51
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
52
|
Han A, Wang X, Tang K, Zhang Z, Ye C, Kong K, Hu H, Zheng L, Jiang P, Zhao C, Zhang Q, Wang D, Li Y. An Adjacent Atomic Platinum Site Enables Single‐Atom Iron with High Oxygen Reduction Reaction Performance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105186] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ali Han
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Center for Excellence in Nanoscience School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 China
| | - Kun Tang
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Zedong Zhang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chenliang Ye
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Kejian Kong
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haibo Hu
- School of Physics and Materials Science Anhui University Hefei 230601 China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences No. 19 Yuquan Road Beijing 100049 China
| | - Peng Jiang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Changxin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
53
|
Han A, Wang X, Tang K, Zhang Z, Ye C, Kong K, Hu H, Zheng L, Jiang P, Zhao C, Zhang Q, Wang D, Li Y. An Adjacent Atomic Platinum Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance. Angew Chem Int Ed Engl 2021; 60:19262-19271. [PMID: 34156746 DOI: 10.1002/anie.202105186] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 12/18/2022]
Abstract
The modulation effect has been widely investigated to tune the electronic state of single-atomic M-N-C catalysts to enhance the activity of oxygen reduction reaction (ORR). However, the in-depth study of modulation effect is rarely reported for the isolated dual-atomic metal sites. Now, the catalytic activities of Fe-N4 moiety can be enhanced by the adjacent Pt-N4 moiety through the modulation effect, in which the Pt-N4 acts as the modulator to tune the 3d electronic orbitals of Fe-N4 active site and optimize ORR activity. Inspired by this principle, we design and synthesize the electrocatalyst that comprises isolated Fe-N4 /Pt-N4 moieties dispersed in the nitrogen-doped carbon matrix (Fe-N4 /Pt-N4 @NC) and exhibits a half-wave potential of 0.93 V vs. RHE and negligible activity degradation (ΔE1/2 =8 mV) after 10000 cycles in 0.1 M KOH. We also demonstrate that the modulation effect is not effective for optimizing the ORR performances of Co-N4 /Pt-N4 and Mn-N4 /Pt-N4 systems.
Collapse
Affiliation(s)
- Ali Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kun Tang
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kejian Kong
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haibo Hu
- School of Physics and Materials Science, Anhui University, Hefei, 230601, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Peng Jiang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Changxin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
54
|
Marianov AN, Kochubei AS, Roman T, Conquest OJ, Stampfl C, Jiang Y. Modeling and Experimental Study of the Electron Transfer Kinetics for Non-ideal Electrodes Using Variable-Frequency Square Wave Voltammetry. Anal Chem 2021; 93:10175-10186. [PMID: 34264072 DOI: 10.1021/acs.analchem.1c01286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The knowledge of nonequilibrium electron transfer rates is paramount for the design of modern hybrid electrocatalysts. Herein, we propose a general simulation-based approach to interpret variable-frequency square wave voltammetry (VF-SWV) for heterogeneous materials featuring reversible redox behavior. The resistive and capacitive corrections, inclusion of the frequency domain, and statistical treatment of the surface redox kinetics are used to account for the non-ideal nature of electrodes. This approach has been validated in our study of CoII/CoI redox transformation for Co tetraphenylporphyrin (CoTPP) immobilized on carbon cloth and multiwalled carbon nanotubes (CNTs) - one of the most active heterogeneous molecular catalysts in carbon dioxide (CO2) electroreduction. It is demonstrated that the modeling of experimental data furnishes the capacitance of the surface double layer C, uncompensated resistance Ru, symmetry coefficients α, kinetic constants k0, and equilibrium redox potentials E0 in one experiment. Moreover, the proposed method yields a stochastic map of the redox kinetics rather than a single value, thus exposing the inhomogeneous nature of the electrochemically active layer. The computed parameters are in excellent agreement with the results of the classic methods such as cyclic voltammetry and fall in line with the reported CoTPP catalytic activity. Thus, VF-SWV is suitable for the study of high-level composites such as covalent organic frameworks and organometallic-CNT mixtures. The resulting insights into the electron transfer mechanisms are especially useful for the rational development of the catalyst-support interfaces and immobilization methods.
Collapse
Affiliation(s)
- Aleksei N Marianov
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alena S Kochubei
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tanglaw Roman
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Oliver J Conquest
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
55
|
Arima H, Wada M, Nakazono T, Wada T. Tuning Oxygen Reduction Catalysis of Dinuclear Cobalt Polypyridyl Complexes by the Bridging Structure. Inorg Chem 2021; 60:9402-9415. [PMID: 33988979 DOI: 10.1021/acs.inorgchem.1c00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four-electron oxygen reduction reaction (4e--ORR) is the mainstay in chemical energy conversion. Elucidation of factors influencing the catalyst's reaction rate and selectivity is important in the development of more active catalysts of 4e--ORR. In this study, we investigated chemical and electrochemical 4e--ORR catalyzed by Co2(μ-O2) complexes bridged by xanthene (1) and anthracene (3) and by a Co2(OH)2 complex bridged by anthraquinone (2). In the chemical ORR using Fe(CpMe)2 as a reductant in acidic PhCN, we found that 1 showed the highest initial turnover frequency (TOFinit = 6.8 × 102 s-1) and selectivity for 4e--ORR (96%) in three complexes. The detailed kinetic analyses have revealed that the rate-determining steps (RDSs) in the catalytic cycles of 1-3 have the O2 addition to [CoII2(OH2)2]4+ as an intermediate in common. In the only case that complex 1 was used as a catalyst, kcat depended on proton concentration because the reaction rate of the O2 addition to [CoII2(OH2)2]4+ was so fast as compared to that of the concerted PCET process of 1. Through X-ray, Raman, and electrochemical analyses and stoichiometric reactions, we found the face-to-face structure of 1 characterized by a slightly flexible xanthene was advantageous in capturing O2 and stabilizing the Co2(μ-O2) structure, thus increasing both the reaction rate and selectivity for 4e--ORR.
