefore, in children with a seizure disorder on long-term valproate therapy, 25-OH-Vit D levels should be monitored and appropriate supplementation implemented if levels are deficient.
Collapse
|
62
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
63
|
El-Readi MZ, Eid S, Abdelghany AA, Al-Amoudi HS, Efferth T, Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:269-281. [PMID: 30668439 DOI: 10.1016/j.phymed.2018.06.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The degree of intracellular drug accumulation by specific membrane transporters, i.e., MDR1, BCRP, and MRP, and the degree of detoxification by intracellular metabolic enzymes, i.e., CYP3A4 and GST, provide control for cancer chemotherapy through diminishing the propensity of cancer cells to undergo apoptosis which in turn modulates the unresolved and complex phenomenon of multidrug resistance (MDR) for the cancer cells. HYPOTHESIS/PURPOSE This study dwells into the interaction details involving ABC-transporters, CYP3A4, GST and cytotoxic effects of resveratrol on different cell lines. METHODS Resveratrol was evaluated for its ability modulating the expression and efflux functions of P-gp /MDR1, MRP1, and BCRP in the multidrug-resistant human colon carcinoma cell line, Caco-2, and CEM/ADR5000 cells through flow cytometry and RTPCR technique. RESULTS The resveratrol influenced P-gp and MRP1 efflux functions whereby it increased rhodamine 123 with calcein accumulation in concentration-dependent manner (1 - 500 µM) in the Caco-2 cell lines and inhibited the effluxes of both the substrates also as concentration-dependent phenomenon (10 - 100 µM) in the p-gp overexpressing CEM/ADR5000 cells through FACS (full form). The treatment of drug-resistant Caco-2, and CEM/ADR5000 cells with doxorubicin (DOX) along with 20 µM of resveratrol in the mixture. It increased the cell sensitivity DOX towards the DOX and enhanced the cytotoxicity. The resveratrol inhibited both CYP3A4 and GST enzymatic activity in a concentration-dependent way and induced apoptosis in the resistance cell lines because of increased levels of caspase-3, -8,-6/9 and incremental phosphatidyl serine (PS) exposure as detected by flow cytometry. The treatment of Caco-2 cells with resveratrol showed significantly lower p-gp, MRP1, BCRP, CYP3A4, GST, and hPXR mRNA levels in a 48 h observation. CONCLUSION The result confirmed resveratrol mediated inhibition of ABC-transporters' overall efflux functions, and its expression, and apoptosis as well as metabolic enzymes GST and CYP3A4 activity.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - SafaaYehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Ahmed Ali Abdelghany
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt
| | - Hiba Saeed Al-Amoudi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Michael Wink
- Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
64
|
Resistance to Histone Deacetylase Inhibitors in the Treatment of Lymphoma. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2019. [DOI: 10.1007/978-3-030-24424-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Feng D, Tang T, Fan R, Luo J, Cui H, Wang Y, Gan P. Gancao (Glycyrrhizae Radix) provides the main contribution to Shaoyao-Gancao decoction on enhancements of CYP3A4 and MDR1 expression via pregnane X receptor pathway in vitro. Altern Ther Health Med 2018; 18:345. [PMID: 30594244 PMCID: PMC6311034 DOI: 10.1186/s12906-018-2402-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chinese herbal formula Shaoyao Gancao decoction (SGD) is often used as an adjuvant with chemotherapeutic agents to treat cancer. Due to the herb-drug interactions, the alternations of drug metabolic enzyme and drug transporters induced by SGD deserve to be explored. We aimed to investigate the effect of SGD on the pregnane X receptor (PXR)-mediated transcriptional regulation of cytochrome P450 3A4 (CYP3A4) and drug transporter multidrug resistance protein 1 (MDR1) in vitro. Besides, we assessed the contribution of constituent herbs to SGD on the regulation of CYP3A4 and MDR1. METHODS The dual luciferase reporter gene system containing the hPXR expression plasmid and the reporter gene plasmid of CYP3A4 or MDR1 was co-transfected to HepG2 and Caco2 cells. Luciferase activities were determined using a Dual-luciferase reporter assay kit. The gene expression of CYP3A4 and MDR1 in the hPXR-transfected LS174T cells were assessed by real-time qPCR. Finally, the contribution of constituent herbs from SGD was evaluated. RESULTS SGD, Shaoyao and Gancao concentration-dependently increased promoter activities of CYP3A4 and MDR1 in vitro. Moreover, SGD, Shaoyao and Gancao up-regulated CYP3A4 and MDR1 mRNA in hPXR-transfected LS174T cells. As the herbal constituent of SGD, Gancao possesses significantly higher levels of metabolic enzyme and drug transporters compared with Shaoyao. CONCLUSION SGD tends to enhance CYP3A4 and MDR1 expression via PXR pathway, especially Gancao provides the main contribution. This study highlights a potential in vitro mechanism for SGD on the regulation of drug metabolic enzymes and drug transporters.
Collapse
|
66
|
Galgani A, Palleria C, Iannone LF, De Sarro G, Giorgi FS, Maschio M, Russo E. Pharmacokinetic Interactions of Clinical Interest Between Direct Oral Anticoagulants and Antiepileptic Drugs. Front Neurol 2018; 9:1067. [PMID: 30581412 PMCID: PMC6292857 DOI: 10.3389/fneur.2018.01067] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and rivaroxaban are being increasingly prescribed among the general population, as they are considered to be associated to lower bleeding risk than classical anticoagulants, and do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above all among the elderly. As a result, potential interactions may cause an increased risk of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the present review is to describe the pharmacokinetic interactions between AEDs and DOACs of clinical relevance. We observed that there are only few clinical reports in which such interactions have been described in patients. More data are available on the pharmacokinetics of both drugs classes which allow speculating on their potential interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban, and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine, or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which do not affect significantly CYP activity in vitro, might have a quite safe profile, even though their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few case reports and limited evidence on interactions between DOACs and AEDs in patients. However, the overall evidence suggests that the interaction between these drug classes might be of high clinical relevance and therefore further studies in larger patients' cohorts are warranted for the future in order to better clarify their pharmacokinetic and define the most appropriate clinical behavior.
