51
|
Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology 2018; 112:63-74. [DOI: 10.1016/j.theriogenology.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 12/24/2022]
|
52
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
53
|
Abstract
Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.
Collapse
|
54
|
Serra P, Santamaria P. Nanoparticle-based approaches to immune tolerance for the treatment of autoimmune diseases. Eur J Immunol 2018; 48:751-756. [PMID: 29427438 DOI: 10.1002/eji.201747059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by antigenically complex immune responses of the adaptive and innate immune system against specific cells, tissues or organs. Antigen-specific approaches for induction of immune tolerance in autoimmunity, based on the use of antigenic peptides or proteins, have failed to deliver the desired therapeutic results in clinical trials. These approaches, which are largely relying on triggering clonal anergy and/or deletion of defined autoreactive specificities, do not address the overwhelming antigenic, molecular, and cellular complexity of most autoimmune diseases, which involve various immune cells and ever-growing repertoires of antigenic epitopes on numerous self-antigens. Advances in the field of regulatory T-cell (Treg) biology have suggested that Treg cells might be able to afford dominant tolerance provided they are properly activated and expanded in vivo. More recently, nanotechnology has introduced novel technical advances capable of modulating immune responses. Here, we review nanoparticle-based approaches designed to induce immune tolerance, ranging from approaches that primarily trigger clonal T-cell anergy or deletion to approaches that trigger Treg cell formation and expansion from autoreactive T-cell effectors. We will also highlight the therapeutic potential and positive outcomes in numerous experimental models of autoimmunity.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
55
|
Smith WJ, Tran H, Griffin JI, Jones J, Vu VP, Nilewski L, Gianneschi N, Simberg D. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 2018; 161:57-68. [PMID: 29421563 DOI: 10.1016/j.biomaterials.2018.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
Abstract
Decoration of cell membranes with biomolecules, targeting ligands and imaging agents is an emerging strategy to improve functionality of cell-based therapies. Compared to covalent chemistry or genetic expression on the cell surface, lipid painting (i.e., incorporation of lipid-conjugated molecules into the cell bilayer) is a fast, non-damaging and less expensive approach. Previous studies demonstrated excellent incorporation and retention of distearyl indocarbocyanine dye DiI in membranes of cells in vitro and in vivo. In order to exploit the membrane stability of DiI, we synthesized an amino-DiI derivative, to which we subsequently conjugated an antibody (cetuximab), an enzyme (superoxide dismutase), and a small molecule (DyLight 800). Red blood cells have long been used as drug delivery vehicles so they were utilized as a model to study the incorporation of DiI conjugates in the plasma membrane. All the DiI constructs demonstrated fast and efficient ex vivo incorporation in the membrane of mouse RBCs, resulting in millions of exogenous molecules per RBC. Following an intravenous injection into mice, the molecules were detected on circulating RBCs for several days. DiI anchored molecules showed longer residence time in blood and significantly higher area under the curve (AUC) compared to free non-conjugated molecules. Thus, cetuximab, SOD and DyLight painted on RBC showed 5.5-fold, 6.5-fold and 78-fold increase in the AUC, respectively, compared to the non-modified molecules. Lipophilic indocarbocyanine anchors are a promising technology for incorporation of biomolecules and small molecules into biological membranes for in vivo applications.
