51
|
Røder HL, Olsen NMC, Whiteley M, Burmølle M. Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environ Microbiol 2019; 22:5-16. [DOI: 10.1111/1462-2920.14834] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Henriette L. Røder
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Nanna M. C. Olsen
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| | - Marvin Whiteley
- School of Biological SciencesGeorgia Institute of Technology, Atlanta Georgia USA
- Emory‐Children's Cystic Fibrosis Center, Atlanta Georgia USA
- Center for Microbial Dynamics and InfectionGeorgia Institute of Technology, Atlanta Georgia USA
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
52
|
Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Front Microbiol 2019; 10:2455. [PMID: 31736901 PMCID: PMC6828654 DOI: 10.3389/fmicb.2019.02455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
In acidophilic microorganisms, anions like chloride have higher toxicity than their neutrophilic counterparts. In addition to the osmotic imbalance, chloride can also induce acidification of the cytoplasm. We predicted that intracellular acidification produces an increase in respiratory rate and generation of reactive oxygen species, and so oxidative stress can also be induced. In this study, the multifactorial effect as inducing osmotic imbalance, cytoplasm acidification and oxidative stress in the iron-oxidizing bacterium Leptospirillum ferriphilum DSM 14647 exposed to up to 150 mM NaCl was investigated. Results showed that chloride stress up-regulated genes for synthesis of potassium transporters (kdpC and kdpD), and biosynthesis of the compatible solutes (hydroxy)ectoine (ectC and ectD) and trehalose (otsB). As a consequence, the intracellular levels of both hydroxyectoine and trehalose increased significantly, suggesting a strong response to keep osmotic homeostasis. On the other hand, the intracellular pH significantly decreased from 6.7 to pH 5.5 and oxygen consumption increased significantly when the cells were exposed to NaCl stress. Furthermore, this stress condition led to a significant increase of the intracellular content of reactive oxygen species, and to a rise of the antioxidative cytochrome c peroxidase (CcP) and thioredoxin (Trx) activities. In agreement, ccp and trx genes were up-regulated under this condition, suggesting that this bacterium displayed a transcriptionally regulated response against oxidative stress induced by chloride. Altogether, these data reveal that chloride has a dramatic multifaceted effect on acidophile physiology that involves osmotic, acidic and oxidative stresses. Exploration of the adaptive mechanisms to anion stress in iron-oxidizing acidophilic microorganisms may result in new strategies that facilitate the bioleaching of ores for recovery of precious metals in presence of chloride.
Collapse
Affiliation(s)
- Javier Rivera-Araya
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile.,Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andre Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dieu Huynh
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Renato Chávez
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Basic an Applied Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
53
|
Kucharzyk KH, Rectanus HV, Bartling CM, Rosansky S, Minard-Smith A, Mullins LA, Neil K. Use of omic tools to assess methyl tert-butyl ether (MTBE) degradation in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120618. [PMID: 31301927 DOI: 10.1016/j.jhazmat.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
This study employed innovative technologies to evaluate multiple lines of evidence for natural attenuation (NA) of methyl tertiary-butyl ether (MTBE) in groundwater at the 22 Area of Marine Corps Base (MCB) Camp Pendleton after decommissioning of a biobarrier system. For comparison, data from the 13 Area Gas Station where active treatment of MTBE is occurring was used to evaluate the effectiveness of omic techniques in assessing biodegradation. Overall, the 22 Area Gas Station appeared to be anoxic. MTBE was detected in large portion of the plume. In comparison, concentrations of MTBE at the 13 Area Gas Station were much higher (42,000 μg/L to 2800 μg/L); however, none of the oxygenates were detected. Metagenomic analysis of the indigenous groundwater microbial community revealed the presence of bacterial strains known to aerobically and anaerobically degrade MTBE at both sites. While proteomic analysis at the 22 Area Gas Station showed the presence of proteins of MTBE degrading microorganisms, the MTBE degradative proteins were only found at the 13 Area Gas Station. Taken together, these results provide evidence for previous NA of MTBE in the groundwater at 22 Area Gas Station and demonstrate the effectiveness of innovative-omic technologies to assist monitored NA assessments.
Collapse
Affiliation(s)
| | | | | | - Steve Rosansky
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | - Kenda Neil
- Naval Facilities Engineering Command (NAVFAC) Engineering and Expeditionary Warfare Center (EXWC), Port Huaneme, CA, United States
| |
Collapse
|
54
|
Lukhele T, Selvarajan R, Nyoni H, Mamba BB, Msagati TAM. Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles 2019; 23:719-734. [PMID: 31520125 DOI: 10.1007/s00792-019-01130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
This study surveyed physicochemical properties and bacterial community structure of water and sediments from an acid mine drainage (AMD) dam in South Africa. High-throughput sequence analysis revealed low diversity bacterial communities affiliated within 8 dominant phyla; Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Proteobacteria, Saccharibacteria, and ca. TM6_(Dependentiae). Acidiphilium spp. which are common AMD inhabitants but rarely occur as dominant taxa, were the most abundant in both AMD water and sediments. Other groups making up the community are less common AMD inhabitants; Acidibacillus, Acidibacter, Acidobacterium, Acidothermus, Legionella, Metallibacterium, Mycobacterium, as well as elusive taxa (Saccharibacteria, ca. TM6_(Dependentiae) and ca. JG37-AG-4). Although most of the taxa are shared between sediment and water communities, alpha diversity indices indicate a higher species richness in the sediments. From canonical correspondence analysis, DOC, Mn, Cu, Cr, Al, Fe, Ca were identified as important determinants of community structure in water, compared to DOC, Ca, Cu, Fe, Zn, Mg, K, Mn, Al, sulfates, and nitrates in sediments. Predictive functional profiling recovered genes associated with bacterial growth and those related to survival and adaptation to the harsh environmental conditions. Overall, the study reports on a distinct AMD bacterial community and highlights sediments as microhabitats with higher species richness than water.
Collapse
Affiliation(s)
- Thabile Lukhele
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Bheki Brilliance Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.,State Key Laboratory of Separation and Membranes, Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus Alfred Makudali Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.
| |
Collapse
|
55
|
Liu R, Chen Y, Tian Z, Mao Z, Cheng H, Zhou H, Wang W. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2019; 287:121416. [PMID: 31103940 DOI: 10.1016/j.biortech.2019.121416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/09/2023]
Abstract
A new strategy of three-step adaptive laboratory evolution (ALE) was developed to enhance the bioleaching performance of moderately thermophilic consortia. Through consortium construction, directed evolution and chemostat selection, an improved consortium (ALEend) that composed of Leptospirillum ferriphilum (80.32%), Sulfobacillus thermosulfidooxidans (15.82%) and Ferroplasma thermophilum (3.86%) was obtained, showing ferrous iron oxidation rate of 500 mgL-1h-1 and biomass production of 2.0 × 108 cells/mL at pH 0.75. During batch culturing, the ALEend consortium exhibited stable ferrous iron oxidation in wider conditions. PCA indicated that the communities were similar under fluctuating culture conditions, which demonstrated the stable community structure and the reinforced synergistic interactions resulting in the enhanced community performance. Pyrite bioleaching conducted at pH 1.5 and 0.75 revealed that the ALEend consortium extracted 26% and 55% more total iron relative to the original consortium. These findings indicated that the modified ALE may be a promising strategy for microbial community modification to enhance bioleaching.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yanzhi Chen
- South China Institute of Environmental Sciences, Guangzhou, China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| | - Wei Wang
- South China Institute of Environmental Sciences, Guangzhou, China
| |
Collapse
|
56
|
Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures. Methods Mol Biol 2019. [PMID: 31407298 DOI: 10.1007/978-1-4939-9721-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In many anaerobic environments methane (CH4) is produced by methanogens, with either H2/CO2 or acetate (i.e., the methyl group) as precursors, through what are referred to as hydrogenotrophic and acetoclastic methanogenic pathways respectively. Their relative contribution to total CH4 production can be quantified by determining the stable carbon isotopic fractionation factors for both pathways as well as the isotopic signatures of CO2, CH4, and the methyl group in acetate of the sample. The procedures for measuring carbon isotopic fractionation factors of both methanogenic pathways and isotopic composition of these compounds by isotope ratio mass spectrometry are described in this chapter. The results are very helpful in evaluating the activity of the methanogens involved in each methanogenic pathway as well as those of other biological pathways with different fractionation factors.