Collapse
Affiliation(s)
- Hiroaki Arima
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Misato Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Takashi Nakazono
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Tohru Wada
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
56
|
Lei H, Zhang Q, Wang Y, Gao Y, Wang Y, Liang Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Trans 2021; 50:5120-5123. [PMID: 33881086 DOI: 10.1039/d1dt00441g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developing electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is of great importance. Herein, Co tetrakis(pentafluorophenyl)porphyrin (Co-P) and Fe chloride tetrakis(pentafluorophenyl)porphyrin (Fe-P) were loaded on carbon nanotubes (CNTs) for combining the electrocatalytic advantages of both Co-P and Fe-P. The resultant (Co-P)0.5(Fe-P)0.5@CNT composite displayed significantly boosted activity for the selective four-electron ORR with a half-wave potential of 0.80 V versus reversible hydrogen electrode (RHE) and for the OER with a potential of 1.65 V versus RHE to obtain 10 mA cm-2 current density in 0.1 M KOH. A Zn-air battery assembled from (Co-P)0.5(Fe-P)0.5@CNT exhibited a small charge-discharge voltage gap of 0.74 V at 2 mA cm-2, a high power density of 174.5 mW cm-2 and a good rechargeable stability (>120 cycles).
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yimei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
57
|
Xie L, Zhang X, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel U, Cao R. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
58
|
|
59
|
Naowarojna N, Cheng R, Lopez J, Wong C, Qiao L, Liu P. Chemical modifications of proteins and their applications in metalloenzyme studies. Synth Syst Biotechnol 2021; 6:32-49. [PMID: 33665390 PMCID: PMC7897936 DOI: 10.1016/j.synbio.2021.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Protein chemical modifications are important tools for elucidating chemical and biological functions of proteins. Several strategies have been developed to implement these modifications, including enzymatic tailoring reactions, unnatural amino acid incorporation using the expanded genetic codes, and recognition-driven transformations. These technologies have been applied in metalloenzyme studies, specifically in dissecting their mechanisms, improving their enzymatic activities, and creating artificial enzymes with non-natural activities. Herein, we summarize some of the recent efforts in these areas with an emphasis on a few metalloenzyme case studies.
Collapse
Affiliation(s)
| | | | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
60
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
61
|
Xie L, Zhang XP, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel UP, Cao R. Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021; 60:7576-7581. [PMID: 33462971 DOI: 10.1002/anie.202015478] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm-2 . Theoretical studies suggested that hydroxide attack to a formal FeV =O form the O-O bond. The axial imidazole can prevent the formation of trans HO-FeV =O, which is less effective to form O-O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials.
Collapse
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
62
|
Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Structural Determination of an Unusual Cu I -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Chemistry 2021; 27:3991-3996. [PMID: 33405305 PMCID: PMC7986761 DOI: 10.1002/chem.202004945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Indexed: 12/02/2022]
Abstract
The synthesis and characterization of a hetero‐dinuclear compound is presented, in which a copper(I) trishistidine type coordination unit is positioned directly above a zinc porphyrin unit. The close distance between the two coordination fragments is secured by a rigid xanthene backbone, and a unique (intramolecular) copper porphyrin‐π‐bond was determined for the first time in the molecular structure. This structural motif was further analyzed by temperature‐dependent NMR studies: In solution at room temperature the coordinative bond fluctuates, while it can be frozen at low temperatures. Preliminary reactivity studies revealed a reduced reactivity of the copper(I) moiety towards dioxygen. The results adumbrate why nature is avoiding metal porphyrin‐π‐bonds by fixing reactive metal centers in a predetermined distance to each other within multimetallic enzymatic reaction centers.
Collapse
Affiliation(s)
- Michael Marquardt
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Beatrice Cula
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Vishal Budhija
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - André Dallmann
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Matthias Schwalbe
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
63
|
Schissler C, Schneider EK, Felker B, Weis P, Nieger M, Kappes MM, Bräse S. A Synthetic Strategy for Cofacial Porphyrin-Based Homo- and Heterobimetallic Complexes. Chemistry 2021; 27:3047-3054. [PMID: 33459421 PMCID: PMC7898677 DOI: 10.1002/chem.202002394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/16/2020] [Indexed: 12/20/2022]
Abstract
We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterobimetallic porphyrin complexes. The protocol allows the synthesis of unsymmetrical aryl-based meso-meso as well as β-meso-linked porphyrins. Our method significantly increases the overall yield for the published compound known as o-phenylene-bisporphyrin (OBBP) by a factor of 6.8. Besides the synthesis of 16 novel homobimetallic complexes containing MnIII , FeIII , NiII , CuII , ZnII , and PdII , we achieved the first single-crystal X-ray structure of an unsymmetrical cofacial benzene-linked porphyrin dimer containing both planar-chiral enantiomers of a NiII 2 complex. Additionally, this new methodology allows access to heterobimetallic complexes such as the FeIII -NiII containing carbon monoxide dehydrogenase active site analogue. The isolated species were investigated by various techniques, including ion mobility spectrometry, DFT calculations, and UV/Vis spectroscopy. This allowed us to probe the influence of interplane distance on Soret band splitting.
