51
|
Andreou D, Saetre P, Werge T, Andreassen OA, Agartz I, Sedvall GC, Hall H, Terenius L, Jönsson EG. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians. Eur Arch Psychiatry Clin Neurosci 2012; 262:549-56. [PMID: 22454242 PMCID: PMC3464385 DOI: 10.1007/s00406-012-0313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
Abstract
The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates in glutamatergic transmission. We hypothesized that DAOA polymorphisms are associated with dopamine, serotonin and noradrenaline turnover in the human brain. Four single-nucleotide polymorphisms, previously reported to be associated with schizophrenia, were genotyped. Cerebrospinal fluid (CSF) samples were drawn by lumbar puncture, and the concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured. Two of the investigated polymorphisms, rs3918342 and rs1421292, were significantly associated with CSF HVA concentrations. Rs3918342 was found to be nominally associated with CSF 5-HIAA concentrations. None of the polymorphisms were significantly associated with MHPG concentrations. Our results indicate that DAOA gene variation affects dopamine turnover in healthy individuals, suggesting that disturbed dopamine turnover is a possible mechanism behind the observed associations between genetic variation in DAOA and behavioral phenotypes in humans.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden.
| | - Peter Saetre
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Thomas Werge
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Ole A. Andreassen
- TOP Project, Division of Psychiatry, Ullevål University Hospital, University of Oslo, Oslo, Norway ,TOP Project, Institute of Clinical Medicine, Psychiatry Section Vinderen, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden ,Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway ,Institute of Psychiatry, University of Oslo, Oslo, Norway
| | - Göran C. Sedvall
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Håkan Hall
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden ,Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Erik G. Jönsson
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| |
Collapse
|
52
|
Alt J, Rojas C, Wozniak K, Wu Y, Ferraris D, Tsukamoto T, Slusher B. Development of a high-throughput method for the determination of pharmacological levels of plasma D-serine. Anal Biochem 2011; 419:106-9. [PMID: 21889486 DOI: 10.1016/j.ab.2011.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
D-Serine administration has been shown to be effective for the treatment of schizophrenia symptoms. However, D-Serine must be administered at high doses to observe clinical effects. This is due in large part to D-Serine undergoing oxidation by D-Serine acid oxidase (DAAO) before it reaches the brain. Consequently, coadministration of D-Serine with a DAAO inhibitor has been suggested as a way to lower the dose of D-serine required to treat schizophrenia. During the characterization of DAAO inhibitors as potential drugs, inhibitors are evaluated in rodents for their ability to increase plasma D-Serine levels after oral coadministration. Current high-performance liquid chromatography (HPLC)-based methodologies to measure D-Serine in plasma are time-consuming and are not amenable to concomitant analysis of multiple samples. We report the characterization of a 96-well format assay to monitor D-Serine in plasma that greatly expedites analysis time. The assay involves the use of strong cation exchange solid phase extraction (SPE) to isolate D-Serine from plasma followed by quantitation of D-Serine using the DAAO-catalyzed reaction. Plasma D-Serine determination using this assay could also be used as pharmacodynamic marker and as biomarker.