Collapse
|
57
|
Tan S, Liu J, Fang Y, Hedlund BP, Lian ZH, Huang LY, Li JT, Huang LN, Li WJ, Jiang HC, Dong HL, Shu WS. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulodesulfobacterales by metagenomics and metatranscriptomics. THE ISME JOURNAL 2019; 13:2044-2057. [PMID: 30962514 PMCID: PMC6776010 DOI: 10.1038/s41396-019-0415-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
Abstract
Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | - Yun Fang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Guangdong Magigene Biotechnology Co. Ltd., 510000, Guangzhou, China
| | - Li-Ying Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jin-Tian Li
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hai-Liang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
58
|
Li S, Hu S, Shi S, Ren L, Yan W, Zhao H. Microbial diversity and metaproteomic analysis of activated sludge responses to naphthalene and anthracene exposure. RSC Adv 2019; 9:22841-22852. [PMID: 35702527 PMCID: PMC9116109 DOI: 10.1039/c9ra04674g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
The activated sludge process can effectively remove polycyclic aromatic hydrocarbons (PAHs) from wastewater via biodegradation. However, the degradable microorganisms and functional enzymes involved in this process remain unclear. In this study, we successfully employed a laboratory-scale sequential batch reactor to investigate variations in microbial community and protein expression in response to the addition of different PAHs and process time. The analysis of bacterial community structure by 454 pyrosequencing of the 16S rRNA gene indicated that bacteria from Burkholderiales order were dominant in PAHs treated sludge. Mass spectrometry performed with 2D protein profiles of all sludge samples demonstrated that most proteins exhibiting differential expression profiles during the process were derived from Burkholderiales populations; these proteins are involved in DNA replication, fatty acid and glucose metabolism, stress response, protein synthesis, and aromatic hydrocarbon metabolism. Nevertheless, the protein expression profiles indicated that naphthalene, but not anthracene, can induce the expression of PAH-degrading proteins and accelerate its elimination from sludge. Though only naphthalene and anthracene were added into our experimental groups, the differentially expressed enzymes involved in other PAHs (especially biphenyl) metabolism were also detected. This study provides apparent evidence linking the metabolic activities of Burkholderiales populations with the degradation of PAHs in activated sludge processes. Overall, our findings highlighted the successful application of metaproteomics integrated with microbial diversity analysis by high-throughput sequencing technique on the analysis of environmental samples, which could provide a convenience to monitor the changes in proteins expression profiles and their correlation with microbial diversity.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Shaoda Hu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of Chinese People's Armed Police Forces Tianjin 300309 China
| | - Sanyuan Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-80235816
| | - Lu Ren
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-80235816
| | - Wei Yan
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Huabing Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-80235816
| |
Collapse
|
59
|
Kadnikov VV, Gruzdev EV, Ivasenko DA, Beletsky AV, Mardanov AV, Danilova EV, Karnachuk OV, Ravin NV. Selection of a Microbial Community in the Course of Formation of Acid Mine Drainage. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
60
|
Zhou R, Zhou R, Wang P, Luan B, Zhang X, Fang Z, Xian Y, Lu X, Ostrikov KK, Bazaka K. Microplasma Bubbles: Reactive Vehicles for Biofilm Dispersal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20660-20669. [PMID: 31067024 DOI: 10.1021/acsami.9b03961] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interactions between effects generated by cold atmospheric-pressure plasmas and water have been widely investigated for water purification, chemical and nanomaterial synthesis, and, more recently, medicine and biotechnology. Reactive oxygen and nitrogen species (RONS) play critical roles in transferring the reactivity from gas plasmas to solutions to induce specific biochemical responses in living targets, e.g., pathogen inactivation and biofilm removal. While this approach works well in a single-organism system at a laboratory scale, integration of plasma-enabled biofilm removal into complex real-life systems, e.g., large aquaculture tanks, is far from trivial. This is because it is difficult to deliver sufficient concentrations of the right kind of species to biofilm-covered surfaces while carefully maintaining a suitable physiochemical environment that is healthy for its inhabitants, e.g., fish. In this work, we show that underwater microplasma bubbles (generated by a microplasma-bubble reactor that forms a dielectric barrier discharge at the gas-liquid interface with the applied voltage of 4.0 kV) act as transport vehicles to efficiently deliver reactive plasma species to the target biofilm sites on artificial and living surfaces while keeping healthy water conditions in a multispecies system. The as-generated air microplasma bubbles and plasma-activated water (PAW) both can effectively reduce the existing pathogenic biofilm load by ∼83 and 60%, respectively, after 15 min of discharge at 40 W and prevent any new biofilm from forming. The generation of underwater microplasma bubbles in a custom-made fish tank for less than a minute per day (20 s per time, twice daily) can introduce sufficient quantities of RONS into PAW to reduce the biofilm-infected area by ∼80-90% and improve the health status of Cichlasoma synspilum × Cichlasoma citrinellum blood parrot cichlid fish. Species generated include hydrogen peroxide, ozone, nitrite, nitrate, and nitric oxide. Using mimicked chemical solutions, we show that the plasma-induced nitric oxide acts as a critical bioactive species that triggers the release of cells from the biofilm and their inactivation.
Collapse
Affiliation(s)
| | | | | | - Bingyu Luan
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Department of Electronic Science, College of Electronic Science and Technology , Xiamen University , Xiamen 361005 , China
| | - Xianhui Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Institute of Electromagnetics and Acoustics, Department of Electronic Science, College of Electronic Science and Technology , Xiamen University , Xiamen 361005 , China
| | - Zhi Fang
- College of Electrical Engineering and Control Science , Nanjing Tech University , Nanjing 210009 , China
| | - Yubin Xian
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | | | | |
Collapse
|
61
|
Determining Microbial Roles in Ecosystem Function: Redefining Microbial Food Webs and Transcending Kingdom Barriers. mSystems 2019; 4:4/3/e00153-19. [PMID: 31164408 PMCID: PMC6584882 DOI: 10.1128/msystems.00153-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microorganisms can have a profound and varying effect on the chemical character of environments and, thereby, ecological health. Their capacity to consume or transform contaminants leads to contrasting outcomes, such as the dissipation of nutrient pollution via denitrification, the breakdown of spilled oil, or eutrophication via primary producer overgrowth. Microorganisms can have a profound and varying effect on the chemical character of environments and, thereby, ecological health. Their capacity to consume or transform contaminants leads to contrasting outcomes, such as the dissipation of nutrient pollution via denitrification, the breakdown of spilled oil, or eutrophication via primary producer overgrowth. Recovering the genomes of organisms directly from the environment is useful to gain insights into resource usage, interspecies collaborations (producers and consumers), and trait acquisition. Microbial data can also be considered alongside the broader biological character of an environment through the co-recovery of eukaryotic DNA. The contributions of individual microorganisms (bacteria, archaea, and protists) to snapshots of ecosystem processes can be determined by integrating genomics with functional methods. This combined approach enables a detailed understanding of how microbial communities drive biogeochemical cycles, and although currently limited by scale, key attributes can be effectively extrapolated with lower-resolution methods to determine wider ecological relevance.
