51
|
Wang Y, Ma XM, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q, Chen C. On the topological surface states of the intrinsic magnetic topological insulator Mn-Bi-Te family. Natl Sci Rev 2024; 11:nwad066. [PMID: 38213518 PMCID: PMC10776371 DOI: 10.1093/nsr/nwad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2024] Open
Abstract
We review recent progress in the electronic structure study of intrinsic magnetic topological insulators (MnBi2Te4) · (Bi2Te3)n ([Formula: see text]) family. Specifically, we focus on the ubiquitously (nearly) gapless behavior of the topological Dirac surface state observed by photoemission spectroscopy, even though a large Dirac gap is expected because of surface ferromagnetic order. The dichotomy between experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in this frontier. We discuss various proposals accounting for the lack of magnetic effect on the topological Dirac surface state, which are mainly categorized into two pictures, magnetic reconfiguration and topological surface state redistribution. Band engineering towards opening a magnetic gap of topological surface states provides great opportunities to realize quantized topological transport and axion electrodynamics at higher temperatures.
Collapse
Affiliation(s)
- Yuan Wang
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Ming Ma
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhanyang Hao
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yongqing Cai
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Hongtao Rong
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Fayuan Zhang
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Weizhao Chen
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chengcheng Zhang
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Junhao Lin
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yue Zhao
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chaoyu Chen
- Shenzhen Institute for Quantum Science and Engineering (SIQSE) and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
52
|
Xu R, Xu L, Liu Z, Yang L, Chen Y. ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi 2+2nTe 4+3n family. Natl Sci Rev 2024; 11:nwad313. [PMID: 38327664 PMCID: PMC10849349 DOI: 10.1093/nsr/nwad313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 02/09/2024] Open
Abstract
In the past 5 years, there has been significant research interest in the intrinsic magnetic topological insulator family compounds MnBi2+2nTe4+3n (where n = 0, 1, 2 …). In particular, exfoliated thin films of MnBi2Te4 have led to numerous experimental breakthroughs, such as the quantum anomalous Hall effect, axion insulator phase and high-Chern number quantum Hall effect without Landau levels. However, despite extensive efforts, the energy gap of the topological surface states due to exchange magnetic coupling, which is a key feature of the characteristic band structure of the system, remains experimentally elusive. The electronic structure measured by using angle-resolved photoemission (ARPES) shows significant deviation from ab initio prediction and scanning tunneling spectroscopy measurements, making it challenging to understand the transport results based on the electronic structure. This paper reviews the measurements of the band structure of MnBi2+2nTe4+3n magnetic topological insulators using ARPES, focusing on the evolution of their electronic structures with temperature, surface and bulk doping and film thickness. The aim of the review is to construct a unified picture of the electronic structure of MnBi2+2nTe4+3n compounds and explore possible control of their topological properties.
Collapse
Affiliation(s)
- Runzhe Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Lixuan Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China
| | - Lexian Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Yulin Chen
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
53
|
Li J, Cheng X, Zhang H. Ideal two-dimensional quantum spin Hall insulators MgA 2Te 4 (A = Ga, In) with Rashba spin splitting and tunable properties. Phys Chem Chem Phys 2024; 26:3815-3822. [PMID: 38168671 DOI: 10.1039/d3cp04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For decades, topological insulators have played a pivotal role in fundamental condensed-matter physics owing to their distinctive edge states and electronic properties. Here, based on in-depth first-principles calculations, we investigate the MgA2Te4 (A = Ga, In) structures belonging to the MA2Z4 2D material family. Among them, the topological insulator MgGaInTe4 exhibits band inversion and a sizeable bandgap of up to 60.8 meV which satisfies the requirement for room-temperature realization. Under the spin-orbit coupling effect, MgGaInTe4 with inversion asymmetry undergoes Rashba spin splitting. The Rashba-like and Dirac-type edge states emerge from different terminals along (010) for MgGaInTe4. The external vertical electric field is verified to modulate the inverted bandgap and topological state of MgGaInTe4 by converting a nontrivial state to a trivial state and MgIn2Te4 with the original trivial state to a nontrivial one. Accordingly, MgGaInTe4 and MgIn2Te4 have significant potential for application in topological quantum field-effect transistors. Our research identifies that the MgA2Te4 (A = Ga, In) structures have huge potential to be candidate 2D materials for spintronics and topological quantum devices.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Physics, Sichuan University, Chengdu 610065, China.
- Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065, China
| | - Xinlu Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu 610065, China.
- Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065, China
| |
Collapse
|
54
|
Liu W, Luo C, Peng X. Phase transitions, conductance fluctuations and distributions in disordered topological insulator stanene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165401. [PMID: 38190736 DOI: 10.1088/1361-648x/ad1bf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
It is essential to understand to what extent the protected edge states of topological insulators (TIs) can survive against the degradation of the ubiquitous disorders in realistic devices. From a different perspective, disorders can also help to enrich the applications by modulation of the phases in TIs. In this work, the phases and phase transitions in stanene, a two-dimensional TI, have been investigated via the statistical approach based on the random matrix theory. Using a tight binding model with Aderson disorder term and the Landauer-Büttiker formalism, we calculated the conductance of realistic stanene ribbons of tens of nanometers long with random disorders. The calculated phase diagram presents TI in the gap, metal in high energy and ordinary insulator in large disorder region. Increasing the width of the ribbon can significantly enhance the robustness of TI phase against disorders. Due to different underlying symmetries, the metallic phase can be further categorized into unitary and orthogonal classes according to the calculated universal conductance fluctuations. The local density of states is calculated, showing characteristic patterns, which can facilitate the experimental identification of the phases. It is found that different phases have distinguishing statistical distribution of conductance. Whereas at the phase boundary the distribution exhibits intermediate features to show where the phase transition occurs. To reveal the phase evolution process, we further studied the effects of the disorders on respective transmission channels. It is found that when phase transition takes place, the major transmission channels of the old phase are fading and the new channels of the new phase are emerging.
Collapse
Affiliation(s)
- Wenchao Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China
| | - Chaobo Luo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China
| | - Xiangyang Peng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China
| |
Collapse
|
55
|
Lin KS, Palumbo G, Guo Z, Hwang Y, Blackburn J, Shoemaker DP, Mahmood F, Wang Z, Fiete GA, Wieder BJ, Bradlyn B. Spin-resolved topology and partial axion angles in three-dimensional insulators. Nat Commun 2024; 15:550. [PMID: 38228584 PMCID: PMC10791639 DOI: 10.1038/s41467-024-44762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ([Formula: see text]-) invariant (helical) 3D TCIs-termed higher-order TCIs (HOTIs)-the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), "spin-Weyl" semimetals, and [Formula: see text]-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that β-MoTe2 realizes a spin-Weyl state and that α-BiBr hosts both 3D QSHI and T-DAXI regimes.
Collapse
Affiliation(s)
- Kuan-Sen Lin
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106, USA.
| | - Giandomenico Palumbo
- School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin, 4, Ireland
| | - Zhaopeng Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yoonseok Hwang
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jeremy Blackburn
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Daniel P Shoemaker
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Fahad Mahmood
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Gregory A Fiete
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Benjamin J Wieder
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191, Gif-sur-Yvette, France.
| | - Barry Bradlyn
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
56
|
Chen P, Wang J, Wang G, Ye B, Zhou L, Wang L, Wang J, Zhang W, Chen W, Mei J, He H. Asymmetric edge supercurrents in MoTe 2 Josephson junctions. NANOSCALE ADVANCES 2024; 6:690-696. [PMID: 38235086 PMCID: PMC10791112 DOI: 10.1039/d3na00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
To investigate the higher order topology in MoTe2, the supercurrent interference phenomena in Nb/MoTe2/Nb planar Josephson junctions have been systematically studied. By analyzing the obtained interference pattern of the critical supercurrents and performing a comparative study of the edge-touched and untouched junctions, it's found that the supercurrent is dominated by the edges, rather than the bulk or surfaces of MoTe2. An asymmetric Josephson effect with a field-tunable sign is also observed, indicating the nontrivial origin of the edge states. These results not only provide initial evidence for the hinge states in the higher order topological insulator MoTe2, but also demonstrate the potential applications of MoTe2-based Josephson junctions in rectifying the supercurrent.
Collapse
Affiliation(s)
- Pingbo Chen
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Jinhua Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Gongqi Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Bicong Ye
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Liang Zhou
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiannong Wang
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Wenqing Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Weiqiang Chen
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiawei Mei
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Hongtao He
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
57
|
Liu J, Zhou Y, Yepez Rodriguez S, Delmont MA, Welser RA, Ho T, Sirica N, McClure K, Vilmercati P, Ziller JW, Mannella N, Sanchez-Yamagishi JD, Pettes MT, Wu R, Jauregui LA. Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe 5. Nat Commun 2024; 15:332. [PMID: 38184667 PMCID: PMC10771548 DOI: 10.1038/s41467-023-44547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024] Open
Abstract
The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5 samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5 and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5 as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures.