Collapse
Affiliation(s)
- Jesse Alt
- Brain Science Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Strick CA, Li C, Scott L, Harvey B, Hajós M, Steyn SJ, Piotrowski MA, James LC, Downs JT, Rago B, Becker SL, El-Kattan A, Xu Y, Ganong AH, Tingley FD, Ramirez AD, Seymour PA, Guanowsky V, Majchrzak MJ, Fox CB, Schmidt CJ, Duplantier AJ. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain. Neuropharmacology 2011; 61:1001-15. [PMID: 21763704 DOI: 10.1016/j.neuropharm.2011.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 01/16/2023]
Abstract
Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Central Nervous System Stimulants/metabolism
- Central Nervous System Stimulants/pharmacology
- Cyclic GMP/analysis
- Cyclic GMP/biosynthesis
- D-Amino-Acid Oxidase/antagonists & inhibitors
- D-Amino-Acid Oxidase/metabolism
- D-Amino-Acid Oxidase/physiology
- Drug Evaluation, Preclinical
- Electroencephalography
- Habituation, Psychophysiologic/drug effects
- Habituation, Psychophysiologic/physiology
- Harmaline/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Mescaline/pharmacology
- Mice
- Miniature Postsynaptic Potentials/drug effects
- Miniature Postsynaptic Potentials/physiology
- Models, Biological
- Models, Chemical
- Molecular Targeted Therapy
- Motor Activity/drug effects
- Motor Activity/physiology
- Pruritus/chemically induced
- Pruritus/prevention & control
- Psychomotor Agitation/drug therapy
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Sensory Gating/drug effects
- Sensory Gating/physiology
- Serine/blood
- Serotonin Receptor Agonists/pharmacology
Collapse
|
54
|
Popiolek M, Ross JF, Charych E, Chanda P, Gundelfinger ED, Moss SJ, Brandon NJ, Pausch MH. D-amino acid oxidase activity is inhibited by an interaction with bassoon protein at the presynaptic active zone. J Biol Chem 2011; 286:28867-28875. [PMID: 21700703 DOI: 10.1074/jbc.m111.262063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder affecting ∼1% of the world's population. Linkage and association studies have identified multiple candidate schizophrenia susceptibility genes whose functions converge on the glutamatergic neurotransmitter system. One such susceptibility gene encoding D-amino acid oxidase (DAO), an enzyme that metabolizes the NMDA receptor (NMDAR) co-agonist D-serine, has the potential to modulate NMDAR function in the context of schizophrenia. To further investigate its cellular regulation, we sought to identify DAO-interacting proteins that participate in its functional regulation in rat cerebellum, where DAO expression is especially high. Immunoprecipitation with DAO-specific antibodies and subsequent mass spectrometric analysis of co-precipitated proteins yielded 24 putative DAO-interacting proteins. The most robust interactions occurred with known components of the presynaptic active zone, such as bassoon (BSN) and piccolo (PCLO). The interaction of DAO with BSN was confirmed through co-immunoprecipitation assays using DAO- and BSN-specific antibodies. Moreover, DAO and BSN colocalized with one another in cultured cerebellar granule cells and in synaptic junction membrane protein fractions derived from rat cerebellum. The functional consequences of this interaction were studied through enzyme assay experiments, where DAO enzymatic activity was significantly inhibited as a result of its interaction with BSN. Taking these results together, we hypothesize that synaptic D-serine concentrations may be under tight regulation by a BSN-DAO complex. We therefore predict that this mechanism plays a role in the modulation of glutamatergic signaling through NMDARs. It also furthers our understanding of the biology underlying this potential therapeutic entry point for schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Michael Popiolek
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - John F Ross
- Aileron Therapeutics, Cambridge, Massachusetts, Germany
| | - Erik Charych
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | - Pranab Chanda
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340
| | | | | | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340,.
| | - Mark H Pausch
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut 06340,; Merck, West Point, Pennsylvania 19486
| |
Collapse
|
55
|
Kasai Y, Tachikawa M, Hirose S, Akanuma SI, Hosoya KI. Transport systems of serine at the brain barriers and in brain parenchymal cells. J Neurochem 2011; 118:304-13. [DOI: 10.1111/j.1471-4159.2011.07313.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
56
|
Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors. Eur J Med Chem 2011; 46:4808-19. [PMID: 21880399 DOI: 10.1016/j.ejmech.2011.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 12/16/2022]
Abstract
Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage.
Collapse
|
57
|
Labrie V, Wong AHC, Roder JC. Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2011; 62:1484-503. [PMID: 21295046 DOI: 10.1016/j.neuropharm.2011.01.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 01/30/2023]
Abstract
The glutamate neurotransmitter system is one of the major candidate pathways for the pathophysiology of schizophrenia, and increased understanding of the pharmacology, molecular biology and biochemistry of this system may lead to novel treatments. Glutamatergic hypofunction, particularly at the NMDA receptor, has been hypothesized to underlie many of the symptoms of schizophrenia, including psychosis, negative symptoms and cognitive impairment. This review will focus on D-serine, a co-agonist at the NMDA receptor that in combination with glutamate, is required for full activation of this ion channel receptor. Evidence implicating D-serine, NMDA receptors and related molecules, such as D-amino acid oxidase (DAO), G72 and serine racemase (SRR), in the etiology or pathophysiology of schizophrenia is discussed, including knowledge gained from mouse models with altered D-serine pathway genes and from preliminary clinical trials with D-serine itself or compounds modulating the D-serine pathway. Abnormalities in D-serine availability may underlie glutamatergic dysfunction in schizophrenia, and the development of new treatments acting through the D-serine pathway may significantly improve outcomes for many schizophrenia patients.
