51
|
Amphetamine acts within the lateral hypothalamic area to elicit affectively neutral arousal and reinstate drug-seeking. Int J Neuropsychopharmacol 2014; 17:63-75. [PMID: 23895988 PMCID: PMC6150758 DOI: 10.1017/s1461145713000734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Psychostimulants, including amphetamine (AMPH), exert robust arousal-enhancing, reinforcing and locomotor-activating effects. These behavioural actions involve drug-induced elevations in extracellular norepinephrine (NE) and dopamine (DA) within a variety of cortical and subcortical regions. The lateral hypothalamic area (LHA), including the lateral hypothalamus proper, perifornical area and adjacent dorsomedial hypothalamus, is implicated in appetitive- and arousal-related processes. The LHA is innervated by both NE and DA projections and systemically administered AMPH has been demonstrated to activate LHA neurons. Combined, these and other observations suggest the LHA may be a site of action in the behavioural effects of psychostimulants. To test this hypothesis, we examined the degree to which AMPH (10 nmol, 25 nmol) acts within the LHA to exert arousing, locomotor-activating and reinforcing actions in quietly resting/sleeping rats. Although intra-LHA AMPH robustly increased time spent awake, this occurred in the absence of pronounced locomotor activation or reinforcing actions, as measured in a conditioned place preference (CPP) paradigm. Arousing and stressful conditions or drug re-exposure can elicit relapse in humans and reinstate drug-seeking in animals. Given the LHA is also implicated in the reinstatement of drug-seeking behaviour, additional studies examined whether AMPH acts within the LHA to reinstate an extinguished CPP produced with systemic AMPH administration. Our results demonstrate that AMPH action within the LHA is sufficient to reinstate drug-seeking behaviour, as measured in this paradigm. Collectively, these observations demonstrate that psychostimulants act within the LHA to elicit affectively neutral arousal and reinstate drug-seeking behaviour.
Collapse
|
52
|
Plaza-Zabala A, Li X, Milovanovic M, Loweth JA, Maldonado R, Berrendero F, Wolf ME. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neurosci Lett 2013; 557 Pt B:101-6. [PMID: 24262606 DOI: 10.1016/j.neulet.2013.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 11/17/2022]
Abstract
Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration.
Collapse
Affiliation(s)
- Ainhoa Plaza-Zabala
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, C/ Doctor Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
53
|
Cox BM, Young AB, See RE, Reichel CM. Sex differences in methamphetamine seeking in rats: impact of oxytocin. Psychoneuroendocrinology 2013; 38:2343-53. [PMID: 23764194 PMCID: PMC3775911 DOI: 10.1016/j.psyneuen.2013.05.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022]
Abstract
Previous evidence in an animal model of drug self-administration and drug seeking showed that acute oxytocin decreased methamphetamine (meth) seeking in male rats, suggesting potential clinical efficacy for the treatment of psychostimulant addiction. However, based on the well-established role of oxytocin in reproduction and pair bond formation, it is important to know how this effect extrapolates to females. Here, we tested whether oxytocin (1mg/kg, IP) would decrease meth seeking in female rats across various stages of the estrous cycle (Experiment 1). Freely cycling Long Evans female rats self-administered meth (IV) in 2-h daily sessions, followed by daily extinction sessions. Following extinction, rats received oxytocin (0, 0.3, or 1mg/kg, IP) 30min before a meth priming injection (1mg/kg, IP) to assess reinstatement of meth seeking. Next, we examined the effects of oxytocin on motivated meth- and sucrose-taking and seeking in male and female rats. In separate experiments, males and females self-administered meth (Experiment 2) or sucrose (Experiment 3) until responding was stabilized along a fixed ratio (FR) 5 schedule of reinforcement. Subsequently, rats received either oxytocin or vehicle prior to self-administration along a progressive ratio (PR) schedule of reinforcement. Rats were subsequently tested for cue-, meth-, and stress-induced reinstatement after pretreatment with oxytocin or vehicle. While oxytocin reduced meth seeking in females, we found that estrous cycle stage (as determined from vaginal cytology) did not influence meth-primed reinstatement or the ability of oxytocin to decrease reinstatement of meth seeking. Oxytocin reduced PR responding for meth only in females. Females responded more than males during cue-induced reinstatement of meth and sucrose seeking, and oxytocin reduced this responding only in meth females. In both sexes, oxytocin attenuated meth seeking in response to a meth prime and yohimbine (a pharmacological stressor). The results suggest that oxytocin may have efficacy as a treatment of meth addiction in both sexes; however, females may show greater response to oxytocin treatment for the prevention of relapse.