Collapse
Affiliation(s)
- Jinyu Liu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Yinong Zhou
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | | | - Matthew A Delmont
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
| | - Robert A Welser
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Triet Ho
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
| | - Nicholas Sirica
- Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Kaleb McClure
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Paolo Vilmercati
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Norman Mannella
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Michael T Pettes
- Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Luis A Jauregui
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
58
|
Shin D, Rubio A, Tang P. Light-Induced Ideal Weyl Semimetal in HgTe via Nonlinear Phononics. PHYSICAL REVIEW LETTERS 2024; 132:016603. [PMID: 38242673 DOI: 10.1103/physrevlett.132.016603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Interactions between light and matter allow the realization of out-of-equilibrium states in quantum solids. In particular, nonlinear phononics is one of the most efficient approaches to realizing the stationary electronic state in nonequilibrium. Herein, by an extended ab initio molecular dynamics method, we identify that long-lived light-driven quasistationary geometry could stabilize the topological nature in the material family of HgTe compounds. We show that coherent excitation of the infrared-active phonon mode results in a distortion of the atomic geometry with a lifetime of several picoseconds. We show that four Weyl points are located exactly at the Fermi level in this nonequilibrium geometry, making it an ideal long-lived metastable Weyl semimetal. We propose that such a metastable topological phase can be identified by photoelectron spectroscopy of the Fermi arc surface states or ultrafast pump-probe transport measurements of the nonlinear Hall effect.
Collapse
Affiliation(s)
- Dongbin Shin
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU-20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
| | - Peizhe Tang
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, 22761 Hamburg, Germany
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
59
|
Stephanovich VA, Kirichenko EV, Engel G, Sinner A. Spin-orbit-coupled fractional oscillators and trapped Bose-Einstein condensates. Phys Rev E 2024; 109:014222. [PMID: 38366503 DOI: 10.1103/physreve.109.014222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
We study the ensemble of pseudo-spin 1/2 ultracold bosons, performing Lévy flights, confined in a parabolic potential. The (pseudo-) spin-orbit coupling (SOC) is additionally imposed on these particles. We consider the structure and dynamics of macroscopic pseudospin qubits based on Bose-Einstein condensates, obtained from the above "fractional" bosons. Under "fractional" we understand the substitution of the ordinary second derivative (kinetic energy term) in the Gross-Pitaevskii equation by a so-called fractional Laplacian, characterized by the Lévy index μ. We show that the joint action of interparticle interaction, SOC, and Zeeman splitting in a synthetic magnetic field makes the dynamics of corresponding qubit highly nontrivial with evident chaotic features at both strong interactions and Lévy indices μ→1 when the Lévy trajectories of bosons with long jumps dominated over those derived from ordinary Gaussian distribution, corresponding to μ=2. Using analytical and numerical arguments, we discuss the possibilities to control the above qubit using the synergy of SOC, interaction strength, and "fractionality," characterized by the Lévy index μ.
Collapse
Affiliation(s)
- V A Stephanovich
- Institute of Physics, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - E V Kirichenko
- Institute of Physics, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - G Engel
- Institute of Physics, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - A Sinner
- Institute of Physics, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
60
|
Jin G, Kim SH, Han HJ. Synthesis and Future Electronic Applications of Topological Nanomaterials. Int J Mol Sci 2023; 25:400. [PMID: 38203574 PMCID: PMC10779379 DOI: 10.3390/ijms25010400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.
Collapse
Affiliation(s)
- Gangtae Jin
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Seo-Hyun Kim
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| | - Hyeuk-Jin Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
- Department of Environment and Energy Engineering, Sungshin Women’s University, Seoul 01133, Republic of Korea;
| |
Collapse
|
61
|
Nandi S, Cohen SZ, Singh D, Poplinger M, Nanikashvili P, Naveh D, Lewi T. Unveiling Local Optical Properties Using Nanoimaging Phase Mapping in High-Index Topological Insulator Bi 2Se 3 Resonant Nanostructures. NANO LETTERS 2023; 23:11501-11509. [PMID: 37890054 DOI: 10.1021/acs.nanolett.3c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Topological insulators are materials characterized by an insulating bulk and high mobility topologically protected surface states, making them promising candidates for future optoelectronic and quantum devices. Although their electronic properties have been extensively studied, their mid-infrared (MIR) properties and prospective photonic capabilities have not been fully uncovered. Here, we use a combination of far-field and near-field nanoscale imaging and spectroscopy to study chemical vapor deposition-grown Bi2Se3 nanobeams (NBs). We extract the MIR optical constants of Bi2Se3, revealing refractive index values as high as n ∼ 6.4, and demonstrate that the NBs support Mie resonances across the MIR. Local near-field reflection phase mapping reveals domains of various phase shifts, providing information on the local optical properties of the NBs. We experimentally measure up to 2π phase-shift across the resonance, in excellent agreement with finite-difference time-domain simulations. This work highlights the potential of Bi2Se3 for quantum circuitry, nonlinear generation, high-Q metaphotonics, and photodetection.
Collapse
Affiliation(s)
- Sukanta Nandi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shany Z Cohen
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Danveer Singh
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Michal Poplinger
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Pilkhaz Nanikashvili
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Doron Naveh
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tomer Lewi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
62
|
Härtl P, Leisegang M, Kügel J, Bode M. Probing Spin-Dependent Ballistic Charge Transport at Single-Nanometer Length Scales. NANO LETTERS 2023; 23:11608-11613. [PMID: 38096400 PMCID: PMC10755752 DOI: 10.1021/acs.nanolett.3c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The coherent transport of charge and spin is a key requirement of future devices for quantum computing and communication. Scattering at defects or impurities may significantly reduce the coherence of quantum-mechanical states, thereby affecting the device functionality. While numerous methods exist to experimentally assess charge transport, the real-space detection of a material's ballistic spin transport properties with nanometer resolution remains a challenge. Here we report on a novel approach that utilizes a combination of spin-polarized scanning tunneling microscopy (SP-STM) and the recently introduced molecular nanoprobe (MONA) technique. It relies on the local injection of spin-polarized charge carriers from a magnetic STM tip and their detection by a single surface-deposited phthalocyanine molecule via reversible electron-induced tautomerization events. Based on the particular electronic structure of the Rashba alloy BiAg2, which is governed by a spin-momentum-locked surface state, we prove that the current direction inverses upon tip magnetization reversal.
Collapse
Affiliation(s)
- Patrick Härtl
- Physikalisches
Institut, Experimentelle Physik II, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Leisegang
- Physikalisches
Institut, Experimentelle Physik II, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jens Kügel
- Physikalisches
Institut, Experimentelle Physik II, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Bode
- Physikalisches
Institut, Experimentelle Physik II, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
- Wilhelm
Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
63
|
Zhao W, Yang M, Xu R, Du X, Li Y, Zhai K, Peng C, Pei D, Gao H, Li Y, Xu L, Han J, Huang Y, Liu Z, Yao Y, Zhuang J, Du Y, Zhou J, Chen Y, Yang L. Topological electronic structure and spin texture of quasi-one-dimensional higher-order topological insulator Bi 4Br 4. Nat Commun 2023; 14:8089. [PMID: 38062024 PMCID: PMC10703900 DOI: 10.1038/s41467-023-43882-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/22/2023] [Indexed: 03/25/2024] Open
Abstract
The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements with submicron spatial and spin resolution, we systematically investigate the electronic structure and spin texture of quasi-one-dimensional (1D) HOTI candidate Bi4Br4. In contrast to the bulk-state-dominant spectra on the (001) surface, we observe gapped surface states on the (100) surface, whose dispersion and spin-polarization agree well with our ab-initio calculations. Moreover, we reveal in-gap states connecting the surface valence and conduction bands, which is a signature of the hinge states inside the (100) surface gap. Our findings provide compelling evidence for the HOTI phase of Bi4Br4. The identification of the higher-order topological phase promises applications based on 1D spin-momentum locked current in electronic and spintronic devices.
Collapse
Affiliation(s)
- Wenxuan Zhao
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Ming Yang
- School of Physics, Beihang University, Beijing, 100191, China
- Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
| | - Runzhe Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Xian Du
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yidian Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Kaiyi Zhai
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Cheng Peng
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Ding Pei
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Han Gao
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai, 201210, China
| | - Yiwei Li
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai, 201210, China
| | - Lixuan Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314001, Zhejiang province, China
| | - Yuan Huang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314001, Zhejiang province, China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai, 201210, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 200031, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314001, Zhejiang province, China
| | - Jincheng Zhuang
- School of Physics, Beihang University, Beijing, 100191, China
- Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
| | - Yi Du
- School of Physics, Beihang University, Beijing, 100191, China.
- Centre of Quantum and Matter Sciences, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China.
| | - Jinjian Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Chen
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
- School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai, 201210, China.