Collapse
Affiliation(s)
- Weston J Smith
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Huy Tran
- Chemical and Biological Engineering Undergraduate Program, University of Colorado, Boulder, USA
| | - James I Griffin
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jessica Jones
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Vivian P Vu
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Lizanne Nilewski
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Nathan Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, USA; Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
56
|
Spiller F, Nycholat CM, Kikuchi C, Paulson JC, Macauley MS. Murine Red Blood Cells Lack Ligands for B Cell Siglecs, Allowing Strong Activation by Erythrocyte Surface Antigens. THE JOURNAL OF IMMUNOLOGY 2017; 200:949-956. [PMID: 29288201 DOI: 10.4049/jimmunol.1701257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
CD22 and sialic acid-binding Ig-like lectin (Siglec)-G are members of the Siglec family of inhibitory coreceptors expressed on B cells that participate in enforcement of peripheral B cell tolerance. We have shown previously that when a BCR engages its cognate Ag on a cell surface that also expresses Siglec ligands, B cell Siglecs are recruited to the immunological synapse, resulting in suppression of BCR signaling and B cell apoptosis. Because all cells display sialic acids, and CD22 and Siglec-G have distinct, yet overlapping, specificities for sialic acid-containing glycan ligands, any cell could, in principle, invoke this tolerogenic mechanism for cell surface Ags. However, we show in this article that C57BL/6J mouse RBCs are essentially devoid of CD22 and Siglec-G ligands. As a consequence, RBCs that display a cell surface Ag, membrane-bound hen egg lysozyme, strongly activate Ag-specific B cells. We reasoned that de novo introduction of CD22 ligands in RBCs should abolish B cell activation toward its cognate Ag on the surface of RBCs. Accordingly, we used a glyco-engineering approach wherein synthetic CD22 ligands linked to lipids are inserted into the membrane of RBCs. Indeed, insertion of CD22 ligands into the RBC cell surface strongly inhibited B cell activation, cytokine secretion, and proliferation. These results demonstrate that the lack of Siglec ligands on the surface of murine RBCs permits B cell responses to erythrocyte Ags and show that Siglec-mediated B cell tolerance is restricted to cell types that express glycan ligands for the B cell Siglecs.
Collapse
Affiliation(s)
- Fernando Spiller
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Corwin M Nycholat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Chika Kikuchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; .,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
57
|
Vidya J, Sajitha S, Ushasree MV, Sindhu R, Binod P, Madhavan A, Pandey A. Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. BIORESOURCE TECHNOLOGY 2017; 245:1775-1781. [PMID: 28596071 DOI: 10.1016/j.biortech.2017.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
L-asparaginase is one of the protein drugs for countering leukemia and lymphoma. A major challenge in the therapeutic potential of the enzyme is its immunogenicity, low-plasma half-life and glutaminase activity that are found to be the reasons for toxicities attributed to asparaginase therapy. For addressing these challenges, several research and developmental activities are going on throughout the world for an effective drug delivery for treatment of cancer. Hence there is an urgent need for the development of asparaginase with improved properties for efficient drug delivery. The strategies selected should be economically viable to ensure the availability of the drug at low cost. The current review addresses various strategies adopted for the production of asparaginase from different sources, approaches for increasing the therapeutic efficiency of the protein and new drug delivery systems for L-asparaginase.
Collapse
Affiliation(s)
- Jalaja Vidya
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| | - Syed Sajitha
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Mrudula Vasudevan Ushasree
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali, Punjab, India
| |
Collapse
|
58
|
|
59
|
Magnani M. Engineered red blood cells as therapeutic agents. Am J Hematol 2017; 92:979-980. [PMID: 28762543 DOI: 10.1002/ajh.24874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; 61029 Urbino Italy
| |
Collapse
|
60
|
Natarajan P, Liu D, Patel SR, Santhanakrishnan M, Beitler D, Liu J, Gibb DR, Liepkalns JS, Madrid DJ, Eisenbarth SC, Stowell SR, Hendrickson JE. CD4 Depletion or CD40L Blockade Results in Antigen-Specific Tolerance in a Red Blood Cell Alloimmunization Model. Front Immunol 2017; 8:907. [PMID: 28824633 PMCID: PMC5545689 DOI: 10.3389/fimmu.2017.00907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
