51
|
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide and superoxide, which reacts with proteins, lipids, and DNA, and promotes cytotoxic and proinflammatory responses. Here, we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidences demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATPase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly(ADP-ribose) polymerase, which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure) and endothelial and epithelial injury (leading to endothelial and epithelial hyperpermeability and barrier dysfunction), as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large-animal models of circulatory shock.
Collapse
|
52
|
Sakamoto Y, Mashiko K, Obata T, Yokota H. Effectiveness of endotoxin scattering photometry for determining the efficacy of polymyxin B-immobilized fiber treatment in septic shock: report of a case. J NIPPON MED SCH 2010; 77:119-22. [PMID: 20453426 DOI: 10.1272/jnms.77.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The limulus test, which has been established as a test for endotoxin measurement, is associated with problems, including that posed by the presence of a response inhibitor factor and the longer time needed for the measurement of low concentrations. On the other hand, the technique of direct hemoperfusion with a polymyxin B immobilized fiber column (DHP-PMX) was developed in Japan in 1994 and has been used for the control of endotoxemia in septic shock. The limulus test, which is a common endotoxin measurement test, has several problems with regard to sensitivity. Therefore, this test is no longer used to determine the effectiveness of DHP-PMX. Here, we describe a patient presenting with colonic perforation who recovered from septic shock with DHP-PMX. This treatment effect was reflected by a decrease in plasma endotoxin levels as demonstrated more readily with endotoxin scattering photometry assay than with the standard limulus test. We conclude that endotoxin measurement with endotoxin scattering photometry is superior to nephelometry in patients with endotoxemia.
Collapse
Affiliation(s)
- Yuichiro Sakamoto
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Nippon Medical School.
| | | | | | | |
Collapse
|
53
|
Cuez T, Korkmaz B, Buharalioglu CK, Sahan-Firat S, Falck J, Malik KU, Tunctan B. A synthetic analogue of 20-HETE, 5,14-HEDGE, reverses endotoxin-induced hypotension via increased 20-HETE levels associated with decreased iNOS protein expression and vasodilator prostanoid production in rats. Basic Clin Pharmacol Toxicol 2009; 106:378-88. [PMID: 20002062 DOI: 10.1111/j.1742-7843.2009.00501.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin (ET)-induced hypotension and vascular hyporeactivity and plays a major contributory role in the multiorgan failure. Endotoxic shock is also associated with an increase in vasodilator prostanoids as well as a decrease in endothelial NO synthase (eNOS) and cytochrome P450 4A protein expression, and production of a vasoconstrictor arachidonic acid product, 20-hydroxyeicosatetraenoic acid (20-HETE). The aim of this study was to investigate the effects of a synthetic analogue of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), on the ET-induced changes in eNOS, iNOS and heat shock protein 90 (hsp90) expression as well as 20-HETE and vasodilator prostanoid (6-keto-PGF(1alpha) and PGE(2)) production. ET-induced fall in blood pressure and rise in heart rate were associated with an increase in iNOS protein expression and a decrease in eNOS protein expression in heart, thoracic aorta, kidney and superior mesenteric artery. ET did not change hsp90 protein expression in the tissues. ET-induced changes in eNOS and iNOS protein expression were associated with increased 6-keto-PGF(1alpha) and PGE(2) levels and a decrease in 20-HETE levels, in the serum and kidney. These effects of ET on the iNOS protein expression and 6-keto-PGF(1alpha), PGE(2) and 20-HETE levels were prevented by 5,14-HEDGE. Furthermore, a competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, prevented the effects of 5,14-HEDGE on the ET-induced changes in systemic and renal levels of these prostanoids and 20-HETE. These data are consistent with the view that an increase in systemic and renal 20-HETE levels associated with a decrease in iNOS protein expression and vasodilator prostanoid production contributes to the effect of 5,14-HEDGE to prevent the hypotension during rat endotoxemia.
Collapse
Affiliation(s)
- Tuba Cuez
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | | | | | | | | | | |
Collapse
|
54
|
Sharma S, Smith A, Kumar S, Aggarwal S, Rehmani I, Snead C, Harmon C, Fineman J, Fulton D, Catravas JD, Black SM. Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury: role of asymmetric dimethylarginine. Vascul Pharmacol 2009; 52:182-90. [PMID: 19962451 DOI: 10.1016/j.vph.2009.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/02/2009] [Accepted: 11/29/2009] [Indexed: 11/30/2022]
Abstract
Acute lung injury (ALI) is associated with severe alterations in lung structure and function and is characterized by hypoxemia, pulmonary edema, low lung compliance and widespread capillary leakage. Asymmetric dimethylarginine (ADMA), a known cardiovascular risk factor, has been linked to endothelial dysfunction and the pathogenesis of a number of cardiovascular diseases. However, the role of ADMA in the pathogenesis of ALI is less clear. ADMA is metabolized via hydrolytic degradation to l-citrulline and dimethylamine by the enzyme, dimethylarginine dimethylaminohydrolase (DDAH). Recent studies suggest that lipopolysaccharide (LPS) markedly increases the level of ADMA and decreases DDAH activity in endothelial cells. Thus, the purpose of this study was to determine if alterations in the ADMA/DDAH pathway contribute to the development of ALI initiated by LPS-exposure in mice. Our data demonstrate that LPS exposure significantly increases ADMA levels and this correlates with a decrease in DDAH activity but not protein levels of either DDAH I or DDAH II isoforms. Further, we found that the increase in ADMA levels cause an early decrease in nitric oxide (NO(x)) and a significant increase in both NO synthase (NOS)-derived superoxide and total nitrated lung proteins. Finally, we found that decreasing peroxynitrite levels with either uric acid or Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTymPyp) significantly attenuated the lung leak associated with LPS-exposure in mice suggesting a key role for protein nitration in the progression of ALI. In conclusion, this is the first study that suggests a role of the ADMA/DDAH pathway during the development of ALI in mice and that ADMA may be a novel therapeutic biomarker to ascertain the risk for development of ALI.