Collapse
Affiliation(s)
| | - Caterina Palleria
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | - Marta Maschio
- UOSD Neurology, Center for Tumor-related Epilepsy, Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Russo
- Department of Science of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
67
|
Wu KC, Lin CJ. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J Food Drug Anal 2018; 27:48-59. [PMID: 30648594 PMCID: PMC9298621 DOI: 10.1016/j.jfda.2018.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs) and membrane transporters play important roles in the absorption, distribution, metabolism, and excretion processes that determine the pharmacokinetics of drugs. Inflammation has been shown to regulate the expression and function of these drug-processing proteins. Given that inflammation is a common feature of many diseases, in this review, the general mechanisms for inflammation-mediated regulation of DMEs and transporters are described. Also, evidences regarding the aberrant expression of these drug-processing proteins in several inflammatory diseases and age-related disorders are provided.
Collapse
Affiliation(s)
- Kuo-Chen Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
68
|
Limonciel A, Ates G, Carta G, Wilmes A, Watzele M, Shepard PJ, VanSteenhouse HC, Seligmann B, Yeakley JM, van de Water B, Vinken M, Jennings P. Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol 2018; 92:2517-2531. [PMID: 30008028 PMCID: PMC6063331 DOI: 10.1007/s00204-018-2256-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24 h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gamze Ates
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Manfred Watzele
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Peter J Shepard
- BioSpyder Technologies, Inc., 5922 Farnsworth Ct Ste 102, Carlsbad, CA, 92008, USA
| | | | - Bruce Seligmann
- BioSpyder Technologies, Inc., 5922 Farnsworth Ct Ste 102, Carlsbad, CA, 92008, USA
| | - Joanne M Yeakley
- BioSpyder Technologies, Inc., 5922 Farnsworth Ct Ste 102, Carlsbad, CA, 92008, USA
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, PO Box 9503, 2300 RA, Leiden, The Netherlands
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
69
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
70
|
Schoretsanitis G, Spina E, Hiemke C, de Leon J. A systematic review and combined analysis of therapeutic drug monitoring studies for oral paliperidone. Expert Rev Clin Pharmacol 2018; 11:625-639. [DOI: 10.1080/17512433.2018.1478727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Georgios Schoretsanitis
- University Hospital of Psychiatry, Bern, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, and JARA – Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of Mainz, Mainz, Germany
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| |
Collapse
|
71
|
Abstract
OBJECTIVES Valproic acid and clozapine are drugs commonly used in the treatment of schizophrenic and schizoaffective disorders. Pharmacokinetic interactions of valproic acid with several drugs are well known, yet results concerning the interaction with clozapine are inconsistent. METHODS Steady-state dose-corrected serum concentrations of clozapine and its main metabolite norclozapine were retrospectively analyzed in 45 patients receiving both clozapine and valproic acid. Controls were matched for sex, age, smoking, comedication, and inflammatory response. RESULTS The group receiving comedication with valproic acid showed significantly lower median dose-corrected serum concentrations of norclozapine (0.44 [0.27-0.58] (ng/mL)/(mg/d) vs 0.78 [0.60-1.07] (ng/mL)/(mg/d)) as well as metabolite to parent compound ratios (0.40 [0.36-0.47] vs 0.71 [0.58-0.84]) by approximately 44%. Dose-corrected serum concentrations of clozapine were not significantly lower. The effect of valproic acid was independent of sex and smoking. CONCLUSIONS Comedication with valproic acid accelerated metabolism of clozapine with predominant effects on the degradation of norclozapine. Therapeutic drug monitoring should be applied to guide individual patient responses upon initiation of comedication.
Collapse
|
72
|
Jiraskova L, Cerveny L, Karbanova S, Ptackova Z, Staud F. Expression of Concentrative Nucleoside Transporters ( SLC28A) in the Human Placenta: Effects of Gestation Age and Prototype Differentiation-Affecting Agents. Mol Pharm 2018; 15:2732-2741. [PMID: 29782174 DOI: 10.1021/acs.molpharmaceut.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Equilibrative ( SLC29A) and concentrative ( SLC28A) nucleoside transporters contribute to proper placental development and mediate uptake of nucleosides/nucleoside-derived drugs. We analyzed placental expression of SLC28A mRNA during gestation. Moreover, we studied in choriocarcinoma-derived BeWo cells whether SLC29A and SLC28A mRNA levels can be modulated by activity of adenylyl cyclase, retinoic acid receptor activation, CpG islands methylation, or histone acetylation, using forskolin, all- trans-retinoic acid, 5-azacytidine, and sodium butyrate/sodium valproate, respectively. We found that expression of SLC28A1, SLC28A2, and SLC28A3 increases during gestation and reveals considerable interindividual variability. SLC28A2 was shown to be a dominant subtype in the first-trimester and term human placenta, while SLC28A1 exhibited negligible expression in the term placenta only. In BeWo cells, we detected mRNA of SLC28A2 and SLC28A3. Levels of the latter were affected by 5-azacytidine and all- trans-retinoic acid, while the former was modulated by sodium valproate (but not sodium butyrate), all- trans-retinoic acid, 5-azacytidine, and forskolin that caused 25-fold increase in SLC28A2 mRNA; we documented by analysis of syncytin-1 that the observed changes in SLC28A expression do not correlate with the morphological differentiation state of BeWo cells. Upregulated SLC28A2 mRNA was reflected in elevated uptake of [3H]-adenosine, high-affinity substrate of concentrative nucleoside transporter 2. Using KT-5720 and inhibitors of phosphodiesterases, we subsequently confirmed importance of cAMP/protein kinase A pathway in SLC28A2 regulation. On the other hand, SLC29A genes exhibited constitutive expression and none of the tested compounds increased SLC28A1 expression to detectable levels. In conclusion, we provide the first evidence that methylation status and activation of retinoic acid receptor affect placental SLC28A2 and SLC28A3 transcription and substrates of concentrative nucleoside transporter 2 might be taken up in higher extent in placentas with overactivated cAMP/protein kinase A pathway and likely in the term placenta.