Approximately 3-10% of human red blood cell (RBC) transfusion recipients form alloantibodies to non-self, non-ABO blood group antigens expressed on donor RBCs, with these alloantibodies having the potential to be clinically significant in transfusion and pregnancy settings. However, the majority of transfused individuals never form detectable alloantibodies. Expanding upon observations that children initially transfused with RBCs at a young age are less likely to form alloantibodies throughout their lives, we hypothesized that "non-responders" may not only be ignorant of antigens on RBCs but instead tolerized. We investigated this question in a reductionist murine model, in which transgenic donors express the human glycophorin A (hGPA) antigen in an RBC-specific manner. Although wild-type mice treated with poly IC and transfused with hGPA RBCs generated robust anti-hGPA IgG alloantibodies that led to rapid clearance of incompatible RBCs, those transfused in the absence of an adjuvant failed to become alloimmunized. Animals depleted of CD4+ cells or treated with CD40L blockade prior to initial hGPA RBC exposure, in the presence of poly IC, failed to generate detectable anti-hGPA IgG alloantibodies. These non-responders to a primary transfusion remained unable to generate anti-hGPA IgG alloantibodies upon secondary hGPA exposure and did not prematurely clear transfused hGPA RBCs even after their CD4 cells had returned or their CD40L blockade had resolved. This observed tolerance was antigen (hGPA) specific, as robust IgG responses to transfused RBCs expressing a third-party antigen occurred in all studied groups. Experiments completed in an RBC alloimmunization model that allowed evaluation of antigen-specific CD4+ T-cells (HOD (hen egg lysozyme, ovalbumin, and human duffyb)) demonstrated that CD40L blockade prevented the expansion of ovalbumin 323-339 specific T-cells after HOD RBC transfusion and also prevented germinal center formation. Taken together, our data suggest that recipients may indeed become tolerized to antigens expressed on RBCs, with the recipient's immune status upon initial RBC exposure dictating future responses. Although questions surrounding mechanism(s) and sustainability of tolerance remain, these data lay the groundwork for future work investigating RBC immunity versus tolerance in reductionist models and in humans.
Collapse
Affiliation(s)
- Prabitha Natarajan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Seema R. Patel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Beitler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jingchun Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - David R. Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Justine S. Liepkalns
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - David J. Madrid
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Sean R. Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
61
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
62
|
Sannikova EP, Bulushova NV, Cheperegin SE, Gubaydullin II, Chestukhina GG, Ryabichenko VV, Zalunin IA, Kotlova EK, Konstantinova GE, Kubasova TS, Shtil AA, Pokrovsky VS, Yarotsky SV, Efremov BD, Kozlov DG. The Modified Heparin-Binding L-Asparaginase of Wolinella succinogenes. Mol Biotechnol 2017; 58:528-39. [PMID: 27198565 DOI: 10.1007/s12033-016-9950-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The modified asparaginase Was79 was derived from the recombinant wild-type L-asparaginase of Wolinella succinogenes. The Was79 contains the amino acid substitutions V23Q and K24T responsible for the resistance to trypsinolysis and the N-terminal heparin-binding peptide KRKKKGKGLGKKR responsible for the binding to heparin and tumor K562 cells in vitro. When tested on a mouse model of Fischer lymphadenosis L5178Y, therapeutic efficacy of Was79 was significantly higher than that of reference enzymes at all single therapeutic doses used (125-8000 IU/kg). At Was79 single doses of 500-8000 IU/kg, the complete remission rate of 100 % was observed. The Was79 variant can be expressed intracellularly in E. coli as a less immunogenic formyl-methionine-free form at high per cell production levels.
Collapse
Affiliation(s)
- E P Sannikova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - N V Bulushova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - S E Cheperegin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - I I Gubaydullin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - G G Chestukhina
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - V V Ryabichenko
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - I A Zalunin
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - E K Kotlova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - G E Konstantinova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - T S Kubasova
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - A A Shtil
- N. N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, Russia, 115478
| | - V S Pokrovsky
- N. N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, Russia, 115478
| | - S V Yarotsky
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - B D Efremov
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545
| | - D G Kozlov
- State Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, Russia, 117545.
| |
Collapse
|
63
|
Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A 2017; 114:3157-3162. [PMID: 28270614 DOI: 10.1073/pnas.1701746114] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current therapies for autoimmune diseases rely on traditional immunosuppressive medications that expose patients to an increased risk of opportunistic infections and other complications. Immunoregulatory interventions that act prophylactically or therapeutically to induce antigen-specific tolerance might overcome these obstacles. Here we use the transpeptidase sortase to covalently attach disease-associated autoantigens to genetically engineered and to unmodified red blood cells as a means of inducing antigen-specific tolerance. This approach blunts the contribution to immunity of major subsets of immune effector cells (B cells, CD4+ and CD8+ T cells) in an antigen-specific manner. Transfusion of red blood cells expressing self-antigen epitopes can alleviate and even prevent signs of disease in experimental autoimmune encephalomyelitis, as well as maintain normoglycemia in a mouse model of type 1 diabetes.
