51
|
Hutlet B, Theys N, Coste C, Ahn MT, Doshishti-Agolli K, Lizen B, Gofflot F. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 2014; 221:1223-43. [PMID: 25527350 DOI: 10.1007/s00429-014-0965-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.
Collapse
Affiliation(s)
- Bertrand Hutlet
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Nicolas Theys
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Cécile Coste
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, 4000, Liège, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | | | - Benoît Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.
| |
Collapse
|
52
|
Bergiers I, Lambert B, Daakour S, Twizere JC, Rezsohazy R. Hox protein interactions: screening and network building. Methods Mol Biol 2014; 1196:319-48. [PMID: 25151173 DOI: 10.1007/978-1-4939-1242-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Understanding the mode of action of Hox proteins requires the identification of molecular and cellular pathways they take part in. This includes to characterize the networks of protein-protein interactions involving Hox proteins. In this chapter we propose a strategy and methods to map Hox interaction networks, from yeast two-hybrid and high-throughput yeast two-hybrid interaction screening to bioinformatic analyses based on the software platform Cytoscape.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5 box L7.07.10, Louvain-la-Neuve, 1348, Belgium
| | | | | | | | | |
Collapse
|
53
|
Development of oculomotor circuitry independent of hox3 genes. Nat Commun 2014; 5:4221. [PMID: 24964400 DOI: 10.1038/ncomms5221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Hox genes have been shown to be essential in vertebrate neural circuit formation and their depletion has resulted in homeotic transformations with neuron loss and miswiring. Here we quantifiy four eye movements in the zebrafish mutant valentino and hox3 knockdowns, and find that contrary to the classical model, oculomotor circuits in hindbrain rhombomeres 5-6 develop and function independently of hox3 genes. All subgroups of oculomotor neurons are present, as well as their input and output connections. Ectopic connections are also established, targeting two specific subsets of horizontal neurons, and the resultant novel eye movements coexists with baseline behaviours. We conclude that the high expression of hox3 genes in rhombomeres 5-6 serves to prevent aberrant neuronal identity and behaviours, but does not appear to be necessary for a comprehensive assembly of functional oculomotor circuits.
Collapse
|
54
|
Large-scale somatotopic refinement via functional synapse elimination in the sensory thalamus of developing mice. J Neurosci 2014; 34:1258-70. [PMID: 24453317 DOI: 10.1523/jneurosci.3865-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functional synapse elimination and strengthening are crucial developmental processes in the formation of precise neuronal circuits in the somatosensory system, but the underlying alterations in topographical organization are not yet fully understood. To address this issue, we generated transgenic mice in which afferent fibers originating from the whisker-related brain region, called the maxillary principal trigeminal nucleus (PrV2), were selectively visualized with genetically expressed fluorescent protein. We found that functional synapse elimination drove and established large-scale somatotopic refinement even after the thalamic barreloid architecture was formed. Before functional synapse elimination, the whisker sensory thalamus was innervated by afferent fibers not only from the PrV2, but also from the brainstem nuclei representing other body parts. Most notably, only afferent fibers from PrV2 onto a whisker sensory thalamic neuron selectively survived and were strengthened, whereas other afferent fibers were preferentially eliminated via their functional synapse elimination. This large-scale somatotopic refinement was at least partially dependent on somatosensory experience. These novel results uncovered a previously unrecognized role of developmental synapse elimination in the large-scale, instead of the fine-scale, somatotopic refinement even after the initial segregation of the barreloid map.
Collapse
|
55
|
Di Bonito M, Glover JC, Studer M. Hox genes and region-specific sensorimotor circuit formation in the hindbrain and spinal cord. Dev Dyn 2013; 242:1348-68. [PMID: 23996673 DOI: 10.1002/dvdy.24055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 01/17/2023] Open
Abstract
Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. In vertebrates, 39 Hox genes have been identified and like their Drosophila counterparts they are organized within chromosomal clusters. Hox genes interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing hindbrain and spinal cord, and are considered crucial determinants of segmental identity and cell specification along the anterioposterior and dorsoventral axes of the embryo. Here, we review their later roles in the assembly of neuronal circuitry, in stereotypic neuronal migration, axon pathfinding, and topographic connectivity. Importantly, we will put some emphasis on how their early-segmented expression patterns can influence the formation of complex vital hindbrain and spinal cord circuitries.
Collapse
Affiliation(s)
- Maria Di Bonito
- University of Nice-Sophia Antipolis, F-06108, Nice, France; INSERM, iBV, UMR 1091, F-06108, Nice, France
| | | | | |
Collapse
|
56
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
57
|
Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, Rijli FM. Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 2013; 140:4386-97. [DOI: 10.1242/dev.098046] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
External ear abnormalities are frequent in newborns ranging from microtia to partial auricle duplication. Little is known about the molecular mechanisms orchestrating external ear morphogenesis. In humans, HOXA2 partial loss of function induces a bilateral microtia associated with an abnormal shape of the auricle. In mice, Hoxa2 inactivation at early gestational stages results in external auditory canal (EAC) duplication and absence of the auricle, whereas its late inactivation results in a hypomorphic auricle, mimicking the human HOXA2 mutant condition. By genetic fate mapping we found that the mouse auricle (or pinna) derives from the Hoxa2-expressing neural crest-derived mesenchyme of the second pharyngeal arch, and not from a composite of first and second arch mesenchyme as previously proposed based on morphological observation of human embryos. Moreover, the mouse EAC is entirely lined by Hoxa2-negative first arch mesenchyme and does not develop at the first pharyngeal cleft, as previously assumed. Conditional ectopic Hoxa2 expression in first arch neural crest is sufficient to induce a complete duplication of the pinna and a loss of the EAC, suggesting transformation of the first arch neural crest-derived mesenchyme lining the EAC into an ectopic pinna. Hoxa2 partly controls the morphogenesis of the pinna through the BMP signalling pathway and expression of Eya1, which in humans is involved in branchio-oto-renal syndrome. Thus, Hoxa2 loss- and gain-of-function approaches in mice provide a suitable model to investigate the molecular aetiology of microtia and auricle duplication.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 1, place de l’hôpital, 67 000 Strasbourg, France
| | - Claudius F. Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4056 Basel, Switzerland
| | - Sébastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Shilu Amin
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nicoletta Bobola
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
58
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
59
|
Ji SJ, Jaffrey SR. Axonal transcription factors: novel regulators of growth cone-to-nucleus signaling. Dev Neurobiol 2013; 74:245-58. [PMID: 23897628 DOI: 10.1002/dneu.22112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023]
Abstract
Developing axons contain transcripts that are locally translated to influence the axonal proteome. Recent studies have shown that axonal transcripts include mRNAs encoding transcription factors. These mRNAs are translated to produce transcription factors that can be retrogradely trafficked back to the nucleus, where they regulate gene expression programs. These findings point to a novel mechanism of growth cone-to-nucleus signaling that occurs when growth cones encounter extracellular signaling molecules that stimulate local translation of these transcription factors, thereby influencing gene transcription. Here we summarize recent findings on local translation of transcription factors in axons and their roles in different neuronal processes such as neuronal specification, survival, and axon regeneration. Comprehensive axonal transcriptome studies have revealed transcripts that encode many more transcription factors and cofactors, suggesting a potentially broad role for this type of signaling. We review the progress on the approaches and tools that have been developed to study local translation and retrograde trafficking of transcription factors. We also highlight the challenges in the field and discuss the potential routes to resolving them.
