51
|
Bogliolo L, Ledda S, Leoni G, Naitana S, Moor RM. Activity of Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) after Parthenogenetic Activation of Ovine Oocytes. ACTA ACUST UNITED AC 2000; 2:185-96. [PMID: 16218855 DOI: 10.1089/152045500454744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are the key regulators of both meiotic and mitotic cell cycles. Knowledge of the dynamics of these two kinases during the transition from meiosis to mitosis would be of great importance for cloning by nuclear transfer. In this study, experiments were designed to assay the changes of MPF and MAP kinase activity of in vitro matured ovine oocytes after chemical activation and culture in 0 mM or 2 mM 6-dimethylaminopurine (6-DMAP) for 12 h. Moreover, to determine the biological significance of the fluctuations of MPF, activated oocytes were fused with GV-staged partners. The biochemical results showed that the high MPF activity of MII oocytes fell to basal level precipitously within the first hour after activation, started to increase at 6-8 h, rising to 80 +/- 4% of MII after 12 h. MAPK activity decreased to a low level 4 h after activation, increased between 6-12 h, but remained below 30 +/- 3.6% of MII values. The incubation with 6-DMAP had no effect on the kinetics of MPF and MAP kinase activity. Fusion of MII oocytes to GV partners induced rapid breakdown of the GV, whereas no breakdown occurred when GV were fused with eggs in the first hours post activation. Interestingly, the high biochemical levels of MPF activity at 8-12 h after activation were not able to induce GVBD in fusion partners.
Collapse
Affiliation(s)
- L Bogliolo
- Obstetrics Section of the Institute of General Pathology, Pathological Anatomy and Veterinary Obstetrics-Surgery Clinic, University of Sassari, Sassari, Italy.
| | | | | | | | | |
Collapse
|
52
|
Bayaa M, Booth RA, Sheng Y, Liu XJ. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc Natl Acad Sci U S A 2000; 97:12607-12. [PMID: 11050156 PMCID: PMC18811 DOI: 10.1073/pnas.220302597] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xenopus laevis oocytes are physiologically arrested at G(2) of meiosis I. Resumption of meiosis, or oocyte maturation, is triggered by progesterone. Progesterone-induced Xenopus oocyte maturation is mediated via an extranuclear receptor and is independent of gene transcription. The identity of this extranuclear oocyte progesterone receptor (PR), however, has remained a longstanding problem. We have isolated the amphibian homologue of human PR from a Xenopus oocyte cDNA library. The cloned Xenopus progesterone receptor (xPR) functioned in heterologous cells as a progesterone-regulated transcription activator. However, endogenous xPR was excluded from the oocyte nucleus and instead appeared to be a cytosolic protein not associated with any membrane structures. Injection of xPR mRNA into Xenopus oocytes accelerated the progesterone-induced oocyte maturation and reduced the required concentrations of progesterone. In enucleated oocytes, xPR accelerated the progesterone-induced mitogen-activated protein kinase activation. These data suggest that xPR is the long sought after Xenopus oocyte receptor responsible for progesterone-induced oocyte maturation.
Collapse
Affiliation(s)
- M Bayaa
- Loeb Research Institute, Ottawa Hospital, 1053 Carling Avenue, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
53
|
Ravenhall C, Guida E, Harris T, Koutsoubos V, Stewart A. The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle. Br J Pharmacol 2000; 131:17-28. [PMID: 10960064 PMCID: PMC1572283 DOI: 10.1038/sj.bjp.0703454] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Revised: 05/04/2000] [Accepted: 05/04/2000] [Indexed: 11/08/2022] Open
Abstract
The relationship between persistent ERK (extracellular signal-regulated kinase) activity, cyclin D1 protein and mRNA levels and cell cycle progression in human cultured airway smooth muscle was examined in response to stimulation by ET-1 (endothelin-1), thrombin and bFGF (basic fibroblast growth factor). Thrombin (0.3 and 3 u ml(-1)) and bFGF (0.3 and 3 nM) increased ERK activity for more than 2 h and increased cell number, whereas ET-1 (100 nM) transiently stimulated ERK activity and was non-mitogenic. The MEK1 (mitogen-activated ERK kinase) inhibitor, PD 98059 (30 microM), inhibited both ERK phosphorylation and activity, and either prevented (thrombin 0.3 and 3 u ml(-1), bFGF 300 pM) or attenuated (bFGF 3 nM) DNA synthesis. Thrombin and bFGF increased both cyclin D1 mRNA and protein levels. PD 98059 decreased cyclin D1 protein levels stimulated by the lower but not higher thrombin concentrations. Moreover, increases in cyclin D1 mRNA levels were unaffected by PD 98059 pretreatment, irrespective of the mitogen or its concentration, suggesting that inhibition of cyclin D1 protein levels occurred by a post-transcriptional mechanism. These findings indicate that the control of cyclin D1 protein levels may occur independently of the MEK1/ERK signalling pathways. The inhibition of S phase entry by PD 98059 at higher thrombin concentrations appears to result from effects on pathways downstream or parallel to those regulating cyclin D1 protein levels. These findings suggest heterogeneity in the signalling of DNA synthesis in human cultured airway smooth muscle.