Collapse
|
55
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
56
|
CARDIOVASCULAR COLLAPSE AND VASCULAR PERMEABILITY CHANGES IN AN OVINE MODEL OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS SEPSIS. Shock 2009; 32:621-5. [DOI: 10.1097/shk.0b013e3181a4fd01] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Hagar HH. An insight into the possible protective effect of pyrrolidine dithiocarbamate against lipopolysaccharide-induced oxidative stress and acute hepatic injury in rats. Saudi Pharm J 2009; 17:259-67. [PMID: 23960709 DOI: 10.1016/j.jsps.2009.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/20/2009] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major cell wall molecule of Gram-negative bacteria known to stimulate the synthesis and secretion of several toxic metabolites, such as reactive oxygen species. In this study, the effect of pyrrolidine dithiocarbamate (PDTC), an antioxidant with nuclear factor-κB inhibitor activity, was evaluated in LPS-induced oxidative stress and acute hepatic injury in rats. Animals were pretreated for 3 consecutive days with PDTC (200 mg/kg/day, i.p.) or saline and animals were then challenged with LPS (6 mg/kg, i.p.) or saline. Six hours after LPS injection, animals were decapitated and blood and liver samples were collected to assess the chosen biochemical parameters. Saline-pretreated animals challenged with LPS revealed extensive liver damage, as evidenced by increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (γ-GT). Also, LPS treatment resulted in significant increases in serum lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α) and nitrite levels. Furthermore, LPS challenge caused oxidative stress as indicated by an increase in hepatic lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) and a decrease in hepatic reduced glutathione concentration (GSH) as well as decreased activities of superoxide dismutase (SOD) and catalase in hepatic tissues. The administration of PDTC prior to LPS challenge resulted in improved liver functions as evidenced by the decline in serum AST, ALT, γ-GT levels and reduction in serum LDH, TNF-α and nitrite levels. Moreover, PDTC reduced the chosen lipid peroxidation marker, TBARS and increased GSH concentration, and SOD and catalase activities in hepatic tissues. These results indicate that PDTC may be a useful pharmacological agent in alleviating LPS-induced oxidative stress and acute hepatic injury.
Collapse
Affiliation(s)
- Hanan H Hagar
- Pharmacology Department (31), College of Medicine and King Khalid University Hospital, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
58
|
McCarty MF, Barroso-Aranda J, Contreras F. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals – Clinical potential in inflammatory disorders. Med Hypotheses 2009; 73:824-34. [DOI: 10.1016/j.mehy.2008.09.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 01/02/2023]
|
59
|
Esposito E, Cuzzocrea S. Role of nitroso radicals as drug targets in circulatory shock. Br J Pharmacol 2009; 157:494-508. [PMID: 19630831 DOI: 10.1111/j.1476-5381.2009.00255.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants [such as peroxynitrite (OONO(-))] as mediators of shock and ischaemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium adenosine 5'-triphosphate-ase activity, inactivation of membrane sodium channels and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock and ischaemia and reperfusion. Moreover, various studies have clearly shown that treatment with either OONO(-) decomposition catalysts, which selectively inhibit OONO(-), or with superoxide dismutase (SOD) mimetics, which selectively mimic the catalytic activity of the human SOD enzymes, have been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock and ischaemia/reperfusion injury.
Collapse
|
60
|
Asghar M, Chugh G, Lokhandwala MF. Inflammation compromises renal dopamine D1 receptor function in rats. Am J Physiol Renal Physiol 2009; 297:F1543-9. [PMID: 19794106 DOI: 10.1152/ajprenal.00366.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We tested the effects of inflammation on renal dopamine D1 receptor signaling cascade, a key pathway that maintains sodium homeostasis and blood pressure during increased salt intake. Inflammation was produced by administering lipopolysaccharide (LPS; 4 mg/kg ip) to rats provided without (normal salt) and with 1% NaCl in drinking water for 2 wk (high salt). Control rats had saline injection and received tap water. We found that LPS increased the levels of inflammatory cytokines, interleukin-6, and tumor necrosis factor-alpha in the rats given either normal- or high-salt intake. Also, these rats had higher levels of oxidative stress markers, malondialdehyde and nitrotyrosine, and lower levels of antioxidant enzyme superoxide dismutase in the renal proximal tubules (RPTs). The nuclear levels of transcription factors NF-kappaB increased and Nrf2 decreased in the RPTs in response to LPS in rats given normal and high salt. Furthermore, D1 receptor numbers, D1 receptor proteins, and D1 receptor agonist (SKF38393)-mediated (35)S-GTPgammaS binding decreased in the RPTs in these rats. The basal activities of Na-K-ATPase in the RPTs were similar in control and LPS-treated rats given normal and high salt. SKF38393 caused inhibition of Na-K-ATPase activity in the primary cultures of RPTs treated with vehicle but not in the cultures treated with LPS. Furthermore, LPS caused an increase in blood pressure in the rats given high salt but not in the rats given normal salt. These results suggest that LPS differentially regulates NF-kappaB and Nrf2, produces inflammation, decreases antioxidant enzyme, increases oxidative stress, and causes D1 receptor dysfunction in the RPTs. The LPS-induced dysfunction of renal D1 receptors alters salt handling and causes hypertension in rats during salt overload.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, Univeristy of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