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 200031, China.
| | - Lexian Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
- Frontier Science Center for Quantum Information, Beijing, 100084, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
| |
Collapse
|
64
|
Ghosh AK, Nag T, Saha A. Generation of higher-order topological insulators using periodic driving. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:093001. [PMID: 37983922 DOI: 10.1088/1361-648x/ad0e2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Topological insulators (TIs) are a new class of materials that resemble ordinary band insulators in terms of a bulk band gap but exhibit protected metallic states on their boundaries. In this modern direction, higher-order TIs (HOTIs) are a new class of TIs in dimensionsd > 1. These HOTIs possess(d-1)-dimensional boundaries that, unlike those of conventional TIs, do not conduct via gapless states but are themselves TIs. Precisely, annth orderd-dimensional higher-order TI is characterized by the presence of boundary modes that reside on itsdc=(d-n)-dimensional boundary. For instance, a three-dimensional second (third) order TI hosts gapless (localized) modes on the hinges (corners), characterized bydc=1(0). Similarly, a second-order TI (SOTI) in two dimensions only has localized corner states (dc=0). These higher-order phases are protected by various crystalline as well as discrete symmetries. The non-equilibrium tunability of the topological phase has been a major academic challenge where periodic Floquet drive provides us golden opportunity to overcome that barrier. Here, we discuss different periodic driving protocols to generate Floquet HOTIs while starting from a non-topological or first-order topological phase. Furthermore, we emphasize that one can generate the dynamical anomalousπ-modes along with the concomitant 0-modes. The former can be realized only in a dynamical setup. We exemplify the Floquet higher-order topological modes in two and three dimensions in a systematic way. Especially, in two dimensions, we demonstrate a Floquet SOTI (FSOTI) hosting 0- andπcorner modes. Whereas a three-dimensional FSOTI and Floquet third-order TI manifest one- and zero-dimensional hinge and corner modes, respectively.
Collapse
Affiliation(s)
- Arnob Kumar Ghosh
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Tanay Nag
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
- Department of Physics, BITS Pilani-Hyderabad Campus, Telangana 500078, India
| | - Arijit Saha
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
65
|
Saha S, Mawrie A. Quantum anomalous Hall phase and effective in-plane Lande- gfactor in an inverted quantum well. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:085302. [PMID: 37931295 DOI: 10.1088/1361-648x/ad0a0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
A suitable magnetic doped InAs/GaSb or HgTe/CdTe quantum well (QW) shows the coexistence of the quantum spin Hall and quantum anomalous Hall (QAH) phases. We study the topological transitions between these two topological states and confirm the possibility of the QAH phase through the calculations of quantum Hall conductance. The Hall plateau occurs ate2/hrather than2e2/hat such a doping state indicating a QAH phase. Also, the latest experiment reported a robust quantized Hall conductance that persists in an in-plane magnetic field as strong as 12 Tesla. Based on the results of the cited experiment, we present here a precise calculation of the effective in-plane Lande-gfactor. The paper predicts a certain range of controllable parameters in an inverted QW for enabling a dissipationless charge transport needed for spintronics application.
Collapse
Affiliation(s)
- Sushmita Saha
- Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Alestin Mawrie
- Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
66
|
Szary MJ. Rashba effect: a chemical physicist's approach. Phys Chem Chem Phys 2023; 25:30099-30115. [PMID: 37920992 DOI: 10.1039/d3cp04242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the mechanisms underlying the emergence of giant spin splitting (GSS) is fundamental in the pursuit of more robust strategies for designing materials with desired spin splitting. This drive for material innovation continues to captivate a burgeoning community of early-career researchers with backgrounds in chemistry and material science. However, new to the field, they are often equipped only with the insight provided by the original Bychkov-Rashba model. Furthermore, daunted by the tight-binding perspective on the non-vanishing orbital angular momentum (OAM), they struggle to accurately account for the atomic spin-orbit interaction (SOI) in the formation of GSS. To address these challenges and equip young chemists with better-suited tools, this review aims to provide a more intuitive perspective on atomic interactions (orbital hybridization), structure symmetry, and atomic SOI in the formation of GSS. In pursuit of this goal, the review explores the Bychkov-Rashba model, its advantages, and limitations. Subsequently, it introduces the orbital framework, wherein GSS is modulated by atomic SOI and the interplay of OAM with the surface electrostatic field. Given the explicit dependence of both these factors on OAM, the review examines why OAM is typically quenched in crystal structures and how chemical bonds involving different orbital types can lead to its non-zero values in the presence of inversion symmetry breaking. Finally, with this chemistry-focused perspective, the review examines the rise of GSS in selected examples.
Collapse
Affiliation(s)
- Maciej J Szary
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland.
| |
Collapse
|
67
|
Ho DQ, Hu R, To DQ, Bryant GW, Janotti A. Emerging Nontrivial Topology in Ultrathin Films of Rare-Earth Pnictides. ACS NANO 2023; 17:20991-20998. [PMID: 37870504 DOI: 10.1021/acsnano.3c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Thin films of rare-earth monopnictide (RE-V) semimetals are expected to turn into semiconductors due to quantum confinement effects (QCE), lifting the overlap between electron pockets at Brillouin zone edges (X) and hole pockets at the zone center (Γ). Instead, using LaSb as an example, we find the emergence of the quantum spin Hall (QSH) insulator phase in (001)-oriented films as the thickness is reduced to 7, 5, or 3 monolayers (MLs). This is attributed to a strong QCE on the in-plane electron pockets and the lack of quantum confinement on the out-of-plane pocket projected onto the zone center, resulting in a band inversion. Spin-orbit coupling (SOC) opens a sizable nontrivial gap in the band structure of ultrathin films. Such effect is anticipated to be general in rare-earth monopnictides and may lead to interesting phenomena when coupled with the 4f magnetic moments present in other members of this family of materials.
Collapse
Affiliation(s)
- Dai Q Ho
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 590000, Vietnam
| | - Ruiqi Hu
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - D Quang To
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Garnett W Bryant
- Nanoscale Device Characterization Division, Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, United States
- University of Maryland, College Park, Maryland 20742, United States
| | - Anderson Janotti
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
68
|
Jain M, Amin MA, Pu H. Integrator for general spin-s Gross-Pitaevskii systems. Phys Rev E 2023; 108:055305. [PMID: 38115448 DOI: 10.1103/physreve.108.055305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
We provide an algorithm, i-SPin 2, for evolving general spin-s Gross-Pitaevskii or nonlinear Schrödinger systems carrying a variety of interactions, where the 2s+1 components of the "spinor" field represent the different spin-multiplicity states. We consider many nonrelativistic interactions up to quartic order in the Schrödinger field (both short and long range, and spin-dependent and spin-independent interactions), including explicit spin-orbit couplings. The algorithm allows for spatially varying external and/or self-generated vector potentials that couple to the spin density of the field. Our work can be used for scenarios ranging from laboratory systems such as spinor Bose-Einstein condensates (BECs), to cosmological or astrophysical systems such as self-interacting bosonic dark matter. As examples, we provide results for two different setups of spin-1 BECs that employ a varying magnetic field and spin-orbit coupling, respectively, and also collisions of spin-1 solitons in dark matter. Our symplectic algorithm is second-order accurate in time, and is extensible to the known higher-order-accurate methods.
Collapse
Affiliation(s)
- Mudit Jain
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Mustafa A Amin
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Han Pu
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
69
|
Chen A, Luo X. First-principles investigation of possible room-temperature topological insulators in monolayers. RSC Adv 2023; 13:31375-31385. [PMID: 37901273 PMCID: PMC10603385 DOI: 10.1039/d3ra05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
A Quantum Spin Hall (QSH) insulator with a large bulk band gap and tunable topological properties is crucial for both fundamental research and practical application. Chemical function-alization has been proposed as an effective route to realize the QSH effect. Using the ABINIT package, we have investigated the properties of (1) TlP, the functionalized monolayers TlPX2 (X = F, Cl, Br, I); (2) TlAs, the functionalized monolayers TlAsX2 (X = F, Cl, Br, I), and (3) GaGeTe, InGeTe, and InSnTe systems. The topological nature is verified by the calculation of the Z2 topo-logical invariant. We discovered TlPF2, TlPCl2, TlPBr2, TlPI2, TlAs, TlAsF2, TlAsCl2, TlAsBr2, and TlAsI2 were promising 2D TIs with bulk band gaps as large as 0.21 eV. Each monolayer was suitable for room-temperature application, and show great potential for their future applications in quantum computers, nanoelectronics, and spintronics.
Collapse
Affiliation(s)
- Alina Chen
- National Graphene Research and Development Center Springfield Virginia 22151 USA
| | - Xuan Luo
- National Graphene Research and Development Center Springfield Virginia 22151 USA
| |
Collapse
|
70
|
Kim J, Kim D, Kim DE, Chacón A. Circular dichroism in Floquet Chern insulator via high-order harmonics spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:035701. [PMID: 37860915 DOI: 10.1088/1361-648x/ad0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
High-order harmonics (HOHs) spectroscopy is attracting the attention of the condensed matter community, mostly because the HOHs spectrum encode the material property. Topological materials are of interest for both basic research and advanced technologies because of their robust properties against dissipation and perturbations. Floquet engineering technique have been demonstrated to be a unique tool to manipulate topological phase. In this paper, we apply HOH spectroscopy to characterize the Floquet state via the circular dichroism (CD). We find that the CD of the co-rotating harmonics is sensitive to Floquet topological states.