Collapse
Affiliation(s)
- Claire Ravenhall
- Department of Pharmacology, University of Melbourne, Parkville Victoria, Australia 3052
| | - Elizabeth Guida
- Department of Pharmacology, University of Melbourne, Parkville Victoria, Australia 3052
| | - Trudi Harris
- Department of Pharmacology, University of Melbourne, Parkville Victoria, Australia 3052
| | - Valentina Koutsoubos
- Department of Pharmacology, University of Melbourne, Parkville Victoria, Australia 3052
| | - Alastair Stewart
- Department of Pharmacology, University of Melbourne, Parkville Victoria, Australia 3052
| |
Collapse
|
54
|
Walter SA, Guadagno SN, Ferrell JE. Activation of Wee1 by p42 MAPK in vitro and in cycling xenopus egg extracts. Mol Biol Cell 2000; 11:887-96. [PMID: 10712507 PMCID: PMC14818 DOI: 10.1091/mbc.11.3.887] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus oocytes and eggs provide a dramatic example of how the consequences of p42 mitogen-activated protein kinase (p42 MAPK) activation depend on the particular context in which the activation occurs. In oocytes, the activation of Mos, MEK, and p42 MAPK is required for progesterone-induced Cdc2 activation, and activated forms of any of these proteins can bring about Cdc2 activation in the absence of progesterone. However, in fertilized eggs, activation of the Mos/MEK/p42 MAPK pathway has the opposite effect, inhibiting Cdc2 activation and causing a G2 phase delay or arrest. In the present study, we have investigated the mechanism and physiological significance of the p42 MAPK-induced G2 phase arrest, using Xenopus egg extracts as a model system. We found that Wee1-depleted extracts were unable to arrest in G2 phase in response to Mos, and adding back Wee1 to the extracts restored their ability to arrest. This finding formally places Wee1 downstream of Mos/MEK/p42 MAPK. Purified recombinant p42 MAPK was found to phosphorylate recombinant Wee1 in vitro at sites that are phosphorylated in extracts. Phosphorylation by p42 MAPK resulted in a modest ( approximately 2-fold) increase in the kinase activity of Wee1 toward Cdc2. Titration experiments in extracts demonstrated that a twofold increase in Wee1 activity is sufficient to cause the delay in mitotic entry seen in Mos-treated extracts. Finally, we present evidence that the negative regulation of Cdc2 by Mos/MEK/p42 MAPK contributes to the presence of an unusually long G2 phase in the first mitotic cell cycle. Prematurely inactivating p42 MAPK in egg extracts resulted in a corresponding hastening of the first mitosis. The negative effect of p42 MAPK on Cdc2 activation may help ensure that the first mitotic cell cycle is long enough to allow karyogamy to be accomplished successfully.
Collapse
Affiliation(s)
- S A Walter
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | | | |
Collapse
|
55
|
Monteiro HP, Gruia-Gray J, Peranovich TM, de Oliveira LC, Stern A. Nitric oxide stimulates tyrosine phosphorylation of focal adhesion kinase, Src kinase, and mitogen-activated protein kinases in murine fibroblasts. Free Radic Biol Med 2000; 28:174-82. [PMID: 11281284 DOI: 10.1016/s0891-5849(99)00233-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) can participate in cellular signaling. In this study, monoclonal antibodies against proteins from the growth factor-mediated signalling pathway were used to identify a set of 126-, 56-, 43-, and 40-kDa proteins phosphorylated on tyrosine at NO stimulation of murine fibroblasts overexpressing the human epidermal growth factor receptor. The band corresponding to the 126-kDa protein was FAK. The 56-kDa protein was Src kinase, and the doublet 43- and 40-kDa protein corresponded to the extracellular-regulated MAP kinases (ERK1/ERK2). The effects of NO on focal adhesion complexes were also investigated. FAK was constitutively associated with the adapter protein Grb2 in HER14 cells. Treatment of the cells with the NO donor, sodium nitroprusside, or with EGF did not change this association. We also detected a basal constitutive association of Src kinase with FAK in HER14 cells. In NO-treated cells, this association was stimulated. The doublet 43/40-kDa protein was identical to the ERK1/ERK2 MAP kinases. NO stimulated an increase in ERK1/ERK2 phosphorylation as assessed by a shift in its eletrophoretic mobility and by increased phosphotyrosine immunoreactivity. Furthermore, NO-dependent activation of ERK1/ERK2 depended on the intracellular redox status. Inhibition of glutathione synthesis was necessary to promote activation of the kinases.
Collapse
Affiliation(s)
- H P Monteiro
- Dept. of Biochemistry, Fundação Pró-Sangue Hemocentro de S. Paulo, Sao Paulo, Brazil.
| | | | | | | | | |
Collapse
|
56
|
Tokmakov AA, Sato KI, Fukami Y. Deregulation of mitogen-activated protein kinase at low pH due to a structural rearrangement of activation segment. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1476:66-74. [PMID: 10606768 DOI: 10.1016/s0167-4838(99)00223-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Autophosphorylation of recombinant mitogen-activated protein kinase (MAPK) on Tyr was found to be several-fold stimulated at weakly acidic pH (5.5-6.0), whereas the phosphorylation of a protein substrate, myelin basic protein, was greatly inhibited at pH below 6. 0. In contrast to phosphorylation at pH 8.0, both MAPK autophosphorylation and MAPK phosphorylation with upstream MAPK kinase at low pH failed to stimulate essentially its kinase activity towards the exogenous protein substrate. Immunoprecipitation and ELISA with an activation segment-specific antibody, kinetic analysis, and reversible phosphorylation assay revealed a difference in the folding of MAPK activation segment at pH 5.5 and 8.0. The data suggest that a rearrangement of the activation segment at low pH promotes a stable low-activity conformation of the enzyme which is favorable for intramolecular autophosphorylation. In this conformation, the phosphorylation of the exogenous protein substrate is inhibited due to persistent blocking of the enzyme catalytic center by the activation segment.
Collapse
Affiliation(s)
- A A Tokmakov
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Kobe, Japan.
| | | | | |
Collapse
|
57
|
KAGII H, NAITO K, SUGIURA K, IWAMORI N, OHASHI S, GOTO S, YAMANOUCHI K, TOJO H. Requirement of Mitogen-Activated Protein Kinase Activation for the Meiotic Resumption of Porcine Oocytes. J Reprod Dev 2000. [DOI: 10.1262/jrd.46.249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hideyuki KAGII
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kunihiko NAITO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji SUGIURA
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki IWAMORI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi OHASHI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seitaro GOTO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro YAMANOUCHI
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki TOJO
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
58
|
Hulleman E, Bijvelt JJ, Verkleij AJ, Verrips CT, Boonstra J. Integrin signaling at the M/G1 transition induces expression of cyclin E. Exp Cell Res 1999; 253:422-31. [PMID: 10585265 DOI: 10.1006/excr.1999.4677] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activities of the mammalian G1 cyclins, cyclin D and cyclin E, during cell cycle progression (G1/S) are believed to be regulated by cell attachment and the presence of growth factors. In order to study the importance of cell attachment and concomitant integrin signaling on the expression of G1 cyclins during the natural adhesion process from mitosis to interphase, protein expression was monitored in cells that were synchronized by mitotic shake off. Here we show that in Chinese hamster ovary (CHO) and neuroblastoma (N2A) cells, expression of cyclin E at the M/G1 transition is regulated by both growth factors and cell attachment, while expression of cyclin D seems to be entirely dependent on the presence of serum. Expression of cyclin E appears to be correlated with the phosphorylation of the retinoblastoma protein, suggesting a link with the activity of the cyclin D/cdk4 complex. Expression of the cdk inhibitors p21(cip1/Waf1) and p27(Kip1) is not changed upon serum depletion or detachment of cells during early G1, suggesting no direct role for these CKIs in the regulation of cyclin activity. Although inhibition of cyclin E/cdk2 kinase activity has been reported previously, this is the first time that cyclin E expression is shown to be dependent on cell attachment.