61
|
Heemskerk S, Masereeuw R, Russel FGM, Pickkers P. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 2009; 5:629-40. [PMID: 19786992 DOI: 10.1038/nrneph.2009.155] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, despite intense research into potential treatments. Targeting the inflammatory response and/or sepsis-induced alterations in the (micro)circulation are two therapeutic strategies. Another approach could involve modulating the downstream mechanisms that are responsible for organ system dysfunction. Activation of inducible nitric oxide (NO) synthase (iNOS) during sepsis leads to elevated NO levels that influence renal hemodynamics and cause peroxynitrite-related tubular injury through the local generation of reactive nitrogen species. In many organs iNOS is not constitutively expressed; however, it is constitutively expressed in the kidney and, in humans, a relationship between the upregulation of renal iNOS and proximal tubular injury during systemic inflammation has been demonstrated. For these reasons, the selective inhibition of renal iNOS might have important implications for the treatment of sepsis-induced AKI. Various animal studies have demonstrated that selective iNOS inhibition-in contrast to nonselective NOS inhibition-attenuates sepsis-induced renal dysfunction and improves survival, a finding that warrants investigation in clinical trials. In this Review, the selective inhibition of iNOS as a potential novel treatment for sepsis-induced AKI is discussed.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Intensive Care Medicine and the Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol 2009; 616:192-9. [DOI: 10.1016/j.ejphar.2009.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 12/12/2022]
|
63
|
Arribas B, Rodríguez-Cabezas ME, Camuesco D, Comalada M, Bailón E, Utrilla P, Nieto A, Concha A, Zarzuelo A, Gálvez J. A probiotic strain of Escherichia coli, Nissle 1917, given orally exerts local and systemic anti-inflammatory effects in lipopolysaccharide-induced sepsis in mice. Br J Pharmacol 2009; 157:1024-33. [PMID: 19486007 PMCID: PMC2737661 DOI: 10.1111/j.1476-5381.2009.00270.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/12/2009] [Accepted: 02/18/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Escherichia coli Nissle 1917 is a probiotic strain used in the treatment of intestinal immune diseases, including ulcerative colitis. The aim of the present study was to test if this probiotic bacterium can also show systemic immunomodulatory properties after oral administration. EXPERIMENTAL APPROACH The probiotic strain was administered to rats or mice for 2 weeks before its assay in two experimental models of altered immune response, the trinitrobenzenesulphonic acid (TNBS) model of rat colitis, localized in the colon, and the lipopolysaccharide (LPS) model of systemic septic shock in mice. Inflammatory status was evaluated both macroscopically and biochemically after 1 week in the TNBS model or after 24 h in the LPS shock model. In addition, splenocytes were obtained from mice and stimulated, ex vivo, with concanavalin A or LPS to activate T or B cells, respectively, and cytokine production (IL-2, IL-5 and IL-10) by T cells and IgG secretion by B cells measured. KEY RESULTS E. coli Nissle 1917 was anti-inflammatory in both models of altered immune response. This included a reduction in the pro-inflammatory cytokine tumour necrosis factor-alpha both in the intestine from colitic rats, and in plasma and lungs in mice treated with LPS. The systemic beneficial effect was associated with inhibited production of the T cell cytokines and by down-regulation of IgG release from splenocyte-derived B cells. CONCLUSIONS AND IMPLICATIONS The anti-inflammatory effects of E. coli Nissle 1917 given orally were not restricted to the gastrointestinal tract.
Collapse
Affiliation(s)
- B Arribas
- Centro de Investigaciones Biomédicas en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009; 4:161-77. [PMID: 19267456 DOI: 10.1021/cb800279q] [Citation(s) in RCA: 537] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peroxynitrite is formed by the very fast reaction of nitric oxide and superoxide radicals, a reaction that kinetically competes with other routes that chemically consume or physically sequester the reagents. It can behave either as an endogenous cytotoxin toward host tissues or a cytotoxic effector molecule against invading pathogens, depending on the cellular source and pathophysiological setting. Peroxynitrite is in itself very reactive against a few specific targets that range from efficient detoxification systems, such as peroxiredoxins, to reactions eventually leading to enhanced radical formation (e.g., nitrogen dioxide and carbonate radicals), such as the reaction with carbon dioxide. Thus, the chemical biology of peroxynitrite is dictated by the chemical kinetics of its formation and decay and by the diffusion across membranes of the species involved, including peroxynitrite itself. On the other hand, most durable traces of peroxynitrite passing (such as 3-nitrotyrosine) are derived from radicals formed from peroxynitrite by routes that represent extremely low-yield processes but that have potentially critical biological consequences. Here we have reviewed the chemical kinetics of peroxynitrite as a biochemical transient species in order to estimate its rates of formation and decay and then its steady-state concentration in different intra- or extracellular compartments, trying to provide a quantitative basis for its reactivity; additionally, we have considered diffusion across membranes to locate its possible effects. Finally, we have assessed the most successful attempts to intercept peroxynitrite by pharmacological intervention in their potential to increment the existing biological defenses that routinely deal with this cytotoxin.