Collapse
Affiliation(s)
- Christoph Schissler
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Erik K. Schneider
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Benjamin Felker
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Patrick Weis
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP.O. Box 5500014HelsinkiFinland
| | - Manfred M. Kappes
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
- Institute for NanotechnologyKarlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute for Biological and Chemical Systems—Functional Molecular, Systems, (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
64
|
Kato M, Fujibayashi N, Abe D, Matsubara N, Yasuda S, Yagi I. Impact of Heterometallic Cooperativity of Iron and Copper Active Sites on Electrocatalytic Oxygen Reduction Kinetics. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04753] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masaru Kato
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | | | | | | | - Satoshi Yasuda
- Research Group for Nanoscale Structure and Function of Advanced Materials, Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ichizo Yagi
- Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
65
|
Ghosh AC, Duboc C, Gennari M. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
66
|
Chattopadhyay S, Bandyopadhyay S, Dey A. Kinetic Isotope Effects on Electron Transfer Across Self-Assembled Monolayers on Gold. Inorg Chem 2021; 60:597-605. [PMID: 33411526 DOI: 10.1021/acs.inorgchem.0c02185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions requiring controlled delivery of protons and electrons are important in storage of energy in small molecules. While control over proton transfer can be achieved by installing appropriate chemical functionality in the catalyst, control of electron-transfer (ET) rates can be achieved by utilizing self-assembled monolayers (SAMs) on electrodes. Thus, a deeper understanding of the ET through SAM to an immobilized or covalently attached redox-active species is desirable. Long-range ET across several SAM-covered Au electrodes to covalently attached ferrocene is investigated using protonated and deuterated thiols (R-SH/R-SD). The rate of tunneling is measured using both chronoamperometry and cyclic voltammetry, and it shows a prominent kinetic isotope effect (KIE). The KIE is ∼2 (normal) for medium-chain-length thiols but ∼0.47 (inverse) for long-chain thiols. These results imply substantial contribution from the classical modes at the Au-(H)SR interface, which shifts substantially upon deuteration of the thiols, to the ET process. The underlying H/D KIE of these exchangeable thiol protons should be considered when analyzing solvent isotope effects in catalysis utilizing SAM.
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal
| | - Sabyasachi Bandyopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal
| |
Collapse
|
67
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
68
|
Mankad NP, Yu HC. Catalytic Reactions by Heterobimetallic Carbonyl Complexes with Polar Metal–Metal Interactions. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1339-3417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractHeterobinuclear catalysts capable of bimetallic cooperative bond activation provide an alternative pathway to approach the discovery of novel and unique reactivity and selectivity in catalytic transformations, complementing more traditional mononuclear precious metal catalysts. This review summarizes recent advances in homogenous catalysis using heterobimetallic carbonyl catalysts with polar metal–metal interactions.1 Introduction2 Hydrogenation and Hydrofunctionalization3 Carbonylation and Carboxylation4 Oxidative Transformations5 Conclusion and Outlook
Collapse
|
69
|
Liu C, Li H, Liu F, Chen J, Yu Z, Yuan Z, Wang C, Zheng H, Henkelman G, Wei L, Chen Y. Intrinsic Activity of Metal Centers in Metal-Nitrogen-Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. J Am Chem Soc 2020; 142:21861-21871. [PMID: 33332110 DOI: 10.1021/jacs.0c10636] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) show high catalytic activity for many important chemical reactions. However, an understanding of their intrinsic catalytic activity remains ambiguous because of the lack of well-defined atomic structure control in current M-N-C SACs. Here, we use covalent organic framework SACs with an identical metal coordination environment as model catalysts to elucidate the intrinsic catalytic activity of various metal centers in M-N-C SACs. A pH-universal activity trend is discovered among six 3d transition metals for hydrogen peroxide (H2O2) synthesis, with Co having the highest catalytic activity. Using density functional calculations to access a total of 18 metal species, we demonstrate that the difference in the binding energy of O2* and HOOH* intermediates (EO2* - EHOOH*) on single metal centers is a reliable thermodynamic descriptor to predict the catalytic activity of the metal centers. The predicted high activity of Ir centers from the descriptor is further validated experimentally. This work suggests a class of structurally defined model catalysts and clear mechanistic principles for metal centers of M-N-C SACs in H2O2 synthesis, which may be further extendable to other reactions.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Hao Li
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong 510070, P. R. China
| | - Junsheng Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Huiling Zheng
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales 2006, Australia
| |
Collapse
|
70
|
Singha A, Mondal A, Nayek A, Dey SG, Dey A. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol. J Am Chem Soc 2020; 142:21810-21828. [PMID: 33320658 DOI: 10.1021/jacs.0c10385] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenols and quinols participate in both proton transfer and electron transfer processes in nature either in distinct elementary steps or in a concerted fashion. Recent investigations using synthetic heme/Cu models and iron porphyrins have indicated that phenols/quinols can react with both ferric superoxide and ferric peroxide intermediates formed during O2 reduction through a proton coupled electron transfer (PCET) process as well as via hydrogen atom transfer (HAT). Oxygen reduction by iron porphyrins bearing covalently attached pendant phenol and quinol groups is investigated. The data show that both of these can electrochemically reduce O2 selectively by 4e-/4H+ to H2O with very similar rates. However, the mechanism of the reaction, investigated both using heterogeneous electrochemistry and by trapping intermediates in organic solutions, can be either PCET or HAT and is governed by the thermodynamics of these intermediates involved. The results suggest that, while the reduction of the FeIII-O2̇- species to FeIII-OOH proceeds via PCET when a pendant phenol is present, it follows a HAT pathway with a pendant quinol. In the absence of the hydroxyl group the O2 reduction proceeds via an electron transfer followed by proton transfer to the FeIII-O2̇- species. The hydrogen bonding from the pendant phenol group to FeIII-O2̇- and FeIII-OOH species provides a unique advantage to the PCET process by lowering the inner-sphere reorganization energy by limiting the elongation of the O-O bond upon reduction.