Collapse
Affiliation(s)
- E Hulleman
- Department of Molecular Cell Biology, University Utrecht, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
59
|
Sohaskey ML, Ferrell JE. Distinct, constitutively active MAPK phosphatases function in Xenopus oocytes: implications for p42 MAPK regulation In vivo. Mol Biol Cell 1999; 10:3729-43. [PMID: 10564268 PMCID: PMC25672 DOI: 10.1091/mbc.10.11.3729] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A-like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.
Collapse
Affiliation(s)
- M L Sohaskey
- Department of Molecular Pharmacology and Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5332, USA
| | | |
Collapse
|
60
|
Abstract
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| |
Collapse
|
61
|
|
62
|
Keel BA, Davis JS. Epidermal growth factor activates extracellular signal-regulated protein kinases (ERK) in freshly isolated porcine granulosa cells. Steroids 1999; 64:654-8. [PMID: 10503724 DOI: 10.1016/s0039-128x(99)00047-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the ability of EGF to stimulate the phosphorylation (i.e. activation) of extracellular signal-regulated kinases (ERKs) in freshly isolated porcine granulosa cells (pGC) held in suspension. pGCs were isolated from the ovaries of prepubertal pigs at slaughter, and equilibrated for 24 h at 37 degrees C in 12 x 75 mm culture tubes. The cells were then treated with 0-10 ng/ml EGF for 1-240 min. Treatments were terminated, and the total cell lysates were subjected to SDS-PAGE and Western analysis. The Westerns were blotted with anti-panERK and with anti-phosphoERK, antibodies that recognize all forms of ERKs and the phosphorylated (i.e. activated) forms of ERKs, respectively. Western blot analysis with the panERK antibody revealed a gel shift of ERKs, suggesting hyperphosphorylation after treatment with as little as 0.1 ng/ml of EGF. Phosphorylation of the ERKs was confirmed by using the phosphoERK antibody, which indicated increased phosphorylation of ERKs above control with 0.1 ng/ml EGF and maximal phosphorylation of ERK with 5-10 ng/ml EGF. Activation of ERK by EGF, as measured by both gel shift analysis and active ERK blotting, in the freshly isolated pGC was rapid, increasing above controls after 1 min of treatment, maintaining high levels through 40 min, and declining from 60 to 240 min. These data indicate that EGF stimulates active ERK in a time- and concentration-dependent manner in freshly isolated pGCs and that this experimental approach represents an effective manner with which to evaluate the role of EGF and the ERK signal transduction pathway in freshly harvested pGC.
Collapse
Affiliation(s)
- B A Keel
- Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, 67214, USA.
| | | |
Collapse
|
63
|
Sasanami T, Ikami M, Mori M. Involvement of mitogen-activated protein kinase in transforming growth factor alpha-stimulated cell proliferation in the cultured granulosa cells of the Japanese quail. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 124:19-25. [PMID: 10579644 DOI: 10.1016/s0742-8413(99)00041-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The avian granulosa cells proliferate during follicular growth phase and differentiate to produce progesterone in response to luteinizing hormone (LH) when the follicle becomes the largest. In order to study the involvement of mitogen-activated protein (MAP) kinase in proliferation of the granulosa cells in avian species, quail granulosa cells were cultured for 66 h with various hormones (follicle stimulating hormone (FSH), LH, progesterone, estradiol-17beta, testosterone), or growth factors (transforming growth factor alpha (TGF alpha), epidermal growth factor (EGF), insulin-like growth factor I (IGF-I), IGF-II), and the presence of immunodetectable MAP kinase was examined in the cell lysates. When the granulosa cells were cultured with TGF alpha, the cell number as well as the incorporation of [3H]thymidine was increased. Other hormones or growth factors caused no significant increase in cell numbers. Stimulation of the cells with TGF alpha for 10 min caused a retarded mobility of MAP kinase in the gel of SDS-PAGE. Both the increases in [3H]thymidine incorporation and the retarded mobility were inhibited by the presence of a tyrosine kinase inhibitor, genistein, indicating the importance of phosphorylation of protein during the TGF alpha-stimulation.
Collapse
Affiliation(s)
- T Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan
| | | | | |
Collapse
|
64
|
Hulleman E, Bijvelt JJ, Verkleij AJ, Verrips CT, Boonstra J. Nuclear translocation of mitogen-activated protein kinase p42MAPK during the ongoing cell cycle. J Cell Physiol 1999; 180:325-33. [PMID: 10430172 DOI: 10.1002/(sici)1097-4652(199909)180:3<325::aid-jcp3>3.0.co;2-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated rapidly in cells stimulated by various extracellular signals. With stimulation of quiescent cells by growth factors, activated p42/p44 MAP kinases rapidly translocate to the nucleus, where they induce immediate early gene transcription. The MAP kinase signal transduction pathway represents an important mechanism by which growth factors regulate cellular events such as cell cycle progression or cell growth. In the present study, p42MAPK (ERK2) was studied during the ongoing cell cycle of Chinese hamster ovary cells synchronized by mitotic shake-off. We show that protein expression of p42MAPK increased in mid-G1 and that MAP kinase is phosphorylated during G1, as visualized by a gel-mobility shift and by the use of phosphospecific antibodies. This phosphorylation appeared to occur in the cytoplasm rather than at the plasma-membrane. In addition, phosphorylated p42MAPK was found to translocate to the nucleus during late/mid-G1. Treatment of cells with MEK inhibitor PD098059 prevented the phosphorylation and nuclear translocation of MAP kinase and DNA synthesis. Thus, nuclear translocation of p42MAPK is not restricted to the G0/G1 transition but occurs in every cell cycle and seems to be required for cell cycle progression.