Collapse
Affiliation(s)
- Sheng-Jian Ji
- Department of Pharmacology, Weill Medical College, Cornell University, New York, New York, 10065
| | | |
Collapse
|
60
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
61
|
Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat Commun 2013; 3:1267. [PMID: 23232397 DOI: 10.1038/ncomms2258] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/05/2012] [Indexed: 12/25/2022] Open
Abstract
Neural crest cells constitute a multipotent cell population that gives rise to diverse cell lineages. The neural crest arising from the postotic hindbrain is known as the 'cardiac' neural crest, and contributes to the great vessels and outflow tract endocardial cushions, but the neural crest contribution to structures within the heart remains largely controversial. Here we demonstrate that neural crest cells from the preotic region migrate into the heart and differentiate into coronary artery smooth muscle cells. Preotic neural crest cells preferentially distribute to the conotruncal region and interventricular septum. Ablation of the preotic neural crest causes abnormalities in coronary septal branch and orifice formation. Mice and chicks lacking endothelin signalling show similar abnormalities in the coronary artery, indicating its involvement in neural crest-dependent coronary artery formation. This is the first report that reveals the preotic neural crest contribution to heart development and smooth muscle heterogeneity within a coronary artery.
Collapse
|
62
|
Kivrak BG, Erzurumlu RS. Development of the principal nucleus trigeminal lemniscal projections in the mouse. J Comp Neurol 2013; 521:299-311. [PMID: 22791623 DOI: 10.1002/cne.23183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/24/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
The principal sensory (PrV) nucleus-based trigeminal lemniscus conveys whisker-specific neural patterns to the ventroposteromedial (VPM) nucleus of the thalamus and subsequently to the primary somatosensory cortex. Here we examined the perinatal development of this pathway with carbocyanine dye labeling in embryonic and early postnatal mouse brains. We developed a novel preparation in which the embryonic hindbrain and the diencephalon are flattened out, allowing a birds-eye view of the PrV lemniscus in its entirety. For postnatal brains we used another novel approach by sectioning the brain along an empirically determined oblique horizontal angle, again preserving the trigeminothalamic pathway. PrV neurons are born along the hindbrain ventricular zone and migrate radially for a short distance to coalesce into a nucleus adjacent to the ascending trigeminal tract. During migration of the spindle-shaped cell bodies, slender axonal processes grow along the opposite direction towards the floor plate. As early as embryonic day (E) 11, pioneering axons tipped with large growth cones cross the ventral midline and immediately make a right angle turn. By E13 many PrV axons form fascicles crossing the midline and follow a rostral course. PrV axons reach the midbrain by E15 and the thalamus by E17. While the target recognition and invasion occurs prenatally, organization of PrV axon terminals into whisker-specific rows and patches takes place during the first 4 postnatal (P) days. Initially diffuse and exuberant projections in the VPM at P1 coalesce into row and whisker specific terminal zones by P4.
Collapse
Affiliation(s)
- Beril G Kivrak
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | |
Collapse
|
63
|
Rhinn M, Miyoshi K, Watanabe A, Kawaguchi M, Ito F, Kuratani S, Baker CV, Murakami Y, Rijli FM. Evolutionary divergence of trigeminal nerve somatotopy in amniotes. J Comp Neurol 2013; 521:1378-94. [DOI: 10.1002/cne.23236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/24/2012] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
|
64
|
Abstract
Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2(+) domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2(-/-)/Hoxb2(-/-) mutant mice displayed the phenotype of Hoxb2(-/-) mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.
Collapse
|
65
|
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem. PLoS Genet 2013; 9:e1003249. [PMID: 23408898 PMCID: PMC3567144 DOI: 10.1371/journal.pgen.1003249] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 12/02/2012] [Indexed: 12/24/2022] Open
Abstract
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem. Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
Collapse
Affiliation(s)
- Maria Di Bonito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
| | - Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Bice Avallone
- Department of Biological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Luigi Sequino
- Institute of Audiology, University “Federico II”, Naples, Italy
| | - Marta Mancuso
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Gennaro Andolfi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Anna Maria Franzè
- Institute of Genetics and Biophysics “A. Buzzati Traverso” C.N.R., Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, Spain
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (FMR); (MS)
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Université de Nice-Sophia Antipolis, Nice, France
- INSERM UMR 1091, Nice, France
- * E-mail: (FMR); (MS)
| |
Collapse
|
66
|
Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 2012; 218:1229-77. [PMID: 23052546 PMCID: PMC3748323 DOI: 10.1007/s00429-012-0456-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/08/2012] [Indexed: 12/18/2022]
Abstract
The raphe nuclei represent the origin of central serotonergic projections. The literature distinguishes seven nuclei grouped into rostral and caudal clusters relative to the pons. The boundaries of these nuclei have not been defined precisely enough, particularly with regard to developmental units, notably hindbrain rhombomeres. We hold that a developmental point of view considering rhombomeres may explain observed differences in connectivity and function. There are twelve rhombomeres characterized by particular genetic profiles, and each develops between one and four distinct serotonergic populations. We have studied the distribution of the conventional seven raphe nuclei among these twelve units. To this aim, we correlated 5-HT-immunoreacted neurons with rhombomeric boundary landmarks in sagittal mouse brain sections at different developmental stages. Furthermore, we performed a partial genoarchitectonic analysis of the developing raphe nuclei, mapping all known serotonergic differentiation markers, and compared these results, jointly with others found in the literature, with our map of serotonin-containing populations, in order to examine regional variations in correspondence. Examples of regionally selective gene patterns were identified. As a result, we produced a rhombomeric classification of some 45 serotonergic populations, and suggested a corresponding modified terminology. Only a minor rostral part of the dorsal raphe nucleus lies in the midbrain. Some serotonergic neurons were found in rhombomere 4, contrary to the conventional assumption that it lacks such neurons. We expect that our reclassification of raphe nuclei may be useful for causal analysis of their differential molecular specification, as well as for studies of differential connectivity and function.