Collapse
Affiliation(s)
- Asmita Singha
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Mondal
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhijit Nayek
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
71
|
Zhou Z, Liu Y, Zhang J, Pang H, Zhu G. Non-precious nickel-based catalysts for hydrogen oxidation reaction in alkaline electrolyte. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
72
|
Ghatak A, Bhunia S, Dey A. Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
73
|
Ishizuka T, Tanaka S, Uchida S, Wei L, Kojima T. Selective Convergence to Atropisomers of a Porphyrin Derivative Having Bulky Substituents at the Periphery. J Org Chem 2020; 85:12856-12869. [PMID: 32990441 DOI: 10.1021/acs.joc.0c01876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four kinds of possible atropisomers of a porphyrin derivative (1), having mesityl groups at one of the o-positions of each meso-aryl group, can be selectively converged to targeted atropisomers among the four isomers (αααα, αααβ, αβαβ, and ααββ) under appropriate conditions for each atropisomer. For example, protonation and subsequent neutralization of a free base porphyrin (H2-1) induces a convergence reaction to the αβαβ atropisomer, H2-1-αβαβ, from an atropisomeric mixture. The αααα isomer, H2-1-αααα, was also obtained by heating a solution of H2-1 in CHCl3 in 60% isolated yield, probably owing to a template effect of the solvent molecule. Remarkably, when an atropisomeric mixture of its zinc complex, Zn-1, was heated at 70 °C in a ClCH2CH2Cl/MeOH mixed solvent, crystals composed of only Zn-1-αααα were formed. The hydrophobic space formed by the four mesityl groups in the αααα isomer can be used for repeatable molecular encapsulation of benzene, and the encapsulation structure was elucidated by powder X-ray diffraction analysis. Heating the solid of an atropisomeric mixture of Zn-1 to 400 °C afforded the ααββ isomer almost quantitatively. On the other hand, the solid of H2-1-αααα can be converted by heating, successively to H2-1-αααβ at 286 °C and then to H2-1-ααββ at 350 °C.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Shogo Tanaka
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Lianyu Wei
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
74
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
75
|
Zhang R, Warren JJ. Controlling the Oxygen Reduction Selectivity of Asymmetric Cobalt Porphyrins by Using Local Electrostatic Interactions. J Am Chem Soc 2020; 142:13426-13434. [DOI: 10.1021/jacs.0c03861] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rui Zhang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6 Canada
| | - Jeffrey J. Warren
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby BC V5A 1S6 Canada
| |
Collapse
|
76
|
|
77
|
Proteins-Based Nanocatalysts for Energy Conversion Reactions. Top Curr Chem (Cham) 2020; 378:43. [PMID: 32562011 DOI: 10.1007/s41061-020-00306-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure-function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N2 to NH3 using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.
Collapse
|
78
|
Affiliation(s)
- Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
79
|
Boitrel B, Bouget M, Das PK, Le Gac S, Roisnel T, Hanana M, Arcostanzo H, Cornut R, Jousselme B, Campidelli S. Oxygen reduction reaction catalyzed by overhanging carboxylic acid strapped iron porphyrins adsorbed on carbon nanotubes. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of hybrid catalysts for the oxygen reduction reaction (ORR) has been investigated. They are composed of multi-wall carbon nanotubes (MWNTs) coated with iron strapped porphyrins. Two porphyrins have been probed; both are strapped with the same skeleton and differ only by the number of overhung carboxylic acid(s), either one or two. In this structure, the carboxylic acid group can act as a proton relay between the medium and the catalyst or as a polar group surrounding the dioxygen binding cavity. While the number of carboxylic acid group(s) does not exhibit a significant influence on the catalytic properties, the combination of both components–MWNTs and porphyrin–leads to a better catalytic activity than those of the nanotubes or the porphyrins taken separately.