Collapse
Affiliation(s)
- E Hulleman
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
65
|
Mattingly RR, Saini V, Macara IG. Activation of the Ras-GRF/CDC25Mm exchange factor by lysophosphatidic acid. Cell Signal 1999; 11:603-10. [PMID: 10433521 DOI: 10.1016/s0898-6568(99)00034-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Ras-GRF exchange factor can activate Ras-dependent responses following the activation of heterotrimeric G-protein and calcium signalling. In stable lines of NIH-3T3 fibroblasts that express Ras-GRF, the agonist lysophosphatidic acid (LPA) increases the phosphorylation state and activity of Ras-GRF. The stimulation of Ras-GRF can be demonstrated in vitro, in an assay using recombinant Ras substrate, and in situ, by a selective increase in the ability of LPA to stimulate mitogen-activated protein (MAP) kinase. The increase in Ras-GRF phosphorylation state, which occurs on serine residues, and the increase in exchange factor activity are blocked by pretreatment with pertussis toxin. Activation of Ras-GRF by LPA can also be inhibited by chelation of intracellular calcium and treatment of the Ras-GRF with protein phosphatase 1 (PP1), supporting a model in which Ras-GRF serves to integrate signals from multiple transduction pathways.
Collapse
Affiliation(s)
- R R Mattingly
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
66
|
Ohan N, Agazie Y, Cummings C, Booth R, Bayaa M, Liu XJ. RHO-associated protein kinase alpha potentiates insulin-induced MAP kinase activation in Xenopus oocytes. J Cell Sci 1999; 112 ( Pt 13):2177-84. [PMID: 10362547 DOI: 10.1242/jcs.112.13.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified Xenopus Rho-associated protein kinase alpha (xROKalpha) as a Xenopus insulin receptor substrate-1 binding protein and demonstrated that the non-catalytic carboxyl terminus of xROKalpha binds Xenopus insulin receptor substrate-1 and blocks insulin-induced MAP kinase activation and germinal vesicle breakdown in Xenopus oocytes. In the current study we further examined the role of xROKalpha in insulin signal transduction in Xenopus oocytes. We demonstrate that injection of mRNA encoding the xROKalpha kinase domain or full length xROKalpha enhanced insulin-induced MAP kinase activation and germinal vesicle breakdown. In contrast, injection of a kinase-dead mutant of xROKalpha or pre-incubation of oocytes with an xROKalpha inhibitor significantly reduced insulin-induced MAP kinase activation. To further dissect the mechanism by which xROKalpha may participate in insulin signalling, we explored a potential function of xROKalpha in regulating cellular Ras function, since insulin-induced MAP kinase activation and germinal vesicle breakdown is known to be a Ras-dependent process. We demonstrate that whereas injection of mRNA encoding c-H-Ras alone induced xMAP kinase activation and GVBD in a very low percentage (about 10%) of injected oocytes, co-injection of mRNA encoding xROKalpha and c-H-Ras induced xMAP kinase activation and germinal vesicle breakdown in a significantly higher percentage (50-60%) of injected oocytes. These results suggest a novel function for xROKalpha in insulin signal transduction upstream of cellular Ras function.
Collapse
Affiliation(s)
- N Ohan
- Loeb Health Research Institute, Ottawa Hospital, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, K1Y 4E9, Canada
| | | | | | | | | | | |
Collapse
|
67
|
Pircher TJ, Petersen H, Gustafsson JA, Haldosén LA. Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a. Mol Endocrinol 1999; 13:555-65. [PMID: 10194762 DOI: 10.1210/mend.13.4.0263] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serine phosphorylation of signal transducers and activators of transcription (STAT) 1 and 3 modulates their DNA-binding capacity and/or transcriptional activity. Earlier we suggested that STAT5a functional capacity could be influenced by the mitogen-activated protein kinase (MAPK) pathway. In the present study, we have analyzed the interactions between STAT5a and the MAPKs, extracellular signal-regulated kinases ERK1 and ERK2. GH treatment of Chinese hamster ovary cells stably transfected with the GH receptor (CHOA cells) led to rapid and transient activation of both STAT5a and ERK1 and ERK2. Pretreatment of cells with colchicine, which inhibits tubulin polymerization, did not inhibit STAT5a translocation to the nucleus and ERK1/2 activation. In vitro precipitation with a glutathione-S-transferase-fusion protein containing the C-terminal transactivation domain of STAT5a showed GH-regulated association of ERK1/2 with the fusion protein, while this was not seen when serine 780 in STAT5a was changed to alanine. In vitro phosphorylation of the glutathione-S-transferase-fusion proteins using active ERK only worked when the fusion protein contained wild-type STAT5a sequence. The same experiment, performed with full-length wild-type STAT5a and the corresponding S780A mutant, showed that serine 780 is the only substrate in full-length STAT5a for active ERK. In coimmunoprecipitation experiments, larger amounts of STAT5a-ERK1/2 complexes were detected in cytosol from untreated CHOA cells than in cytosol from GH-treated cells, suggesting the presence of preformed STAT5a-ERK1/2 complexes in unstimulated cells. Transfection experiments with COS cells showed that kinase-inactive ERK1 decreased GH stimulation of STAT5-regulated reporter gene expression. These observations show, for the first time, direct physical interaction between ERK and STAT5a and also clearly identify serine 780 as a target for ERK. Furthermore, it is also established that serine phosphorylation of STAT5a transactivation domain, via the MAPK pathway, is a means of modifying GH-induced transcriptional activation.
Collapse
Affiliation(s)
- T J Pircher
- Department of Medical Nutrition, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
68
|
Préstamo G, Testillano PS, Vicente O, González-Melendi P, Coronado MJ, Wilson C, Heberle-Bors E, Risueño MC. Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci 1999; 112 ( Pt 7):1065-76. [PMID: 10198288 DOI: 10.1242/jcs.112.7.1065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are components of a kinase module that plays a central role in the transduction of diverse extracellular stimuli, including mitogens, specific differentiation and developmental signals and stress treatments. This shows that reversible protein phosphorylation cascades play a pivotal role in signal transduction in animal cells and yeast, particularly the entry into mitosis of arrested cells. Homologues of MAPKs have been found and cloned in various plant species, but there have been no data about their in situ localization at the subcellular level and their expression in plant cells so far. In the present paper we report the first data on the ultrastructural in situ localization of MAPK and their mRNAs in various plant cells. Proliferating and quiescent meristematic plant cells were studied to evaluate whether changes in MAPK presence, distribution and expression accompany the entry into proliferation of dormant cells. Moreover, MAPK localization was analyzed in vacuolate microspores. Polyclonal antibodies against the deduced MAPK from the tobacco Ntf6 clone were able to recognize homologue epitopes by immunocytochemical techniques in the cell types studied. The pattern of protein distribution is similar in all the cases studied: it is localized in the cytoplasm and in the nucleus, mainly in the interchromatin region. The quantitative study of the density showed that MAPK labelling is more abundant in cycling than in quiescent cells, also suggesting that, in plants, MAPK pathways might play a role in cell proliferation. RNA probes for conserved regions of the catalytic domain of plant MAPK homologue genes were used to study MAPK expression in those plant cells. In situ hybridization (ISH) showed the presence of MAPK transcripts in the three plant cell types studied, but levels were very low in quiescent cells compared to those in cycling cells. The quantification of labelling density of ISH signals strongly suggests a higher level of MAPK expression in proliferating cells, but also some basal messenger presence and/or expression in the quiescent ones. Immunogold and ISH results show the presence and distribution of MAPK proteins and mRNAs in vacuolate microspores. This represents a very dynamic stage during pollen development in which the cell nucleus is being prepared for an asymmetrical mitotic division, giving rise to both the generative and the vegetative nuclei of the bicellular pollen grain. Taken together, the data indicate a role played by MAPK in the re-entry into proliferation in plant cells.