Collapse
Affiliation(s)
- Lucie Jiraskova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Sara Karbanova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| |
Collapse
|
73
|
Evanger N, Szkotak A, Stang L, Bungard TJ. Apixaban Concentration with and without Coadministration of Carbamazepine: A Case with No Apparent Interaction. Can J Hosp Pharm 2017; 70:463-467. [PMID: 29299007 DOI: 10.4212/cjhp.v70i6.1714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Norelle Evanger
- , BScPharm, is with Pharmacy Services, University of Alberta Hospital, Alberta Health Services, Edmonton, Alberta
| | - Artur Szkotak
- , MD, PhD, is with Laboratory Services, University of Alberta Hospital, Alberta Health Services, Edmonton, Alberta
| | - Linda Stang
- , MLT, is with Laboratory Services, University of Alberta Hospital, Alberta Health Services, Edmonton, Alberta
| | - Tammy J Bungard
- , BSP, PharmD, is with the Division of Cardiology, University of Alberta, Edmonton, Alberta
| |
Collapse
|
74
|
Palazzo A, Trunfio M, Pirriatore V, Milesi M, De Nicolò A, Alcantarini C, D’Avolio A, Bonora S, Di Perri G, Calcagno A. Lower dolutegravir plasma concentrations in HIV-positive patients receiving valproic acid. J Antimicrob Chemother 2017; 73:826-827. [DOI: 10.1093/jac/dkx461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Annagloria Palazzo
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Veronica Pirriatore
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Maurizio Milesi
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Amedeo De Nicolò
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Chiara Alcantarini
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonio D’Avolio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
75
|
Therapeutic Drug Monitoring of Clobazam and Its Metabolite-Impact of Age and Comedication on Pharmacokinetic Variability. Ther Drug Monit 2017; 38:350-7. [PMID: 26751267 DOI: 10.1097/ftd.0000000000000272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Clobazam (CLB) has been used as an antiepileptic drug for several decades. There is still insufficient data regarding its pharmacokinetic variability in clinical practice. The purpose of this study was to investigate pharmacokinetic variability of CLB with emphasis on the impact of age and comedication in patients with epilepsy. METHODS Serum concentration measurements of CLB and its metabolite N-desmethylclobazam (NCLB), as well as demographic and clinical data were retrieved from the routine therapeutic drug monitoring service at the National Center for Epilepsy, Norway, 2009-2013. NCLB/CLB and total (CLB + NCLB), CLB and NCLB concentration/dose (C/D) ratios were calculated. RESULTS 550 patients (296 women/254 men), average age 27 years (range 1-86), were included. The interindividual pharmacokinetic variability was extensive, as illustrated by a 100-fold variability in serum concentration compared with dose (total C/D ratio 0.03-3.29 µmol·L·mg). The CLB C/D ratio was 36% lower in young children (2-9 years) than in adults (18-64 years), reflecting a higher clearance. In patients receiving phenytoin, felbamate, stiripentol, oxcarbazepine or eslicarbazepine acetate, valproate, phenobarbital, zonisamide or carbamazepine one or more of the calculated ratios were significantly different from that in patients receiving no or neutral comedications. The mean values for the different groups were in the order of 20%-230% of C/D ratios in the neutral group and 200%-950% of the NCLB/CLB ratio. CONCLUSIONS The pharmacokinetic variability of CLB and its metabolite NCLB in clinical practice is extensive, and is influenced by drug-drug interactions, age, and pharmacogenetics. Therapeutic drug monitoring of CLB and NCLB is therefore valuable in patient management.
Collapse
|
76
|
The Impact of Pharmacokinetic Interactions With Eslicarbazepine Acetate Versus Oxcarbazepine and Carbamazepine in Clinical Practice. Ther Drug Monit 2017; 38:499-505. [PMID: 27414974 DOI: 10.1097/ftd.0000000000000306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Eslicarbazepine acetate (ESL) is a new anti-epileptic drug (AED) chemically related to oxcarbazepine (OXC) and carbamazepine (CBZ) and is increasingly used in clinical practice. The purpose of the study was to investigate 2-way pharmacokinetic interactions between ESL and other AEDs as compared to OXC and CBZ. METHODS Anonymous data regarding age, gender, use of AEDs, daily doses and serum concentration measurements of ESL, OXC, CBZ and lamotrigine (LTG) and other AEDs were retrieved from 2 therapeutic drug monitoring (TDM) databases in Norway. Drugs were categorized according to their known potential for interactions. Concentration/dose (C/D) ratios were calculated. RESULTS Data from 1100 patients were available. The C/D ratios of ESL and OXC were unchanged in combination with enzyme-inducing AEDs or valproate (VPA). The C/D ratio of CBZ decreased by 40% and 22% in combination with other enzyme-inducing AEDs or VPA, respectively, pointing to an increased clearance. ESL demonstrated no significant enzyme-inducing effect on LTG metabolism although there was a 20% and 34% decrease in the C/D ratio of LTG in combination with OXC and CBZ, respectively. CONCLUSIONS Possible pharmacokinetic interactions have been studied for ESL as compared to OXC and CBZ. The pharmacokinetics of ESL is not affected by enzyme-inducing AEDs or VPA and does not affect the metabolism of LTG in contrast to OXC and CBZ. The study demonstrates the value of using TDM databases to explore the potential for pharmacokinetic interactions of new AEDs.