Collapse
|
67
|
Abstract
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
68
|
Zhang Y, Liu Z, Medrzycki M, Cao K, Fan Y. Reduction of Hox gene expression by histone H1 depletion. PLoS One 2012; 7:e38829. [PMID: 22701719 PMCID: PMC3372500 DOI: 10.1371/journal.pone.0038829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/15/2012] [Indexed: 01/25/2023] Open
Abstract
The evolutionarily conserved homeotic (Hox) genes are organized in clusters and expressed collinearly to specify body patterning during embryonic development. Chromatin reorganization and decompaction are intimately connected with Hox gene activation. Linker histone H1 plays a key role in facilitating folding of higher order chromatin structure. Previous studies have shown that deletion of three somatic H1 subtypes together leads to embryonic lethality and that H1c/H1d/H1e triple knockout (TKO) embryonic stem cells (ESCs) display bulk chromatin decompaction. To investigate the potential role of H1 and higher order chromatin folding in the regulation of Hox gene expression, we systematically analyzed the expression of all 39 Hox genes in triple H1 null mouse embryos and ESCs by quantitative RT-PCR. Surprisingly, we find that H1 depletion causes significant reduction in the expression of a broad range of Hox genes in embryos and ESCs. To examine if any of the three H1 subtypes (H1c, H1d and H1e) is responsible for decreased expression of Hox gene in triple-H1 null ESCs, we derived and characterized H1c−/−, H1d−/−, and H1e−/− single-H1 null ESCs. We show that deletion of individual H1 subtypes results in down-regulation of specific Hox genes in ESCs. Finally we demonstrate that, in triple-H1- and single-H1- null ESCs, the levels of H3K4 trimethylation (H3K4me3) and H3K27 trimethylation (H3K27me3) were affected at specific Hox genes with decreased expression. Our data demonstrate that marked reduction in total H1 levels causes significant reduction in both expression and the level of active histone mark H3K4me3 at many Hox genes and that individual H1 subtypes may also contribute to the regulation of specific Hox gene expression. We suggest possible mechanisms for such an unexpected role of histone H1 in Hox gene regulation.
Collapse
Affiliation(s)
- Yunzhe Zhang
- School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Zheng Liu
- School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Medrzycki
- School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kaixiang Cao
- School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yuhong Fan
- School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
69
|
Pouchelon G, Frangeul L, Rijli FM, Jabaudon D. Patterning of pre-thalamic somatosensory pathways. Eur J Neurosci 2012; 35:1533-9. [DOI: 10.1111/j.1460-9568.2012.08059.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Olynik BM, Rastegar M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet 2012; 3:81. [PMID: 22629283 PMCID: PMC3355330 DOI: 10.3389/fgene.2012.00081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/25/2012] [Indexed: 12/14/2022] Open
Abstract
Epigenetic changes occur throughout life from embryonic development into adulthood. This results in the timely expression of developmentally important genes, determining the morphology and identity of different cell types and tissues within the body. Epigenetics regulate gene expression and cellular morphology through multiple mechanisms without alteration in the underlying DNA sequences. Different epigenetic mechanisms include chromatin condensation, post-translational modification of histone proteins, DNA cytosine marks, and the activity of non-coding RNA molecules. Epigenetics play key roles in development, stem cell differentiation, and have high impact in human disease. In this review, we will discuss our current knowledge about these epigenetic mechanisms, with a focus on histone and DNA marks. We will then talk about the genetics and epigenetics of embryonic stem cell self-renewal and differentiation into neural stem cells, and further into specific neuronal cell types.
Collapse
Affiliation(s)
- Brendan M. Olynik
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
71
|
Chen Y, Takano-Maruyama M, Fritzsch B, Gaufo GO. Hoxb1 controls anteroposterior identity of vestibular projection neurons. PLoS One 2012; 7:e34762. [PMID: 22485187 PMCID: PMC3317634 DOI: 10.1371/journal.pone.0034762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | | | | | | |
Collapse
|
72
|
Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 2012; 96:340-55. [PMID: 22342735 DOI: 10.1016/j.pneurobio.2012.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The basic pattern of rhythmic jaw movements produced during mastication is generated by a neuronal network located in the brainstem and referred to as the masticatory central pattern generator (CPG). This network composed of neurons mostly associated to the trigeminal system is found between the rostral borders of the trigeminal motor nucleus and facial nucleus. This review summarizes current knowledge on the anatomical organization, the development, the connectivity and the cellular properties of these trigeminal circuits in relation to mastication. Emphasis is put on a population of rhythmogenic neurons in the dorsal part of the trigeminal sensory nucleus. These neurons have intrinsic bursting capabilities, supported by a persistent Na(+) current (I(NaP)), which are enhanced when the extracellular concentration of Ca(2+) diminishes. Presented evidence suggest that the Ca(2+) dependency of this current combined with its voltage-dependency could provide a mechanism for cortical and sensory afferent inputs to the nucleus to interact with the rhythmogenic properties of its neurons to adjust and adapt the rhythmic output. Astrocytes are postulated to contribute to this process by modulating the extracellular Ca(2+) concentration and a model is proposed to explain how functional microdomains defined by the boundaries of astrocytic syncitia may form under the influence of incoming inputs.
Collapse
Affiliation(s)
- Philippe Morquette
- Groupe de Recherche sur le Système Nerveux Central du FRSQ, Université de Montréal and Faculté de médecine dentaire, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Recent advances in neuroimaging techniques turned possible for neuroradiologists to be frequently the first one to detect possible brain structural anomalies. However, with all the recent advances in genetics and embryology, understanding posterior fossa malformation's principles is being hardest to be achieved than previously. Studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to inform our thinking regarding candidate genes involved in disrupted developmental processes. The main focus of this review was to survey the basic principles of the rhombomere division, anteroposterior and dorsoventral patterning, alar and basal zone concept, and axonal path finding to integrate the knowledge of human hindbrain malformations for better understanding the genetic basis of hindbrain development.
Collapse
|
74
|
Chen Y, Takano-Maruyama M, Gaufo GO. Plasticity of neural crest-placode interaction in the developing visceral nervous system. Dev Dyn 2011; 240:1880-8. [PMID: 21674689 PMCID: PMC3285277 DOI: 10.1002/dvdy.22679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2011] [Indexed: 12/13/2022] Open
Abstract
The reciprocal relationship between rhombomere (r)-derived cranial neural crest (NC) and epibranchial placodal cells derived from the adjacent branchial arch is critical for visceral motor and sensory gangliogenesis, respectively. However, it is unknown whether the positional match between these neurogenic precursors is hard-wired along the anterior-posterior (A/P) axis. Here, we use the interaction between r4-derived NC and epibranchial placode-derived geniculate ganglion as a model to address this issue. In Hoxa1(-/-) b1(-/-) embryos, r2 NC compensates for the loss of r4 NC. Specifically, a population of r2 NC cells is redirected toward the geniculate ganglion, where they differentiate into postganglionic (motor) neurons. Reciprocally, the inward migration of the geniculate ganglion is associated with r2 NC. The ability of NC and placodal cells to, respectively, differentiate and migrate despite a positional mismatch along the A/P axis reflects the plasticity in the relationship between the two neurogenic precursors of the vertebrate head.