Collapse
Affiliation(s)
- G Préstamo
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Losiewicz MD, Kaur G, Sausville EA. Different early effets of tyrphostin AG957 and geldanamycins on mitogen-activated protein kinase and p120cbl phosphorylation in anti CD-3-stimulated T-lymphoblasts. Biochem Pharmacol 1999; 57:281-9. [PMID: 9890555 DOI: 10.1016/s0006-2952(98)00293-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AG957, a tyrphostin tyrosine kinase inhibitor, has been shown previously to inhibit p210(bcr-abl) phosphorylation with concurrent inhibition of p210(bcr-abl)-expressing K562 cell growth (Kaur G and Sausville EA, Anticancer Drugs 7: 815-824, 1996). To assess the specificity of the action of AG957, we have examined its effect in another tyrosine kinase-mediated system, anti CD-3-stimulated Jurkat T Acute Lymphoblastic Leukemia cells. We also compared the effects of AG957 with those of geldanamycin, which can disrupt tyrosine kinase signaling through binding to heat shock protein (hsp90), and two geldanamycin analogs, 17-amino-17-demethoxygeldanamycin (17AG) and 17-allylamino-17-demethoxygeldanamycin (17AAG). At concentrations found to produce 90% inhibition of Jurkat T-cell growth, AG957 within 4 hr of addition inhibited mitogen-activated protein (MAP) kinase activation and activity, as shown by a decreased anti CD-3-stimulated erk-2 mobility shift in lysates of treated cells and a decrease in the stimulated myelin basic protein peptide kinase activity in erk-2 immunoprecipitates, respectively. AG957 did not inhibit this activity when added directly to immunoprecipitates. Effects in cells were found to be accompanied by a decrease in the anti CD-3-stimulated phosphorylation of p120cbl. Under conditions of a similar degree of growth inhibition, geldanamycin initially did not inhibit MAP kinase activation. Geldanamycin analogs did not decrease anti CD-3-induced cbl phosphorylation, but did reduce basal p120cbl tyrosine phosphorylation. The action of AG957 occurred with an apparent shift of several tyrosine-phosphorylated proteins to apparent higher molecular weights, which also did not occur with the geldanamycins. These results suggest that growth inhibition by AG957 can alter tyrosine kinase signaling systems unrelated to p210(bcr-abl) with a prominent early effect on MAP kinase activation in T-lymphoblasts. AG957 and geldanamycin affect tyrosine kinase signaling by distinct mechanisms.
Collapse
Affiliation(s)
- M D Losiewicz
- Pharmacology and Experimental Therapeutics Section, Laboratory of Drug Discovery Research and Development, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick Cancer
| | | | | |
Collapse
|
70
|
Vichi P, Whelchel A, Knot H, Nelson M, Kolch W, Posada J. Endothelin-stimulated ERK activation in airway smooth-muscle cells requires calcium influx and Raf activation. Am J Respir Cell Mol Biol 1999; 20:99-105. [PMID: 9870922 DOI: 10.1165/ajrcmb.20.1.3210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelin (ET)-1 is a 21-amino-acid peptide that is a potent vasoconstrictor and mitogen. By binding to its G-protein coupled receptor, ET-1 stimulates the proliferation of airway smooth-muscle (ASM) cells, which may be involved in the pathogenesis of asthma. The ETB receptor stimulates activation of the extracellular regulated kinase 2 (ERK2), which is thought to be required for proliferation of ASM cells. Our findings reveal that ET rapidly activates Raf, and that dominant-negative Raf interferes with ET-induced ERK activation in ASM cells. Expression of the amino-terminal Ras-binding domain of Raf inhibited ET-induced ERK activation, suggesting that ET-stimulated Raf activation is a Ras-dependent process. Furthermore, ET-stimulated ERK and Raf activation in ASM cells require calcium influx; chelating extracellular calcium or preventing calcium influx through calcium channels inhibited ET-stimulated, but not phorbol ester-stimulated, ERK and Raf activation.
Collapse
Affiliation(s)
- P Vichi
- Department of Molecular Physiology, College of Medicine, University of Vermont, Burlington, USA
| | | | | | | | | | | |
Collapse
|
71
|
Yablonka-Reuveni Z, Seger R, Rivera AJ. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 1999; 47:23-42. [PMID: 9857210 DOI: 10.1177/002215549904700104] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although the role of satellite cells in muscle growth and repair is well recognized, understanding of the molecular events that accompany their activation and proliferation is limited. In this study, we used the single myofiber culture model for comparing the proliferative dynamics of satellite cells from growing (3-week-old), young adult (8- to 10-week-old), and old (9- to 11-month-old) rats. In these fiber cultures, the satellite cells are maintained in their in situ position underneath the fiber basement membrane. We first demonstrate that the cytoplasm of fiber-associated satellite cells can be monitored with an antibody against the extracellular signal regulated kinases 1 and 2 (ERK1 and ERK2), which belong to the mitogen-activated protein kinase (MAPK) superfamily. With this immunocytological marker, we show that the satellite cells from all three age groups first proliferate and express PCNA and MyoD, and subsequently, about 24 hr later, exit the PCNA+/MyoD+ state and become positive for myogenin. For all three age groups, fibroblast growth factor 2 (FGF2) enhances by about twofold the number of satellite cells that are capable of proliferation, as determined by monitoring the number of cells that transit from the MAPK+ phenotype to the PCNA+/MAPK+ or MyoD+/MAPK+ phenotype. Furthermore, contrary to the commonly accepted convention, we show that in the fiber cultures FGF2 does not suppress the subsequent transition of the proliferating cells into the myogenin+ compartment. Although myogenesis of satellite cells from growing, young adult, and old rats follows a similar program, two distinctive features were identified for satellite cells in fiber cultures from the old rats. First, a large number of MAPK+ cells do not appear to enter the MyoD-myogenin expression program. Second, the maximal number of proliferating satellite cells is attained a day later than in cultures from the young adults. This apparent "lag" in proliferation was not affected by hepatocyte growth factor (HGF), which has been implicated in accelerating the first round of satellite cell proliferation. HGF and FGF2 were equally efficient in promoting proliferation of satellite cells in fibers from old rats. Collectively, the investigation suggests that FGF plays a critical role in the recruitment of satellite cells into proliferation.