Collapse
|
62
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
63
|
Schiebenhoefer H, Van Den Bossche T, Fuchs S, Renard BY, Muth T, Martens L. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev Proteomics 2019; 16:375-390. [PMID: 31002542 DOI: 10.1080/14789450.2019.1609944] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The study of microbial communities based on the combined analysis of genomic and proteomic data - called metaproteogenomics - has gained increased research attention in recent years. This relatively young field aims to elucidate the functional and taxonomic interplay of proteins in microbiomes and its implications on human health and the environment. Areas covered: This article reviews bioinformatics methods and software tools dedicated to the analysis of data from metaproteomics and metaproteogenomics experiments. In particular, it focuses on the creation of tailored protein sequence databases, on the optimal use of database search algorithms including methods of error rate estimation, and finally on taxonomic and functional annotation of peptide and protein identifications. Expert opinion: Recently, various promising strategies and software tools have been proposed for handling typical data analysis issues in metaproteomics. However, severe challenges remain that are highlighted and discussed in this article; these include: (i) robust false-positive assessment of peptide and protein identifications, (ii) complex protein inference against a background of highly redundant data, (iii) taxonomic and functional post-processing of identification data, and finally, (iv) the assessment and provision of metrics and tools for quantitative analysis.
Collapse
Affiliation(s)
- Henning Schiebenhoefer
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Tim Van Den Bossche
- b VIB - UGent Center for Medical Biotechnology, VIB , Ghent , Belgium.,c Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| | - Stephan Fuchs
- d FG13 Division of Nosocomial Pathogens and Antibiotic Resistances , Robert Koch Institute , Wernigerode , Germany
| | - Bernhard Y Renard
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Thilo Muth
- a Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure , Robert Koch Institute , Berlin , Germany
| | - Lennart Martens
- b VIB - UGent Center for Medical Biotechnology, VIB , Ghent , Belgium.,c Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences , Ghent University , Ghent , Belgium
| |
Collapse
|
64
|
Abstract
The microbiome is emerging as a prominent factor affecting human health, and its dysbiosis is associated with various diseases. Compositional profiling of microbiome is increasingly being supplemented with functional characterization. Metaproteomics is intrinsically focused on functional changes and therefore will be an important tool in those studies of the human microbiome. In the past decade, development of new experimental and bioinformatic approaches for metaproteomics has enabled large-scale human metaproteomic studies. However, challenges still exist, and there remains a lack of standardizations and guidelines for properly performing metaproteomic studies on human microbiome. Herein, we provide a perspective of recent developments, the challenges faced, and the future directions of metaproteomics and its applications. In addition, we propose a set of guidelines/recommendations for performing and reporting the results from metaproteomic experiments for the study of human microbiomes. We anticipate that these guidelines will be optimized further as more metaproteomic questions are raised and addressed, and metaproteomic applications are published, so that they are eventually recognized and applied in the field.
Collapse
Affiliation(s)
- Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine , University of Ottawa , Ottawa , Ontario K1H 8M5 , Canada
| |
Collapse
|
65
|
Saito MA, Bertrand EM, Duffy ME, Gaylord DA, Held NA, Hervey WJ, Hettich RL, Jagtap PD, Janech MG, Kinkade DB, Leary DH, McIlvin MR, Moore EK, Morris RM, Neely BA, Nunn BL, Saunders JK, Shepherd AI, Symmonds NI, Walsh DA. Progress and Challenges in Ocean Metaproteomics and Proposed Best Practices for Data Sharing. J Proteome Res 2019; 18:1461-1476. [PMID: 30702898 DOI: 10.1021/acs.jproteome.8b00761] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ocean metaproteomics is an emerging field enabling discoveries about marine microbial communities and their impact on global biogeochemical processes. Recent ocean metaproteomic studies have provided insight into microbial nutrient transport, colimitation of carbon fixation, the metabolism of microbial biofilms, and dynamics of carbon flux in marine ecosystems. Future methodological developments could provide new capabilities such as characterizing long-term ecosystem changes, biogeochemical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean metaproteomics due to the great biological diversity that produces highly complex mass spectra, as well as the difficulty in obtaining and working with environmental samples. This review summarizes the progress and challenges facing ocean metaproteomic scientists and proposes best practices for data sharing of ocean metaproteomic data sets, including the data types and metadata needed to enable intercomparisons of protein distributions and annotations that could foster global ocean metaproteomic capabilities.
Collapse
Affiliation(s)
- Mak A Saito
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Erin M Bertrand
- Department of Biology , Dalhousie University , Halifax , Nova Scotia B3H 4R2 , Canada
| | - Megan E Duffy
- School of Oceanography , University of Washington , Seattle , Washington 98195-7940 , United States
| | - David A Gaylord
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Noelle A Held
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | | | - Robert L Hettich
- Oak Ridge National Laboratory and Microbiology Department , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Saint Paul , Minnesota 55108 , United States
| | - Michael G Janech
- College of Charleston , Charleston , South Carolina 29424 , United States
| | - Danie B Kinkade
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Dagmar H Leary
- U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Matthew R McIlvin
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Eli K Moore
- Department of Environmental Science , Rowan University , Glassboro , New Jersey 08028 , United States
| | - Robert M Morris
- School of Oceanography , University of Washington , Seattle , Washington 98195-7940 , United States
| | - Benjamin A Neely
- National Institute of Standards and Technology , Charleston , South Carolina 29412 , United States
| | - Brook L Nunn
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - Jaclyn K Saunders
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States.,School of Oceanography , University of Washington , Seattle , Washington 98195-7940 , United States
| | - Adam I Shepherd
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Nicholas I Symmonds
- Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - David A Walsh
- Department of Biology , Concordia University , Montreal , Quebec H4B 1R6 , Canada
| |
Collapse
|
66
|
Abstract
Microbes are the most abundant lifeforms on the planet and perform functions critical for all other life to exist. Environmental 'omic' technologies provide the capacity to discover the 'what, how and why' of indigenous species. However, in order to accurately interpret this data, sound conceptual frameworks are required. Here I argue that our understanding of microbes will advance much more effectively if we adopt a microbcentric, and not anthropocentric view of the world.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSWAustralia
| |
Collapse
|
67
|
Jagtap PD, Viken KJ, Johnson J, McGowan T, Pendleton KM, Griffin TJ, Hunter RC, Rudney JD, Bhargava M. BAL Fluid Metaproteome in Acute Respiratory Failure. Am J Respir Cell Mol Biol 2018; 59:648-652. [PMID: 30382775 PMCID: PMC6236685 DOI: 10.1165/rcmb.2018-0068le] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Kevin J. Viken
- University of Minnesota Medical SchoolMinneapolis, Minnesota
| | - James Johnson
- University of Minnesota Supercomputing InstituteMinneapolis, Minnesotaand
| | - Thomas McGowan
- University of Minnesota Supercomputing InstituteMinneapolis, Minnesotaand
| | | | | | - Ryan C. Hunter
- University of Minnesota Medical SchoolMinneapolis, Minnesota
| | - Joel D. Rudney
- University of Minnesota School of DentistryMinneapolis, Minnesota
| | | |
Collapse
|
68
|
Chignell JF, Schlegel C, Ulber R, Reardon KF. Quantitative proteomic analysis of
Lactobacillus delbrueckii
ssp.
lactis
biofilms. AIChE J 2018. [DOI: 10.1002/aic.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jeremy F. Chignell
- Dept. of Chemical and Biological Engineering Colorado State University Fort Collins CO, 80523
| | - Christin Schlegel
- Institute of Bioprocess Engineering University of Kaiserslautern Kaiserslautern, D‐67663 Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering University of Kaiserslautern Kaiserslautern, D‐67663 Germany
| | - Kenneth F. Reardon
- Dept. of Chemical and Biological Engineering Colorado State University Fort Collins CO, 80523
- Cell and Molecular Biology Graduate Program Colorado State University Fort Collins CO, 80523
| |
Collapse
|
69
|
Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome Biol Evol 2018; 10:707-715. [PMID: 29420719 PMCID: PMC5830969 DOI: 10.1093/gbe/evy031] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 02/07/2023] Open
Abstract
Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns.