Collapse
Affiliation(s)
- Yiju Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | | | - Gary O. Gaufo
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| |
Collapse
|
75
|
Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011; 178:146-55. [PMID: 21527363 DOI: 10.1016/j.resp.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Collapse
Affiliation(s)
- Jean Champagnat
- Neurobiologie et Développement (UPR 3294, CNRS), Neuro-Sud Paris (IFR 144), Centre de Recherche de Gif-sur Yvette (CNRS, FRC 3115), Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
76
|
Abstract
The somatosensory cortex of many rodents, lagomorphs, and marsupials contains distinct cytoarchitectonic features named "barrels" that reflect the pattern of large facial whiskers on the snout. Barrels are composed of clustered thalamocortical afferents relaying sensory information from one whisker surrounded by cell-dense walls or "barrels" in layer 4 of the cortex. In many ways, barrels are a simple and relatively accessible canonical cortical column, making them a common model system for the examination of cortical development and function. Despite their experimental accessibility and popularity, we still lack a basic understanding of how and why barrels form in the first place. In this review, we will examine what is known about mechanisms of barrel development, focusing specifically on the recent literature using the molecular-genetic power of mice as a model system for examining brain development.
Collapse
Affiliation(s)
- Hong Li
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
77
|
Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, Tecott LH, Schutz G, Means AR, Karsenty G. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev 2010; 24:2330-42. [PMID: 20952540 DOI: 10.1101/gad.1977210] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serotonin is a bioamine regulating bone mass accrual differently depending on its site of synthesis. It decreases accrual when synthesized in the gut, and increases it when synthesized in the brain. The signal transduction events elicited by gut-derived serotonin once it binds to the Htr1b receptor present on osteoblasts have been identified and culminate in cAMP response element-binding protein (CREB) regulation of osteoblast proliferation. In contrast, we do not know how brain-derived serotonin favors bone mass accrual following its binding to the Htr2c receptor on neurons of the hypothalamic ventromedial nucleus (VMH). We show here--through gene expression analysis, serotonin treatment of wild-type and Htr2c(-/-) hypothalamic explants, and cell-specific gene deletion in the mouse--that, following its binding to the Htr2c receptor on VMH neurons, serotonin uses a calmodulin kinase (CaMK)-dependent signaling cascade involving CaMKKβ and CaMKIV to decrease the sympathetic tone and increase bone mass accrual. We further show that the transcriptional mediator of these events is CREB, whose phosphorylation on Ser 133 is increased by CaMKIV following serotonin treatment of hypothalamic explants. A microarray experiment identified two genes necessary for optimum sympathetic activity whose expression is regulated by CREB. These results provide a molecular understanding of how serotonin signals in hypothalamic neurons to regulate bone mass accrual and identify CREB as a critical determinant of this function, although through different mechanisms depending on the cell type, neuron, or osteoblast in which it is expressed.
Collapse
Affiliation(s)
- Franck Oury
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Xiang C, Zhang KH, Yin J, Arends JJ, Erzurumlu RS, Jacquin MF, Chen ZF. The transcription factor, Lmx1b, is necessary for the development of the principal trigeminal nucleus-based lemniscal pathway. Mol Cell Neurosci 2010; 44:394-403. [PMID: 20621716 PMCID: PMC2904324 DOI: 10.1016/j.mcn.2010.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/21/2010] [Accepted: 05/13/2010] [Indexed: 11/29/2022] Open
Abstract
Little is known of transcriptional mechanisms underlying the development of the trigeminal (V) principal sensory nucleus (PrV), the brainstem nucleus responsible for the development of the whisker-to-barrel cortex pathway. Lmx1b, a LIM homeodomain transcription factor, is expressed in embryonic PrV. In Lmx1b knockout ((-)(/)(-)) mice, V primary afferent projections to PrV are normal, albeit reduced in number, whereas the PrV-thalamic lemniscal pathway is sparse and develops late. Excess cell death occurs in the embryonic Lmx1b(-)(/)(-) PrV, but not in Lmx1b/Bax double null mutants. Expression of Drg11, a downstream transcription factor essential for PrV development and pattern formation, is abolished in PrV, but not in the V ganglion. Consequently, whisker patterns fail to develop in PrV by birth. Rescued PrV cells in Lmx1b/Bax double (-)(/)(-)s failed to rescue whisker-related PrV pattern formation. Thus, Lmx1b and Drg11 may act in the same genetic signaling pathway that is essential for PrV pattern formation.
Collapse
Affiliation(s)
- Chuanxi Xiang
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Kai-Hua Zhang
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jun Yin
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joop J.A. Arends
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhou-Feng Chen
- Departments of Anesthesiology, Psychiatry, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
79
|
|
80
|
Abstract
The facial somatosensory map in the cortex is derived from facial representations that are first established at the brainstem level and then serially 'copied' at each stage of the somatosensory pathway. Recent studies have provided insights into the molecular mechanisms involved in the development of somatotopic maps of the face and whiskers in the trigeminal nuclei of the mouse brainstem. This work has revealed that early molecular regionalization and positional patterning of trigeminal ganglion and brainstem target neurons are established by homeodomain transcription factors, the expression of which is induced and maintained by signals from the brain and face. Such position-dependent information is fundamental in transforming the early spatial layout of sensory receptors into a topographic connectivity map that is conferred to higher brain levels.
Collapse
|
81
|
Chafai Elalaoui S, Cherkaoui Jaouad I, Rifai L, Sefiani A. Autosomal dominant microtia. Eur J Med Genet 2010; 53:100-3. [PMID: 20152949 DOI: 10.1016/j.ejmg.2010.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
Microtia (MIM600674) is a congenital malformation which occurs in 1/8000-10000 births. It is characterized by a small, and abnormally shaped pinna. It ranges in severity from a bump of tissue to a partially formed ear cup. Microtia is often associated with atresia of the external auditory canal. Familial microtia with meatal atresia has been reported, either with dominant or recessive inheritance, which makes genetic counselling difficult in sporadic cases. In the present paper, we report the case of a family with congenital microtia and conductive deafness in two generations, suggesting autosomal dominant inheritance with variable expression and incomplete penetrance.