Collapse
Affiliation(s)
- Z Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle,
| | | | | |
Collapse
|
72
|
Ishihara H, Sasaoka T, Wada T, Ishiki M, Haruta T, Usui I, Iwata M, Takano A, Uno T, Ueno E, Kobayashi M. Relative involvement of Shc tyrosine 239/240 and tyrosine 317 on insulin induced mitogenic signaling in rat1 fibroblasts expressing insulin receptors. Biochem Biophys Res Commun 1998; 252:139-44. [PMID: 9813159 DOI: 10.1006/bbrc.1998.9621] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Shc is phosphorylated on Tyr-239/240 and/or Tyr-317, which serves as a docking site for Grb2. To clarify the relative involvement of Shc Tyr-239/240 and Tyr-317 in insulin-induced mitogenesis, we generated expression vectors for Y317F (1F)-Shc, Y239/240F (2F)-Shc, and Y239/240/317F (3F)-Shc, and stably transfected them into Rat1 fibroblasts expressing insulin receptors (HIRc). Insulin-induced Shc phosphorylation and subsequent association with Grb2 was enhanced in wild-type (WT)-Shc cell. In contrast, insulin-stimulated Shc phosphorylation and Shc.Grb2 association were significantly decreased in 1F-Shc and 3F-Shc cells, while these were only slightly affected and almost comparable in 2F cells compared with those in parental HIRc cells. The kinetics of MAP kinase activation closely paralleled the kinetics of Shc phosphorylation and Shc.Grb2 association. Thus, insulin stimulation of MAP kinase activation occurred more rapidly in WT-Shc cells, and the activation was delayed in 1F-Shc and 3F-Shc cells, while it was comparable in 2F-Shc cells compared with that in HIRc cells. Furthermore, WT-Shc cells displayed enhanced sensitivity to insulin stimulation of thymidine incorporation. Importantly, the sensitivity was significantly decreased in 1F-Shc and 3F-Shc cells, while it was almost comparable in 2F-Shc cells compared with that in HIRc cells. These results indicate that Shc Tyr-317 is more predominant insulin-induced phosphorylation site than Tyr-239/240 for coupling with Grb2 leading to MAP kinase activation and mitogenesis in Rat1 fibroblasts.
Collapse
Affiliation(s)
- H Ishihara
- Toyama Medical & Pharmaceutical University, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Liu L, Ju JC, Yang X. Differential inactivation of maturation-promoting factor and mitogen-activated protein kinase following parthenogenetic activation of bovine oocytes. Biol Reprod 1998; 59:537-45. [PMID: 9716551 DOI: 10.1095/biolreprod59.3.537] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Bovine oocytes matured for 24 h (young) or 40 h (aged) were treated with calcium ionophore (A23187) alone or followed with 6-dimethylaminopurine (6-DMAP), a protein phosphorylation inhibitor, and were then assayed for histone H1 kinase and mitogen-activated protein kinase (MAPK) activities. Additionally, the changes in chromatin, meiotic spindle, and microfilament were assessed by immunofluoresence microscopy. In both young and aged oocytes, treatment with 6-DMAP following A23187 treatment abolished the activities of both H1 and MAPKs; the decline of H1 kinase preceded the decline in MAPK activity. However, A23187 treatment alone caused a slower decrease in H1 kinase activity and no evident MAPK alteration in young oocytes. In contrast, activities of both kinases decreased in aged oocytes after A23187 treatment, similar to the response in the combined treatments. The inactivation of MAPK was caused by dephosphorylation of MAP42/extracellular signal-regulated kinase 2 (ERK2) as detected by gel mobility shift in the Western blot assay. A23187 treatment of young oocytes led to chromosome separation and second polar body extrusion, but not pronuclear development, with the majority of the oocytes arrested at a transitional stage of metaphase to anaphase known as metaphase III (MIII). However, most of the A23187-treated aged oocytes developed to the pronuclear stage. When oocytes, regardless of age, were treated by A23187 plus 6-DMAP, bivalent chromosomes were clumped into a single mass, the spindle was disassembled, microtubule networks were distributed in the cytoplasm, and a pronucleus appeared. It is suggested that the decrease in H1 kinase activity is involved in the initiation of oocyte activation, i.e., the exit from metaphase II, whereas the decrease in MAPK activity correlates with onset of pronuclear formation. In conclusion, inactivation of maturation-promoting factor and MAPKs probably occurs via two independent processes, and the inactivation of both kinases is required for the metaphase II oocytes to progress through interphase. High MAPK activity might contribute to spindle stabilization, and inactivation of MAPK is associated with microtubular network formation in the cytoplasm.