Collapse
|
77
|
In Vitro Assessment of the Effect of Antiepileptic Drugs on Expression and Function of ABC Transporters and Their Interactions with ABCC2. Molecules 2017; 22:molecules22101484. [PMID: 28961159 PMCID: PMC6151573 DOI: 10.3390/molecules22101484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 01/16/2023] Open
Abstract
ABC transporters have a significant role in drug disposition and response and various studies have implicated their involvement in epilepsy pharmacoresistance. Since genetic studies till now are inconclusive, we thought of investigating the role of xenobiotics as transcriptional modulators of ABC transporters. Here, we investigated the effect of six antiepileptic drugs (AEDs) viz. phenytoin, carbamazepine, valproate, lamotrigine, topiramate and levetiracetam, on the expression and function of ABCB1, ABCC1, ABCC2 and ABCG2 in Caco2 and HepG2 cell lines through real time PCR, western blot and functional activity assays. Further, the interaction of AEDs with maximally induced ABCC2 was studied. Carbamazepine caused a significant induction in expression of ABCB1 and ABCC2 in HepG2 and Caco2 cells, both at the transcript and protein level, together with increased functional activity. Valproate caused a significant increase in the expression and functional activity of ABCB1 in HepG2 only. No significant effect of phenytoin, lamotrigine, topiramate and levetiracetam on the transporters under study was observed in either of the cell lines. We demonstrated the interaction of carbamazepine and valproate with ABCC2 with ATPase and 5,6-carboxyfluorescein inhibition assays. Thus, altered functionality of ABCB1 and ABCC2 can affect the disposition and bioavailability of administered drugs, interfering with AED therapy.
Collapse
|
78
|
Pitetzis DA, Spilioti MG, Yovos JG, Yavropoulou MP. The effect of VPA on bone: From clinical studies to cell cultures—The molecular mechanisms revisited. Seizure 2017; 48:36-43. [DOI: 10.1016/j.seizure.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 01/10/2023] Open
|
79
|
Valproic acid malabsorption in 30 year-old female patient - Case study. Neurol Neurochir Pol 2017; 51:259-262. [PMID: 28341336 DOI: 10.1016/j.pjnns.2017.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
Abstract
AIM Valproic acid (VPA) is used in epilepsy treatment and as a stabilizer in bipolar affective disorder for over 40 years. Although, the pharmacokinetic properties of valproic acid are well known, it is often forgotten that the formulation of the drug significantly influences its gastrointestinal absorption. CASE We are describing the case of 30 year-old female patient, diagnosed at the age of 13 with juvenile myoclonic epilepsy. Complete ineffectiveness of the treatment was caused by malabsorption of sodium valproate and valproic acid in the patient. The change of the drug formulation resulted in a several times higher bioavailability of the drug and a partial improvement of the patient's clinical condition. COMMENTARY Low concentration of valproic acid after administration the slow-released tablets are usually observed. However, a low bioavailability beside the bad compliance should be considered when the minimal level is extremely low during therapy. It is known that form of the drug, beside presence of food and its components, as well as gastrointestinal tract condition or interactions with other drugs can influence the drug level. Modification of the formulation of the drug may lead to improvement of absorption and increase its effectiveness.
Collapse
|
80
|
Tóth K, Csukly G, Sirok D, Belic A, Kiss Á, Háfra E, Déri M, Menus Á, Bitter I, Monostory K. Potential Role of Patients' CYP3A-Status in Clozapine Pharmacokinetics. Int J Neuropsychopharmacol 2017; 20:529-537. [PMID: 28340122 PMCID: PMC5492788 DOI: 10.1093/ijnp/pyx019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/17/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The atypical antipsychotic clozapine is effective in treatment-resistant schizophrenia; however, the success or failure of clozapine therapy is substantially affected by the variables that impact the clozapine blood concentration. Thus, elucidating the inter-individual differences in clozapine pharmacokinetics can facilitate the personalized therapy. METHODS Since a potential role in clozapine metabolism is assigned to CYP1A2, CYP2C19, CYP2D6 and CYP3A enzymes, the association between the patients' CYP status (CYP genotypes, CYP expression) and clozapine clearance was evaluated in 92 psychiatric patients. RESULTS The patients' CYP2C19 or CYP2D6 genotypes and CYP1A2 expression seemed to have no effect on clozapine serum concentration, whereas CYP3A4 expression significantly influenced the normalized clozapine concentration (185.53±56.53 in low expressers vs 78.05±29.57 or 66.52±0.25 (ng/mL)/(mg/kg) in normal or high expressers, P<.0001), in particular that the patients expressed CYP1A2 at a relatively low level. The functional CYP3A5*1 allele seemed to influence clozapine concentrations in those patients who expressed CYP3A4 at low levels. The dose requirement for the therapeutic concentration of clozapine was substantially lower in low CYP3A4 expresser patients than in normal/high expressers (2.18±0.64 vs 4.98±1.40 mg/kg, P<.0001). Furthermore, significantly higher plasma concentration ratios of norclozapine/clozapine and clozapine N-oxide/clozapine were observed in the patients displaying normal/high CYP3A4 expression than in the low expressers. CONCLUSION Prospective assaying of CYP3A-status (CYP3A4 expression, CYP3A5 genotype) may better identify the patients with higher risk of inefficiency or adverse reactions and may facilitate the improvement of personalized clozapine therapy; however, further clinical studies are required to prove the benefit of CYP3A testing for patients under clozapine therapy.