Collapse
Affiliation(s)
- Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Morgane Bouget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Pradip K. Das
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Manel Hanana
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Hélène Arcostanzo
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Renaud Cornut
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Bruno Jousselme
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Campidelli
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
80
|
Wan H, Jensen AW, Escudero-Escribano M, Rossmeisl J. Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Wan
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Anders W. Jensen
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - María Escudero-Escribano
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jan Rossmeisl
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
81
|
Pruitt T, Wang X, Wu A, Kallioniemi E, Husain MM, Liu H. Transcranial Photobiomodulation (tPBM) With 1,064-nm Laser to Improve Cerebral Metabolism of the Human Brain In Vivo. Lasers Surg Med 2020; 52:807-813. [PMID: 32173886 PMCID: PMC7492377 DOI: 10.1002/lsm.23232] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES In our previous proof-of-principle study, transcranial photobiomodulation (tPBM) with 1,064-nm laser was reported to significantly increase concentration changes of oxygenated hemoglobin (∆[HbO]) and oxidized-state cytochrome c oxidase (∆[oxi-CCO]) in the human brain. This paper further investigated (i) its validity in two different subsets of young human subjects at two study sites over a period of 3 years and (ii) age-related effects of tPBM by comparing sham-controlled increases of ∆[HbO] and ∆[oxi-CCO] between young and older adults. STUDY DESIGN/MATERIALS AND METHODS We measured sham-controlled ∆[HbO] and ∆[oxi-CCO] using broadband near-infrared spectroscopy (bb-NIRS) in 15 young (26.7 ± 2.7 years of age) and 5 older (68.2 ± 4.8 years of age) healthy normal subjects before, during, and after right-forehead tPBM/sham stimulation with 1,064-nm laser. Student t tests were used to test statistical differences in tPBM-induced ∆[HbO] and ∆[oxi-CCO] (i) between the 15 young subjects and those of 11 reported previously and (ii) between the two age groups measured in this study. RESULTS Statistical analysis showed that no significant difference existed in ∆[HbO] and ∆[oxi-CCO] during and post tPBM between the two subsets of young subjects at two study sites over a period of 3 years. Furthermore, the two age groups showed statistically identical net increases in sham-controlled ∆[HbO] and ∆[oxi-CCO]. CONCLUSIONS This study provided strong evidence to validate/confirm our previous findings that tPBM with 1,064-nm laser enables to increase cerebral ∆[HbO] and ∆[oxi-CCO] in the human brain, as measured by bb-NIRS. Overall, it demonstrated the robust reproducibility of tPBM being able to improve cerebral hemodynamics and metabolism of the human brain in vivo in both young and older adults. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tyrell Pruitt
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019.,Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| | - Anqi Wu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| | - Elisa Kallioniemi
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, Texas, 76019
| |
Collapse
|
82
|
Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
83
|
Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
84
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:4902-4907. [DOI: 10.1002/anie.201916131] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
85
|
Smith PT, Kim Y, Benke BP, Kim K, Chang CJ. Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Peter T. Smith
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
| | - Younghoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Bahiru Punja Benke
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry Pohang University of Science and Technology Pohang 37673 Republic of Korea
- Center for Self-assembly and Complexity (CSC) Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720-1460 USA
- Department of Molecular and Cell Biology University of California, Berkeley Berkeley CA 94720-1460 USA
| |
Collapse
|
86
|
Chen H, Dong F, Minteer SD. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat Catal 2020. [DOI: 10.1038/s41929-019-0408-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
87
|
Meng Y, Yin J, Jiao T, Bai J, Zhang L, Su J, Liu S, Bai Z, Cao M, Peng Q. Self-assembled copper/cobalt-containing polypyrrole hydrogels for highly efficient ORR electrocatalysts. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
88
|
Timilsina A, Zhang C, Pandey B, Bizimana F, Dong W, Hu C. Potential Pathway of Nitrous Oxide Formation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1177. [PMID: 32849729 PMCID: PMC7412978 DOI: 10.3389/fpls.2020.01177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 05/12/2023]
Abstract
Plants can produce and emit nitrous oxide (N2O), a potent greenhouse gas, into the atmosphere, and several field-based studies have concluded that this gas is emitted at substantial amounts. However, the exact mechanisms of N2O production in plant cells are unknown. Several studies have hypothesised that plants might act as a medium to transport N2O produced by soil-inhabiting microorganisms. Contrarily, aseptically grown plants and axenic algal cells supplied with nitrate (NO3) are reported to emit N2O, indicating that it is produced inside plant cells by some unknown physiological phenomena. In this study, the possible sites, mechanisms, and enzymes involved in N2O production in plant cells are discussed. Based on the experimental evidence from various studies, we determined that N2O can be produced from nitric oxide (NO) in the mitochondria of plants. NO, a signaling molecule, is produced through oxidative and reductive pathways in eukaryotic cells. During hypoxia and anoxia, NO3 in the cytosol is metabolised to produce nitrite (NO2), which is reduced to form NO via the reductive pathway in the mitochondria. Under low oxygen condition, NO formed in the mitochondria is further reduced to N2O by the reduced form of cytochrome c oxidase (CcO). This pathway is active only when cells experience hypoxia or anoxia, and it may be involved in N2O formation in plants and soil-dwelling animals, as reported previously by several studies. NO can be toxic at a high concentration. Therefore, the reduction of NO to N2O in the mitochondria might protect the integrity of the mitochondria, and thus, protect the cell from the toxicity of NO accumulation under hypoxia and anoxia. As NO3 is a major source of nitrogen for plants and all plants may experience hypoxic and anoxic conditions owing to soil environmental factors, a significant global biogenic source of N2O may be its formation in plants via the proposed pathway.