Collapse
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio de Físicoquímica Biológica, Facultad de Ciencias
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
65
|
Jonkam CC, Bansal K, Traber DL, Hamahata A, Maybauer MO, Maybauer DM, Cox RA, Lange M, Connelly RL, Traber LD, Djukom CD, Salsbury JR, Herndon DN, Enkhbaatar P. Pulmonary vascular permeability changes in an ovine model of methicillin-resistant Staphylococcus aureus sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R19. [PMID: 19222851 PMCID: PMC2688137 DOI: 10.1186/cc7720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 02/06/2023]
Abstract
Introduction Endothelial dysfunction is a hallmark of sepsis, associated with lung transvascular fluid flux and pulmonary dysfunction in septic patients. We tested the hypothesis that methicillin-resistant Staphylococcus aureus (MRSA) sepsis following smoke inhalation increases pulmonary transvascular fluid flux via excessive nitric oxide (NO) production. Methods Ewes were chronically instrumented, and randomised into either a control or MRSA sepsis (MRSA and smoke inhalation) group. Results Pulmonary function remained stable in the control group, whereas the MRSA sepsis group developed impaired gas exchange and significantly increased lung lymph flow, permeability index and bloodless wet-to-dry weight-ratio (W/D ratio). The plasma nitrate/nitrite (NOx) levels, lung inducible nitric oxide synthases (iNOS) and endothelial nitric oxide synthases (eNOS), vascular endothelial growth factor (VEGF) protein expressions and poly-(ADP)-ribose (PAR) were significantly increased by MRSA challenge. Conclusions These results provide evidence that excessive NO production may mediate pulmonary vascular hyperpermeability in MRSA sepsis via up regulation of reactive radicals and VEGF.
Collapse
Affiliation(s)
- Collette C Jonkam
- Department of Anesthesiology, The University of Texas Medical Branch and Shriners Hospital for Children, Galveston, TX 77555-1102, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
The acute and chronic phases of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE) are ameliorated by the peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinatoiron (III) chloride, (FeTPPS). Eur J Pharmacol 2008; 601:88-93. [PMID: 18977216 DOI: 10.1016/j.ejphar.2008.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/28/2008] [Accepted: 10/13/2008] [Indexed: 11/23/2022]
Abstract
There is increasing evidence that the oxidative radical, peroxynitrite (ONOO(-)), is involved in the pathogenesis of inflammatory diseases including multiple sclerosis and the animal counterpart, experimental autoimmune encephalomyelitis (EAE). Compounds that impede the actions of ONOO(-) have proved useful in the control of EAE. In particular, catalytic isomerisation of ONOO(-) to inactive nitrate, through the use of metalloporphyrins, curtails the cellular response to inflammatory stimuli and halts the progression of neuroinflammation during EAE. The present study examined the pharmacological effects of the metalloporphyrin and ONOO(-) decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinatoiron(III)chloride (FeTPPS) on the acute and relapse phases of chronic relapsing (CR) EAE. Administration of FeTPPS to CR EAE-inoculated Biozzi mice commenced either therapeutically and immediately prior to the emergence of acute or relapse symptoms, or prophylactically, from the onset of remission of acute neurological signs. Drug therapy reduced acute and relapse symptoms but, and in contrast to the former phase, was of limited benefit in preventing histological changes during the latter stage of disease. In contrast, prophylactic FeTPPS was effective in limiting CNS pathology and neurological deficits. The findings confirm the inhibitory effects of FeTPPS on acute stage EAE. Moreover, the study extends previous observations by verifying compound efficacy on relapsing disease. Use of metalloporphyrins, such as FeTPPS, again highlights the important role played by ONOO(-) in the development of inflammatory diseases such as EAE.
Collapse
|
67
|
Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta. Br J Pharmacol 2008; 155:1164-73. [PMID: 18806822 DOI: 10.1038/bjp.2008.358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE To investigate the function of soluble guanylyl cyclase (sGC)/3',5'-cyclic guanosine monophosphate (cGMP) pathway in lipopolysaccharide (LPS)-induced changes in vascular reactivity of rat isolated pulmonary artery and aorta. EXPERIMENTAL APPROACH Nitric oxide (NO) production, contraction responses to endothelin-1 (ET-1), relaxation responses to sodium nitroprusside (SNP), 8-pCPT-cGMP, BAY412272 and T-0156, SNP-induced cGMP production and expression of sGC(alpha1), sGC(beta1) and 3',5'-cyclic nucleotide phosphodiesterase-5 (PDE5) proteins were measured in LPS-treated pulmonary and aortic rings from male Wistar rats. KEY RESULTS In both vessels, LPS (10 microg mL(-1), 20 h) increased NO production, which was inhibited by the selective inducible NOS (iNOS) inhibitor 1400W (1 microM). In the aorta, LPS decreased ET-1-induced contractility and this decrease was inhibited by the selective sGC inhibitor ODQ (10 microM) but not by removal of endothelium, or inhibitors of cyclooxygenase (indomethacin, 10 microM) or iNOS (1400W, 1 microM). Furthermore, aortic relaxation responses to the direct sGC activator BAY412272 were enhanced. In the pulmonary artery, SNP (1 nM to 30 microM)-induced relaxation and cGMP production, BAY412272-induced relaxation and sGC(beta1) protein expression were decreased, whereas relaxation responses to the PDE5-specific inhibitor T-0156 (0.1-100 nM) were enhanced. Relaxation responses to the phosphodiesterase-resistant cGMP analogue, 8-pCPT-cGMP, and protein expression levels of sGC(alpha1) and PDE5 were not altered in either vessel. CONCLUSION AND IMPLICATIONS LPS caused a selective hypocontractility of rat aorta to ET-1 mediated mainly through NO-independent sGC activation, whereas in the pulmonary artery, the effect of sGC activation was reduced by a decreased protein expression of sGC(beta1) together with increased PDE5 activity.