Collapse
Affiliation(s)
- Guillaume Bernard
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Jananan S Pathmanathan
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Romain Lannes
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Philippe Lopez
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), France
| |
Collapse
|
70
|
Wang X, Li X, Sun Z. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:60-66. [PMID: 29793202 DOI: 10.1016/j.ecoenv.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Soil environment contaminated by Escherichia coli O157:H7 which come from the waste of infected animals. Earthworms can live in the pathogens-polluted soil by their innate immunity. How the proteins of earthworms E. fetida will response to E. coli O157:H7-contaminated-soil still unclear? To identify the defense proteins under E. coli O157:H7 stress, we performed a proteomic analysis of earthworm under E. coli O157:H7 exposure through an iTRAQ technology. In total, we found 283 non-redundant proteins, including fibrinolytic protease 1, lombricine kinase, lysozyme, gelsolin, coelomic cytolytic factor-1, antimicrobial peptide lumbricin-l, lysenin, and et al. The proteins participate in metabolic processes, transcription, defense response to bacterium, translation, response to stress, and transport. The study will contribute to understand why earthworm can live in the pathogens-polluted environment.
Collapse
Affiliation(s)
- Xing Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Xiaoqin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhenjun Sun
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
71
|
Lin H, He QY, Shi L, Sleeman M, Baker MS, Nice EC. Proteomics and the microbiome: pitfalls and potential. Expert Rev Proteomics 2018; 16:501-511. [PMID: 30223687 DOI: 10.1080/14789450.2018.1523724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Human symbiotic microbiota are now known to play important roles in human health and disease. Significant progress in our understanding of the human microbiome has been driven by recent technological advances in the fields of genomics, transcriptomics, and proteomics. As a complementary method to metagenomics, proteomics is enabling detailed protein profiling of the microbiome to decipher its structure and function and to analyze its relationship with the human body. Fecal proteomics is being increasingly applied to discover and validate potential health and disease biomarkers, and Therapeutic Goods Administration (TGA)-approved instrumentation and a range of clinical assays are being developed that will collectively play key roles in advancing personalized medicine. Areas covered: This review will introduce the complexity of the microbiome and its role in health and disease (in particular the gastrointestinal tract or gut microbiome), discuss current genomic and proteomic methods for studying this system, including the discovery of potential biomarkers, and outline the development of clinically accepted protocols leading to personalized medicine. Expert commentary: Recognition of the important role the microbiome plays in both health and disease is driving current research in this key area. A proteogenomics approach will be essential to unravel the biologies underlying this complex network.
Collapse
Affiliation(s)
- Huafeng Lin
- a Department of Biotechnology , College of Life Science and Technology, Jinan University , Guangzhou , Guangdong , China.,b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Qing-Yu He
- c Institute of Life and Health Engineering, College of Life Science and Technology , Jinan University , Guangzhou , China
| | - Lei Shi
- b Institute of Food Safety and Nutrition Research , Jinan University , Guangzhou , China
| | - Mark Sleeman
- d Biomedicine Discovery Institute , Monash University , Melbourne , Australia
| | - Mark S Baker
- e Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Edouard C Nice
- f Department of Biochemistry and Molecular Biology , Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
72
|
Wang AY, Thuy-Boun PS, Stupp GS, Su AI, Wolan DW. Triflic Acid Treatment Enables LC-MS/MS Analysis of Insoluble Bacterial Biomass. J Proteome Res 2018; 17:2978-2986. [PMID: 30019906 DOI: 10.1021/acs.jproteome.8b00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lysis and extraction of soluble bacterial proteins from cells is a common practice for proteomics analyses, but insoluble bacterial biomasses are often left behind. Here, we show that with triflic acid treatment, the insoluble bacterial biomass of Gram- and Gram+ bacteria can be rendered soluble. We use LC-MS/MS shotgun proteomics to show that bacterial proteins in the soluble and insoluble postlysis fractions differ significantly. Additionally, in the case of Gram- Pseudomonas aeruginosa, triflic acid treatment enables the enrichment of cell-envelope-associated proteins. Finally, we apply triflic acid to a human microbiome sample to show that this treatment is robust and enables the identification of a new, complementary subset of proteins from a complex microbial mixture.
Collapse
Affiliation(s)
- Ana Y Wang
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter S Thuy-Boun
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Gregory S Stupp
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Andrew I Su
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dennis W Wolan
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
73
|
Timmins-Schiffman E, Mikan MP, Ting YS, Harvey HR, Nunn BL. MS analysis of a dilution series of bacteria:phytoplankton to improve detection of low abundance bacterial peptides. Sci Rep 2018; 8:9276. [PMID: 29915279 PMCID: PMC6006377 DOI: 10.1038/s41598-018-27650-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Assigning links between microbial activity and biogeochemical cycles in the ocean is a primary objective for ecologists and oceanographers. Bacteria represent a small ecosystem component by mass, but act as the nexus for both nutrient transformation and organic matter recycling. There are limited methods to explore the full suite of active bacterial proteins largely responsible for degradation. Mass spectrometry (MS)-based proteomics now has the potential to document bacterial physiology within these complex systems. Global proteome profiling using MS, known as data dependent acquisition (DDA), is limited by the stochastic nature of ion selection, decreasing the detection of low abundance peptides. The suitability of MS-based proteomics methods in revealing bacterial signatures outnumbered by phytoplankton proteins was explored using a dilution series of pure bacteria (Ruegeria pomeroyi) and diatoms (Thalassiosira pseudonana). Two common acquisition strategies were utilized: DDA and selected reaction monitoring (SRM). SRM improved detection of bacterial peptides at low bacterial cellular abundance that were undetectable with DDA from a wide range of physiological processes (e.g. amino acid synthesis, lipid metabolism, and transport). We demonstrate the benefits and drawbacks of two different proteomic approaches for investigating species-specific physiological processes across relative abundances of bacteria that vary by orders of magnitude.
Collapse
Affiliation(s)
| | - Molly P Mikan
- Old Dominion University, Department of Ocean, Earth, and Atmospheric Sciences, Norfolk, VA, 23529, USA
| | - Ying Sonia Ting
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
- Neon Therapeutics, Boston, MA, 02139, USA
| | - H Rodger Harvey
- Old Dominion University, Department of Ocean, Earth, and Atmospheric Sciences, Norfolk, VA, 23529, USA
| | - Brook L Nunn
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA.
| |
Collapse
|
74
|
Alessi AM, Bird SM, Oates NC, Li Y, Dowle AA, Novotny EH, deAzevedo ER, Bennett JP, Polikarpov I, Young JPW, McQueen-Mason SJ, Bruce NC. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:166. [PMID: 29946357 PMCID: PMC6004670 DOI: 10.1186/s13068-018-1164-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/05/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform "community-level" metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes. RESULTS Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements. CONCLUSIONS A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.