Collapse
Affiliation(s)
- Jeail Kim
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, 77, Pohang 37673, Republic of Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang 37673, Republic of Korea
| | - Dasol Kim
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, 77, Pohang 37673, Republic of Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang 37673, Republic of Korea
| | - Dong Eon Kim
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, 77, Pohang 37673, Republic of Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang 37673, Republic of Korea
| | - Alexis Chacón
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, 77, Pohang 37673, Republic of Korea
- Max Planck POSTECH/KOREA Research Initiative, Pohang 37673, Republic of Korea
| |
Collapse
|
71
|
Kozuka Y, Sasaki TT, Tadano T, Fujioka J. Epitaxy and transport properties of alkali-earth palladate thin films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2265431. [PMID: 37867576 PMCID: PMC10586081 DOI: 10.1080/14686996.2023.2265431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Topological insulators and semimetals are an interesting class of materials for new electronic and optical applications owing to their characteristic electromagnetic responses originating from the spin-orbit coupled band structures. However, topological electronic structures are rare in oxide materials despite their chemical stability being preferable for applications. In this study, given the theoretical prediction of Dirac bands in CaPd3O4, we investigate the fabrication and transport properties of SrPd3O4 and CaPd3O4 thin films as candidates of oxide Dirac semimetals. We have found that these materials are epitaxially grown on MgO (100) substrate under limited growth conditions by pulsed laser deposition. The transport properties show a weak temperature dependence, suggestive of narrow-gap properties, although unintentionally doped holes hinder us from revealing the presence of the Dirac band. Our study establishes the basic thermodynamics of thin-film fabrication of these materials and will lead to interesting properties characteristic of topological band structure by modulating the electronic structure by, for example, chemical substitutions or pressure.
Collapse
Affiliation(s)
- Yusuke Kozuka
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Taisuke T. Sasaki
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Terumasa Tadano
- Research Center for Magnetic and Spintronic Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Jun Fujioka
- Department of Material Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
72
|
Leng P, Qian Y, Cao X, Joseph NB, Zhang Y, Banerjee A, Li Z, Liu F, Jia Z, Ai L, Zhang Y, Xie X, Guo S, Xi C, Pi L, Zhang J, Narayan A, Xiu F. Nondegenerate Integer Quantum Hall Effect from Topological Surface States in Ag 2Te Nanoplates. NANO LETTERS 2023; 23:9026-9033. [PMID: 37767914 DOI: 10.1021/acs.nanolett.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The quantum Hall effect is one of the exclusive properties displayed by Dirac Fermions in topological insulators, which propagates along the chiral edge state and gives rise to quantized electron transport. However, the quantum Hall effect formed by the nondegenerate Dirac surface states has been elusive so far. Here, we demonstrate the nondegenerate integer quantum Hall effect from the topological surface states in three-dimensional (3D) topological insulator β-Ag2Te nanostructures. Surface-state dominant conductance renders quantum Hall conductance plateaus with a step of e2/h, along with typical thermopower behaviors of two-dimensional (2D) massless Dirac electrons. The 2D nature of the topological surface states is proven by the electrical and thermal transport responses under tilted magnetic fields. Moreover, the degeneracy of the surface states is removed by structure inversion asymmetry (SIA). The evidenced SIA-induced nondegenerate integer quantum Hall effect in low-symmetry β-Ag2Te has implications for both fundamental study and the realization of topological magneto-electric effects.
Collapse
Affiliation(s)
- Pengliang Leng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Yingcai Qian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiangyu Cao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Nesta Benno Joseph
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yuda Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Ayan Banerjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Zihan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Fengshuo Liu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Zehao Jia
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Linfeng Ai
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Yong Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaoyi Xie
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Shengbing Guo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Pi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinglei Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Faxian Xiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, 41st Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
73
|
Wu S, Fei Z, Sun Z, Yi Y, Xia W, Yan D, Guo Y, Shi Y, Yan J, Cobden DH, Liu WT, Xu X, Wu S. Extrinsic Nonlinear Kerr Rotation in Topological Materials under a Magnetic Field. ACS NANO 2023; 17:18905-18913. [PMID: 37767802 DOI: 10.1021/acsnano.3c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe2, monolayer WSe2, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with 3-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or 2-fold rotational symmetry, the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Zaiyao Fei
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Zeyuan Sun
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yangfan Yi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Wei Xia
- School of Physical Science and Technology, and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Dayu Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanfeng Guo
- School of Physical Science and Technology, and ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Youguo Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David H Cobden
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Wei-Tao Liu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shiwei Wu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
- Institute for Nanoelectronic Devices and Quantum Computing, and Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
74
|
Xue X, Huang F, Hu G. Spin polarization in quantum point contact based on wurtzite topological quantum well. Phys Chem Chem Phys 2023; 25:26164-26171. [PMID: 37740355 DOI: 10.1039/d3cp02747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Manipulating spin polarization in wide-gap wurtzite semiconductors is crucial for the development of high-temperature spintronics applications. A topological insulator revealed recently in wurtzite quantum wells (QWs) provides a platform to mediate spin-polarized transport through the polarization field-driven topological edges and large Rashba spin-orbit coupling (SOC). Here, we propose a spin-polarized device in a quantum point contact (QPC) structure based on ZnO/CdO wurtzite topological QWs. The results show that the QPC width can sufficiently control the lateral spin-orbit coupling (SOC) as well as the band gap of the edge states through the quantum size effect. As a result, the spin-polarized conductance exhibits oscillation due to the spin precession, which can be controlled by adjusting the voltage imposed on the split gate. The QPC-induced large spin splitting is highly nonlinear and becomes strong close to the gap. The spin splitting of the edge states will be suppressed for QPC widths greater than 50 nm, and thus lead to an extremely long spin precession length. This QPC width-dependent lateral SOC effect provides an emerging electrical approach to manipulate spin-polarized electron transport in topological wurtzite systems.
Collapse
Affiliation(s)
- Xin Xue
- Department of Physics, Lvliang University, Lvliang 03300, China
| | - Fobao Huang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Gongwei Hu
- Hubei Engineering Research Center of Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
75
|
Qiu G, Yang HY, Chong SK, Cheng Y, Tai L, Wang KL. Manipulating Topological Phases in Magnetic Topological Insulators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2655. [PMID: 37836296 PMCID: PMC10574534 DOI: 10.3390/nano13192655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Magnetic topological insulators (MTIs) are a group of materials that feature topological band structures with concurrent magnetism, which can offer new opportunities for technological advancements in various applications, such as spintronics and quantum computing. The combination of topology and magnetism introduces a rich spectrum of topological phases in MTIs, which can be controllably manipulated by tuning material parameters such as doping profiles, interfacial proximity effect, or external conditions such as pressure and electric field. In this paper, we first review the mainstream MTI material platforms where the quantum anomalous Hall effect can be achieved, along with other exotic topological phases in MTIs. We then focus on highlighting recent developments in modulating topological properties in MTI with finite-size limit, pressure, electric field, and magnetic proximity effect. The manipulation of topological phases in MTIs provides an exciting avenue for advancing both fundamental research and practical applications. As this field continues to develop, further investigations into the interplay between topology and magnetism in MTIs will undoubtedly pave the way for innovative breakthroughs in the fundamental understanding of topological physics as well as practical applications.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hung-Yu Yang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Su Kong Chong
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yang Cheng
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Lixuan Tai
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| | - Kang L. Wang
- Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA; (H.-Y.Y.); (S.K.C.); (Y.C.); (L.T.)
| |
Collapse
|
76
|
Zhang Y, Zhang J, Yang W, Zhang H, Jia J. Engineering topological states in a two-dimensional honeycomb lattice. Phys Chem Chem Phys 2023; 25:25398-25407. [PMID: 37705503 DOI: 10.1039/d3cp03507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In this work, we use first-principles calculations to determine the interplay between spin-orbit coupling (SOC) and magnetism which can not only generate a quantum anomalous Hall state but can also result in topologically trivial states although some honeycomb systems host large band gaps. By employing tight-binding model analysis, we have summarized two types of topologically trivial states: one is due to the coexistence of quadratic non-Dirac and linear Dirac bands in the same spin channel that act together destructively in magnetic materials (such as, CrBr3, CrCl3, and VBr3 monolayers); the other one is caused by the destructive coupling effect between two different spin channels due to small magnetic spin splitting in heavy-metal-based materials, such as, BaTe(111)-supported plumbene. Further investigations reveal that topologically nontrivial states can be realized by removing the Dirac band dispersion of the magnetic monolayers for the former case (such as in alkali metal doped CrBr3), while separating the two different spin channels from each other by enhancing the magnetic spin splitting for the latter case (such as in half-iodinated silicene). Thus, our work provides a theoretical guideline to manipulate the topological states in a two-dimensional honeycomb lattice.
Collapse
Affiliation(s)
- Yaling Zhang
- College of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China.
| | - Jingjing Zhang
- College of Physics and Electronic Information, Shanxi Normal University, Taiyuan 030006, China
| | - Wenjia Yang
- College of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China.
| | - Huisheng Zhang
- College of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China.