Collapse
Affiliation(s)
| | | | | | - Carmela M. Reichel
- Address correspondence to: Carmela M. Reichel, PhD, Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, TEL: 843 792 6333, FAX: 843 7924423,
| |
Collapse
|
54
|
Rainero I, Rubino E, Paemeleire K, Gai A, Vacca A, De Martino P, Gentile S, Sarchielli P, Pinessi L. Genes and primary headaches: discovering new potential therapeutic targets. J Headache Pain 2013; 14:61. [PMID: 23848401 PMCID: PMC3716727 DOI: 10.1186/1129-2377-14-61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/20/2013] [Indexed: 12/15/2022] Open
Abstract
Genetic studies have clearly shown that primary headaches (migraine, tension-type headache and cluster headache) are multifactorial disorders characterized by a complex interaction between different genes and environmental factors. Genetic association studies have highlighted a potential role in the etiopathogenesis of these disorders for several genes related to vascular, neuronal and neuroendocrine functions. A potential role as a therapeutic target is now emerging for some of these genes. The main purpose of this review is to describe new advances in our knowledge regarding the role of MTHFR, KCNK18, TRPV1, TRPV3 and HCRTR genes in primary headache disorders. Involvement of these genes in primary headaches, as well as their potential role in the therapy of these disorders, will be discussed.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience, University of Torino, Via Cherasco 15, Torino 10126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 2013; 7:59. [PMID: 23781178 PMCID: PMC3680710 DOI: 10.3389/fnbeh.2013.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/19/2013] [Indexed: 01/15/2023] Open
Abstract
A general consensus acknowledges that drug consumption (including alcohol, tobacco, and illicit drugs) constitutes the leading cause of preventable death worldwide. But the global burden of drug abuse extends the mortality statistics. Indeed, the comorbid long-term debilitating effects of the disease also significantly deteriorate the quality of life of individuals suffering from addiction disorders. Despite the large body of evidence delineating the cellular and molecular adaptations induced by chronic drug consumption, the brain mechanisms responsible for drug craving and relapse remain insufficiently understood, and even the most recent developments in the field have not brought significant improvement in the management of drug dependence. Though, recent preclinical evidence suggests that disrupting the hypocretin (orexin) system may serve as an anticraving medication therapy. Here, we discuss how the hypocretins, which orchestrate normal wakefulness, metabolic health and the execution of goal-oriented behaviors, may be compromised and contribute to elicit compulsive drug seeking. We propose an overview on the most recent studies demonstrating an important role for the hypocretin neuropeptide system in the regulation of drug reward and the prevention of drug relapse, and we question the relevance of disrupting the hypocretin system to alleviate symptoms of drug addiction.