Collapse
Affiliation(s)
- Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada.
| | | | | |
Collapse
|
58
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - James D Jentsch
- Departments of Psychology and Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
59
|
O'Connell G, Lawrie SM, McIntosh AM, Hall J. Schizophrenia risk genes: Implications for future drug development and discovery. Biochem Pharmacol 2010; 81:1367-73. [PMID: 21093417 DOI: 10.1016/j.bcp.2010.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 02/04/2023]
Abstract
Present-day development of improved treatments for schizophrenia is hindered by uncertain models of disease, inter-individual response variability in clinical trials and a paucity of sensitive measures of treatment effects. Findings from genetic research emphasize the potential for schizophrenia risk genes to help develop focused treatments, discover new drug targets and provide markers of clinical subtypes. Advances in genetic technologies also provide novel modes of drug discovery in schizophrenia such as transcriptomics, epigenetics and transgenic animal models. In this review, we discuss proven and proposed ways risk genes can be used to enhance the development and discovery of treatments for schizophrenia and highlight key studies in these approaches.
Collapse
Affiliation(s)
- Garret O'Connell
- Division of Psychiatry, University of Edinburgh, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
60
|
Coyle JT, Balu D, Benneyworth M, Basu A, Roseman A. Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2010. [PMID: 20954431 PMCID: PMC3181979 DOI: 10.31887/dcns.2010.12.3/jcoyle] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All current drugs approved to treat schizophrenia appear to exert their antipsychotic effects through blocking the dopamine D2 receptor. Recent meta-analyses and comparative efficacy studies indicate marginal differences in efficacy of newer atypical antipsychotics and the older drugs, and little effects on negative and cognitive symptoms. This review integrates findings from postmortem, imaging, and drug-challenge studies to elucidate a corticolimbic “pathologic circuit” in schizophrenia that may be particularly relevant to the negative symptoms and cognitive impairments of schizophrenia. Potential sites for pharmacologic intervention targeting glutatatergic, GABAergic, and cholinergic neurotransmission to treat these symptoms of schizophrenia are discussed.
Collapse
Affiliation(s)
- Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
61
|
Gong N, Gao ZY, Wang YC, Li XY, Huang JL, Hashimoto K, Wang YX. A series of D-amino acid oxidase inhibitors specifically prevents and reverses formalin-induced tonic pain in rats. J Pharmacol Exp Ther 2010; 336:282-93. [PMID: 20952482 DOI: 10.1124/jpet.110.172353] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have found that mutation of D-amino acid oxidase (DAO) diminished formalin-induced tonic pain. The present research further studied the analgesic effects of a series of DAO inhibitors in this model. 5-Chlorobenzo[d]isoxazol-3-ol (CBIO), 4H-thieno[3,2-b]pyrrole-5-carboxylic acid (compound 8), 5-methylpyrazole-3-carboxylic acid (AS057278), sodium benzoate, and 4-nitro-3-pyrazole carboxylic acid (NPCA) inhibited rat spinal cord-derived DAO activity in a concentration-dependent manner, with maximal inhibition of 100% and potency rank of CBIO > compound 8 > AS057278 > sodium benzoate > NPCA. In rats, intrathecal injections of CBIO, compound 8, AS057278, and sodium benzoate but not NPCA specifically prevented formalin-induced tonic pain but not acute nociception, with the same potency order as in the DAO activity assay. The highly potent analgesia of DAO inhibitors was evidenced by CBIO, which prevented 50% pain at 0.06 μg, approximately 5-fold the potency of morphine. CBIO given after formalin challenge also reversed the established pain state to the same degree as prevention. The antihyperalgesic potencies of these DAO inhibitors were highly correlated to their inhibitions of spinal DAO activity. Maximum inhibition of pain by these compounds was approximately 60%, comparable with that of the N-methyl-D-aspartic acid receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), suggesting that a larger portion of formalin-induced tonic pain is "DAO-sensitive," whereas the remaining 40% of tonic pain and acute nociception is "DAO-insensitive." These findings, combined with our previous DAO gene mutation and induction results, indicate spinal DAO mediates both induction and maintenance of formalin-induced tonic pain and further validate spinal DAO as a novel and efficacious target molecule for the treatment of chronic pain.