Collapse
|
64
|
Pierigè F, Bigini N, Rossi L, Magnani M. Reengineering red blood cells for cellular therapeutics and diagnostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Francesca Pierigè
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| |
Collapse
|
65
|
Salazar-Fontana LI, Desai DD, Khan TA, Pillutla RC, Prior S, Ramakrishnan R, Schneider J, Joseph A. Approaches to Mitigate the Unwanted Immunogenicity of Therapeutic Proteins during Drug Development. AAPS JOURNAL 2017; 19:377-385. [DOI: 10.1208/s12248-016-0030-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
|
66
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
67
|
Abstract
Red blood cells (RBCs) are naturally capable of transporting diverse cargoes throughout the circulatory system, both loaded to their surface or within their inner volume. Starting largely from the 1970s, diverse approaches for encapsulation into, and surface coupling onto, RBCs have been investigated as potential drug delivery systems. In the last decade, these efforts have yielded diverse strategies to load drugs and nanocarriers to RBCs, and to optimize their pharmacokinetics, distribution, and effects in the body. Several formulations of donor RBCs encapsulated with enzymes and drugs are currently undergoing clinical trials for treatment of oncologic and neurologic conditions. Newer approaches include design of drugs with an affinity to circulating RBCs, encapsulation into RBCs using membrane permeating compounds, and design of hybrid drug delivery systems combining synthetic components with fragments of RBC membranes. Notwithstanding the growing enthusiasm and optimism in RBC drug delivery, in this article we discuss potentially problematic issues of this biomedical concept, especially impairment of biocompatibility of the carrier RBCs, and other adverse and unintended effects. Rigorous and systematic analysis of the cautionary aspects described in this article should be further developed and extended in order to soberly gauge the risk/benefit balance of any given RBC-based drug delivery application. While there is little doubt that RBC drug delivery will ultimately flourish, focusing research efforts on approaches that are unlikely to cause adverse effects in patients will help to sooner bring this day.
Collapse
Affiliation(s)
- Carlos H Villa
- Division of Transfusion Medicine and Therapeutic Pathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement & DDR Strategies, London, UK
| | - Vladimir Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
68
|
Kishimoto TK, Ferrari JD, LaMothe RA, Kolte PN, Griset AP, O'Neil C, Chan V, Browning E, Chalishazar A, Kuhlman W, Fu FN, Viseux N, Altreuter DH, Johnston L, Maldonado RA. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. NATURE NANOTECHNOLOGY 2016; 11:890-899. [PMID: 27479756 DOI: 10.1038/nnano.2016.135] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The development of antidrug antibodies (ADAs) is a common cause for the failure of biotherapeutic treatments and adverse hypersensitivity reactions. Here we demonstrate that poly(lactic-co-glycolic acid) (PLGA) nanoparticles carrying rapamycin, but not free rapamycin, are capable of inducing durable immunological tolerance to co-administered proteins that is characterized by the induction of tolerogenic dendritic cells, an increase in regulatory T cells, a reduction in B cell activation and germinal centre formation, and the inhibition of antigen-specific hypersensitivity reactions. Intravenous co-administration of tolerogenic nanoparticles with pegylated uricase inhibited the formation of ADAs in mice and non-human primates and normalized serum uric acid levels in uricase-deficient mice. Similarly, the subcutaneous co-administration of nanoparticles with adalimumab resulted in the durable inhibition of ADAs, leading to normalized pharmacokinetics of the anti-TNFα antibody and protection against arthritis in TNFα transgenic mice. Adjunct therapy with tolerogenic nanoparticles represents a novel and broadly applicable approach to prevent the formation of ADAs against biologic therapies.