Collapse
Affiliation(s)
- Anna M. Alessi
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Susannah M. Bird
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Nicola C. Oates
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Adam A. Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, YO10 5DD UK
| | | | - Eduardo R. deAzevedo
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP Brazil
| | - Joseph P. Bennett
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP Brazil
| | | | - Simon J. McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| | - Neil C. Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD UK
| |
Collapse
|
75
|
Włodarczyk A, Lirski M, Fogtman A, Koblowska M, Bidziński G, Matlakowska R. The Oxidative Metabolism of Fossil Hydrocarbons and Sulfide Minerals by the Lithobiontic Microbial Community Inhabiting Deep Subterrestrial Kupferschiefer Black Shale. Front Microbiol 2018; 9:972. [PMID: 29867875 PMCID: PMC5962744 DOI: 10.3389/fmicb.2018.00972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium, and Sulfuricaulis. This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Renata Matlakowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
76
|
Vinusha KS, Deepika K, Johnson TS, Agrawal GK, Rakwal R. Proteomic studies on lactic acid bacteria: A review. Biochem Biophys Rep 2018; 14:140-148. [PMID: 29872746 PMCID: PMC5986552 DOI: 10.1016/j.bbrep.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics are amongst the most common microbes in the gastro-intestinal tract of humans and other animals. Prominent among probiotics are Lactobacillus and Bifidobacterium. They offer wide-ranging health promoting benefits to the host which include reduction in pathological alterations, stimulation of mucosal immunity and interaction with mediators of inflammation among others. Proteomics plays a vital role in understanding biological functions of a cell. Proteomics is also slowly and steadily adding to the existing knowledge on role of probiotics. In this paper, the proteomics of probiotics, with special reference to lactic acid bacteria is reviewed with a view to understand i) proteome map, ii) mechanism of adaptation to harsh gut environment such as low pH and bile acid, iii) role of cell surface proteins in adhering to intestinal epithelial cells, and iv) as a tool to answer basic cell functions. We have also reviewed various analytical methods used to carry out proteome analysis, in which 2D-MS and LC-MS/MS approaches were found to be versatile methods to perform high-throughput sample analyses even for a complex gut samples. Further, we present future road map of understanding gut microbes combining meta-proteomics, meta-genomics, meta-transcriptomics and -metabolomics.
Collapse
Affiliation(s)
- K Sri Vinusha
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - K Deepika
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - T Sudhakar Johnson
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - Ganesh K Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan.,Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
77
|
Cheaib B, Le Boulch M, Mercier PL, Derome N. Taxon-Function Decoupling as an Adaptive Signature of Lake Microbial Metacommunities Under a Chronic Polymetallic Pollution Gradient. Front Microbiol 2018; 9:869. [PMID: 29774016 PMCID: PMC5943556 DOI: 10.3389/fmicb.2018.00869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 04/16/2018] [Indexed: 11/29/2022] Open
Abstract
Adaptation of microbial communities to anthropogenic stressors can lead to reductions in microbial diversity and disequilibrium of ecosystem services. Such adaptation can change the molecular signatures of communities with differences in taxonomic and functional composition. Understanding the relationship between taxonomic and functional variation remains a critical issue in microbial ecology. Here, we assessed the taxonomic and functional diversity of a lake metacommunity system along a polymetallic pollution gradient caused by 60 years of chronic exposure to acid mine drainage (AMD). Our results highlight three adaptive signatures. First, a signature of taxon—function decoupling was detected in the microbial communities of moderately and highly polluted lakes. Second, parallel shifts in taxonomic composition occurred between polluted and unpolluted lakes. Third, variation in the abundance of functional modules suggested a gradual deterioration of ecosystem services (i.e., photosynthesis) and secondary metabolism in highly polluted lakes. Overall, changes in the abundance of taxa, function, and more importantly the polymetallic resistance genes such as copA, copB, czcA, cadR, cCusA, were correlated with trace metal content (mainly Cadmium) and acidity. Our findings highlight the impact of polymetallic pollution gradient at the lowest trophic levels.
Collapse
Affiliation(s)
- Bachar Cheaib
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Malo Le Boulch
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada.,GenPhySE, Institut National de la Recherche Agronomique, Université de Toulouse, INPT, ENVT, Castanet-Tolosan, France
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| |
Collapse
|
78
|
Zhu Y, Zhao R, Piehowski PD, Moore RJ, Lim S, Orphan VJ, Paša-Tolić L, Qian WJ, Smith RD, Kelly RT. Subnanogram proteomics: impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 427:4-10. [PMID: 29576737 PMCID: PMC5863755 DOI: 10.1016/j.ijms.2017.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-μm-i.d. columns increase signal intensity by >3-fold relative to those using 75-μm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos MS significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a ~3-fold increase in peptide identifications and 1.7-fold increase in identified protein groups for 2 ng tryptic digests of the bacterium S. oneidensis. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. Using the best combination of the above variables, we were able to identify >3,000 proteins from 10 ng tryptic digests from both HeLa and THP-1 mammalian cell lines. We also identified >950 proteins from subnanogram archaeal/bacterial cocultures. The present ultrasensitive LC-MS platform achieves a level of proteome coverage not previously realized for ultra-small sample loadings, and is expected to facilitate the analysis of subnanogram samples, including single mammalian cells.
Collapse
Affiliation(s)
- Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sujung Lim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T. Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Corresponding author footnote: Ryan T. Kelly, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN K8-91, Richland, WA 99352 USA, Tel: 509-371-6525, Fax: 509-371-6445,
| |
Collapse
|
79
|
Castelle CJ, Banfield JF. Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell 2018. [DOI: 10.1016/j.cell.2018.02.016] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
80
|
Abstract
Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS). Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.
Collapse
|
81
|
Koch C, Korth B, Harnisch F. Microbial ecology-based engineering of Microbial Electrochemical Technologies. Microb Biotechnol 2018; 11:22-38. [PMID: 28805354 PMCID: PMC5743830 DOI: 10.1111/1751-7915.12802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/27/2022] Open
Abstract
Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested.
Collapse
Affiliation(s)
- Christin Koch
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| | - Benjamin Korth
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research GmbH ‐ UFZPermoserstraße 1504318LeipzigGermany
| |
Collapse
|
82
|
Wöhlbrand L, Feenders C, Nachbaur J, Freund H, Engelen B, Wilkes H, Brumsack HJ, Rabus R. Impact of Extraction Methods on the Detectable Protein Complement of Metaproteomic Analyses of Marine Sediments. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lars Wöhlbrand
- General and Molecular Microbiology; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Christoph Feenders
- Mathematical Modelling; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Jessica Nachbaur
- General and Molecular Microbiology; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Holger Freund
- Geoecology; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Bert Engelen
- Paleomicrobiology; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Heinz Wilkes
- Organic Geochemistry; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Hans-Jürgen Brumsack
- Microbiogeochemistry; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| | - Ralf Rabus
- General and Molecular Microbiology; Institute for Chemistry and Biology of the Marine Environment (ICBM); Carl von Ossietzky University of Oldenburg; Oldenburg Germany
| |
Collapse
|
83
|
Hawley AK, Torres-Beltrán M, Zaikova E, Walsh DA, Mueller A, Scofield M, Kheirandish S, Payne C, Pakhomova L, Bhatia M, Shevchuk O, Gies EA, Fairley D, Malfatti SA, Norbeck AD, Brewer HM, Pasa-Tolic L, del Rio TG, Suttle CA, Tringe S, Hallam SJ. A compendium of multi-omic sequence information from the Saanich Inlet water column. Sci Data 2017; 4:170160. [PMID: 29087368 PMCID: PMC5663217 DOI: 10.1038/sdata.2017.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Marine oxygen minimum zones (OMZs) are widespread regions of the ocean that are currently expanding due to global warming. While inhospitable to most metazoans, OMZs are hotspots for microbial mediated biogeochemical cycling of carbon, nitrogen and sulphur, contributing disproportionately to marine nitrogen loss and climate active trace gas production. Our current understanding of microbial community responses to OMZ expansion is limited by a lack of time-resolved data sets linking multi-omic sequence information (DNA, RNA, protein) to geochemical parameters and process rates. Here, we present six years of time-resolved multi-omic observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique multi-omic framework for studying microbial community responses to ocean deoxygenation along defined geochemical gradients in OMZ waters.