Collapse
Affiliation(s)
- L Liu
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
74
|
Chiri S, De Nadai C, Ciapa B. Evidence for MAP kinase activation during mitotic division. J Cell Sci 1998; 111 ( Pt 17):2519-27. [PMID: 9701551 DOI: 10.1242/jcs.111.17.2519] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MAP kinases have been implicated in the control of a broad spectrum of cellular events in many types of cells. In somatic cells, MAP kinase activation seems to be triggered after exit from a quiescent state (in G0 or G2) only and then inactivated by entry into a proliferative state. In oocytes of various species, a one-time activation of MAP kinase that is apparently not repeated during the succeeding mitotic cycles occurs after meiotic activation. However, several reports suggest that a myelin basic protein (MBP) kinase activity, unrelated to that of maturation promoting factor, can sometimes be detected during mitotic divisions in various types of cells and oocytes. We have reinvestigated this problem in order to determine the origin and the role of MBP kinase that is stimulated at time of mitosis in the fertilized eggs of the sea urchin Paracentrotus lividus. We used anti-ERK1 antibodies or substrates specific for different MAP kinases, and performed in-gel phosphorylation experiments. Our results suggest that an ERK1-like protein was responsible for part of the MBP kinase activity that is stimulated during the first mitotic divisions. Furthermore, we observed that wortmannin, an inhibitor of PI 3-kinase that arrests the fertilized sea urchin eggs at the prometaphase stage, inhibited the inactivation of MAP kinase normally observed when the eggs divide, suggesting a role for PI 3-kinase in the deactivation process of MAP kinase. We also discuss how the activities of MPF and MAP kinase may be interconnected to regulate the first mitotic divisions of the early sea urchin embryo.
Collapse
Affiliation(s)
- S Chiri
- Groupe de Recherche Sur l'Interaction Gamétique (GRIG), CJF 9504 INSERM, Faculté de Médecine, Avenue de Valombrose, Cedex 02 France
| | | | | |
Collapse
|
75
|
Kim HH, Vijapurkar U, Hellyer NJ, Bravo D, Koland JG. Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. Biochem J 1998; 334 ( Pt 1):189-95. [PMID: 9693119 PMCID: PMC1219678 DOI: 10.1042/bj3340189] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role of protein tyrosine kinase activity in ErbB3-mediated signal transduction was investigated. ErbB3 was phosphorylated in vivo in response to either heregulin (HRG) in cells expressing both ErbB3 and ErbB2, or epidermal growth factor (EGF) in cells expressing both ErbB3 and EGF receptor. A recombinant receptor protein (ErbB3-K/M, in which K/M stands for Lys-->Met amino acid substitution) containing an inactivating mutation in the putative ATP-binding site was also phosphorylated in response to HRG and EGF. Both the wild-type ErbB3 and mutant ErbB3-K/M proteins transduced signals to phosphatidylinositol 3-kinase, Shc and mitogen-activated protein kinases. Separate kinase-inactivating mutations in the EGF receptor and ErbB2 proteins abolished ErbB3 phosphorylation and signal transduction activated by EGF and HRG respectively. Hence the protein tyrosine kinase activity necessary for growth factor signalling via the ErbB3 protein seems to be provided by coexpressed EGF and ErbB2 receptor proteins.
Collapse
Affiliation(s)
- H H Kim
- Department of Pharmacology, The University of Iowa, College of Medicine, Iowa City, IA 52242-1109, USA
| | | | | | | | | |
Collapse
|
76
|
Ciemerych MA, Kubiak JZ. Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Dev Biol 1998; 200:198-211. [PMID: 9705227 DOI: 10.1006/dbio.1998.8930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that during in vitro maturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H x C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.
Collapse
Affiliation(s)
- M A Ciemerych
- Institute of Zoology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
77
|
Vijapurkar U, Cheng K, Koland JG. Mutation of a Shc binding site tyrosine residue in ErbB3/HER3 blocks heregulin-dependent activation of mitogen-activated protein kinase. J Biol Chem 1998; 273:20996-1002. [PMID: 9694850 DOI: 10.1074/jbc.273.33.20996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ErbB2 and ErbB3 proteins together constitute a functional coreceptor for heregulin (neuregulin). Heregulin stimulates the phosphorylation of both coreceptor constituents and initiates a variety of other signaling events, which include phosphorylation of the Shc protein. The role of Shc in heregulin-stimulated signal transduction through the ErbB2.ErbB3 coreceptor was investigated here. Heregulin was found to promote ErbB3/Shc association in NIH-3T3 cells expressing endogenous ErbB2 and recombinant ErbB3. A mutant ErbB3 protein was generated in which Tyr-1325 in a consensus Shc phosphotyrosine-binding domain recognition site was mutated to Phe (ErbB3-Y/F). This mutation abolished the association of Shc with ErbB3 and blocked the activation of mitogen-activated protein kinase by heregulin. Whereas heregulin induced mitogenesis in NIH-3T3 cells transfected with wild-type ErbB3 cDNA, this mitogenic response was markedly attenuated in NIH-3T3 cells transfected with the ErbB3-Y/F cDNA. These results showed a specific interaction of Shc with the ErbB3 receptor protein and demonstrated the importance of this interaction in the activation of mitogenic responses by the ErbB2. ErbB3 heregulin coreceptor complex.
Collapse
Affiliation(s)
- U Vijapurkar
- Department of Pharmacology, the University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | |
Collapse
|
78
|
Melien O, Thoresen GH, Sandnes D, Ostby E, Christoffersen T. Activation of p42/p44 mitogen-activated protein kinase by angiotensin II, vasopressin, norepinephrine, and prostaglandin F2alpha in hepatocytes is sustained, and like the effect of epidermal growth factor, mediated through pertussis toxin-sensitive mechanisms. J Cell Physiol 1998; 175:348-58. [PMID: 9572480 DOI: 10.1002/(sici)1097-4652(199806)175:3<348::aid-jcp13>3.0.co;2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several agents that act through G-protein-coupled receptors and also stimulate phosphoinositide-specific phospholipase C (PI-PLC), including angiotensin II, vasopressin, norepinephrine, and prostaglandin (PG) F2alpha, activated the ERK1 (p44mapk) and ERK2 (p42mapk) members of the mitogen-activated protein (MAP) kinase family in primary cultures of rat hepatocytes, measured as phosphorylation of myelin basic protein (MBP) by a partially purified enzyme, immunoblotting, and in-gel assays. All these agonists induced a peak activation (two to threefold increase in MBP-phosphorylation) at 3-5 min, followed by a brief decrease, and then a sustained elevation or a second increase of the MAP kinase activity that lasted for several hours. Although all the above agents also stimulated PI-PLC, implicating a Gq-dependent pathway, the elevations of the concentration of inositol (1,4,5)-trisphosphate did not correlate well with the MAP kinase activity. Furthermore, pretreatment of the cells with pertussis toxin markedly reduced the MAP kinase activation by angiotensin II, vasopressin, norepinephrine, or PGF2alpha. In addition, hepatocytes pretreated with pertussis toxin showed a diminished MAP kinase response to epidermal growth factor (EGF). The results indicate that agonists acting via G-protein-coupled receptors have the ability to induce sustained activation of MAP kinase in hepatocytes, and suggest that Gi-dependent mechanisms are required for full activation of the MAP kinase signal transduction pathway by G-protein-coupled receptors as well as the EGF receptor.