Collapse
|
68
|
Wu F, Tyml K, Wilson JX. iNOS expression requires NADPH oxidase-dependent redox signaling in microvascular endothelial cells. J Cell Physiol 2008; 217:207-14. [PMID: 18481258 DOI: 10.1002/jcp.21495] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Redox regulation of inducible nitric oxide synthase (iNOS) expression was investigated in lipopolysaccharide and interferon-gamma (LPS + IFNgamma)-stimulated microvascular endothelial cells from mouse skeletal muscle. Unstimulated endothelial cells produced reactive oxygen species (ROS) sensitive to inhibition of NADPH oxidase (apocynin and DPI), mitochondrial respiration (rotenone) and NOS (L-NAME). LPS + IFNgamma caused a marked increase in ROS production; this increase was abolished by inhibition of NADPH oxidase (apocynin, DPI and p47phox deficiency). LPS + IFNgamma induced substantial expression of iNOS protein. iNOS expression was prevented by the antioxidant ascorbate and by NADPH oxidase inhibition (apocynin, DPI and p47phox deficiency), but not by inhibition of mitochondrial respiration (rotenone) and xanthine oxidase (allopurinol). iNOS expression also was prevented by selective antagonists of ERK, JNK, Jak2, and NFkappaB activation. LPS + IFNgamma stimulated activation/phosphorylation of ERK, JNK, and Jak2 and activation/degradation of IkappaB, but only the activation of JNK and Jak2 was sensitive to ascorbate, apocynin and p47phox deficiency. Ascorbate, apocynin and p47phox deficiency also inhibited the LPS + IFNgamma-induced DNA binding activity of transcription factors IRF1 and AP1 but not NFkappaB. In conclusion, LPS + IFNgamma-induced NFkappaB activation is necessary for iNOS induction but is not dependent on ROS signaling. LPS + IFNgamma-stimulated NADPH oxidase activity produces ROS that activate the JNK-AP1 and Jak2-IRF1 signaling pathways required for iNOS induction. Since blocking either NFkappaB activation or NADPH oxidase activity is sufficient to prevent iNOS expression, they are separate targets for therapeutic interventions that aim to modulate iNOS expression in sepsis.
Collapse
Affiliation(s)
- Feng Wu
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York 14121-8028, USA
| | | | | |
Collapse
|
69
|
Arora M, Kumar A, Kaundal RK, Sharma SS. Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. Eur J Pharmacol 2008; 596:77-83. [PMID: 18768138 DOI: 10.1016/j.ejphar.2008.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
Diabetic neuropathy, a major complication of diabetes, affects more than 60% of diabetic patients. Recently, involvement of peroxynitrite has been postulated in diabetic neuropathy. In the present study, we have studied the effects of peroxynitrite decomposition catalysts (PDC's)-5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron(III) [FeTPPS] and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrinato iron(III) [FeTMPyP]-in experimental diabetic neuropathy. Male Sprague-Dawley rats, with six weeks of untreated diabetes were treated for two weeks with peroxynitrite decomposition catalysts. Diabetic animals showed a significant decrease in motor nerve conduction velocity and nerve blood flow, nociception as evident from decreased tail flick latency (hyperalgesia) and increased paw withdrawal pressure (mechanical allodynia) along with elevation in peroxynitrite and reduction in nerve glutathione levels. Two weeks treatment with PDC's significantly improved all the above stated functional and biochemical deficits. Aftermath of this study advocates the beneficial effects of peroxynitrite decomposition catalysts in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Manish Arora
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | | | | | | |
Collapse
|
70
|
Liu T, Huang Y, Likhotvorik RI, Keshvara L, Hoyt DG. Protein Never in Mitosis Gene A Interacting-1 (PIN1) regulates degradation of inducible nitric oxide synthase in endothelial cells. Am J Physiol Cell Physiol 2008; 295:C819-27. [PMID: 18650263 DOI: 10.1152/ajpcell.00366.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The peptidyl-proline isomerase Protein Never in Mitosis Gene A Interacting-1 (PIN1) increases the level or activity of several transcription factors that can induce the inducible nitric oxide (NO) synthase (iNOS). PIN1 can also regulate mRNA and protein turnover. Here, the effect of depletion of PIN1 on induction of iNOS by Escherichia coli endotoxin (LPS) and interferon-gamma (IFNgamma) in murine aortic endothelial cells (MAEC) was determined. Suppression of PIN1 by 85% with small hairpin RNA enhanced the induction of NO and iNOS protein by LPS-IFNgamma. There was no effect on induction of iNOS mRNA, suggesting a posttranscriptional effect. The enhanced levels of iNOS protein were functionally significant since LPS-IFNgamma was cytotoxic to MAEC lacking PIN1 but not MAEC harboring an inactive control construct, and because cytotoxicity was blocked by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester. Consistent with posttranscriptional action, knockdown of PIN1 increased the stability of iNOS protein in cycloheximide-treated cells. Furthermore, loss of iNOS was blocked by the calpain inhibitor carbobenzoxy-valinyl-phenylalaninal but not by the selective proteasome inhibitor epoxomicin. Immunoprecipitation indicated that PIN1 can interact with iNOS. Pull down of iNOS with a wild-type glutathione-S-transferase-PIN1 fusion protein, but not with a mutant of the amino terminal phospho-(serine/threonine)-proline binding WW domain of PIN1, indicated that this domain mediates interaction. The results suggest that PIN1 associates with iNOS and can limit its induction by facilitating calpain-mediated degradation in MAEC.