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, No. 6 Biomedicine Building (Suite 106), 800 Dongchuan Road, Shanghai 2002 40, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Nakato K, Harada K, Tobe T, Yamaji T, Takakura S. [Stimulating glutamatergic neurons as a potential novel therapeutic avenue for schizophrenia]. Nihon Yakurigaku Zasshi 2010; 136:128-32. [PMID: 20838012 DOI: 10.1254/fpj.136.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
63
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2622] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kelamangalath L, Wagner JJ. D-serine treatment reduces cocaine-primed reinstatement in rats following extended access to cocaine self-administration. Neuroscience 2010; 169:1127-35. [PMID: 20541592 DOI: 10.1016/j.neuroscience.2010.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 01/18/2023]
Abstract
The most intractable feature of drug addiction is the high rate of relapse, even following extended periods of abstinence from drug-taking. Evidence suggests that allowing rats extended access to cocaine self-administration leads to behavioral characteristics in these animals that are consistent with the development of addiction in humans. In the current study, rats were allowed to self-administer cocaine over a total of 22 daily sessions, the final seven of which were long-access (LgA) sessions of 6 h duration. Assessments of reinstatement of drug-seeking behavior were made following reintroduction to the drug-taking environment and noncontingent priming with either conditioned stimulus (CS) or cocaine in both extinguished and abstinent subject groups. Three separate groups of rats were treated with either saline or D-serine (100 mg/kg i.p.) administered 2 h prior to, or immediately following, each extinction training session. Saline-treated LgA rats were resistant to the effects of extinction training to reduce noncontingent priming of reinstatement of drug-seeking behavior with either CS or cocaine. In contrast, treatment with D-serine either before or immediately following the sessions resulted in a significant enhancement in the ability of extinction training to reduce cocaine-primed reinstatement of drug-seeking behavior. These results suggest that D-serine can act to enhance the consolidation of extinction learning in LgA rats, and is therefore a promising adjunctive agent along with behavioral therapy for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- L Kelamangalath
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
65
|
Smith SM, Uslaner JM, Hutson PH. The Therapeutic Potential of D-Amino Acid Oxidase (DAAO) Inhibitors. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2010; 4:3-9. [PMID: 20648222 PMCID: PMC2905773 DOI: 10.2174/1874104501004020003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 09/24/2009] [Accepted: 09/30/2009] [Indexed: 01/25/2023]
Abstract
D-amino acid oxidase (DAAO) is a flavoenzyme that degrades D-amino acids through the process of oxidative deamination. DAAO regulation of D-amino acid levels has been associated with several physiological processes ranging from hormone secretion to synaptic transmission and cognition. Recent genetic studies have identified a mutation on chromosome 13 in schizophrenia patients that encodes two gene products (G30 and G72) that are associated with DAAO. Furthermore, DAAO expression and enzyme activity has been reported to be increased in post mortem brain tissue samples from patients with schizophrenia compared to healthy controls. D-serine, a D-amino acid that is regulated by DAAO, is a potent, endogenous co-agonist of the N-methyl-D-aspartic acid (NMDA) receptor. Because NMDA receptor dysfunction is thought to be involved in the positive (psychotic), negative and cognitive symptoms in schizophrenia, there has been much interest in developing potent and selective DAAO inhibitors for the treatment of this disease. Several research reports have been published that describe the synthesis and biological effects of novel, selective, small molecule inhibitors of DAAO. Many of these compounds have been shown, when given systemically, to increase D-serine concentrations in the blood and brain. However, the efficacy of these compounds in behavioral assays that measure antipsychotic potential and pro-cognitive effects in laboratory animals has been inconsistent. This article highlights and reviews research advances for DAAO inhibitors published in peer reviewed journals.