Collapse
Affiliation(s)
- Arbindra Timilsina
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| | - Chuang Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bikram Pandey
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Mountain Ecological Restoration and Bio-resource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fiston Bizimana
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Arbindra Timilsina, ; Chunsheng Hu,
| |
Collapse
|
89
|
Rapson TD, Christley-Balcomb AM, Jackson CJ, Sutherland TD. Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a tunable silk-protein scaffold. J Inorg Biochem 2019; 204:110960. [PMID: 31865257 DOI: 10.1016/j.jinorgbio.2019.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Fuel cells convert chemical energy into electrical current with the use of an oxidant such as oxygen and have the potential to reduce our reliance on fossil fuels. To overcome the slow kinetics of the oxygen reduction reaction (ORR), platinum is often used as the catalyst. However, the scarcity and expense of platinum limits the wide-spread use of fuel cells. In the search for non-platinum oxygen reduction catalysts, metallomacrocycles have attracted significant attention. While progress has been made in understanding how metallomacrocycle-based molecules can catalyze the ORR, their low stability, remains an on-going challenge. Here we report an immobilization strategy whereby hemin (iron protoporphyrin IX, heme b) is converted into an oxygen reduction catalyst which could be operated for over 96 h, with turnover numbers >107. This represents a 3 orders of magnitude improvement over the best reported iron porphyrin ORR catalyst to date. The basis for this improvement in turnover is specific binding of the heme within a recombinant silk protein, which allows for separation of the porphyrin active sites. Use of the silk protein provides a scaffold that can be engineered to improve selectivity and efficiency. Through rational design of the heme binding site, a > 95% selectivity for a four-electron reduction of oxygen to water was obtained, equal to the selectivity obtained using platinum-based catalysts. This work represents an important advance in the field, demonstrating that metallomacrocycle-based ORR catalysts are viable for use in fuel cells.
Collapse
Affiliation(s)
| | - Alden M Christley-Balcomb
- CSIRO, Black Mountain, Acton, ACT 2601, Australia; Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | | |
Collapse
|
90
|
|
91
|
Kim H, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Cu Binucleating Ligand Supports Heme/O 2 and Fe II-Cu I/O 2 Reactivity Providing High- and Low-Spin Fe III-Peroxo-Cu II Complexes. Inorg Chem 2019; 58:15423-15432. [PMID: 31657921 DOI: 10.1021/acs.inorgchem.9b02521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of this study is in the description of synthetic heme/copper/O2 chemistry employing a heme-containing binucleating ligand which provides a tridentate chelate for copper ion binding. The addition of O2 (-80 °C, tetrahydrofuran (THF) solvent) to the reduced heme compound (PImH)FeII (1), gives the oxy-heme adduct, formally a heme-superoxide complex FeIII-(O2•-) (2) (resonance Raman spectroscopy (rR): νO-O, 1171 cm-1 (Δ18O2, -61 cm-1); νFe-O, 575 cm-1 (Δ18O2, -24 cm-1)). Simple warming of 2 to room temperature regenerates reduced complex 1; this reaction is reversible, as followed by UV-vis spectroscopy. Complex 2 is electron paramagnetic resonance (EPR)-silent and exhibits upfield-shifted pyrrole resonances (δ 9.12 ppm) in 2H NMR spectroscopy, indicative of a six-coordinate low-spin heme. The coordination of the tethered imidazolyl arm to the heme-superoxide complex as an axial base ligand is suggested. We also report the new fully reduced heme-copper complex [(PImH)FeIICuI]+ (3), where the copper ion is bound to the tethered tridentate portion of PImH. This reacts with O2 to give a distinctive low-temperature-stable, high-spin (S = 2, overall) peroxo-bridged complex [(PImH)FeIII-(O22-)-CuII]+ (3a): λmax, 420 (Soret), 545, 565 nm; δpyrr, 93 ppm; νO-O, 799 cm-1 (Δ18O2, -48 cm-1); νFe-O, 524 cm-1 (Δ18O2, -23 cm-1). To 3a, the addition of dicyclohexylimidazole (DCHIm), which serves as a heme axial base, leads to low-spin (S = 0 overall) species complex [(DCHIm)(PImH)FeIII-(O22-)-CuII]+ (3b): λmax, 425 (Soret), 538 nm; δpyrr, 10.2 ppm; νO-O, 817 cm-1 (Δ18O2, -55 cm-1); νFe-O, 610 cm-1 (Δ18O2, -26 cm-1). These investigations into the characterization of the O2-adducts from (PImH)FeII (1) with/without additional copper chelation advance our understanding of the dioxygen reactivity of heme-only and heme/Cu-ligand heterobinuclear system, thus potentially relevant to O2 reduction in heme-copper oxidases or fuel-cell chemistry.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
92
|
Ghatak A, Bhakta S, Bhunia S, Dey A. Influence of the distal guanidine group on the rate and selectivity of O 2 reduction by iron porphyrin. Chem Sci 2019; 10:9692-9698. [PMID: 32055338 PMCID: PMC6993607 DOI: 10.1039/c9sc02711d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
The O2 reduction reaction (ORR) catalysed by iron porphyrins with covalently attached pendant guanidine groups is reported. The results show a clear enhancement in the rate and selectivity for the 4e-/4H+ ORR. In situ resonance Raman investigations show that the rate determining step (rds) is O2 binding to ferrous porphyrins in contrast to the case of mononuclear iron porphyrins and heme/Cu analogues where the O-O bond cleavage of a heme peroxide is the rds. The selectivity is further enhanced when an axial imidazole ligand is introduced. Thus, the combination of the axial imidazole ligand and pendant guanidine ligand, analogous to the active site of peroxidases, is determined to be very effective in enabling a facile and selective 4e-/4H+ ORR.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Snehadri Bhakta
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Sarmistha Bhunia
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| |
Collapse
|
93
|
Liu Y, Zhou G, Zhang Z, Lei H, Yao Z, Li J, Lin J, Cao R. Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(ii) porphyrin-porphyrin dyad. Chem Sci 2019; 11:87-96. [PMID: 32110360 PMCID: PMC7012046 DOI: 10.1039/c9sc05041h] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 11/21/2022] Open
Abstract
Asymmetrical Pacman dinuclear Co bisporphyrin shows significantly improved activity and selectivity for catalytic reduction of O2 to water in comparison with corresponding mononuclear Co porphyrins and symmetrical dinuclear Co bisporphyrins.