Collapse
Affiliation(s)
- Katalin Tóth
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Gábor Csukly
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Dávid Sirok
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Ales Belic
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Ádám Kiss
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Edit Háfra
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Máté Déri
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Ádám Menus
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - István Bitter
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| | - Katalin Monostory
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest Hungary (Ms Tóth, Mr Sirok, Mr Kiss, Ms Háfra, Mr Déri, and Dr Monostory); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest Hungary (Drs Csukly, Menus, and Bitter); Toxi-Coop Toxicological Research Center, Budapest Hungary (Mr Sirok); University of Ljubljana, Ljubljana Slovenia (Dr Belic)
| |
Collapse
|
81
|
Liu J, Chen Z, Chen H, Hou Y, Lu W, He J, Tong H, Zhou Y, Cai W. Genetic Polymorphisms Contribute to the Individual Variations of Imatinib Mesylate Plasma Levels and Adverse Reactions in Chinese GIST Patients. Int J Mol Sci 2017; 18:ijms18030603. [PMID: 28335376 PMCID: PMC5372619 DOI: 10.3390/ijms18030603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/27/2017] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Imatinib mesylate (IM) has dramatically improved the outcomes of gastrointestinal stromal tumor (GIST) patients. However, the clinical responses of IM may considerably vary among single individuals. This study aimed to investigate the influences of genetic polymorphisms of drug-metabolizing enzyme (CYP3A4), transporters (ABCB1, ABCG2), and nuclear receptor (Pregnane X Receptor (PXR, encoded by NR1I2)) on IM plasma levels and related adverse reactions in Chinese GIST patients. A total of 68 Chinese GIST patients who have received IM 300–600 mg/day were genotyped for six single nucleotide polymorphisms (SNPs) (CYP3A4 rs2242480; ABCB1 rs1045642; ABCG2 rs2231137; NRI12 rs3814055, rs6785049, rs2276706), and the steady-state IM trough plasma concentrations were measured by a validated HPLC method. There were statistically significant variances in the steady-state IM trough plasma concentrations (from 272.22 to 4365.96 ng/mL). Subjects of GG in rs2242480, T allele carriers in rs1045642 and CC in rs3814055 had significantly higher steady-state IM dose-adjusted trough plasma concentrations. Subjects of CC in rs3814055 had significantly higher incidence rate of edema. The genetic polymorphisms of rs2242480, rs1045642, rs3814055 were significantly associated with IM plasma levels, and the genetic variations of rs3814055 were significantly associated with the incidence rate of edema in Chinese GIST patients. The current results may serve as valuable fundamental knowledge for IM therapy in Chinese GIST patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhiyu Chen
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China.
| | - Hanmei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Junyi He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
82
|
Kawauchi S, Nakamura T, Horibe S, Tanahashi T, Mizuno S, Hamaguchi T, Rikitake Y. Down-regulation of hepatic CYP3A1 expression in a rat model of indomethacin-induced small intestinal ulcers. Biopharm Drug Dispos 2016; 37:522-532. [PMID: 27666336 DOI: 10.1002/bdd.2042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
The liver and the small intestine are closely related in the processes of drug absorption, metabolism and excretion via the enterohepatic circulation. Small intestinal ulcers are a serious adverse effect commonly occurring in patients taking nonsteroidal anti-inflammatory drugs. However, the influence of small intestinal ulcers on drug metabolism has not been established. This study examined the expressional changes of cytochrome P450 (CYP) in the liver using an indomethacin-induced small intestinal ulcer rat model and in cultured cells. After the administration of indomethacin to rats, ulcers were observed in the small intestine and expression of CYP3A1, the major isoform of hepatic CYP, was significantly down-regulated in the liver, accompanied by increased expression of inducible nitric oxide synthase, tumor necrosis factor α, interleukin (IL)-1β and IL-6, in the small intestine and the liver. The indomethacin-induced small intestinal ulceration, the increase in inflammatory mediators in the small intestine and the liver, and the down-regulation of CYP3A1 expression in the liver were inhibited by co-administration of ampicillin, an antibacterial agent. In the human hepatic HepG2 cell line, IL-1β, IL-6 and NOC-18, an NO donor, caused down-regulation of CYP3A4, the major isoform of human CYP3A. Thus, this study suggests that after indomethacin treatment small intestinal ulcers cause the down-regulation of CYP3A1 in the rat liver through an increase in ulcer-derived inflammatory mediators. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shoji Kawauchi
- Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tsutomu Nakamura
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Sayo Horibe
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Toshihito Tanahashi
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan.,Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shigeto Mizuno
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan.,Endoscopy Department, Kindai University Nara Hospital, 1248-1, Otoda-cho, Ikoma, 630-0293, Japan
| | - Tsuneo Hamaguchi
- Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yoshiyuki Rikitake
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakitamachi, Higashinada-ku, Kobe, 658-8558, Japan.,Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
83
|
T-2 toxin induces the expression of porcine CYP3A22 via the upregulation of the transcription factor, NF-Y. Biochim Biophys Acta Gen Subj 2016; 1860:2191-201. [DOI: 10.1016/j.bbagen.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