Collapse
Affiliation(s)
- S Chafai Elalaoui
- Department of Medical Genetics, National Institute of Health, 27, Avenue Ibn Batouta, B.P. 769 Rabat, Morocco.
| | | | | | | |
Collapse
|
82
|
Champagnat J, Morin-Surun MP, Fortin G, Thoby-Brisson M. Developmental basis of the rostro-caudal organization of the brainstem respiratory rhythm generator. Philos Trans R Soc Lond B Biol Sci 2009; 364:2469-76. [PMID: 19651648 DOI: 10.1098/rstb.2009.0090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hox genetic network plays a key role in the anteroposterior patterning of the rhombencephalon at pre- and early-segmental stages of development of the neural tube. In the mouse, it controls development of the entire brainstem respiratory neuronal network, including the pons, the parafacial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC). Inactivation of Krox20/Egr2 eliminates the pFRG activity, thereby causing life-threatening neonatal apnoeas alternating with respiration at low frequency. Another respiratory abnormality, the complete absence of breathing, is induced when neuronal synchronization fails to develop in the preBötC. The present paper summarizes data on a third type of respiratory deficits induced by altering Hox function at pontine levels. Inactivation of Hoxa2, the most rostrally expressed Hox gene in the hindbrain, disturbs embryonic development of the pons and alters neonatal inspiratory shaping without affecting respiratory frequency and apnoeas. The same result is obtained by the Phox2a(+/-) mutation modifying the number of petrosal chemoafferent neurons, by eliminating acetylcholinesterase and by altering Hox-dependent development of the pons with retinoic acid administration at embryonic day 7.5. In addition, embryos treated with retinoic acid provide a mouse model for hyperpnoeic episodic breathing, widely reported in pre-term neonates, young girls with Rett's syndrome, patients with Joubert syndrome and adults with Cheyne-Stokes respiration. We conclude that specific respiratory deficits in vivo are assignable to anteroposterior segments of the brainstem, suggesting that the adult respiratory neuronal network is functionally organized according to the rhombomeric, Hox-dependent segmentation of the brainstem in embryos.
Collapse
Affiliation(s)
- J Champagnat
- Centre de Recherche de Gif, UPR 2216 (Neurobiologie Génétique et Intégrative), IFR 2118 (Institut de Neurobiologie Alfred Fessard), CNRS, 91198 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
83
|
A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009; 138:976-89. [PMID: 19737523 DOI: 10.1016/j.cell.2009.06.051] [Citation(s) in RCA: 476] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/26/2009] [Accepted: 06/05/2009] [Indexed: 12/13/2022]
Abstract
Leptin inhibition of bone mass accrual requires the integrity of specific hypothalamic neurons but not expression of its receptor on these neurons. The same is true for its regulation of appetite and energy expenditure. This suggests that leptin acts elsewhere in the brain to achieve these three functions. We show here that brainstem-derived serotonin (BDS) favors bone mass accrual following its binding to Htr2c receptors on ventromedial hypothalamic neurons and appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions and increases energy expenditure because it reduces serotonin synthesis and firing of serotonergic neurons. Accordingly, while abrogating BDS synthesis corrects the bone, appetite and energy expenditure phenotypes caused by leptin deficiency, inactivation of the leptin receptor in serotonergic neurons recapitulates them fully. This study modifies the map of leptin signaling in the brain and identifies a molecular basis for the common regulation of bone and energy metabolisms. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Collapse
|
84
|
Ma LH, Punnamoottil B, Rinkwitz S, Baker R. Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain. PLoS One 2009; 4:e5944. [PMID: 19536294 PMCID: PMC2693931 DOI: 10.1371/journal.pone.0005944] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 05/12/2009] [Indexed: 12/26/2022] Open
Abstract
To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a, was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable and mosaic in rhombomere 7–8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence, the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification during both growth and evolution.
Collapse
Affiliation(s)
- Leung-Hang Ma
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
| | - Beena Punnamoottil
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Silke Rinkwitz
- Brain & Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia
| | - Robert Baker
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
85
|
Chédotal A, Rijli FM. Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 2009; 19:139-45. [PMID: 19428236 DOI: 10.1016/j.conb.2009.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/18/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
Abstract
In the developing brain, the tangential mode of migration appears as an efficient strategy for newly generated neurons to reach destinations that are far away from their site of origin, as opposed to local migration along radial glia process. The ganglionic eminence, in the vertebrate subpallium, is the main source of tangentially migrating neurons in the forebrain. However, little is known about the transcriptional control of such long-distance tangential migrations. Here, we review recent findings showing that homeodomain (HD) transcription factors (TFs) regulate the tangential migration of telencephalic neurons through the expression of several downstream targets including other TFs, axon guidance molecules, and cytoskeletal components. This molecular mechanism also seems to apply to tangentially migrating neurons in other parts of the brain.
Collapse
Affiliation(s)
- Alain Chédotal
- INSERM UMRS_968, Institut de la Vision, Department of Development, 17 rue Moreau, 75012 Paris, France
| | | |
Collapse
|
86
|
Tremblay ME, Riad M, Chierzi S, Murai KK, Pasquale EB, Doucet G. Developmental course of EphA4 cellular and subcellular localization in the postnatal rat hippocampus. J Comp Neurol 2009; 512:798-813. [PMID: 19086003 DOI: 10.1002/cne.21922] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
From embryonic development to adulthood, the EphA4 receptor and several of its ephrin-A or -B ligands are expressed in the hippocampus, where they presumably play distinct roles at different developmental stages. To help clarify these diverse roles in the assembly and function of the hippocampus, we examined the cellular and subcellular localization of EphA4 in postnatal rat hippocampus by light and electron microscopic immunocytochemistry. On postnatal day (P) 1, the EphA4 immunostaining was robust in most layers of CA1, CA3, and dentate gyrus and then decreased gradually, until P21, especially in the cell body layers. At the ultrastructural level, focal spots of EphA4 immunoreactivity were detected all over the plasma membrane of pyramidal and granule cells, between P1 and P14, from the perikarya to the dendritic and axonal extremities, including growth cones and filopodia. This cell surface immunoreactivity then became restricted to the synapse-associated dendritic spines and axon terminals by P21. In astrocytes, the EphA4 immunolabeling showed a similar cell surface redistribution, from the perikarya and large processes at P1-P7, to small perisynaptic processes at P14-P21. In both cell types, spots of EphA4 immunoreactivity were also detected, with an incidence decreasing with maturation, on the endoplasmic reticulum, Golgi apparatus, and vesicles, organelles involved in protein synthesis, posttranslational modifications, and transport. The cell surface evolution of EphA4 localization in neuronal and glial cells is consistent with successive involvements in the developmental movements of cell bodies first, followed by process outgrowth and guidance, synaptogenesis, and finally synaptic maintenance and plasticity.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Département de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Minoux M, Antonarakis GS, Kmita M, Duboule D, Rijli FM. Rostral and caudal pharyngeal arches share a common neural crest ground pattern. Development 2009; 136:637-45. [PMID: 19168678 PMCID: PMC4482666 DOI: 10.1242/dev.028621] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vertebrates, face and throat structures, such as jaw, hyoid and thyroid cartilages develop from a rostrocaudal metameric series of pharyngeal arches, colonized by cranial neural crest cells (NCCs). Colinear Hox gene expression patterns underlie arch specific morphologies, with the exception of the first (mandibular) arch, which is devoid of any Hox gene activity. We have previously shown that the first and second (hyoid) arches share a common, Hox-free, patterning program. However, whether or not more posterior pharyngeal arch neural crest derivatives are also patterned on the top of the same ground-state remained an unanswered question. Here, we show that the simultaneous inactivation of all Hoxa cluster genes in NCCs leads to multiple jaw and first arch-like structures, partially replacing second, third and fourth arch derivatives, suggesting that rostral and caudal arches share the same mandibular arch-like ground patterning program. The additional inactivation of the Hoxd cluster did not significantly enhance such a homeotic phenotype, thus indicating a preponderant role of Hoxa genes in patterning skeletogenic NCCs. Moreover, we found that Hoxa2 and Hoxa3 act synergistically to pattern third and fourth arch derivatives. These results provide insights into how facial and throat structures are assembled during development, and have implications for the evolution of the pharyngeal region of the vertebrate head.