Collapse
Affiliation(s)
- Alyse K. Hawley
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Mónica Torres-Beltrán
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Elena Zaikova
- Department of Biology, Georgetown University,
Washington, District Of Columbia 20057,
USA
| | - David A. Walsh
- Department of Biology, Concordia University,
Montreal, Quebec, Canada H4B 1R6
| | - Andreas Mueller
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Melanie Scofield
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Sam Kheirandish
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Chris Payne
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Larysa Pakhomova
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Maya Bhatia
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Olena Shevchuk
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | - Esther A. Gies
- Department of Civil Engineering, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Diane Fairley
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
| | | | - Angela D. Norbeck
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | - Heather M. Brewer
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | - Ljiljana Pasa-Tolic
- Biological and Computational Sciences Division, Pacific
Northwest National Laboratory, Richland, Washington
99352, USA
| | | | - Curtis A. Suttle
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
- Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
- Department of Botany, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z4
| | - Susannah Tringe
- Department of Energy Joint Genome Institute,
Walnut Creek, California 94598, USA
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of
British Columbia, Vancouver, British
Columbia, Canada V63 1Z3
- Peter Wall Institute for Advanced Studies, University of
British Columbia, Canada V6T 1Z2
- Genome Science and Technology Program, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
- Graduate Program in Bioinformatics, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
- ECOSCOPE Training Program, University of British
Columbia, Vancouver,
British Columbia, Canada
V6T 1Z3
| |
Collapse
|
84
|
Cai W, Li Y, Niu L, Zhang W, Wang C, Wang P, Meng F. New insights into the spatial variability of biofilm communities and potentially negative bacterial groups in hydraulic concrete structures. WATER RESEARCH 2017; 123:495-504. [PMID: 28689132 DOI: 10.1016/j.watres.2017.06.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The composition and distribution characteristics of bacterial communities in biofilms attached to hydraulic concrete structure (HCS) surfaces were investigated for the first time in four reservoirs in the middle and lower reaches of the Yangtze River Basin using 16S rRNA Miseq sequencing. High microbial diversity was found in HCS biofilms, and notable differences were observed in different types of HCS. Proteobacteria, Cyanobacteria and Chloroflexi were the predominant phyla, with respective relative abundances of 35.3%, 25.4% and 13.0%. The three most abundant genera were Leptolyngbya, Anaerolineaceae and Polynucleobacter. The phyla Beta-proteobacteria and Firmicutes and genus Lyngbya were predominant in CGP, whereas the phyla Cyanobacteria and Chloroflexi and genera Leptolyngbya, Anaerolinea and Polynucleobacter survived better in land walls and bank slopes. Dissolved oxygen, ammonia nitrogen and temperature were characterized as the main factors driving the bacterial community composition. The most abundant groups of metabolic functions were also identified as ammonia oxidizers, sulphate reducers, and dehalogenators. Additionally, functional groups related to biocorrosion were found to account for the largest proportion (14.0% of total sequences) in gate piers, followed by those in land walls (11.5%) and bank slopes (10.2%). Concrete gate piers were at the greatest risk of biocorrosion with the most abundant negative bacterial groups, especially for sulphate reducers. Thus, it should be paid high attention to the biocorrosion prevention of concrete gate piers. Overall, this study contributed to the optimization of microbial control and the improvement of the safety management for water conservation structures.
Collapse
Affiliation(s)
- Wei Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
85
|
Orsini L, Brown JB, Shams Solari O, Li D, He S, Podicheti R, Stoiber MH, Spanier KI, Gilbert D, Jansen M, Rusch DB, Pfrender ME, Colbourne JK, Frilander MJ, Kvist J, Decaestecker E, De Schamphelaere KAC, De Meester L. Early transcriptional response pathways in Daphnia magna are coordinated in networks of crustacean-specific genes. Mol Ecol 2017; 27:886-897. [PMID: 28746735 DOI: 10.1111/mec.14261] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023]
Abstract
Natural habitats are exposed to an increasing number of environmental stressors that cause important ecological consequences. However, the multifarious nature of environmental change, the strength and the relative timing of each stressor largely limit our understanding of biological responses to environmental change. In particular, early response to unpredictable environmental change, critical to survival and fitness in later life stages, is largely uncharacterized. Here, we characterize the early transcriptional response of the keystone species Daphnia magna to twelve environmental perturbations, including biotic and abiotic stressors. We first perform a differential expression analysis aimed at identifying differential regulation of individual genes in response to stress. This preliminary analysis revealed that a few individual genes were responsive to environmental perturbations and they were modulated in a stressor and genotype-specific manner. Given the limited number of differentially regulated genes, we were unable to identify pathways involved in stress response. Hence, to gain a better understanding of the genetic and functional foundation of tolerance to multiple environmental stressors, we leveraged the correlative nature of networks and performed a weighted gene co-expression network analysis. We discovered that approximately one-third of the Daphnia genes, enriched for metabolism, cell signalling and general stress response, drives transcriptional early response to environmental stress and it is shared among genetic backgrounds. This initial response is followed by a genotype- and/or condition-specific transcriptional response with a strong genotype-by-environment interaction. Intriguingly, genotype- and condition-specific transcriptional response is found in genes not conserved beyond crustaceans, suggesting niche-specific adaptation.
Collapse
Affiliation(s)
- Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of Birmingham Edgbaston, Birmingham, UK
| | - James B Brown
- Environmental Bioinformatics, Centre for Computational Biology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, UK.,Department of Molecular Ecosystems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Statistics Department, University of California, Berkeley, CA, USA.,Preminon LLC, Rodeo, CA, USA
| | | | - Dong Li
- School of Computer Science, University of Birmingham Edgbaston, Birmingham, UK
| | - Shan He
- School of Computer Science, University of Birmingham Edgbaston, Birmingham, UK
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, USA.,Center for Genomics and Bioinformatics, Indiana University and School of Informatics and Computing, Indiana University, Bloomington, IN, USA
| | - Marcus H Stoiber
- Department of Molecular Ecosystems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katina I Spanier
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Donald Gilbert
- Biology Department, Indiana University, Bloomington, IN, USA
| | - Mieke Jansen
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, School of Informatics and Computing, Indiana University, Bloomington, IN, USA
| | - Michael E Pfrender
- Department of Biological Sciences, Eck Institute for Global Health & Environmental Change Initiative, Galvin Life Science Center, Notre Dame, IN, USA
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham Edgbaston, Birmingham, UK
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ellen Decaestecker
- Aquatic Biology, Interdisciplinary Research Facility Life Sciences KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, GhEnToxLab, Ghent University, Ghent, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| |
Collapse
|
86
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
87
|
Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Appl Biochem Biotechnol 2017; 183:636-651. [PMID: 28815469 DOI: 10.1007/s12010-017-2568-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
Microorganisms are found throughout every corner of nature, and vast number of microorganisms is difficult to cultivate by classical microbiological techniques. The advent of metagenomics has revolutionized the field of microbial biotechnology. Metagenomics allow the recovery of genetic material directly from environmental niches without any cultivation techniques. Currently, metagenomic tools are widely employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the uncultivable component of microbial communities. The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body and ocean water. This review article describes the state-of-the-art techniques and tools in metagenomics and discusses the potential of metagenomic approaches for the bioprospecting of industrial enzymes from various environmental samples. We also describe the unusual novel enzymes discovered via metagenomic approaches and discuss the future prospects for metagenome technologies.