Collapse
Affiliation(s)
- Takashi K Kishimoto
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Joseph D Ferrari
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Robert A LaMothe
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Pallavi N Kolte
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Aaron P Griset
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Conlin O'Neil
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Victor Chan
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Erica Browning
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Aditi Chalishazar
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - William Kuhlman
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Fen-Ni Fu
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Nelly Viseux
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - David H Altreuter
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Lloyd Johnston
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| | - Roberto A Maldonado
- Selecta Biosciences Inc., 480 Arsenal Street, Watertown, Massachusetts 02472, USA
| |
Collapse
|
69
|
Villa CH, Cines DB, Siegel DL, Muzykantov V. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfus Med Rev 2016; 31:26-35. [PMID: 27707522 DOI: 10.1016/j.tmrv.2016.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 10/20/2022]
Abstract
Red blood cells (RBCs) are innate carriers that can also be engineered to improve the pharmacokinetics and pharmacodynamics of many drugs, particularly biotherapeutics. Successful loading of drugs, both internally and on the external surface of RBCs, has been demonstrated for many drugs including anti-inflammatory, antimicrobial, and antithrombotic agents. Methods for internal loading of drugs within RBCs are now entering clinical use. Although internal loading can result in membrane disruption that may compromise biocompatibility, surface loading using either affinity or chemical ligands offers a diverse set of approaches for the production of RBC drug carriers. A wide range of surface determinants is potentially available for this approach, although there remains a need to characterize the effects of coupling agents to these surface proteins. Somewhat surprisingly, recent data also suggest that red cell-mediated delivery may confer tolerogenic immune effects. Questions remaining before widespread application of these technologies include determining the optimal loading protocol, source of RBCs, and production logistics, as well as addressing regulatory hurdles. Red blood cell drug carriers, after many decades of progress, are now poised to enter the clinic and broaden the potential application of RBCs in blood transfusion.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.
| | - Douglas B Cines
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Don L Siegel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
70
|
Grimm AJ, Kontos S, Diaceri G, Quaglia-Thermes X, Hubbell JA. Memory of tolerance and induction of regulatory T cells by erythrocyte-targeted antigens. Sci Rep 2015; 5:15907. [PMID: 26511151 PMCID: PMC4625129 DOI: 10.1038/srep15907] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022] Open
Abstract
New approaches based on induction of antigen-specific immunological tolerance are being explored for treatment of autoimmunity and prevention of immunity to protein drugs. Antigens associated with apoptotic debris are known to be processed tolerogenically in vivo. Our group is exploring an approach toward antigen-specific tolerization using erythrocyte-binding antigens, based on the premise that as the erythrocytes circulate, age and are cleared, the erythrocyte surface-bound antigen payload will be cleared tolerogenically along with the eryptotic debris. Here, we characterized the phenotypic signatures of CD8+ T cells undergoing tolerance in response to soluble and erythrocyte-targeted antigen. Signaling through programmed death-1/programmed death ligand-1 (PD-1/PD-L1), but not through cytotoxic T lymphocyte antigen 4 (CTLA4), was shown to be required for antigen-specific T cell deletion, anergy and expression of regulatory markers. Generation of CD25+FOXP3+ regulatory T cells in response to erythrocyte-targeted antigens but not soluble antigen at an equimolar dose was observed, and these cells were required for long-term maintenance of immune tolerance in both the CD4+ and CD8+ T cell compartments. Evidence of infectious tolerance was observed, in that tolerance to a one antigenic epitope was able to regulate responses to other epitopes in the same protein antigen.
Collapse
Affiliation(s)
- Alizée J. Grimm
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Kontos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
| | - Giacomo Diaceri
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xavier Quaglia-Thermes
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Anokion SA, Ecublens, Switzerland
- Kanyos Bio, Inc., Cambridge, Massachusetts, USA
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
71
|
Kontos S, Grimm AJ, Hubbell JA. Engineering antigen-specific immunological tolerance. Curr Opin Immunol 2015; 35:80-8. [DOI: 10.1016/j.coi.2015.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 01/07/2023]
|