Collapse
Affiliation(s)
- Maryline Minoux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, Strasbourg, France
| | - Gregory S. Antonarakis
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
| | - Marie Kmita
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, H2W1R7, Montréal Quebec, Canada
| | - Denis Duboule
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | - Filippo M. Rijli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, Strasbourg, France
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
88
|
Kiecker C, Lumsden A. Recent advances in neural development. F1000 BIOLOGY REPORTS 2009; 1:1. [PMID: 20948677 PMCID: PMC3100780 DOI: 10.3410/b1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A surprisingly small number of signalling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context. Thus, the way a neural cell responds to a given signal is as important as the signal itself and this responsiveness, also called competence, changes with time. Here we describe recent advances in elucidating the signalling pathways that operate in brain development.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental NeurobiologyKing's College London, London SE1 1ULUK
| | - Andrew Lumsden
- MRC Centre for Developmental NeurobiologyKing's College London, London SE1 1ULUK
| |
Collapse
|
89
|
Tümpel S, Wiedemann LM, Krumlauf R. Hox genes and segmentation of the vertebrate hindbrain. Curr Top Dev Biol 2009; 88:103-37. [PMID: 19651303 DOI: 10.1016/s0070-2153(09)88004-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and organize regional properties essential for orchestrating its highly conserved functional roles. The process of segmentation in the hindbrain differs from that which functions in the paraxial mesoderm to generate somites and the axial skeleton. In the prospective hindbrain, cells in the neural epithelia transiently alter their ability to interact with their neighbors, resulting in the formation of seven lineage-restricted cellular compartments. These different segments or rhombomeres each go on to adopt unique characters in response to environmental signals. The Hox family of transcription factors is coupled to this process. Overlapping or nested patterns of Hox gene expression correlate with segmental domains and provide a combinatorial code and molecular framework for specifying the unique identities of hindbrain segments. The segmental organization and patterns of Hox expression and function are highly conserved among vertebrates and, as a consequence, comparative studies between different species have greatly enhanced our ability to build a picture of the regulatory cascades that control early hindbrain development. The purpose of this chapter is to review what is known about the regulatory mechanisms which establish and maintain Hox gene expression and function in hindbrain development.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
90
|
Narita Y, Rijli FM. Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 2009; 88:139-67. [PMID: 19651304 DOI: 10.1016/s0070-2153(09)88005-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian hindbrain is the seat of regulation of several vital functions that involve many of the organ systems of the body. Such functions are controlled through the activity of intricate arrays of neuronal circuits and connections. The establishment of ordered patterns of neuronal specification, migration, and axonal topographic connectivity during development is crucial to build such a complex network of circuits and functional connectivity in the mature hindbrain. The early development of the vertebrate hindbrain proceeds according to a fundamental metameric partitioning along the anteroposterior axis into cellular compartments known as rhombomeres. Such an organization has been highly conserved in vertebrate evolution and has a fundamental impact on the hindbrain adult structure, nuclear organization, and connectivity. Here, we review the cellular and molecular mechanisms underlying hindbrain neuronal circuitry in the mouse, with a specific focus on the role of the homeodomain transcription factors of the Hox gene family. The Hox genes are crucial determinants of rhombomere segmental identity and anteroposterior patterning. However, recent findings suggest that, in addition to their well-known roles at early embryonic stages, the Hox genes may play important roles also in later aspect of neuronal circuit development, including stereotypic neuronal migration, axon pathfinding, and topographic mapping of connectivity.
Collapse
Affiliation(s)
- Yuichi Narita
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
91
|
Abstract
The emergence of coordinated locomotor behaviors in vertebrates relies on the establishment of selective connections between discrete populations of neurons present in the spinal cord and peripheral nervous system. The assembly of the circuits necessary for movement presumably requires the generation of many unique cell types to accommodate the intricate connections between motor neurons, sensory neurons, interneurons, and muscle. The specification of diverse neuronal subtypes is mediated largely through networks of transcription factors that operate within progenitor and postmitotic cells. Selective patterns of transcription factor expression appear to define the cell-type-specific cellular programs that govern the axonal guidance decisions and synaptic specificities of neurons, and may lay the foundation through which innate motor behaviors are genetically predetermined. Recent studies on the developmental programs that specify two highly diverse neuronal classes-spinal motor neurons and proprioceptive sensory neurons-have provided important insights into the molecular strategies used in the earliest phases of locomotor circuit assembly. This chapter reviews progress toward elucidating the early transcriptional networks that define neuronal identity in the locomotor system, focusing on the pathways controlling the specific connections of motor neurons and sensory neurons in the formation of simple reflex circuits.