Pacman dinuclear CoII triphenylporphyrin-tri(pentafluorophenyl)porphyrin 1 and dinuclear CoII bis-tri(pentafluorophenyl)porphyrin 2, anchored at the two meso-positions of a benzene linker, are synthesized and examined as electrocatalysts for the oxygen reduction reaction (ORR). Both dinuclear Co bisporphyrins are more efficient and selective than corresponding mononuclear CoII tetra(pentafluorophenyl)porphyrin 3 and CoII tetraphenylporphyrin 4 for the four-electron electrocatalytic reduction of O2 to water. Significantly, although the ORR selectivities of the two dinuclear Co bisporphyrins are similar to each other, 1 outperforms 2, in terms of larger catalytic ORR currents and lower overpotentials. Electrochemical studies showed different redox behaviors of the two Co sites of 1: the CoIII/CoII reduction of the Co-TPP (TPP = triphenylporphyrin) site is well-behind that of the Co-TPFP (TPFP = tri(pentafluorophenyl)porphyrin) site by 440 mV. This difference indicated their different roles in the ORR: CoII-TPFP is likely the O2 binding and reduction site, while CoIII-TPP, which is generated by the oxidation of CoII-TPP on electrodes, may function as a Lewis acid to assist the O2 binding and activation. The positively charged CoIII-TPP will have through-space charge interactions with the negatively charged O2-adduct unit, which will reduce the activation energy barrier for the ORR. This effect of Co-TPP closely resembles that of the CuB site of metalloenzyme cytochrome c oxidase (CcO), which catalyzes the biological reduction of O2. This work represents a rare example of asymmetrical dinuclear metal catalysts, which can catalyze the 4e reduction of O2 with high selectivity and significantly improved activity.
Collapse
Affiliation(s)
- Yanju Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China . .,Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Guojun Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| | - Zongyao Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| | - Zhen Yao
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Science , Beijing 101408 , China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Science , Beijing 101408 , China
| | - Jun Lin
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China .
| |
Collapse
|
94
|
Nehrkorn J, Bonke SA, Aliabadi A, Schwalbe M, Schnegg A. Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorg Chem 2019; 58:14228-14237. [PMID: 31599581 DOI: 10.1021/acs.inorgchem.9b02348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferric hangman porphyrins are bioinspired models for haem hydroperoxidase enzymes featuring an acid/base group in close vicinity to the metal center, which results in improved catalytic activity for reactions requiring O-O bond activation. These functional biomimics are examined herein with a combination of EPR techniques to determine the effects of the hanging group on the electronics of the ferric center. These results are compared to those for ferric octaethylporphyrin chloride [Fe(OEP)Cl], tetramesitylporphyrin chloride [Fe(TMP)Cl], and the pentafluorophenyl derivative [Fe(TPFPP)Cl], which were also examined herein to study the electronic effects of various substituents. Frequency-domain Fourier-transform THz-EPR combined with field domain EPR in a broad frequency range from 9.5 to 629 GHz allowed the determination of zero-field splitting parameters, revealing minor rhombicity E/D and D values in a narrow range of 6.24(8) to 6.85(5) cm-1. Thus, the hangman porphyrins display D values in the expected range for ferric porphyrin chlorides, though D appears to be correlated with the Fe-Cl bond length. Extrapolating this trend to the ferric hangman porphyrin chlorides, for which no crystal structure has been reported, indicates a slightly elongated Fe-Cl bond length compared to the non-hangman equivalent.
Collapse
Affiliation(s)
- Joscha Nehrkorn
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut für Anorganische und Angewandte Chemie , Universität Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Shannon A Bonke
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Azar Aliabadi
- Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| | - Matthias Schwalbe
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Straße 2 , 12489 Berlin , Germany
| | - Alexander Schnegg
- EPR Research Group , Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany.,Institut Nanospektroskopie , Helmholtz-Zentrum Berlin für Materialien und Energie , Kekuléstraße 5 , 12489 Berlin , Germany
| |
Collapse
|
95
|
Smits NWG, den Boer D, Wu L, Hofmann JP, Hetterscheid DGH. Elucidation of the Structure of a Thiol Functionalized Cu-tmpa Complex Anchored to Gold via a Self-Assembled Monolayer. Inorg Chem 2019; 58:13007-13019. [PMID: 31549820 PMCID: PMC6784813 DOI: 10.1021/acs.inorgchem.9b01921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The structure of the copper complex
of the 6-((1-butanethiol)oxy)-tris(2-pyridylmethyl)amine ligand (Cu-tmpa-O(CH2)4SH) anchored to a gold surface has been investigated.
To enable covalent attachment of the complex to the gold surface,
a heteromolecular self-assembled monolayer (SAM) of butanethiol and
a thiol-substituted tmpa ligand was used. Subsequent formation of
the immobilized copper complex by cyclic voltammetry in the presence
of Cu(OTf)2 resulted in the formation of the anchored Cu-tmpa-O(CH2)4SH system which, according to scanning electron
microscopy and X-ray diffraction, did not contain any accumulated
copper nanoparticles or crystalline copper material. Electrochemical
investigation of the heterogenized system barely showed any redox
activity and lacked the typical CuII/I redox couple in
contrast to the homogeneous complex in solution. The difference between
the heterogenized system and the homogeneous complex was confirmed
by X-ray photoelectron spectroscopy; the XPS spectrum did not show
any satellite features of a CuII species but instead showed
the presence of a CuI ion in a ∼2:3 ratio to nitrogen
and a ∼2:7 ratio to sulfur. The +I oxidation state of the copper
species was confirmed by the edge position in the X-ray absorption
near-edge structure (XANES) region of the X-ray absorption spectrum.