- College of Physics and Electronic Information, Shanxi Normal University, Taiyuan 030006, China
| | - Jianfeng Jia
- College of Chemistry and Materials Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Taiyuan 030006, China.
| |
Collapse
|
77
|
Deng H, Qu Z, He Y, Huang C, Panoiu NC, Ye F. Topologically enhanced nonlinear optical response of graphene nanoribbon heterojunctions. QUANTUM FRONTIERS 2023; 2:11. [PMID: 37780230 PMCID: PMC10533637 DOI: 10.1007/s44214-023-00036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
We study the nonlinear optical properties of heterojunctions made of graphene nanoribbons (GNRs) consisting of two segments with either the same or different topological properties. By utilizing a quantum mechanical approach that incorporates distant-neighbor interactions, we demonstrate that the presence of topological interface states significantly enhances the second- and third-order nonlinear optical response of GNR heterojunctions that are created by merging two topologically inequivalent GNRs. Specifically, GNR heterojunctions with topological interface states display third-order harmonic hyperpolarizabilities that are more than two orders of magnitude larger than those of their similarly sized counterparts without topological interface states, whereas the second-order harmonic hyperpolarizabilities exhibit a more than ten-fold contrast between heterojunctions with and without topological interface states. Additionally, we find that the topological state at the interface between two topologically distinct GNRs can induce a noticeable red-shift of the quantum plasmon frequency of the heterojunctions. Our results reveal a general and profound connection between the existence of topological states and an enhanced nonlinear optical response of graphene nanostructures and possible other photonic systems.
Collapse
Affiliation(s)
- Hanying Deng
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665 China
| | - Zhihao Qu
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665 China
| | - Yingji He
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665 China
| | - Changming Huang
- Department of Physics, Changzhi University, Shanxi, 046011 China
| | - Nicolae C. Panoiu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE United Kingdom
| | - Fangwei Ye
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
78
|
Mai P, Zhao J, Feldman BE, Phillips PW. 1/4 is the new 1/2 when topology is intertwined with Mottness. Nat Commun 2023; 14:5999. [PMID: 37752137 PMCID: PMC10522641 DOI: 10.1038/s41467-023-41465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
In non-interacting systems, bands from non-trivial topology emerge strictly at half-filling and exhibit either the quantum anomalous Hall or spin Hall effects. Here we show using determinantal quantum Monte Carlo and an exactly solvable strongly interacting model that these topological states now shift to quarter filling. A topological Mott insulator is the underlying cause. The peak in the spin susceptibility is consistent with a possible ferromagnetic state at T = 0. The onset of such magnetism would convert the quantum spin Hall to a quantum anomalous Hall effect. While such a symmetry-broken phase typically is accompanied by a gap, we find that the interaction strength must exceed a critical value for this to occur. Hence, we predict that topology can obtain in a gapless phase but only in the presence of interactions in dispersive bands. These results explain the recent quarter-filled quantum anomalous Hall effects seen in moiré systems.
Collapse
Affiliation(s)
- Peizhi Mai
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jinchao Zhao
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin E Feldman
- Geballe Laboratory of Advanced Materials, Stanford, CA, 94305, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Philip W Phillips
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
79
|
Liu X, Li Z, Bao H, Yang Z. Large-band-gap non-Dirac quantum spin Hall states and strong Rashba effect in functionalized thallene films. Sci Rep 2023; 13:15966. [PMID: 37749298 PMCID: PMC10519994 DOI: 10.1038/s41598-023-43314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The quantum spin Hall state materials have recently attracted much attention owing to their potential applications in the design of spintronic devices. Based on density functional theory calculations and crystal field theory, we study electronic structures and topological properties of functionalized thallene films. Two different hydrogenation styles (Tl2H and Tl2H2) are considered, which can drastically vary the electronic and topological behaviors of the thallene. Due to the C3v symmetry of the two systems, the px and py orbitals at the Γ point have the non-Dirac band degeneracy. With spin-orbit coupling (SOC), topological nontrivial band gaps can be generated, giving rise to non-Dirac quantum spin Hall states in the two thallium hydride films. The nontrivial band gap for the monolayer Tl2H is very large (855 meV) due to the large on-site SOC of Tl px and py orbitals. The band gap in Tl2H2 is, however, small due to the band inversion between the Tl px/y and pz orbitals. It is worth noting that both the Tl2H and Tl2H2 monolayers exhibit strong Rashba spin splitting effects, especially for the monolayer Tl2H2 (αR = 2.52 eVÅ), rationalized well by the breaking of the structural inversion symmetry. The Rashba effect can be tuned sensitively by applying biaxial strain and external electric fields. Our findings provide an ideal platform for fabricating room-temperature spintronic and topological electronic devices.
Collapse
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, 200433, China
| | - Zhijian Li
- State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, 200433, China
| | - Hairui Bao
- State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, 200433, China
| | - Zhongqin Yang
- State Key Laboratory of Surface Physics, Key Laboratory of Computational Physical Sciences (MOE), Department of Physics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, Shanghai, 200030, China.
| |
Collapse
|
80
|
Li J, Wu J, Park SW, Sasase M, Ye TN, Lu Y, Miyazaki M, Yokoyama T, Tada T, Kitano M, Hosono H. Topological insulator as an efficient catalyst for oxidative carbonylation of amines. SCIENCE ADVANCES 2023; 9:eadh9104. [PMID: 37738353 PMCID: PMC10516497 DOI: 10.1126/sciadv.adh9104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.
Collapse
Affiliation(s)
- Jiang Li
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Jiazhen Wu
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong 518055, China
| | - Sang-won Park
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical and Materials Engineering, University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Masato Sasase
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tian-Nan Ye
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangfan Lu
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China
| | - Masayoshi Miyazaki
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Toshiharu Yokoyama
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Tomofumi Tada
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Kitano
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hideo Hosono
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
81
|
Fang JY, Zhuang YC, Guo AM, Sun QF. Thermal dissipation of the quantum spin Hall edge states in HgTe/CdTe quantum well. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:505303. [PMID: 37683669 DOI: 10.1088/1361-648x/acf826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Quantum spin Hall effect is characterized by topologically protected helical edge states. Here we study the thermal dissipation of helical edge states by considering two types of dissipation sources. The results show that the helical edge states are dissipationless for normal dissipation sources with or without Rashba spin-orbit coupling in the system, but they are dissipative for spin dissipation sources. Further studies on the energy distribution show that electrons with spin-up and spin-down are both in their own equilibrium without dissipation sources. Spin dissipation sources can couple the two subsystems together to induce voltage drop and non-equilibrium distribution, leading to thermal dissipation, while normal dissipation sources cannot. With the increase of thermal dissipation, the subsystems of electrons with spin-up and spin-down evolve from non-equilibrium finally to mutual equilibrium. In addition, the effects of disorder on thermal dissipation are also discussed. Our work provides clues to reduce thermal dissipation in the quantum spin Hall systems.
Collapse
Affiliation(s)
- Jing-Yun Fang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Yu-Chen Zhuang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
| | - Ai-Min Guo
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Hefei National Laboratory, Hefei 230088, People's Republic of China
- Beijing Academy of Quantum Information Sciences, West Bld.#3, No.10 Xibeiwang East Rd., Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
82
|
Zhang T, Hu T, Zhang Y, Wang Z. Pseudospin Polarized Dual-Higher-Order Topology in Hydrogen-Substituted Graphdiyne. NANO LETTERS 2023; 23:8319-8325. [PMID: 37643363 DOI: 10.1021/acs.nanolett.3c02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Although the topological band theory is applicable to both Fermionic and bosonic systems, the same electronic and phononic topological phases are seldom reported in one natural material. In this work, we show the presence of a dual-higher-order topology in hydrogen-substituted graphdiyne (H-GDY) by first-principles calculations. The intriguing enantiomorphic flat-bands are realized in both electronic and phononic bands of H-GDY, which is confirmed to be an organic 2D second-order topological insulator (SOTI). Most importantly, we found that the topological corner states are pseudospin polarized in H-GDY, exhibiting a clockwise or counterclockwise texture perpendicular to the radial direction. Our results not only identify the existence of the dual-higher-order topology in covalent organic frameworks but also uncover a unique pseudospin polarization-coordinate locking relation, further extending the well-known spin-momentum locking relation in conventional topological insulators.
Collapse
Affiliation(s)
- Tingfeng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tianyi Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongqi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengfei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
83
|
Mandal M, Drucker NC, Siriviboon P, Nguyen T, Boonkird A, Lamichhane TN, Okabe R, Chotrattanapituk A, Li M. Topological Superconductors from a Materials Perspective. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6184-6200. [PMID: 37637011 PMCID: PMC10448998 DOI: 10.1021/acs.chemmater.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Topological superconductors (TSCs) have garnered significant research and industry attention in the past two decades. By hosting Majorana bound states which can be used as qubits that are robust against local perturbations, TSCs offer a promising platform toward (nonuniversal) topological quantum computation. However, there has been a scarcity of TSC candidates, and the experimental signatures that identify a TSC are often elusive. In this Perspective, after a short review of the TSC basics and theories, we provide an overview of the TSC materials candidates, including natural compounds and synthetic material systems. We further introduce various experimental techniques to probe TSCs, focusing on how a system is identified as a TSC candidate and why a conclusive answer is often challenging to draw. We conclude by calling for new experimental signatures and stronger computational support to accelerate the search for new TSC candidates.