Collapse
|
88
|
Iglesias-Rodriguez MD, Jones BM, Blanco-Ameijeiras S, Greaves M, Huete-Ortega M, Lebrato M. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater. PLoS One 2017; 12:e0181713. [PMID: 28750008 PMCID: PMC5531516 DOI: 10.1371/journal.pone.0181713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Upwelling is the process by which deep, cold, relatively high-CO2, nutrient-rich seawater rises to the sunlit surface of the ocean. This seasonal process has fueled geoengineering initiatives to fertilize the surface ocean with deep seawater to enhance productivity and thus promote the drawdown of CO2. Coccolithophores, which inhabit many upwelling regions naturally 'fertilized' by deep seawater, have been investigated in the laboratory in the context of ocean acidification to determine the extent to which nutrients and CO2 impact their physiology, but few data exist in the field except from mesocosms. Here, we used the Porcupine Abyssal Plain (north Atlantic Ocean) Observatory to retrieve seawater from depths with elevated CO2 and nutrients, mimicking geoengineering approaches. We tested the effects of abrupt natural deep seawater fertilization on the physiology and biogeochemistry of two strains of Emiliania huxleyi of known physiology. None of the strains tested underwent cell divisions when incubated in waters obtained from <1,000 m (pH = 7.99-8.08; CO2 = 373-485 p.p.m; 1.5-12 μM nitrate). However, growth was promoted in both strains when cells were incubated in seawater from ~1,000 m (pH = 7.9; CO2 ~560 p.p.m.; 14-17 μM nitrate) and ~4,800 m (pH = 7.9; CO2 ~600 p.p.m.; 21 μM nitrate). Emiliania huxleyi strain CCMP 88E showed no differences in growth rate or in cellular content or production rates of particulate organic (POC) and inorganic (PIC) carbon and cellular particulate organic nitrogen (PON) between treatments using water from 1,000 m and 4,800 m. However, despite the N:P ratio of seawater being comparable in water from ~1,000 and ~4,800 m, the PON production rates were three times lower in one incubation using water from ~1,000 m compared to values observed in water from ~4,800 m. Thus, the POC:PON ratios were threefold higher in cells that were incubated in ~1,000 m seawater. The heavily calcified strain NZEH exhibited lower growth rates and PIC production rates when incubated in water from ~4,800 m compared to ~1,000 m, while cellular PIC, POC and PON were higher in water from 4,800 m. Calcite Sr/Ca ratios increased with depth despite constant seawater Sr/Ca, indicating that upwelling changes coccolith geochemistry. Our study provides the first experimental and field trial of a geoengineering approach to test how deep seawater impacts coccolithophore physiological and biogeochemical properties. Given that coccolithophore growth was only stimulated using waters obtained from >1,000 m, artificial upwelling using shallower waters may not be a suitable approach for promoting carbon sequestration for some locations and assemblages, and should therefore be investigated on a site-by-site basis.
Collapse
Affiliation(s)
- Maria Debora Iglesias-Rodriguez
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States of America.,Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Bethan M Jones
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| | - Sonia Blanco-Ameijeiras
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH, Geneva, Switzerland
| | - Mervyn Greaves
- Department of Earth Sciences, University of Cambridge, Downing St, Cambridge, United Kingdom
| | - Maria Huete-Ortega
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield United Kingdom.,Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Mario Lebrato
- Department of Geosciences, Christian-Albrechts-University Kiel (CAU), Christian-Albrechts-Platz 4, Kiel, Germany.,Department of Marine Ecology, GEOMAR, Düsternbrooker Weg 20, Kiel, Germany
| |
Collapse
|
89
|
Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. J Biotechnol 2017; 261:24-36. [PMID: 28663049 DOI: 10.1016/j.jbiotec.2017.06.1201] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional knowledge about microbial communities supports medical and technical application such as fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its success. In particular, construction of databases for protein identification, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and software. This review summarizes recent metaproteomics software and addresses the introduced issues in detail.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Kay Schallert
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Roman Zoun
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Beatrice Becher
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Gunter Saake
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
90
|
Li X, Kappler U, Jiang G, Bond PL. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Front Microbiol 2017; 8:683. [PMID: 28473816 PMCID: PMC5397505 DOI: 10.3389/fmicb.2017.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, BrisbaneQLD, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
91
|
Wöhlbrand L, Wemheuer B, Feenders C, Ruppersberg HS, Hinrichs C, Blasius B, Daniel R, Rabus R. Complementary Metaproteomic Approaches to Assess the Bacterioplankton Response toward a Phytoplankton Spring Bloom in the Southern North Sea. Front Microbiol 2017; 8:442. [PMID: 28392779 PMCID: PMC5364173 DOI: 10.3389/fmicb.2017.00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Annually recurring phytoplankton spring blooms are characteristic of temperate coastal shelf seas. During these blooms, environmental conditions, including nutrient availability, differ considerably from non-bloom conditions, affecting the entire ecosystem including the bacterioplankton. Accordingly, the emerging ecological niches during bloom transition are occupied by different bacterial populations, with Roseobacter RCA cluster and SAR92 clade members exhibiting high metabolic activity during bloom events. In this study, the functional response of the ambient bacterial community toward a Phaeocystis globosa bloom in the southern North Sea was studied using metaproteomic approaches. In contrast to other metaproteomic studies of marine bacterial communities, this is the first study comparing two different cell lysis and protein preparation methods [using trifluoroethanol (TFE) and in-solution digest as well as bead beating and SDS-based solubilization and in-gel digest (BB GeLC)]. In addition, two different mass spectrometric techniques (ESI-iontrap MS and MALDI-TOF MS) were used for peptide analysis. A total of 585 different proteins were identified, 296 of which were only detected using the TFE and 191 by the BB GeLC method, demonstrating the complementarity of these sample preparation methods. Furthermore, 158 proteins of the TFE cell lysis samples were exclusively detected by ESI-iontrap MS while 105 were only detected using MALDI-TOF MS, underpinning the value of using two different ionization and mass analysis methods. Notably, 12% of the detected proteins represent predicted integral membrane proteins, including the difficult to detect rhodopsin, indicating a considerable coverage of membrane proteins by this approach. This comprehensive approach verified previous metaproteomic studies of marine bacterioplankton, e.g., detection of many transport-related proteins (17% of the detected proteins). In addition, new insights into e.g., carbon and nitrogen metabolism were obtained. For instance, the C1 pathway was more prominent outside the bloom and different strategies for glucose metabolism seem to be applied under the studied conditions. Furthermore, a higher number of nitrogen assimilating proteins were present under non-bloom conditions, reflecting the competition for this limited macro nutrient under oligotrophic conditions. Overall, application of different sample preparation techniques as well as MS methods facilitated a more holistic picture of the marine bacterioplankton response to changing environmental conditions.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen Göttingen, Germany
| | - Christoph Feenders
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Hanna S Ruppersberg
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Bernd Blasius
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen Göttingen, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
92
|
Liu Y, Rousseaux S, Tourdot-Maréchal R, Sadoudi M, Gougeon R, Schmitt-Kopplin P, Alexandre H. Wine microbiome: A dynamic world of microbial interactions. Crit Rev Food Sci Nutr 2017; 57:856-873. [PMID: 26066835 DOI: 10.1080/10408398.2014.983591] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most fermented products are generated by a mixture of microbes. These microbial consortia perform various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in both must and wine. The diverse microorganisms present interact throughout the winemaking process. The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been conducted to elucidate the nature of these interactions, with the aim of establishing better control of the two fermentations occurring during wine processing. However, wine is a very complex medium making such studies difficult. In this review, we present the current state of research on microbial interactions in wines. We consider the different kinds of interactions between different microorganisms together with the consequences of these interactions. We underline the major challenges to obtaining a better understanding of how microbes interact. Finally, strategies and methodologies that may help unravel microbe interactions in wine are suggested.