These results show that upon immobilization of Cu-tmpa-O(CH2)4SH, the resulting structure is not identical to the
homogeneous CuII-tmpa complex. Upon anchoring, a novel
CuI species is formed instead. This illustrates the importance
of a thorough characterization of heterogenized molecular systems
before drawing any conclusions regarding the structure–function
relationships. Both the oxidation state and the structure of the CuII complex of tris(2-pyridylmethyl)amine (Cu-tmpa) change upon
anchoring it to a gold surface via a self-assembled monolayer. It
was shown by XPS and XANES that a CuI species is formed
upon anchoring instead in which each tmpa ligand contains roughly
two to three copper ions.
Collapse
Affiliation(s)
- Nicole W G Smits
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Daan den Boer
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Longfei Wu
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Jan P Hofmann
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
96
|
Physical and electrochemical characterization of a Cu-based oxygen reduction electrocatalyst inside and outside a lipid membrane with controlled proton transfer kinetics. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
97
|
Luo J, Tang H, Tian X, Liao S, Ren J, Zhao W, Qiao X. Glucose-derived carbon supported well-dispersed CrN as competitive oxygen reduction catalysts in acidic medium. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
98
|
Wang YH, Schneider PE, Goldsmith ZK, Mondal B, Hammes-Schiffer S, Stahl SS. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O 2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS CENTRAL SCIENCE 2019; 5:1024-1034. [PMID: 31263762 PMCID: PMC6598176 DOI: 10.1021/acscentsci.9b00194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/11/2023]
Abstract
The selective reduction of O2, typically with the goal of forming H2O, represents a long-standing challenge in the field of catalysis. Macrocyclic transition-metal complexes, and cobalt porphyrins in particular, have been the focus of extensive study as catalysts for this reaction. Here, we show that the mononuclear Co-tetraarylporphyrin complex, Co(porOMe) (porOMe = meso-tetra(4-methoxyphenyl)porphyrin), catalyzes either 2e-/2H+ or 4e-/4H+ reduction of O2 with high selectivity simply by changing the identity of the Brønsted acid in dimethylformamide (DMF). The thermodynamic potentials for O2 reduction to H2O2 or H2O in DMF are determined and exhibit a Nernstian dependence on the acid pK a, while the CoIII/II redox potential is independent of the acid pK a. The reaction product, H2O or H2O2, is defined by the relationship between the thermodynamic potential for O2 reduction to H2O2 and the CoIII/II redox potential: selective H2O2 formation is observed when the CoIII/II potential is below the O2/H2O2 potential, while H2O formation is observed when the CoIII/II potential is above the O2/H2O2 potential. Mechanistic studies reveal that the reactions generating H2O2 and H2O exhibit different rate laws and catalyst resting states, and these differences are manifested as different slopes in linear free energy correlations between the log(rate) versus pK a and log(rate) versus effective overpotential for the reactions. This work shows how scaling relationships may be used to control product selectivity, and it provides a mechanistic basis for the pursuit of molecular catalysts that achieve low overpotential reduction of O2 to H2O.
Collapse
Affiliation(s)
- Yu-Heng Wang
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Patrick E. Schneider
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary K. Goldsmith
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Biswajit Mondal
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Shannon S. Stahl
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
99
|
Li TT, Shan B, Xu W, Meyer TJ. Electrocatalytic CO 2 Reduction with a Ruthenium Catalyst in Solution and on Nanocrystalline TiO 2. CHEMSUSCHEM 2019; 12:2402-2408. [PMID: 31070011 DOI: 10.1002/cssc.201900730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Indexed: 06/09/2023]
Abstract
A RuII complex [Ru(PO3 Et2 -ph-tpy)(6-mbpy)(NCCH3 )]2+ [PO3 Et2 -ph-tpy=diethyl(4-[(2,2':6',2''-terpyridin)-4'-yl]phenyl)phosphonate; 6-mbpy=6-methyl-2,2'-bipyridine] is explored as a molecular catalyst for electrocatalytic CO2 reduction in both a homogeneous solution and, as a phosphonated derivative, on nanocrystalline-TiO2 surfaces. In CH3 CN, the complex acts as a selective electrocatalyst for reduction of CO2 to CO at a low overpotential of 340 mV but with a limited turnover number (TON). An enhancement in reactivity was observed by immobilizing the phosphonated derivative of the catalyst on a nanocrystalline-TiO2 electrode surface, with the catalyst surface protected by a thin overlayer of NiO. The surface-functionalized electrode was characterized by X-ray photoelectron and diffuse reflectance spectroscopies (XPS and DRS). Electrocatalytic reduction of CO2 to CO occurred at -1.65 V versus Fc+/0 with a TON of 237 per catalyst site during 4 h of electrocatalysis. Post-catalysis XPS measurements reveal that the molecular structure of the catalyst is retained on TiO2 after the long-term electrocatalysis.
Collapse
Affiliation(s)
- Ting-Ting Li
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P.R. China
| | - Bing Shan
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Wei Xu
- Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P.R. China
| | - Thomas J Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
100
|
Singh N, Mugesh G. CeVO
4
Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore- 560012 India
- Centre for Nanoscience and EngineeringIndian Institute of Science Bangalore- 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore- 560012 India
| |
Collapse
|