Collapse
|
92
|
Abstract
Cdx and Hox gene families descend from the same ProtoHox cluster, already present in the common ancestors of bilaterians and cnidarians, and thought to act by providing anteroposterior (A-P) positional identity to axial tissues in all bilaterians. Mouse Cdx and Hox genes still exhibit common features in their early expression and function. The initiation and early shaping of Hox and Cdx transcriptional domains in mouse embryos are very similar, in keeping with their common involvement in conveying A-P information to the nascent tissues during embryonic axial elongation. Considerations of the impact on axial patterning of the early expression phase of these genes that correlates with the temporally collinear expression of 3'-5'Hox genes suggest that it is concerned with the acquisition of A-P information by the three germ layers as the axis extends. This early A-P information acquired by all cells emerging from the primitive streak or tailbud and their neighbors in the caudal neural plate gets further modulated by the second phase of gene expression occurring later as the tissues mature and differentiate along the growing axis. We discuss the possibility that regulatory phase 1, common to all Cdx and Hox genes, is inherent to the concerted mechanism sequentially turning on 3'-5'Hox genes at early stages, and keeping expression of the initiated genes subsequently in the new materials added posteriorly at the axis extends. The posterior Hox gene expression domain would be subsequently complemented by Hox regulatory phase 2, consisting in a variety of gene-specific, region-specific, and/or tissue-specific gene expression controls. We also touch on the unanswered question whether vertebrate Cdx gene expression delivers A-P positional information in its own right, as Caudal does in Drosophila, or whether it does so exclusively by upregulating Hox genes.
Collapse
Affiliation(s)
- Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan, Utrecht, The Netherlands
| | | |
Collapse
|
93
|
Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 2008; 323:230-47. [PMID: 18786526 DOI: 10.1016/j.ydbio.2008.08.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/29/2008] [Accepted: 08/15/2008] [Indexed: 11/21/2022]
Abstract
The medulla oblongata (or caudal hindbrain) is not overtly segmented, since it lacks observable interrhombomeric boundaries. However, quail-chick fate maps showed that it is formed by 5 pseudorhombomeres (r7-r11) which were empirically found to be delimited consistently at planes crossing through adjacent somites (Cambronero and Puelles, 2000). We aimed to reexamine the possible segmentation or rostrocaudal regionalisation of this brain region attending to molecular criteria. To this end, we studied the expression of Hox genes from groups 3 to 7 correlative to the differentiating nuclei of the medulla oblongata. Our results show that these genes are differentially expressed in the mature medulla oblongata, displaying instances of typical antero-posterior (3' to 5') Hox colinearity. The different sensory and motor columns, as well as the reticular formation, appear rostrocaudally regionalised according to spaced steps in their Hox expression pattern. The anterior limits of the respective expression domains largely fit boundaries defined between the experimental pseudorhombomeres. Therefore the medulla oblongata shows a Hox-related rostrocaudal molecular regionalisation comparable to that found among rhombomeres, and numerically consistent with the pseudorhombomere list. This suggests that medullary pseudorhombomeres share some AP patterning mechanisms with the rhombomeres present in the rostral, overtly-segmented hindbrain, irrespective of variant boundary properties.
Collapse
|
94
|
Geisen MJ, Meglio TD, Pasqualetti M, Ducret S, Brunet JF, Chedotal A, Rijli FM. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol 2008; 6:e142. [PMID: 18547144 PMCID: PMC2422855 DOI: 10.1371/journal.pbio.0060142] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/28/2008] [Indexed: 12/18/2022] Open
Abstract
The pontine neurons (PN) represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP) and dorsoventral (DV) axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.
Collapse
Affiliation(s)
- Marc J Geisen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
| | - Thomas Di Meglio
- CNRS UMR 7102 Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Massimo Pasqualetti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
| | - Sebastien Ducret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
- Friedrich Miescher Institute, Basel, Switzerland
| | | | - Alain Chedotal
- CNRS UMR 7102 Université Pierre et Marie Curie–Paris 6, Paris, France
| | - Filippo M Rijli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, CU de Strasbourg, Illkirch, France
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
95
|
Gouti M, Gavalas A. Hoxb1 controls cell fate specification and proliferative capacity of neural stem and progenitor cells. Stem Cells 2008; 26:1985-97. [PMID: 18499896 DOI: 10.1634/stemcells.2008-0182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The directed differentiation of embryonic stem cells (ESCs) into neural stem cells (NSCs) of specific identities and the identification of endogenous pathways that may mediate expansion of NSCs are fundamental goals for the treatment of degenerative disorders and trauma of the nervous system. We report that timely induction of a Hoxb1 transgene in ESC-derived NSCs resulted in the specification of NSCs toward a hindbrain-specific identity through the activation of a rhombomere 4-specific genetic program and the repression of anterior neural identity. This change was accompanied by changes in signaling pathways that pattern the dorsoventral (DV) axis of the nervous system and concomitant changes in the expression of DV neural progenitor markers. Furthermore, Hoxb1 mediated the maintenance and expansion of posterior neural progenitor cells. Hoxb1(+) cells kept proliferating upon mitogen withdrawal and became transiently amplifying progenitors instead of terminally differentiating. This was partially attributed to Hoxb1-dependent activation of the Notch signaling pathway and Notch-dependent STAT3 phosphorylation at Ser 727, thus linking Hox gene function with maintenance of active Notch signaling and the JAK/STAT pathway. Thus, timely expression of specific Hox genes could be used to establish NSCs and neural progenitors of distinct posterior identities. ESC-derived NSCs have a mixed DV identity that is subject to regulation by Hox genes. Finally, these findings set the stage for the elucidation of molecular pathways involved in the expansion of posterior NSCs and neural progenitors. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Soranou Ephessiou 4, Athens 11527, Greece
| | | |
Collapse
|
96
|
Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice. Proc Natl Acad Sci U S A 2008; 105:6338-43. [PMID: 18430798 DOI: 10.1073/pnas.0802176105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although Hox gene expression has been linked to motoneuron identity, a role of these genes in development of the spinal sensory system remained undocumented. Hoxb genes are expressed at high levels in the dorsal horn of the spinal cord. Hoxb8 null mutants manifest a striking phenotype of excessive grooming and hairless lesions on the lower back. Applying local anesthesia underneath the hairless skin suppressed excessive grooming, indicating that this behavior depends on peripheral nerve activity. Functional ablation of mouse Hoxb8 also leads to attenuated response to nociceptive and thermal stimuli. Although spinal ganglia were normal, a lower postmitotic neural count was found in the dorsalmost laminae at lumbar levels around birth, leading to a smaller dorsal horn and a correspondingly narrowed projection field of nociceptive and thermoceptive afferents. The distribution of the dorsal neuronal cell types that we assayed, including neurons expressing the itch-specific gastrin-releasing peptide receptor, was disorganized in the lumbar region of the mutant. BrdU labeling experiments and gene-expression studies at stages around the birth of these neurons suggest that loss of Hoxb8 starts impairing development of the upper laminae of the lumbar spinal cord at approximately embryonic day (E)15.5. Because none of the neuronal markers used was unexpressed in the adult dorsal horn, absence of Hoxb8 does not impair neuronal differentiation. The data therefore suggest that a lower number of neurons in the upper spinal laminae and neuronal disorganization in the dorsal horn underlie the sensory defects including the excessive grooming of the Hoxb8 mutant.