|
84
|
Interactions between non-vitamin K oral anticoagulants and antiepileptic drugs. Epilepsy Res 2016; 126:98-101. [DOI: 10.1016/j.eplepsyres.2016.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/24/2016] [Indexed: 01/16/2023]
|
85
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
86
|
Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier. Pharmacol Res 2016; 109:32-44. [DOI: 10.1016/j.phrs.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022]
|
87
|
Wu J, Lin N, Li F, Zhang G, He S, Zhu Y, Ou R, Li N, Liu S, Feng L, Liu L, Liu Z, Lu L. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug-drug interactions. Sci Rep 2016; 6:25343. [PMID: 27139035 PMCID: PMC4853792 DOI: 10.1038/srep25343] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
The Aconitum species, which mainly contain bioactive Aconitum alkaloids, are frequently administered concomitantly with other herbal medicines or chemical drugs in clinics. The potential risk of drug–drug interactions (DDIs) arising from co-administration of Aconitum alkaloids and other drugs against specific targets such as P-glycoprotein (P-gp) must be evaluated. This study focused on the effects of three representative Aconitum alkaloids: aconitine (AC), benzoylaconine (BAC), and aconine, on the expression and activity of P-gp. We observed that Aconitum alkaloids increased P-gp expression in LS174T and Caco-2 cells in the order AC > BAC > aconine. Nuclear receptors were involved in the induction of P-gp. AC and BAC increased the P-gp transport activity. Strikingly, intracellular ATP levels and mitochondrial mass also increased. Furthermore, exposure to AC decreased the toxicity of vincristine and doxorubicin towards the cells. In vivo, AC significantly up-regulated the P-gp protein levels in the jejunum, ileum, and colon of FVB mice, and protected them against acute AC toxicity. Taken together, the findings of our in vitro and in vivo experiments indicate that AC can induce P-gp expression, and that co-administration of AC with P-gp substrate drugs may cause DDIs. Our findings have important implications for Aconitum therapy in clinics.
Collapse
Affiliation(s)
- Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Na Lin
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Fangyuan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Guiyu Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Shugui He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yuanfeng Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Rilan Ou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Shuqiang Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Lizhi Feng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
88
|
Lionetto L, Borro M, Curto M, Capi M, Negro A, Cipolla F, Gentile G, Martelletti P. Choosing the safest acute therapy during chronic migraine prophylactic treatment: pharmacokinetic and pharmacodynamic considerations. Expert Opin Drug Metab Toxicol 2016; 12:399-406. [DOI: 10.1517/17425255.2016.1154042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
89
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
90
|
Ma BL, Ma YM. Pharmacokinetic herb–drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab Rev 2016; 48:1-26. [DOI: 10.3109/03602532.2015.1124888] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
91
|
Hamed SA. Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs. Expert Rev Clin Pharmacol 2015; 9:267-286. [PMID: 26589104 DOI: 10.1586/17512433.2016.1123617] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Data from cross-sectional and prospective studies revealed that patients with epilepsy and on long-term treatment with antiepileptic drugs (AEDs) are at increased risk for metabolic bone diseases. Bone diseases were reported in about 50% of patients on AEDs. Low bone mineral density, osteopenia/osteoporosis, osteomalacia, rickets, altered concentration of bone turnover markers and fractures were reported with phenobarbital, phenytoin, carbamazepine, valproate, oxcarbazepine and lamotrigine. The mechanisms for AEDs-induced bone diseases are heterogeneous and include hypovitaminosis D, hypocalcemia and direct acceleration of bone loss and/or reduction of bone formation. This article reviews the evidence, predictors and mechanisms of AEDs-induced bone abnormalities and its clinical implications. For patients on AEDs, regular monitoring of bone health is recommended. Prophylactic administration of calcium and vitamin D is recommended for all patients. Treatment doses of calcium and vitamin D and even anti-resorptive drug therapy are reserved for patients at high risk of pathological fracture.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
92
|
Markers of bone turnover in patients with epilepsy and their relationship to management of bone diseases induced by antiepileptic drugs. Expert Rev Clin Pharmacol 2015. [PMID: 26589104 DOI: org/10.1586/17512433.2016.1123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Data from cross-sectional and prospective studies revealed that patients with epilepsy and on long-term treatment with antiepileptic drugs (AEDs) are at increased risk for metabolic bone diseases. Bone diseases were reported in about 50% of patients on AEDs. Low bone mineral density, osteopenia/osteoporosis, osteomalacia, rickets, altered concentration of bone turnover markers and fractures were reported with phenobarbital, phenytoin, carbamazepine, valproate, oxcarbazepine and lamotrigine. The mechanisms for AEDs-induced bone diseases are heterogeneous and include hypovitaminosis D, hypocalcemia and direct acceleration of bone loss and/or reduction of bone formation. This article reviews the evidence, predictors and mechanisms of AEDs-induced bone abnormalities and its clinical implications. For patients on AEDs, regular monitoring of bone health is recommended. Prophylactic administration of calcium and vitamin D is recommended for all patients. Treatment doses of calcium and vitamin D and even anti-resorptive drug therapy are reserved for patients at high risk of pathological fracture.