Collapse
Affiliation(s)
- Benjamin Boutrel
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | | | | |
Collapse
|
56
|
Abstract
Drug addiction is a chronic relapsing disorder for which research has been dedicated to understand the various factors that contribute to development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide a broad overview of various theories of addiction, drugs of abuse, and the neurobiology involved across the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the involvement of these pathways and associated circuits in mediating conditioned responses, drug craving, and loss of behavioral control thought to underlie withdrawal and relapse. With a better understanding of the neurobiological factors that underlie drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
57
|
Brown RM, Lawrence AJ. Ascending orexinergic pathways and alcohol-seeking. Curr Opin Neurobiol 2013; 23:467-72. [PMID: 23537903 DOI: 10.1016/j.conb.2013.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/28/2022]
Abstract
Orexin (hypocretin) containing neurons reside in discrete regions of the lateral hypothalamus from where they innervate the entire neuroaxis. Via actions upon orexin receptors (OX1 and OX2), the orexin peptides (orexin A and orexin B) are thought to play a role in ethanol consumption and seeking. While a role for OX1 receptors in these behaviours is established, the case for OX2 receptors is less clear at present, although recent data certainly support an involvement of OX2 receptors in ethanol consumption. In terms of circuitry, orexin receptors the ventral tegmental area appear to contribute to ethanol consumption. Other loci remain to be characterised, and we suggest prefrontal cortical orexin receptors deserve attention in this respect.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
58
|
Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012. [PMID: 23189046 PMCID: PMC3504295 DOI: 10.3389/fnbeh.2012.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Orexins (hypocretins) are neuropeptides synthesized in neurons located in the lateral (LH), perifornical, and dorsomedial (DMH) hypothalamus. These neurons innervate many regions in the brain and modulate multiple other neurotransmitter systems. As a result of these extensive projections and interactions orexins are involved in numerous functions, such as feeding behavior, neuroendocrine regulation, the sleep-wake cycle, and reward-seeking. This review will summarize the literature to date which has evaluated a role of orexins in the behavioral effects of alcohol, with a focus on understanding the importance of this peptide and its potential as a clinical therapeutic target for alcohol use disorders.
Collapse
Affiliation(s)
- Andrezza K Kim
- Addiction Neuroscience Laboratory, Behavioural Neuroscience Division, Florey Neuroscience Institutes, University of Melbourne Parkville, VIC, Australia ; Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
59
|
Conrad KL, Davis AR, Silberman Y, Sheffler DJ, Shields AD, Saleh SA, Sen N, Matthies HJG, Javitch JA, Lindsley CW, Winder DG. Yohimbine depresses excitatory transmission in BNST and impairs extinction of cocaine place preference through orexin-dependent, norepinephrine-independent processes. Neuropsychopharmacology 2012; 37:2253-66. [PMID: 22617356 PMCID: PMC3422490 DOI: 10.1038/npp.2012.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alpha2 adrenergic receptor (α(2)-AR) antagonist yohimbine is a widely used tool for the study of anxiogenesis and stress-induced drug-seeking behavior. We previously demonstrated that yohimbine paradoxically depresses excitatory transmission in the bed nucleus of the stria terminalis (BNST), a region critical to the integration of stress and reward pathways, and produces an impairment of extinction of cocaine-conditioned place preference (cocaine-CPP) independent of α(2)-AR signaling. Recent studies show yohimbine-induced drug-seeking behavior is attenuated by orexin receptor 1 (OX(1)R) antagonists. Moreover, yohimbine-induced cocaine-seeking behavior is BNST-dependent. Here, we investigated yohimbine-orexin interactions. Our results demonstrate yohimbine-induced depression of excitatory transmission in the BNST is unaffected by alpha1-AR and corticotropin-releasing factor receptor-1 (CRFR(1)) antagonists, but is (1) blocked by OxR antagonists and (2) absent in brain slices from orexin knockout mice. Although the actions of yohimbine were not mimicked by the norepinephrine transporter blocker reboxetine, they were by exogenously applied orexin A. We find that, as with yohimbine, orexin A depression of excitatory transmission in BNST is OX(1)R-dependent. Finally, we find these ex vivo effects are paralleled in vivo, as yohimbine-induced impairment of cocaine-CPP extinction is blocked by a systemically administered OX(1)R antagonist. These data highlight a new mechanism for orexin on excitatory anxiety circuits and demonstrate that some of the actions of yohimbine may be directly dependent upon orexin signaling and independent of norepinephrine and CRF in the BNST.