Collapse
|
97
|
Jacquin MF, Arends JJA, Xiang C, Shapiro LA, Ribak CE, Chen ZF. In DRG11 knock-out mice, trigeminal cell death is extensive and does not account for failed brainstem patterning. J Neurosci 2008; 28:3577-85. [PMID: 18385316 PMCID: PMC2596061 DOI: 10.1523/jneurosci.4203-07.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/12/2008] [Accepted: 02/25/2008] [Indexed: 12/21/2022] Open
Abstract
A previous study (Ding et al., 2003) showed that the homeodomain transcription factor DRG11 is necessary for pattern formation in the trigeminal nucleus principalis (PrV), the requisite brainstem nucleus for development of the whisker-to-barrel cortex pathway. However, it is not known how DRG11 contributes to pattern formation. Anatomical studies were performed in DRG11 knock-out (-/-) and DRG11/Bax double -/- mice to test the hypotheses that DRG11 is required for neuronal survival in the V pathway and that PrV cell death is sufficient to explain pattern alterations. At birth, DRG11(-/-) mice had equivalent cell loss in the V ganglion, PrV, and spinal V subnucleus interpolaris (SpVi). Because whisker-related patterns were normal in the SpVi, cell death would not appear to explain failed pattern formation in the mutant PrV. Electron microscopy revealed exuberant apoptosis and necrosis as the mechanisms of PrV cell death occurring in the late prenatal and newborn DRG11(-/-), when such cell death was up to six times more prevalent than normal. DRG11 heterozygote and Bax(-/-) mice were crossed in an attempt to dissociate PrV patterning anomalies from exuberant apoptosis in DRG11(-/-) mice. Both DRG11(-/-) and DRG11/Bax double -/- mutants lacked whisker-related patterning in their PrV, despite Bax(-/-)-induced rescue of V ganglion and PrV cells. Thus, apoptotic cell death is not a sufficient cause of failed pattern formation in the PrV of the DRG11(-/-). A signaling pathway involving DRG11 may, therefore, be the elusive PrV pattern maker.
Collapse
Affiliation(s)
- Mark F Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Alasti F, Sadeghi A, Sanati MH, Farhadi M, Stollar E, Somers T, Van Camp G. A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 2008; 82:982-91. [PMID: 18394579 DOI: 10.1016/j.ajhg.2008.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/12/2008] [Accepted: 02/28/2008] [Indexed: 11/25/2022] Open
Abstract
Microtia, a congenital deformity manifesting as an abnormally shaped or absent external ear, occurs in one out of 8,000-10,000 births. We ascertained a consanguineous Iranian family segregating with autosomal-recessive bilateral microtia, mixed symmetrical severe to profound hearing impairment, and partial cleft palate. Genome-wide linkage analysis localized the responsible gene to chromosome 7p14.3-p15.3 with a maximum multi-point LOD score of 4.17. In this region, homeobox genes from the HOXA cluster were the most interesting candidates. Subsequent DNA sequence analysis of the HOXA1 and HOXA2 homeobox genes from the candidate region identified an interesting HOXA2 homeodomain variant: a change in a highly conserved amino acid (p.Q186K). The variant was not found in 231 Iranian and 109 Belgian control samples. The critical contribution of HoxA2 for auditory-system development has already been shown in mouse models. We built a homology model to predict the effect of this mutation on the structure and DNA-binding activity of the homeodomain by using the program Modeler 8v2. In the model of the mutant homeodomain, the position of the mutant lysine side chain is consistently farther away from a nearby phosphate group; this altered position results in the loss of a hydrogen bond and affects the DNA-binding activity.
Collapse
|
99
|
Jensen-Smith H, Gray B, Muirhead K, Ohlsson-Wilhelm B, Fritzsch B. Long-distance three-color neuronal tracing in fixed tissue using NeuroVue dyes. Immunol Invest 2008; 36:763-89. [PMID: 18161528 PMCID: PMC2430174 DOI: 10.1080/08820130701706711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dissecting development of neuronal connections is critical for understanding neuronal function in both normal and diseased states. Charting the development of the multitude of connections is a monumental task, since a given neuron typically receives hundreds of convergent inputs from other neurons and provides divergent outputs for hundreds of other neurons. Although progress is being made utilizing various mutants and/or genetic constructs expressing fluorescent proteins like GFP, substantial work remains before a database documenting the development and final location of the neuronal pathways in an adult animal is completed. The vast majority of developing neurons cannot be specifically labeled with antibodies and making specific GFP-expressing constructs to tag each of them is an overwhelming task. Fortunately, fluorescent lipophilic dyes have emerged as very useful tools to systematically compare changes in neuronal networks between wild-type and mutant mice. These dyes diffuse laterally along nerve cell membranes in fixed preparations, allowing tracing of the position of a given neuron within the neuronal network in murine mutants fixed at various stages of development. Until recently, however, most evaluations have been limited to one, or at most, two color analyses. We have previously reported three color neuronal profiling using the novel lipophilic dyes NeuroVue (NV) Green, Red and Maroon (Fritzsch et al., Brain. Res. Bull. 66: 249-258, 2005). Unfortunately such three color experiments have been limited by the fact that NV Green and its brighter successor, NV Emerald, both exhibit substantially decreased signal intensities when times greater than 48 hours at 37 degrees C are required to achieve neuronal profile filling (unpublished observations). Here we describe a standardized test system developed to allow comparison of candidate dyes and its use to evaluate a series of 488 nm-excited green-emitting lipophilic dyes. The best of these, NV Jade, has spectral properties well matched to NV Red and NV Maroon, better solubility in DMF than DiO or DiA, improved thermostability compared with NV Emerald, and the ability to fill neuronal profiles at rates of 1 mm per day for periods of at least 5 days. Use of NV Jade in combination with NV Red and NV Maroon substantially improves the efficiency of connectional analysis in complex mutants and transgenic models where limited numbers of specimens are available.
Collapse
|
100
|
Matis C, Oury F, Remacle S, Lampe X, Gofflot F, Picard JJ, Rijli FM, Rezsohazy R. Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterning. Dev Dyn 2007; 236:2675-84. [PMID: 17676642 DOI: 10.1002/dvdy.21266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein-DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2-dependent network regulating anteroposterior and dorsoventral hindbrain patterning.
Collapse
Affiliation(s)
- Christelle Matis
- Unit of Developmental Genetics, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|