Collapse
|
93
|
Singh R, Kuai D, Guziewicz KE, Meyer J, Wilson M, Lu J, Smith M, Clark E, Verhoeven A, Aguirre GD, Gamm DM. Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration. Mol Ther 2015; 23:1700-1711. [PMID: 26300224 PMCID: PMC4817951 DOI: 10.1038/mt.2015.141] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022] Open
Abstract
Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies.
Collapse
Affiliation(s)
- Ruchira Singh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA
| | - David Kuai
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jackelyn Meyer
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Wilson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jianfeng Lu
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Molly Smith
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric Clark
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amelia Verhoeven
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
94
|
Koutsounas I, Giaginis C, Alexandrou P, Zizi-Serbetzoglou A, Patsouris E, Kouraklis G, Theocharis S. Pregnane X Receptor Expression in Human Pancreatic Adenocarcinoma: Associations With Clinicopathologic Parameters, Tumor Proliferative Capacity, Patients' Survival, and Retinoid X Receptor Expression. Pancreas 2015; 44:1134-40. [PMID: 26355550 DOI: 10.1097/mpa.0000000000000405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Pregnane X receptor (PXR) has been involved in human malignancy, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The present study aimed to assess the clinical significance of PXR in pancreatic adenocarcinoma. METHODS Pregnane X receptor and its heterodimers' PXR/retinoid X receptor α (RXR-α), RXR-β, and RXR-γ expression were assessed immunohistochemically on tumoral samples from 55 pancreatic adenocarcinoma patients and were associated with clinicopathologic parameters, tumor proliferative capacity, and patients' survival. RESULTS Enhanced PXR expression was noted in 24 (43.6%) of 55 pancreatic adenocarcinoma cases. Pancreatic adenocarcinoma patients presenting increased histological grade of tumor differentiation showed a significant increased incidence of elevated PXR expression (P = 0.023). Enhanced PXR/RXR-β expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.005 and P = 0.003, respectively). Elevated PXR/RXR-γ expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.012 and P = 0.014, respectively) and borderline with the absence of lymph node metastases (P = 0.056). In addition, pancreatic adenocarcinoma patients presenting enhanced PXR/RXR-γ expression showed marginally longer survival times compared with those with decreased expression (log-rank test, P = 0.053). CONCLUSIONS This study supported evidence that PXR and its copartners' overexpression may be associated with favorable clinicopathologic parameters and better outcome in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ioannis Koutsounas
- From the *First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens; †Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos; ‡Department of Pathology, Tzaneio General Hospital, Piraeus; and §Second Department of Propedeutic Surgery, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
95
|
Zhang Y, Zheng YX, Zhu JM, Zhang JM, Zheng Z. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: a meta-analysis. J Zhejiang Univ Sci B 2015; 16:611-21. [PMID: 26160719 PMCID: PMC4506952 DOI: 10.1631/jzus.b1500021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/05/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of our meta-analysis was to assess the effects of antiepileptic drugs on bone mineral density and bone metabolism in epileptic children. METHODS Searches of PubMed and Web of Science were undertaken to identify studies evaluating the association between antiepileptic drugs and bone mineral density and bone metabolism. RESULTS A total of 22 studies with 1492 subjects were included in our research. We identified: (1) a reduction in bone mineral density at lumbar spine (standardized mean difference (SMD)=-0.30, 95% confidence interval (CI) [-0.61, -0.05]), trochanter (mean difference (MD)=-0.07, 95% CI [-0.10, -0.05]), femoral neck (MD=-0.05, 95% CI [-0.09, -0.02]), and total body bone mineral density (MD=-0.33, 95% CI [-0.51, -0.15]); (2) a reduction in 25-hydroxyvitamin D (MD=-3.37, 95% CI [-5.94, -0.80]) and an increase in serum alkaline phosphatase (SMD=0.71, 95% CI [0.38, 1.05]); (3) no significant changes in serum parathyroid hormone, calcium, or phosphorus. CONCLUSIONS Our meta-analysis suggests that treatment with antiepileptic drugs may be associated with decreased bone mineral density in epileptic children.
Collapse
Affiliation(s)
- Ying Zhang
- Neuroscience Care Unit, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yu-xin Zheng
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jun-ming Zhu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-min Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhe Zheng
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
96
|
Imrichova D, Messingerova L, Seres M, Kavcova H, Pavlikova L, Coculova M, Breier A, Sulova Z. Selection of resistant acute myeloid leukemia SKM-1 and MOLM-13 cells by vincristine-, mitoxantrone- and lenalidomide-induced upregulation of P-glycoprotein activity and downregulation of CD33 cell surface exposure. Eur J Pharm Sci 2015; 77:29-39. [PMID: 26002042 DOI: 10.1016/j.ejps.2015.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
Bone marrow cells and peripheral blood mononuclear cells obtained from both acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients contain upregulated levels of cell surface antigen CD33 compared with healthy controls. This difference enables the use of humanized anti-CD33 antibody conjugated to cytotoxic agents for CD33 targeted immunotherapy. However, the expression of the membrane-bound drug transporter P-glycoprotein (P-gp) has been shown to be critical for resistance against the cytotoxicity of a humanized anti-CD33 antibody conjugated to maytansine-derivative DM4. The aim of the present study was to examine whether the expression of P-gp in AML cell lines is associated with changes in CD33 expression. For this purpose, we established drug resistant variants of SKM-1 and MOLM-13 AML cell lines via the selection of parental cells for resistance to vincristine, mitoxantrone and lenalidomide. All three substances induced a multidrug resistance (MDR) phenotype in SKM-1 cells associated with strong upregulation of P-gp and downregulation of CD33. However, in MOLM-13 cells, the upregulation of P-gp and downregulation of CD33 were present only in cells selected for resistance to vincristine and mitoxantrone but not lenalidomide. Inverse expression of P-gp and CD33 were observed in all resistant variants of SKM-1 and MOLM-13 cells. The MDR phenotype of resistant variants of SKM-1 and MOLM-13 cells was associated with alterations in apoptotic regulatory proteins and downregulation of the multidrug resistance associated protein 1 and breast cancer resistance protein.