Collapse
Affiliation(s)
- Kelly L Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adeola R Davis
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuval Silberman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Douglas J Sheffler
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela D Shields
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sam A Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Namita Sen
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Heinrich JG Matthies
- Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Pharmacology, Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA,Department of Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA,Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA,Vanderbilt Brain Institute, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA, Tel: +1 615 322 1144, Fax: +1 615 322 1462, E-mail:
| |
Collapse
|
60
|
Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology 2012; 63:1201-7. [PMID: 22971541 DOI: 10.1016/j.neuropharm.2012.07.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/16/2012] [Accepted: 07/25/2012] [Indexed: 11/22/2022]
Abstract
The orexin/hypocretin system has been implicated in multiple phases of drug addiction. Acute orexin receptor blockade with the orexin-1 receptor (OX1R) antagonist, SB-334867, has been found to reduce cocaine seeking after cocaine self-administration. As repeated drug dosing can have differential effects and is more clinically relevant than acute dosing, in the current study we examined the effects of repeated SB-334867 on cocaine self-administration, extinction, and reinstatement to cocaine seeking in Sprague-Dawley rats. We found that repeated SB-334867 (10 mg/kg/day) had no effect on established cocaine self-administration. Repeated SB-334867 (both 10 and 20 mg/kg) attenuated cocaine seeking during extinction; however, this effect was only observed when animals had no prior experience with SB-334867 and when SB-334867 was administered prior to, but not after, daily extinction sessions. Notably, daily treatment with SB-334867 (10 mg/kg) during extinction increased subsequent cue-induced reinstatement, whereas repeated SB-334867 (20 mg/kg) administration during extinction enabled acute SB-334867 to reduce cue-induced reinstatement. Repeated SB-334867 treatment (10 or 20 mg/kg) failed to affect reinstatement induced by priming injections of cocaine (10 mg/kg). These results show that repeated inhibition of OX1R-mediated signaling exerts a lasting and specific role in mediating environmentally activated cocaine seeking.
Collapse
|
61
|
Holtz NA, Zlebnik NE, Carroll ME. Differential orexin/hypocretin expression in addiction-prone and -resistant rats selectively bred for high (HiS) and low (LoS) saccharin intake. Neurosci Lett 2012; 522:12-5. [PMID: 22668854 PMCID: PMC3437307 DOI: 10.1016/j.neulet.2012.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
Rats that have been selectively bred for high (HiS) saccharin intake demonstrate elevated drug-seeking behavior in several phases of addiction compared to those bred for low (LoS) saccharin intake. HiS rats also consume greater amounts of highly palatable substances compared to LoS rats; however, little is known about the neurobiological substrates moderating the divergent behaviors found between the HiS and LoS lines. Orexins are neuropeptides that have been implicated in the conditioned cue aspects of drug abuse and overconsumption of palatable substances, and differential orexin activity in the HiS and LoS phenotypes may enhance our understanding of the close relationship between food and drug reward, and ultimately food and drug addiction. The lateral hypothalamus (LH) and perifornical area (PFA) are brain regions that have been implicated in regulating feeding behavior and addiction processes, and they contain orexinergic neurons that project broadly throughout the brain. Thus, we investigated orexin and c-Fos expression in the LH and PFA using immunohistochemistry in HiS and LoS rats following either control or cocaine (15 mg/kg) injections. Results indicated that HiS rats have higher orexin-positive cell counts compared to LoS rats in both the LH and PFA, regardless of cocaine (vs. saline) treatment. In contrast, neuronal activity indicated by c-Fos expression did not differ in either of these brain areas in HiS vs. LoS rats. These results suggest that the orexin system may be involved in aspects of genetically-mediated differences in vulnerability to compulsive, reward-driven behaviors.
Collapse
Affiliation(s)
- Nathan A Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
62
|
Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. PROGRESS IN BRAIN RESEARCH 2012; 198:79-121. [PMID: 22813971 PMCID: PMC3643893 DOI: 10.1016/b978-0-444-59489-1.00007-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orexins/hypocretins are hypothalamic peptides involved in arousal and wakefulness, but also play a critical role in drug addiction and reward-related behaviors. Here, we review the roles played by orexins in a variety of animal models of drug addiction, emphasizing both commonalities and differences for orexin's involvement in seeking of the major classes of abused drugs, as well as food. One common theme that emerges is an involvement of orexins in drug seeking triggered by external stimuli (e.g., cues, contexts or stressors). We also discuss the functional neuronal circuits in which orexins are embedded, and how these circuits mediate addiction-related behaviors, with particular focus on the role of orexin and glutamate interactions within the ventral tegmental area. Finally, we attempt to contextualize the role of orexins in reward by discussing ways in which these peptides, expressed in only a few thousand neurons in the brain, can have such wide-ranging effects on behavior.
Collapse
Affiliation(s)
- Stephen V. Mahler
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel J. Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - David E. Moorman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Gregory C. Sartor
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|