Collapse
Affiliation(s)
- Tongzheng Liu
- Division of Pharmacology, The Ohio State University College of Pharmacy, 500 West Twelfth Ave., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
71
|
Effects of chronic L-NAME on nitrotyrosine expression and renal vascular reactivity in rats with chronic bile-duct ligation. Clin Sci (Lond) 2008; 115:57-68. [DOI: 10.1042/cs20070312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/19/2007] [Accepted: 01/09/2008] [Indexed: 11/17/2022]
Abstract
In liver cirrhosis, elevated levels of NO and ROS (reactive oxygen species) might greatly favour the generation of peroxynitrite. Peroxynitrite is a highly reactive oxidant and it can potentially alter the vascular reactivity and the function of different organs. In the present study, we evaluated whether peroxynitrite levels are related to the progression of renal vascular and excretory dysfunction during experimental cirrhosis induced by chronic BDL (bile-duct ligation) in rats. Experiments were performed at 7, 15 and 21 days after BDL in rats and in rats 21 days post-BDL chronically treated with L-NAME (NG-nitro-L-arginine methyl ester). Sodium balance, BP (blood pressure), basal RPP (renal perfusion pressure) and the renal vascular response to PHE (phenylephrine) and ACh (acetylcholine) in isolated perfused kidneys were measured. NO levels were calculated as 24-h urinary excretion of nitrites, ROS as TBARS (thiobarbituric acid-reacting substances), and peroxynitrite formation as the renal expression of nitrotyrosine. BDL rats had progressive sodium retention, and decreased BP, RPP and renal vascular responses to PHE and ACh in the time following BDL. They also had increasing levels of NO and ROS, and renal nitrotyrosine accumulation, especially in the medulla. All of these changes were either prevented or significantly decreased by chronic L-NAME administration. In conclusion, these results suggest that the increasing levels of peroxynitrite might contribute to the altered renal vascular response and sodium retention in the development of the experimental biliary cirrhosis. Moreover, the beneficial effects of decreasing NO synthesis are, at least in part, mediated by anti-peroxinitrite-related effects.
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW To overview the emerging data in the literature showing the role of poly(ADP-ribose) polymerase (PARP) in the pathogenesis of critical illness. RECENT FINDINGS PARP, an abundant nuclear enzyme involved in DNA repair and transcriptional regulation, is now recognized as a key regulator of cell survival and cell death in response to noxious stimuli in various forms of cardiovascular collapse. PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes, and promotes an inflammatory response. In circulatory shock PARP plays a crucial role both in the development of early cardiovascular dysfunction and in the delayed systemic inflammatory response syndrome with associated multiple organ failure. Inhibition of PARP activity is protective in various models of circulatory shock. SUMMARY A solid body of literature supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
|
73
|
Rabkin SW, Klassen SS. Metalloporphyrins as a therapeutic drug class against peroxynitrite in cardiovascular diseases involving ischemic reperfusion injury. Eur J Pharmacol 2008; 586:1-8. [DOI: 10.1016/j.ejphar.2008.02.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
74
|
Evaluation of the preventative effects exerted by Lactobacillus fermentum in an experimental model of septic shock induced in mice. Br J Nutr 2008; 101:51-8. [PMID: 18445307 DOI: 10.1017/s0007114508986876] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The preventative effects of the probiotic Lactobacillus fermentum CECT5716 were evaluated in the lipopolysaccharide (LPS) model of septic shock in mice. The probiotic was administered suspended in drinking water at the final concentration of 108 colony-forming units/ml for 2 weeks before the induction of an endotoxic shock by an intraperitoneal injection of LPS (400 microg/200 microl per mouse). Blood and different organs were collected after 24 h to evaluate the severity of the endotoxic shock and the preventative effects of the probiotic. L. fermentum reduced TNF-alpha levels in blood, which promotes the major alterations observed during septic shock, as well as the infiltration of activated neutrophils into the lungs. Furthermore, free radical overproduction and oxidative stress were associated with a significant decrease in hepatic glutathione levels in septic mice, and with an excessive NO production attributed to the induction of the inducible isoform of NO synthase (iNOS). In fact, hepatic glutathione levels were significantly increased in the group of mice receiving the probiotic, and the increased iNOS expression both in the colon and lungs was down-regulated in those mice treated with L. fermentum. Finally, pre-treatment with L. fermentum may also exert its protective action modulating the expression of different cytokines in splenocyte-derived T cells such us IL-2, IL-5, IL-6 or IL-10. In conclusion, pre-treatment with L. fermentum may exert its protective action against LPS-induced organ damage in mice by a combination of several actions including its antioxidant properties and by reduction of the synthesis of the pro-inflammatory TNF-alpha and IL-6.