Collapse
Affiliation(s)
- Manasi Mandal
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Nathan C. Drucker
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Phum Siriviboon
- Department
of Physics, MIT, Cambridge, Massachusetts 02139, United States
| | - Thanh Nguyen
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Artittaya Boonkird
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Tej Nath Lamichhane
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Ryotaro Okabe
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - Abhijatmedhi Chotrattanapituk
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139, United States
| | - Mingda Li
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
84
|
Olshanetsky EB, Gusev GM, Levin AD, Kvon ZD, Mikhailov NN. Multifractal Conductance Fluctuations of Helical Edge States. PHYSICAL REVIEW LETTERS 2023; 131:076301. [PMID: 37656853 DOI: 10.1103/physrevlett.131.076301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/23/2023] [Indexed: 09/03/2023]
Abstract
Two-dimensional topological insulators are characterized by the bulk gap and one-dimensional helical states running along the edges. The theory predicts the topological protection of the helical transport from coherent backscattering. However, the unexpected deviations of the conductance from the quantized value and localization of the helical modes are generally observed in long samples. Moreover, at millikelvin temperatures significant mesoscopic fluctuations are developed as a function of the electron energy. Here we report the results of an experimental study of the transport in a HgTe quantum well with an inverted energy spectrum that reveal a multifractality of the conductance fluctuations in the helical edge state dominated transport regime. We attribute observed multifractality to mesoscopic fluctuations of the electron wave function or local density of states at the spin quantum Hall transition. We have shown that the mesoscopic two-dimensional topological insulator provides a highly tunable experimental system in which to explore the physics of the Anderson transition between topological states.
Collapse
Affiliation(s)
- E B Olshanetsky
- Institute of Semiconductor Physics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - G M Gusev
- Instituto de Física da Universidade de São Paulo, 135960-170 São Paulo, SP, Brazil
| | - A D Levin
- Instituto de Física da Universidade de São Paulo, 135960-170 São Paulo, SP, Brazil
| | - Z D Kvon
- Institute of Semiconductor Physics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - N N Mikhailov
- Institute of Semiconductor Physics, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
85
|
Jin KH, Jiang W, Sethi G, Liu F. Topological quantum devices: a review. NANOSCALE 2023; 15:12787-12817. [PMID: 37490310 DOI: 10.1039/d3nr01288c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The introduction of the concept of topology into condensed matter physics has greatly deepened our fundamental understanding of transport properties of electrons as well as all other forms of quasi particles in solid materials. It has also fostered a paradigm shift from conventional electronic/optoelectronic devices to novel quantum devices based on topology-enabled quantum device functionalities that transfer energy and information with unprecedented precision, robustness, and efficiency. In this article, the recent research progress in topological quantum devices is reviewed. We first outline the topological spintronic devices underlined by the spin-momentum locking property of topology. We then highlight the topological electronic devices based on quantized electron and dissipationless spin conductivity protected by topology. Finally, we discuss quantum optoelectronic devices with topology-redefined photoexcitation and emission. The field of topological quantum devices is only in its infancy, we envision many significant advances in the near future.
Collapse
Affiliation(s)
- Kyung-Hwan Jin
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Wei Jiang
- School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Gurjyot Sethi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
86
|
Fijalkowski KM, Liu N, Mandal P, Schreyeck S, Brunner K, Gould C, Molenkamp LW. Macroscopic Quantum Tunneling of a Topological Ferromagnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303165. [PMID: 37314152 PMCID: PMC10401085 DOI: 10.1002/advs.202303165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 06/15/2023]
Abstract
The recent advent of topological states of matter spawned many significant discoveries. The quantum anomalous Hall (QAH) effect is a prime example due to its potential for applications in quantum metrology, as well as its influence on fundamental research into the underlying topological and magnetic states and into axion electrodynamics. Here, electronic transport studies on a (V,Bi,Sb)2 Te3 ferromagnetic topological insulator nanostructure in the QAH regime are presented. This allows access to the dynamics of an individual ferromagnetic domain. The domain size is estimated to be in the 50-100 nm range. Telegraph noise resulting from the magnetization fluctuations of this domain is observed in the Hall signal. Careful analysis of the influence of temperature and external magnetic field on the domain switching statistics provides evidence for quantum tunneling (QT) of magnetization in a macrospin state. This ferromagnetic macrospin is not only the largest magnetic object in which QT is observed, but also the first observation of the effect in a topological state of matter.
Collapse
Affiliation(s)
- Kajetan M. Fijalkowski
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Nan Liu
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Pankaj Mandal
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Steffen Schreyeck
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Karl Brunner
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Charles Gould
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| | - Laurens W. Molenkamp
- Faculty for Physics and Astronomy (EP3)Universität WürzburgAm HublandD‐97074WürzburgGermany
- Institute for Topological InsulatorsAm HublandD‐97074WürzburgGermany
| |
Collapse
|
87
|
Łepkowski SP. Quantum Spin Hall Effect in Two-Monolayer-Thick InN/InGaN Coupled Multiple Quantum Wells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2212. [PMID: 37570530 PMCID: PMC10421133 DOI: 10.3390/nano13152212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in the interwell barriers is greater than or equal to the In content in the external barriers. To calculate the electronic subbands in these nanostructures, we use the eight-band k∙p Hamiltonian, assuming that the effective spin-orbit interaction in InN is negative, which represents the worst-case scenario for achieving a two-dimensional topological insulator. For triple quantum wells, we find that when the In contents of the external and interwell barriers are the same and the widths of the internal barriers are equal to two monolayers, a topological insulator with a bulk energy gap of 0.25 meV can appear. Increasing the In content in the interwell barriers leads to a significant increase in the bulk energy gap of the topological insulator, reaching about 0.8 meV. In these structures, the topological insulator can be achieved when the In content in the external barriers is about 0.64, causing relatively low strain in quantum wells and making the epitaxial growth of these structures within the range of current technology. Using the effective 2D Hamiltonian, we study the edge states in strip structures containing topological triple quantum wells. We demonstrate that the opening of the gap in the spectrum of the edge states caused by decreasing the width of the strip has an oscillatory character regardless of whether the pseudospin-mixing elements of the effective Hamiltonian are omitted or taken into account. The strength of the finite size effect in these structures is several times smaller than that in HgTe/HgCdTe and InAs/GaSb/AlSb topological insulators. Therefore, its influence on the quantum spin Hall effect is negligible in strips with a width larger than 150 nm, unless the temperature at which electron transport is measured is less than 1 mK. In the case of quadruple quantum wells, we find the topological insulator phase only when the In content in the interwell barriers is larger than in the external barriers. We show that in these structures, a topological insulator with a bulk energy gap of 0.038 meV can be achieved when the In content in the external barriers is about 0.75. Since this value of the bulk energy gap is very small, quadruple quantum wells are less useful for realizing a measurable quantum spin Hall system, but they are still attractive for achieving a topological phase transition and a nonlocal topological semimetal phase.
Collapse
Affiliation(s)
- Sławomir P Łepkowski
- Institute of High Pressure Physics-Unipress, Polish Academy of Sciences, ul. Sokołowska 29/37, 01-142 Warszawa, Poland
| |
Collapse
|
88
|
Liu JN, Yang X, Xue H, Gai XS, Sun R, Li Y, Gong ZZ, Li N, Xie ZK, He W, Zhang XQ, Xue D, Cheng ZH. Surface coupling in Bi 2Se 3 ultrathin films by screened Coulomb interaction. Nat Commun 2023; 14:4424. [PMID: 37479683 PMCID: PMC10362050 DOI: 10.1038/s41467-023-40035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Single-particle band theory has been very successful in describing the band structure of topological insulators. However, with decreasing thickness of topological insulator thin films, single-particle band theory is insufficient to explain their band structures and transport properties due to the existence of top and bottom surface-state coupling. Here, we reconstruct this coupling with an equivalently screened Coulomb interaction in Bi2Se3 ultrathin films. The thickness-dependent position of the Dirac point and the magnitude of the mass gap are discussed in terms of the Hartree approximation and the self-consistent gap equation. We find that for thicknesses below 6 quintuple layers, the magnitude of the mass gap is in good agreement with the experimental results. Our work provides a more accurate means of describing and predicting the behaviour of quasi-particles in ultrathin topological insulator films and stacked topological systems.
Collapse
Affiliation(s)
- Jia-Nan Liu
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Yang
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Haopu Xue
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Song Gai
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Sun
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Li
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Zhao Gong
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Kai Xie
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei He
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang-Qun Zhang
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China
| | - Desheng Xue
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, 730000, Lanzhou, China
| | - Zhao-Hua Cheng
- State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
89
|
Tyner AC, Goswami P. Spin-charge separation and quantum spin Hall effect of [Formula: see text]-bismuthene. Sci Rep 2023; 13:11393. [PMID: 37452078 PMCID: PMC10349063 DOI: 10.1038/s41598-023-38491-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple works suggest the possibility of classification of quantum spin Hall effect with magnetic flux tubes, which cause separation of spin and charge degrees of freedom and pumping of spin or Kramers-pair. However, the proof of principle demonstration of spin-charge separation is yet to be accomplished for realistic, ab initio band structures of spin-orbit-coupled materials, lacking spin-conservation law. In this work, we perform thought experiments with magnetic flux tubes on [Formula: see text]-bismuthene, and demonstrate spin-charge separation, and quantized pumping of spin for three insulating states, that can be accessed by tuning filling fractions. With a combined analysis of momentum-space topology and real-space response, we identify important role of bands supporting even integer invariants, which cannot be addressed with symmetry-based indicators. Our work sets a new standard for the computational diagnosis of two-dimensional, quantum spin-Hall materials by going beyond the [Formula: see text] paradigm and providing an avenue for precise determination of the bulk invariant through computation of quantized, real-space response.