Collapse
Affiliation(s)
- D Imrichova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - L Messingerova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic; Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic
| | - M Seres
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - H Kavcova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - L Pavlikova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | - M Coculova
- Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic
| | - A Breier
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic; Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovak Republic.
| | - Z Sulova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic.
| |
Collapse
|
97
|
Cherian MT, Chai SC, Chen T. Small-molecule modulators of the constitutive androstane receptor. Expert Opin Drug Metab Toxicol 2015; 11:1099-114. [PMID: 25979168 DOI: 10.1517/17425255.2015.1043887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The constitutive androstane receptor (CAR) induces drug-metabolizing enzymes for xenobiotic metabolism. AREAS COVERED This review covers recent advances in elucidating the biological functions of CAR and its modulation by a growing number of agonists and inhibitors. EXPERT OPINION Extrapolation of animal CAR function to that of humans should be carefully scrutinized, particularly when rodents are used in evaluating the metabolic profile and carcinogenic properties of clinical drugs and environmental chemicals. Continuous efforts are needed to discover novel CAR inhibitors, with extensive understanding of their inhibitory mechanism, species selectivity, and discriminating power against other xenobiotic sensors.
Collapse
Affiliation(s)
- Milu T Cherian
- Postdoctoral fellow, St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | |
Collapse
|
98
|
The effects of drugs with immunosuppressive or immunomodulatory activities on xenobiotics-metabolizing enzymes expression in primary human hepatocytes. Toxicol In Vitro 2015; 29:1088-99. [PMID: 25929522 DOI: 10.1016/j.tiv.2015.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022]
Abstract
In this paper we investigated the effects of several drugs used in transplant medicine, i.e. cyclosporine A, tacrolimus, rapamycin, everolimus, mycophenolate mofetil, fluvastatin and rosuvastatin, on the expression of major drug-metabolizing enzymes in human hepatocytes. Moreover, we tested the ability of these drugs to affect transcriptional activity of glucocorticoid (GR) and aryl hydrocarbon receptor (AhR). We found that most of tested compounds did not induce expression of CYP1A1/1A2/3A4/2A6/2B6/2C9 mRNAs in human hepatocytes. Slight induction was observed for CYP2A6/2C9 mRNAs and CYP2A6 protein in the rapamycin-treated hepatocytes. Decrease of CYP2A6 and CYP2B6 proteins was observed in rosuvastatin-treated cells. Mycophenolate mofetil antagonized the effects of dexamethasone on GR but it potentiated the action of dioxin on AhR. Induction of CYP1A1 mRNA in HepG2 cells by dioxin was modestly antagonized by mycophenolate mofetil, while the induction by benzo[a]pyren or S-omeprazole was significantly potentiated by this drug. In general, tested compounds can be considered safe in the terms of possible drug-drug interaction caused by induction of drug-metabolizing cytochromes P450. Nevertheless, mycophenolate mofetil is of possible concern and its combination with drugs, environmental pollutants or food constituents, which activate AhR, may represent a significant toxicological risk.
Collapse
|
99
|
Three patients needing high doses of valproic Acid to get therapeutic concentrations. Case Rep Psychiatry 2015; 2015:542862. [PMID: 26000191 PMCID: PMC4427013 DOI: 10.1155/2015/542862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/08/2015] [Indexed: 11/17/2022] Open
Abstract
Valproic acid (VPA) can autoinduce its own metabolism. Cases requiring VPA doses >4000 mg/day to obtain therapeutic plasma concentrations, such as these 3 cases, have never been published. Case 1 received VPA for seizures and schizophrenia and had >50 VPA concentrations in 4 years. A high dose of 5,250 mg/day of VPA concentrate was prescribed for years but this dose led to an intoxication when switched to the enterocoated divalproex sodium formulation, requiring a normal dose of 2000 mg/day. VPA metabolic capacity was significantly higher (t = −9.6; df = 6.3, p < 0.001) during the VPA concentrate therapy, possibly due to autoinduction in that formulation. Case 2 had VPA for schizoaffective psychosis with 10 VPA concentrations during an 8-week admission. To maintain a VPA level ≥50 μg/mL, VPA doses increased from 1500 to 4000 mg/day. Case 3 had tuberous sclerosis and epilepsy and was followed up for >4 years with 137 VPA concentrations. To maintain VPA concentrations ≥50 μg/mL, VPA doses increased from 3,375 to 10,500 mg/day. In Cases 2 and 3, the duration of admission and the VPA dose were strongly correlated (r around 0.90; p < 0.001) with almost no change after controlling for VPA concentrations, indicating progressive autoinduction that increased with time.
Collapse
|
100
|
Joyce H, McCann A, Clynes M, Larkin A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin Drug Metab Toxicol 2015; 11:795-809. [PMID: 25836015 DOI: 10.1517/17425255.2015.1028356] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. AREAS COVERED ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. EXPERT OPINION The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.
Collapse
Affiliation(s)
- Helena Joyce
- Dublin City University, National Institute for Cellular Biotechnology (NICB) , Glasnevin, Dublin 9 , Ireland +353 1 7005700 ; +353 1 7005484 ;
| | | | | | | |
Collapse
|