Collapse
|
75
|
Aoki K, Saso N, Kato S, Sugiyama Y, Sato H. Nitric Oxide and Peroxynitrite Regulate Transporter Transcription in Rat Liver Slices. Biol Pharm Bull 2008; 31:1882-7. [DOI: 10.1248/bpb.31.1882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kimiko Aoki
- School of Pharmaceutical Sciences, Showa University
- Nihon Pharmaceutical University
| | - Naomi Saso
- School of Pharmaceutical Sciences, Showa University
| | - Satoko Kato
- School of Pharmaceutical Sciences, Showa University
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Hitoshi Sato
- School of Pharmaceutical Sciences, Showa University
| |
Collapse
|
76
|
Hideko Tatakihara VL, Cecchini R, Borges CL, Malvezi AD, Graça-de Souza VK, Yamada-Ogatta SF, Rizzo LV, Pinge-Filho P. Effects of cyclooxygenase inhibitors on parasite burden, anemia and oxidative stress in murineTrypanosoma cruziinfection. ACTA ACUST UNITED AC 2008; 52:47-58. [DOI: 10.1111/j.1574-695x.2007.00340.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Meziani F, Kremer H, Tesse A, Baron-Menguy C, Mathien C, Mostefai HA, Carusio N, Schneider F, Asfar P, Andriantsitohaina R. Human serum albumin improves arterial dysfunction during early resuscitation in mouse endotoxic model via reduced oxidative and nitrosative stresses. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1753-61. [PMID: 17991713 PMCID: PMC2111100 DOI: 10.2353/ajpath.2007.070316] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/05/2007] [Indexed: 11/20/2022]
Abstract
Human serum albumin (HSA) is used as a resuscitation fluid in sepsis. This study investigated the potential protective properties of HSA on vascular function in a mouse endotoxic model in terms of oxidative and nitrosative stresses. Swiss mice were treated with either lipopolysaccharide (LPS) (50 mg/kg i.p.) or vehicle. One and five hours later, mice were infused with HSA (4%, 10 ml/kg), normal saline (0.9% NaCl, 30 ml/kg), or no fluid. Six hours after treatment, vascular reactivity was assessed on aortae and small mesenteric arteries. Measurements of NO and superoxide anion (O2(-)) by spin trapping and nuclear factor (NF)-kappaB, inducible NO synthase (iNOS), and peroxynitrite by Western blotting and immunohistochemical studies were conducted. HSA partially prevented the reduction of blood pressure induced by LPS and completely prevented both vascular hyporeactivity to phenylephrine and myogenic tone as well as endothelial dysfunction induced by the endotoxin. This was associated with a decreased up-regulation of NF-kappa B, iNOS, and peroxynitrite in the vascular wall. LPS-induced tissue increases in both NO and O2(-) production was decreased by HSA. These data demonstrate the protective effect of HSA treatment in experimental endotoxic shock by reducing the inflammatory process leading to oxidative and nitrosative stresses and vascular hyporeactivity.
Collapse
Affiliation(s)
- Ferhat Meziani
- INSERM UMR 771 Angers, CNRS UMR 6214, Faculté de Médecine, rue Haute de Reculée, 49000 Angers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Schaller G, Pleiner J, Mittermayer F, Posch M, Kapiotis S, Wolzt M. Effects of N-acetylcysteine against systemic and renal hemodynamic effects of endotoxin in healthy humans. Crit Care Med 2007; 35:1869-75. [PMID: 17568325 DOI: 10.1097/01.ccm.0000275385.45557.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Systemic inflammation causes vasodilation and impairs the vascular response to catecholamines. There is evidence that altered vasoreactivity is associated with increased production of free radicals. We studied the influence of systemic doses of the antioxidant N-acetylcysteine on inflammatory cytokines and renal plasma flow and on the systemic pressor response to norepinephrine during experimental endotoxemia. DESIGN A double-blind, placebo-controlled crossover study. SETTING Medical University of Vienna, Clinical Pharmacology, Vienna General Hospital, AKH. SUBJECTS Eight healthy, male humans. INTERVENTIONS Intravenous administration of Escherichia coli endotoxin (lipopolysaccharide, 20 IU/kg) on two separate study days with concomitant intravenous infusion of placebo or N-acetylcysteine (150 mg/kg loading dose; 15 mg/kg/hr continuous infusion), respectively. MEASUREMENTS AND MAIN RESULTS Measurements of inflammatory cytokines, of renal plasma flow by the para-aminohippurate-clearance method, and of the systemic pressor response to norepinephrine were taken at baseline and after endotoxin. Lipopolysaccharide increased body temperature and plasma concentrations of tumor necrosis factor-alpha, which was mitigated during N-acetylcysteine infusions. Likewise, the lipopolysaccharide-induced increases in renal plasma flow and decreases in blood pressure were attenuated, and the hyporeactivity of pulse rate to norepinephrine 4 hrs after lipopolysaccharide was improved by N-acetylcysteine. CONCLUSION High doses of N-acetylcysteine might exert protective effects on systemic hemodynamics and on the reactivity to catecholamines in humans challenged by lipopolysaccharide. This action of the antioxidant N-acetylcysteine is paralleled by humoral anti-inflammatory mechanisms and may be useful in patients with systemic inflammation.
Collapse
Affiliation(s)
- Georg Schaller
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
79
|
Gupta A, Berg DT, Gerlitz B, Richardson MA, Galbreath E, Syed S, Sharma AC, Lowry SF, Grinnell BW. Activated protein C suppresses adrenomedullin and ameliorates lipopolysaccharide-induced hypotension. Shock 2007; 28:468-76. [PMID: 17558353 DOI: 10.1097/shk.0b013e3180487f09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activated protein C (APC) is an important modulator of vascular function that has antithrombotic and anti-inflammatory properties. Studies in humans have shown modulation of endotoxin-induced hypotension by recombinant human APC, drotrecogin alfa (activated), however, the mechanism for this effect is unclear. We have found that APC suppresses the induction of the potent vasoactive peptide adrenomedullin (ADM) and could downregulate lipopolysaccharide (LPS)-induced ADM messenger RNA (mRNA) and nitrite levels in cell culture. This effect was dependent on signaling through protease-activated receptor 1. Addition of 1400W, an irreversible inducible nitric oxide synthase (iNOS) inhibitor, inhibited LPS-induced ADM mRNA, suggesting that ADM induction is NO mediated. Furthermore, in a rat model of endotoxemia, APC (100 microg/kg, i.v.) prevented LPS (10 mg/kg, i.v.)-induced hypotension, and suppressed ADM mRNA and protein expression. APC also inhibited iNOS mRNA and protein levels along with reduction in NO by-products (NOx). We also observed a significant reduction in iNOS-positive leukocytes adhering to vascular endothelium after APC treatment. Moreover, we found that APC inhibited the expression of interferon-gamma (IFN-gamma), a potent activator of iNOS. In a human study of LPS-induced hypotension, APC reduced the upregulation of plasma ADM levels, coincident with protection against the hypotensive response. Overall, we demonstrate that APC blocks the induction of ADM, likely mediated by IFN-gamma and iNOS, and suggests a mechanism that may account for ameliorating LPS-induced hypotension. Furthermore, our data provide a new understanding for the role of APC in modulating vascular response to insult.