Collapse
Affiliation(s)
- Alexander C. Tyner
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL 60208 USA
| | - Pallab Goswami
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL 60208 USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 USA
| |
Collapse
|
90
|
Lu Q, Li L, Luo S, Wang Y, Wang B, Liu FT. Oxygen functionalized InSe and TlTe two-dimensional materials: transition from tunable bandgap semiconductors to quantum spin Hall insulators. RSC Adv 2023; 13:18816-18824. [PMID: 37350867 PMCID: PMC10284147 DOI: 10.1039/d3ra02518g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
From first-principles calculations, we found that oxygen functionalized InSe and TlTe two-dimensional materials undergo the following changes with the increased concentrations of oxygen coverage, transforming from indirect bandgap semiconductors to direct bandgap semiconductors with tunable bandgap, and finally becoming quantum spin hall insulators. The maximal nontrivial bandgap are 0.121 and 0.169 eV, respectively, which occur at 100% oxygen coverage and are suitable for applications at room temperature. In addition, the topological phases are derived from SOC induced p-p bandgap opening, which can be further determined by Z2 topological invariants and topologically protected gapless edge states. Significantly, the topological phases can be maintained in excess of 75% oxygen coverage and are robust against external strain, making the quantum spin hall effect easy to achieve experimentally. Thus, the oxygen functionalized InSe and TlTe are fine candidate materials for the design and fabrication of topological devices.
Collapse
Affiliation(s)
- Qing Lu
- Key Laboratory of Computational Physics of Sichuan Province, Faculty of Science, Yibin University Yibin 644000 China
| | - Lin Li
- Key Laboratory of Computational Physics of Sichuan Province, Faculty of Science, Yibin University Yibin 644000 China
| | - Shilin Luo
- Key Laboratory of Computational Physics of Sichuan Province, Faculty of Science, Yibin University Yibin 644000 China
| | - Yue Wang
- Key Laboratory of Computational Physics of Sichuan Province, Faculty of Science, Yibin University Yibin 644000 China
| | - Busheng Wang
- Department of Chemistry, State University of New York at Buffalo Buffalo NY 14260-3000 USA
| | - Fu-Ti Liu
- Key Laboratory of Computational Physics of Sichuan Province, Faculty of Science, Yibin University Yibin 644000 China
| |
Collapse
|
91
|
Wang R, Sedrakyan TA, Wang B, Du L, Du RR. Excitonic topological order in imbalanced electron-hole bilayers. Nature 2023:10.1038/s41586-023-06065-w. [PMID: 37316659 DOI: 10.1038/s41586-023-06065-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
Correlation and frustration play essential roles in physics, giving rise to novel quantum phases1-6. A typical frustrated system is correlated bosons on moat bands, which could host topological orders with long-range quantum entanglement4. However, the realization of moat-band physics is still challenging. Here, we explore moat-band phenomena in shallowly inverted InAs/GaSb quantum wells, where we observe an unconventional time-reversal-symmetry breaking excitonic ground state under imbalanced electron and hole densities. We find that a large bulk gap exists, encompassing a broad range of density imbalances at zero magnetic field (B), accompanied by edge channels that resemble helical transport. Under an increasing perpendicular B, the bulk gap persists, and an anomalous plateau of Hall signals appears, which demonstrates an evolution from helical-like to chiral-like edge transport with a Hall conductance approximately equal to e2/h at 35 tesla, where e is the elementary charge and h is Planck's constant. Theoretically, we show that strong frustration from density imbalance leads to a moat band for excitons, resulting in a time-reversal-symmetry breaking excitonic topological order, which explains all our experimental observations. Our work opens up a new direction for research on topological and correlated bosonic systems in solid states beyond the framework of symmetry-protected topological phases, including but not limited to the bosonic fractional quantum Hall effect.
Collapse
Affiliation(s)
- Rui Wang
- School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
- Collaborative Innovation Center for Advanced Microstructures, Nanjing, China
| | - Tigran A Sedrakyan
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Baigeng Wang
- School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China.
- Collaborative Innovation Center for Advanced Microstructures, Nanjing, China.
| | - Lingjie Du
- School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China.
- Collaborative Innovation Center for Advanced Microstructures, Nanjing, China.
- Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou, China.
| | - Rui-Rui Du
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, China.
- CAS Center for Excellence, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
92
|
Tabassum SJ, Tanisha TT, Hiramony NT, Subrina S. Large band gap quantum spin Hall insulators in plumbene monolayer decorated with amidogen, hydroxyl and thiol functional groups. NANOSCALE ADVANCES 2023; 5:3357-3367. [PMID: 37325544 PMCID: PMC10263006 DOI: 10.1039/d2na00912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional Quantum Spin Hall (QSH) insulators featuring edge states that are topologically protected against back-scattering are arising as a novel state of quantum matter. One of the major obstacles to finding QSH insulators operable at room temperature is the insufficiency of suitable materials demonstrating the QSH effect with a large bulk band gap. Plumbene, the latest group-IV graphene analogous material, shows a large SOC-induced band gap opening but the coupling between topological states at different momentum points makes it a topologically trivial insulator. Pristine plumbene can be chemically functionalized to transform it from a conventional insulator to a topologically non-trivial insulator with a considerable bulk band gap. In this work, three new QSH phases in plumbene have been theoretically predicted through functionalization with amidogen (-NH2), hydroxyl (-OH) and thiol (-SH) groups. The derived electronic properties show non-trivial topological states in plumbene with very high bulk band gaps ranging from 1.0911 eV to as high as 1.1515 eV. External strain can be used to further enhance and tune these bulk gaps, as demonstrated in this work. We also propose a H-terminated SiC (0001) surface as a suitable substrate for the practical implementation of these monolayers to minimize lattice mismatch and maintain their topological order. The robustness of these QSH insulators against strain and substrate effects and the large bulk gaps provide a promising platform for potential applications of future low dissipation nanoelectronic devices and spintronic devices at room temperature.
Collapse
Affiliation(s)
- Sumaiya Jahan Tabassum
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh +88-02-9668054 +880-19-3795-9083 +88-02-9668054
| | - Tanshia Tahreen Tanisha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh +88-02-9668054 +880-19-3795-9083 +88-02-9668054
| | - Nishat Tasnim Hiramony
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh +88-02-9668054 +880-19-3795-9083 +88-02-9668054
| | - Samia Subrina
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh +88-02-9668054 +880-19-3795-9083 +88-02-9668054
| |
Collapse
|
93
|
Munyan S, Rashidi A, Lygo AC, Kealhofer R, Stemmer S. Edge Channel Transmission through a Quantum Point Contact in the Two-Dimensional Topological Insulator Cadmium Arsenide. NANO LETTERS 2023. [PMID: 37307419 DOI: 10.1021/acs.nanolett.3c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cadmium arsenide (Cd3As2) thin films feature a two-dimensional topological insulator (2D TI) phase for certain thicknesses, which theoretically hosts a set of counterpropagating helical edge statesA bar has been added to each symbol of the high-symmetry points of Cu(100) and Cu(111). The bar indicates the surface projected Brillouin zone. that are characteristic of a quantum spin Hall (QSH) insulator. In devices containing electrostatically defined junctions and for magnetic fields below a critical value, chiral edge modes of the quantum Hall effect can coexist with QSH-like edge modes. In this work, we use a quantum point contact (QPC) device to characterize edge modes in the 2D TI phase of Cd3As2 and to understand how they can be controllably transmitted, which is important for use in future quantum interference devices. We investigate equilibration among both types of modes and find non-spin-selective equilibration. We also demonstrate the effect of the magnetic field on suppressing equilibration. We discuss the potential role of QSH-like modes in a transmission pathway that precludes full pinch-off.
Collapse
Affiliation(s)
- Simon Munyan
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Arman Rashidi
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Alexander C Lygo
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Robert Kealhofer
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| | - Susanne Stemmer
- Materials Department, University of California, Santa Barbara, California 93106-5050, United States
| |
Collapse
|
94
|
Abstract
The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Simon Yves
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
- Department of Electrical Engineering, City College, The City University of New York, 160 Convent Avenue, New York, New York 10031, United States
- Physics Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
95
|
Bampoulis P, Castenmiller C, Klaassen DJ, van Mil J, Liu Y, Liu CC, Yao Y, Ezawa M, Rudenko AN, Zandvliet HJW. Quantum Spin Hall States and Topological Phase Transition in Germanene. PHYSICAL REVIEW LETTERS 2023; 130:196401. [PMID: 37243643 DOI: 10.1103/physrevlett.130.196401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 05/29/2023]
Abstract
We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal. Increasing the electric field further results in the opening of a trivial gap and disappearance of the metallic edge states. This electric field-induced switching of the topological state and the sizable gap make germanene suitable for room-temperature topological field-effect transistors, which could revolutionize low-energy electronics.