Collapse
|
66
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
67
|
Williams M. Commentary: Genome-based CNS drug discovery: d-Amino acid oxidase (DAAO) as a novel target for antipsychotic medications: Progress and challenges. Biochem Pharmacol 2009; 78:1360-5. [DOI: 10.1016/j.bcp.2009.06.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 12/28/2022]
|
68
|
Lo PS, Wu CY, Sue HZ, Chen HH. Acute neurobehavioral effects of toluene: Involvement of dopamine and NMDA receptors. Toxicology 2009; 265:34-40. [DOI: 10.1016/j.tox.2009.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 12/25/2022]
|
69
|
Uslaner JM, Parmentier-Batteur S, Flick RB, Surles NO, Lam JS, McNaughton CH, Jacobson MA, Hutson PH. Dose-dependent effect of CDPPB, the mGluR5 positive allosteric modulator, on recognition memory is associated with GluR1 and CREB phosphorylation in the prefrontal cortex and hippocampus. Neuropharmacology 2009; 57:531-8. [DOI: 10.1016/j.neuropharm.2009.07.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
70
|
Labrie V, Roder JC. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 2009; 34:351-72. [PMID: 19695284 DOI: 10.1016/j.neubiorev.2009.08.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/11/2023]
Abstract
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a D-serine/glycine site on the NR1 subunit that may be a promising therapeutic target for psychiatric illness. This review outlines the complex regulation of endogenous NMDAR D-serine/glycine site agonists and explores their contribution to schizophrenia pathogenesis and their potential clinical utility. Genetic studies have associated genes influencing NMDAR D-serine/glycine site activation with an increased susceptibility to schizophrenia. Postmortem studies have identified abnormalities in several transcripts affecting D-serine/glycine site activity, consistent with in vivo reports of alterations in levels of endogenous D-serine/glycine site agonists and antagonists. Genetically modified mice with aberrant NMDAR D-serine/glycine site function model certain features of the negative and cognitive symptoms of schizophrenia, and similar behavioral abnormalities have been observed in other candidate genes models. Compounds that directly activate the NMDAR D-serine/glycine site or inhibit glycine transport have demonstrated beneficial effects in preclinical models and clinical trials. Future pharmacological approaches for schizophrenia treatment may involve targeting enzymes that affect D-serine synthesis and metabolism.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | | |
Collapse
|
71
|
Labrie V, Wang W, Barger SW, Baker GB, Roder JC. Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. GENES BRAIN AND BEHAVIOR 2009; 9:11-25. [PMID: 19751394 DOI: 10.1111/j.1601-183x.2009.00529.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced function of the N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a glycine binding site in its NR1 subunit that may be a useful target for the treatment of schizophrenia. In this study, we assessed the therapeutic potential of long-term increases in the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO) in mice. The effects of eliminating DAO function were investigated in mice that display schizophrenia-related behavioral deficits due to a mutation (Grin 1(D481N)) in the NR1 subunit that results in a reduction in NMDAR glycine affinity. Grin 1(D481N) mice show deficits in sociability, prolonged latent inhibition, enhanced startle reactivity and impaired spatial memory. The hypofunctional Dao 1(G181R) mutation elevated brain levels of D-serine, but alone it did not affect performance in the behavioral measures. Compared to animals with only the Grin 1(D481N) mutation, mice with both the Dao1(G181R) and Grin 1(D481N) mutations displayed an improvement in social approach and spatial memory retention, as well as a reversal of abnormally persistent latent inhibition and a partial normalization of startle responses. Thus, an increased level of D-serine resulting from decreased catalysis corrected the performance of mice with deficient NMDAR glycine site activation in behavioral tasks relevant to the negative and cognitive symptoms of schizophrenia. Diminished DAO activity and elevations in D-serine may serve as an effective therapeutic intervention for the treatment of psychiatric symptoms.
Collapse
Affiliation(s)
- V Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
72
|
Kelamangalath L, Seymour CM, Wagner JJ. D-serine facilitates the effects of extinction to reduce cocaine-primed reinstatement of drug-seeking behavior. Neurobiol Learn Mem 2009; 92:544-51. [PMID: 19595781 DOI: 10.1016/j.nlm.2009.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/28/2022]
Abstract
Male Sprague Dawley rats were allowed to self-administer cocaine (0.5 mg/kg) during 90 min sessions for a period of 15 days. On day 16, rats were either held abstinent in their home cage environment or experienced an extinction session in which the active lever had no programmed consequences. Facilitating N-methyl-D-aspartate (NMDA) receptor activity with the coagonist D-serine (100 mg/kg i.p.) before or following the extinction session significantly reduced the subsequent cocaine-primed reinstatement of drug-seeking behavior tested on day 17. D-serine significantly reduced drug-primed reinstatement only when combined with extinction, and its effectiveness when administered following the training session suggested that an enhancement of consolidation of extinction learning had occurred. In contrast, D-serine treatment did not reduce sucrose-primed reinstatement, indicating that the beneficial effects of this adjunct pharmacotherapy with extinction training were specific to an addictive substance (cocaine) and did not generalize to a natural reward (sucrose).
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Department of Physiology and Pharmacology, University of Georgia, Athens 30602-7389, USA
| | | | | |
Collapse
|