Collapse
Affiliation(s)
- Akanksha Gupta
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0444, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6:662-80. [PMID: 17667957 DOI: 10.1038/nrd2222] [Citation(s) in RCA: 1639] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, University Heights, Newark, New Jersey 07103-2714, USA.
| | | | | |
Collapse
|
81
|
Genovese T, Mazzon E, Esposito E, Muià C, Di Paola R, Bramanti P, Cuzzocrea S. Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury. Free Radic Biol Med 2007; 43:763-80. [PMID: 17664140 DOI: 10.1016/j.freeradbiomed.2007.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to assess the contribution of peroxynitrite formation in the pathophysiology of spinal cord injury (SCI) in mice. To this purpose, we used a peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride (FeTSPP). Spinal cord trauma was induced by the application of vascular clips (force of 24g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of inflammatory mediators, tissue damage, and apoptosis. FeTSPP treatment (10-100 mg/kg, i.p.) significantly reduced in dose-dependent manner 1 and 4 h after the SCI (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and poly-(ADP-ribose) polymerase activation, (4) proinflammmaory cytokines expression, (5) NF-kappaB activation, and (6) apoptosis (TUNEL staining, Bax and Bcl-2 expression). Moreover, FeTSPP significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. Taken together, our results clearly demonstrate that FeTSPP treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma similarly to dexamethasone, a well-known antiinflammatory agent which we have used as positive control.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
82
|
Böger RH. Live and let die: asymmetric dimethylarginine and septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2007; 10:169. [PMID: 17094795 PMCID: PMC1794448 DOI: 10.1186/cc5076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Nitric oxide (NO) is an important mediator of host defence and of vascular tone. In septic shock, upregulation of inducible NO synthase leads to the production of vast amounts of NO, which contribute to pathogen elimination but also to inappropriate vasodilation and to loss of vascular resistance. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthases shown to contribute to the regulation of vascular tone. ADMA was recently identified as a marker of organ dysfunction and mortality in intensive care patients and as a novel cardiovascular risk factor. In the present issue of Critical Care, a study by O'Dwyer and colleagues identifies ADMA as a potential regulator of NO production in septic shock. Being an inhibitor of NO production, ADMA may at least partly counteract pathological hypotension, but at the same time may impair the NO-dependent host defence. A mechanism is proposed by which the interplay between ADMA and inducible NO synthase activity is mediated. ADMA levels should be determined in future studies evaluating the regulation of NO in the intensive care setting.
Collapse
Affiliation(s)
- Rainer H Böger
- Clinical Pharmacology Unit, Institute of Experimental and Clinical Pharmacology, University Hospital Hamburg-Eppendorf, Germany.
| |
Collapse
|
83
|
Wu L, Mayeux PR. Effects of the inducible nitric-oxide synthase inhibitor L-N(6)-(1-iminoethyl)-lysine on microcirculation and reactive nitrogen species generation in the kidney following lipopolysaccharide administration in mice. J Pharmacol Exp Ther 2007; 320:1061-7. [PMID: 17202403 DOI: 10.1124/jpet.106.117184] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The mortality rate for septic patients with acute renal failure is approximately doubled compared with patients with sepsis alone. Unfortunately, the treatment for sepsis-induced renal failure has advanced little during the last several decades. Because sepsis is often caused by lipopolysaccharide (LPS), a mouse model of LPS challenge was used to study the development of kidney injury. We hypothesized that inducible nitric-oxide synthase (iNOS)-catalyzed nitric oxide production and that generation of reactive nitrogen species (RNS) might play a role in the microcirculatory defect and resulting tubular injury associated with LPS administration. Fluorescent intravital videomicroscopy was used to assess renal peritubular capillary perfusion and document RNS generation by renal tubules in real time. As early as 6 h after LPS administration (10 mg/kg i.p.), RNS generation (rhodamine fluorescence), redox stress [NAD(P)H autofluorescence], and the percentage of capillaries without flow were each significantly increased compared with saline-treated mice (p < 0.05). The generation of RNS was supported by the detection of nitrotyrosine-protein adducts in the kidney using immunohistochemistry. The iNOS inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL; 3 mg/kg i.p.) completely blocked the increase in rhodamine fluorescence and NAD(P)H autofluorescence and prevented the capillary defects at 6 h after LPS administration. These results suggest that iNOS-derived RNS is an important contributor to the peritubular capillary perfusion defects and RNS generation that occur during sepsis and emphasize that pharmacological inhibition of iNOS may provide beneficial effects during sepsis by improving renal capillary perfusion and reducing RNS generation in the kidney.
Collapse
Affiliation(s)
- Liping Wu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|