Collapse
Affiliation(s)
- Pantelis Bampoulis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Carolien Castenmiller
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Dennis J Klaassen
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Jelle van Mil
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Yichen Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng-Cheng Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Motohiko Ezawa
- Department of Applied Physics, University of Tokyo, Hongo, 113-8656 Tokyo, Japan
| | - Alexander N Rudenko
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| |
Collapse
|
96
|
Li Y, Liu C, Wang Y, Lian Z, Li S, Li H, Wu Y, Lu HZ, Zhang J, Wang Y. Giant nonlocal edge conduction in the axion insulator state of MnBi 2Te 4. Sci Bull (Beijing) 2023:S2095-9273(23)00318-3. [PMID: 37268443 DOI: 10.1016/j.scib.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
The recently discovered antiferromagnetic (AFM) topological insulator (TI) MnBi2Te4 represents a versatile material platform for exploring exotic topological quantum phenomena in nanoscale devices. It has been proposed that even-septuple-layer (even-SL) MnBi2Te4 can host helical hinge currents with unique nonlocal behavior, but experimental confirmation is still lacking. In this work, we report transport studies of exfoliated MnBi2Te4 flakes with varied thicknesses down to the few-nanometer regime. We observe giant nonlocal transport signals in even-SL devices when the system is in the axion insulator state but vanishingly small nonlocal signal in the odd-SL devices at the same magnetic field range. In conjunction with theoretical calculations, we demonstrate that the nonlocal transport is via the helical edge currents mainly distributed at the hinges between the side and top/bottom surfaces. The helical edge currents in the axion insulator state may find unique applications in topological quantum devices.
Collapse
Affiliation(s)
- Yaoxin Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Chang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Beijing Academy of Quantum Information Sciences, Beijing 100193, China; Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
| | - Yongchao Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zichen Lian
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuai Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China; Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China; International Quantum Academy, Shenzhen 518048, China
| | - Hao Li
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China; College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China; Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China; International Quantum Academy, Shenzhen 518048, China.
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China.
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China.
| |
Collapse
|
97
|
Taleb M, Samadi M, Davoodi F, Black M, Buhl J, Lüder H, Gerken M, Talebi N. Spin-orbit interactions in plasmonic crystals probed by site-selective cathodoluminescence spectroscopy. NANOPHOTONICS 2023; 12:1877-1889. [PMID: 37159805 PMCID: PMC10161781 DOI: 10.1515/nanoph-2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
The study of spin-orbit coupling (SOC) of light is crucial to explore the light-matter interactions in sub-wavelength structures. By designing a plasmonic lattice with chiral configuration that provides parallel angular momentum and spin components, one can trigger the strength of the SOC phenomena in photonic or plasmonic crystals. Herein, we explore the SOC in a plasmonic crystal, both theoretically and experimentally. Cathodoluminescence (CL) spectroscopy combined with the numerically calculated photonic band structure reveals an energy band splitting that is ascribed to the peculiar spin-orbit interaction of light in the proposed plasmonic crystal. Moreover, we exploit angle-resolved CL and dark-field polarimetry to demonstrate circular-polarization-dependent scattering of surface plasmon waves interacting with the plasmonic crystal. This further confirms that the scattering direction of a given polarization is determined by the transverse spin angular momentum inherently carried by the SP wave, which is in turn locked to the direction of SP propagation. We further propose an interaction Hamiltonian based on axion electrodynamics that underpins the degeneracy breaking of the surface plasmons due to the spin-orbit interaction of light. Our study gives insight into the design of novel plasmonic devices with polarization-dependent directionality of the Bloch plasmons. We expect spin-orbit interactions in plasmonics will find much more scientific interests and potential applications with the continuous development of nanofabrication methodologies and uncovering new aspects of spin-orbit interactions.
Collapse
Affiliation(s)
- Masoud Taleb
- Institute of Experimental and Applied Physics, Kiel University, 24098Kiel, Germany
| | - Mohsen Samadi
- Institute of Experimental and Applied Physics, Kiel University, 24098Kiel, Germany
| | - Fatemeh Davoodi
- Institute of Experimental and Applied Physics, Kiel University, 24098Kiel, Germany
| | - Maximilian Black
- Institute of Experimental and Applied Physics, Kiel University, 24098Kiel, Germany
| | - Janek Buhl
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24143Kiel, Germany
| | - Hannes Lüder
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24143Kiel, Germany
| | - Martina Gerken
- Integrated Systems and Photonics, Faculty of Engineering, Kiel University, 24143Kiel, Germany
| | - Nahid Talebi
- Institute of Experimental and Applied Physics, Kiel University, 24098Kiel, Germany
- Kiel, Nano, Surface, and Interface Science, Kiel University, 24098Kiel, Germany
| |
Collapse
|
98
|
Vigliotti L, Cavaliere F, Passetti G, Sassetti M, Traverso Ziani N. Reconstruction-Induced φ0 Josephson Effect in Quantum Spin Hall Constrictions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1497. [PMID: 37177040 PMCID: PMC10180432 DOI: 10.3390/nano13091497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The simultaneous breaking of time-reversal and inversion symmetry, in connection to superconductivity, leads to transport properties with disrupting scientific and technological potential. Indeed, the anomalous Josephson effect and the superconducting-diode effect hold promises to enlarge the technological applications of superconductors and nanostructures in general. In this context, the system we theoretically analyze is a Josephson junction (JJ) with coupled reconstructed topological channels as a link; such channels are at the edges of a two-dimensional topological insulator (2DTI). We find a robust φ0 Josephson effect without requiring the presence of external magnetic fields. Our results, which rely on a fully analytical analysis, are substantiated by means of symmetry arguments: Our system breaks both time-reversal symmetry and inversion symmetry. Moreover, the anomalous current increases as a function of temperature. We interpret this surprising temperature dependence by means of simple qualitative arguments based on Fermi's golden rule.
Collapse
Affiliation(s)
- Lucia Vigliotti
- Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (M.S.); (N.T.Z.)
| | - Fabio Cavaliere
- Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (M.S.); (N.T.Z.)
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giacomo Passetti
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056 Aachen, Germany;
| | - Maura Sassetti
- Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (M.S.); (N.T.Z.)
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - Niccolò Traverso Ziani
- Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (M.S.); (N.T.Z.)
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
99
|
Nomoto T, Imajo S, Akutsu H, Nakazawa Y, Kohama Y. Correlation-driven organic 3D topological insulator with relativistic fermions. Nat Commun 2023; 14:2130. [PMID: 37080975 PMCID: PMC10119126 DOI: 10.1038/s41467-023-37293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Exploring new topological phenomena and functionalities induced by strong electron correlation has been a central issue in modern condensed-matter physics. One example is a topological insulator (TI) state and its functionality driven by the Coulomb repulsion rather than a spin-orbit coupling. Here, we report a 'correlation-driven' TI state realized in an organic zero-gap system α-(BETS)2I3. The topological surface state and chiral anomaly are observed in temperature and field dependences of resistance, indicating a three-dimensional TI state at low temperatures. Moreover, we observe a topological phase switching between the TI state and non-equilibrium Dirac semimetal state by a dc current, which is a unique functionality of a correlation-driven TI state. Our findings demonstrate that correlation-driven TIs are promising candidates not only for practical electronic devices but also as a field for discovering new topological phenomena and phases.
Collapse
Affiliation(s)
- Tetsuya Nomoto
- The Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | - Shusaku Imajo
- The Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroki Akutsu
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuhiro Nakazawa
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshimitsu Kohama
- The Institute for Solid State Physics, the University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| |
Collapse
|
100
|
Wu SL, Ren ZH, Zhang YQ, Li YK, Han JF, Duan JX, Wang ZW, Li CZ, Yao YG. Gate-tunable transport in van der Waals topological insulator Bi 4Br 4nanobelts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:234001. [PMID: 36913735 DOI: 10.1088/1361-648x/acc3eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Bi4Br4is a quasi-one-dimensional van der Waals topological insulator with novel electronic properties. Several efforts have been devoted to the understanding of its bulk form, yet it remains a challenge to explore the transport properties in low-dimensional structures due to the difficulty of device fabrication. Here we report for the first time a gate-tunable transport in exfoliated Bi4Br4nanobelts. Notable two-frequency Shubnikov-de Haas oscillations oscillations are discovered at low temperatures, with the low- and high-frequency parts coming from the three-dimensional bulk state and the two-dimensional surface state, respectively. In addition, ambipolar field effect is realized with a longitudinal resistance peak and a sign reverse in the Hall coefficient. Our successful measurements of quantum oscillations and realization of gate-tunable transport lay a foundation for further investigation of novel topological properties and room-temperature quantum spin Hall states in Bi4Br4.
Collapse
Affiliation(s)
- Si-Li Wu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhi-Hui Ren
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu-Qi Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yong-Kai Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, People's Republic of China
| | - Jun-Feng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, People's Republic of China
| | - Jun-Xi Duan
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhi-Wei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, People's Republic of China
| | - Cai-Zhen Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu-Gui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|