Collapse
Affiliation(s)
- Youzhong Liu
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France.,b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany
| | - Sandrine Rousseaux
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Raphaëlle Tourdot-Maréchal
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Mohand Sadoudi
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Régis Gougeon
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Philippe Schmitt-Kopplin
- b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany.,c Chair of Analytical Food Chemistry , Technische Universität München , Freising-Weihenstephan , Germany
| | - Hervé Alexandre
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| |
Collapse
|
93
|
Jewell TNM, Karaoz U, Bill M, Chakraborty R, Brodie EL, Williams KH, Beller HR. Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer. Front Microbiol 2017; 8:40. [PMID: 28179898 PMCID: PMC5264521 DOI: 10.3389/fmicb.2017.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.
Collapse
Affiliation(s)
- Talia N M Jewell
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Markus Bill
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Kenneth H Williams
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Harry R Beller
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| |
Collapse
|
94
|
Tan CH, Lee KWK, Burmølle M, Kjelleberg S, Rice SA. All together now: experimental multispecies biofilm model systems. Environ Microbiol 2017; 19:42-53. [DOI: 10.1111/1462-2920.13594] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Chuan Hao Tan
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Kai Wei Kelvin Lee
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
| | - Mette Burmølle
- Section of Microbiology, Department of BiologyUniversity of CopenhagenCopenhagen Denmark
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological University Singapore
- The School of Biological SciencesNanyang Technological University Singapore
| |
Collapse
|
95
|
Niu J, Chao J, Xiao Y, Chen W, Zhang C, Liu X, Rang Z, Yin H, Dai L. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate. J Basic Microbiol 2017; 57:3-11. [PMID: 27643917 DOI: 10.1002/jobm.201600222] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/06/2016] [Indexed: 01/01/2023]
Abstract
Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Jin Chao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Tobacco Monopoly Bureau of Xiangxi Autonomous Prefecture, Jishou, 416000, China
| | - Yunhua Xiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Wu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Zhongwen Rang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Linjian Dai
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
96
|
Wei X, Jiang S, Chen Y, Zhao X, Li H, Lin W, Li B, Wang X, Yuan J, Sun Y. Cirrhosis related functionality characteristic of the fecal microbiota as revealed by a metaproteomic approach. BMC Gastroenterol 2016; 16:121. [PMID: 27716148 PMCID: PMC5051048 DOI: 10.1186/s12876-016-0534-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 09/20/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intestinal microbiota operated as a whole and was closely related with human health. Previous studies had suggested close relationship between liver cirrhosis (LC) and gut microbiota. METHODS To determine the functional characteristic of the intestinal microbiota specific for liver cirrhosis, the fecal metaproteome of three LC patients with Child-Turcotte-Pugh (CTP) score of A, B, and C, and their spouse were first compared using high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry in our study. RESULTS A total of 5,020 proteins (88 % from bacteria, 12 % form human) were identified and annotated based on the GO and KEGG classification. Our results indicated that the LC patients possessed a core metaproteome including 119 proteins, among which 14 proteins were enhanced expressed and 7 proteins were unique for LC patients compared with the normal, which were dominant at the function of carbohydrate metabolism. In addition, LC patients have unique biosynthesis of branched chain amino acid (BCAA), pantothenate, and CoA, enhanced as CTP scores increased. Those three substances were all important in a wide array of key and essential biological roles of life. CONCLUSIONS We observed a highly comparable cirrhosis-specific metaproteome clustering of fecal microbiota and provided the first supportive evidence for the presence of a LC-related substantial functional core mainly involved in carbohydrate, BCAA, pantothenate, and CoA metabolism, suggesting the compensation of intestinal microbiota for the fragile and innutritious body of cirrhotic patients.
Collapse
Affiliation(s)
- Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Shan Jiang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Yuye Chen
- Hospital of Traditional Chinese Medicine, Liquan, 713200, Shanxi, China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Weishi Lin
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Boxing Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China.
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, No. 20 Dongda Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
97
|
Blaser M, Conrad R. Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems. Curr Opin Biotechnol 2016; 41:122-129. [DOI: 10.1016/j.copbio.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 01/16/2023]
|
98
|
Zhang X, Liu X, Liang Y, Fan F, Zhang X, Yin H. Metabolic diversity and adaptive mechanisms of iron- and/or sulfur-oxidizing autotrophic acidophiles in extremely acidic environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:738-751. [PMID: 27337207 DOI: 10.1111/1758-2229.12435] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Many studies have investigated the mechanisms underlying the survival and growth of certain organisms in extremely acidic environments known to be harmful to most prokaryotes and eukaryotes. Acidithiobacillus and Leptospirillum spp. are dominant bioleaching bacteria widely used in bioleaching systems, which are characterized by extremely acidic environments. To survive and grow in such settings, these acidophiles utilize shared molecular mechanisms that allow life in extreme conditions. In this review, we have summarized the results of published genomic analyses, which underscore the ability of iron- and/or sulfur-oxidizing autotrophic acidophiles belonging to the genera Acidithiobacillus and Leptospirillum to adapt to acidic environmental conditions. Several lines of evidence point at the metabolic diversity and multiplicity of pathways involved in the survival of these organisms. The ability to thrive in adverse environments requires versatile activation of structural and functional adaptive responses, including bacterial adhesion, motility, and resistance to heavy metals. We have highlighted recent developments centered on the key survival mechanisms employed by dominant extremophiles, and have laid the foundation for future studies focused on the ability of acidophiles to thrive in extremely acidic environments.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Beijing, China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
99
|
Ramírez-Aldaba H, Valles OP, Vazquez-Arenas J, Rojas-Contreras JA, Valdez-Pérez D, Ruiz-Baca E, Meraz-Rodríguez M, Sosa-Rodríguez FS, Rodríguez ÁG, Lara RH. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1106-1119. [PMID: 27312277 DOI: 10.1016/j.scitotenv.2016.05.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases.
Collapse
Affiliation(s)
- Hugo Ramírez-Aldaba
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo, Mexico
| | - O Paola Valles
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo, Mexico; Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo, Mexico
| | - Jorge Vazquez-Arenas
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México DF 09340, Mexico
| | - J Antonio Rojas-Contreras
- Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo, Mexico
| | - Donato Valdez-Pérez
- Instituto Politécnico Nacional, UPALM, Edif. Z-4 3er Piso, CP 07738 México D.F, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo, Mexico
| | - Mónica Meraz-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México DF 09340, Mexico
| | - Fabiola S Sosa-Rodríguez
- Universidad Autónoma Metropolitana-Azcapotzalco, Área de Crecimiento Económico y Medio Ambiente, Departamento de Economía, Av. San Pablo 180, Azcapotzalco, México DF 02200, Mexico
| | - Ángel G Rodríguez
- CIACyT, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2da sección, 78230 San Luis Potosí, SLP, Mexico
| | - René H Lara
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo, Mexico.
| |
Collapse
|
100
|
|