Collapse
Affiliation(s)
- O Melien
- Department of Pharmacology, Faculty of Medicine, University of Oslo, Blindern, Norway
| | | | | | | | | |
Collapse
|
79
|
Abstract
The newly cloned gene Spin encodes a 30-kDa protein, a well-defined abundant molecule found in mouse oocytes and early embryos. This protein SPIN undergoes metaphase-specific phosphorylation and binds to the spindle. To understand the role of SPIN in oocyte meiosis, oocytes were treated with drugs that affect the cell cycle by activating or inactivating specific kinases. The posttranslational modification of SPIN in the treated oocytes was then investigated by one- and two-dimensional gel electrophoresis. Modification of SPIN is inhibited by treatment with 6-dimethylaminopurine (DMAP), suggesting that SPIN is phosphorylated by a serine-threonine kinase. Furthermore, SPIN from cycloheximide-treated oocytes that lack detectable MAP kinase activity is only partially phosphorylated, indicating that SPIN may be phosphorylated by the MOS/MAP kinase pathway. To confirm this observation, SPIN was analyzed in Mos-null mutant mice lacking MAP kinase activity. Normal posttranslational modification of SPIN did not occur in Mos-null mutant oocytes. In addition, there is reduced association of SPIN with the metaphase I spindle in Mos-null mutant oocytes, as determined by immunohistochemical analysis. These findings suggest that SPIN is a substrate in the MOS/ MAP kinase pathway and further that this phosphorylation of SPIN may be essential for its interaction with the spindle.
Collapse
Affiliation(s)
- B Oh
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | | | | | |
Collapse
|
80
|
Legeai-Mallet L, Benoist-Lasselin C, Delezoide AL, Munnich A, Bonaventure J. Fibroblast growth factor receptor 3 mutations promote apoptosis but do not alter chondrocyte proliferation in thanatophoric dysplasia. J Biol Chem 1998; 273:13007-14. [PMID: 9582336 DOI: 10.1074/jbc.273.21.13007] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thanatophoric dysplasia (TD) is a lethal skeletal disorder caused by recurrent mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene. The mitogenic response of fetal TD I chondrocytes in primary cultures upon stimulation by either FGF 2 or FGF 9 did not significantly differ from controls. Although the levels of FGFR 3 mRNAs in cultured TD chondrocytes were similar to controls, an abundant immunoreactive material was observed at the perinuclear level using an anti-FGFR 3 antibody in TD cells. Transduction signaling via the mitogen-activated protein kinase pathway was assessed by measuring extracellular signal-regulated kinase activity (ERK 1 and ERK 2). Early ERKs activation following FGF 9 supplementation was observed in TD chondrocytes (2 min) as compared with controls (5 min) but no signal was detected in the absence of ligand. By contrast ligand-independent activation of the STAT signaling pathway was demonstrated in cultured TD cells and confirmed by immunodetection of Stat 1 in the nuclei of hypertrophic TD chondrocytes. Moreover, the presence of an increased number of apoptotic chondrocytes in TD fetuses was associated with a higher expression of Bax and the simultaneous decrease of Bcl-2 levels. Taken together, these results indicate that FGFR 3 mutations in TD I fetuses do not hamper chondrocyte proliferation but rather alter their differentiation by triggering premature apoptosis through activation of the STAT signaling pathway.
Collapse
Affiliation(s)
- L Legeai-Mallet
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U393, Institut Necker, 75743 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
81
|
Dorée M, Le Peuch C, Morin N. Onset of chromosome segregation at the metaphase to anaphase transition of the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:309-18. [PMID: 9552373 DOI: 10.1007/978-1-4615-1809-9_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome segregation is one of the most important acts in the life of the cell. Unequal inheritance of chromosomes (aneuploidy) is a cause of a number of disorders, particularly in humans, even though eukaryotic cells can arrest or delay the transition from metaphase to anaphase if an event critical to the completion of metaphase is impaired. In this report, we review recent advances in our knowledge of how the complex process of chromosome segregation is coupled with cell cycle progression, and starts at onset of anaphase with sister chromatids separation of the replicated chromosomes.
Collapse
Affiliation(s)
- M Dorée
- Centre de Recherches de Biochimie Macromoléculaire, CNRS UPR 9008, Montpellier, France
| | | | | |
Collapse
|
82
|
Rose L, Busa WB. Crosstalk between the phosphatidylinositol cycle and MAP kinase signaling pathways in Xenopus mesoderm induction. Dev Growth Differ 1998; 40:231-41. [PMID: 9572365 DOI: 10.1046/j.1440-169x.1998.00012.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have established a role for the phosphoinositide (PI) cycle in the early patterning of Xenopus mesoderm. In explants, stimulation of this pathway in the absence of growth factors does not induce mesoderm, but when accompanied by growth factor treatment, simultaneous PI cycle stimulation results in profound morphological and molecular changes in the mesoderm induced by the growth factor. This suggests the possibility that the PI cycle exerts its influence via crosstalk, by modulating some primary mesoderm-inducing pathway. Given recent identification of mitogen-activated protein kinase (MAPK) as an intracellular mediator of some mesoderm-inducing signals, the present study explores MAPK as a potential site of PI cycle-mediated crosstalk. We report that MAPK activity, like PI cycle activity, increases in intact embryos during mesoderm induction. Phosphoinositide cycle stimulation during treatment of explants with basic fibroblast growth factor (bFGF) synergistically increases late-phase MAPK activity and potentiates bFGF-induced expression of Xbra, a MAPK-dependent mesodermal marker.
Collapse
Affiliation(s)
- L Rose
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
83
|
Sato K, Iwasaki T, Tamaki I, Aoto M, Tokmakov AA, Fukami Y. Involvement of protein-tyrosine phosphorylation and dephosphorylation in sperm-induced Xenopus egg activation. FEBS Lett 1998; 424:113-8. [PMID: 9537526 DOI: 10.1016/s0014-5793(98)00123-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have analyzed tyrosine-phosphorylated proteins in Xenopus laevis eggs before and after fertilization by immunoblotting with anti-phosphotyrosine antibody. A number of egg proteins with different subcellular distribution became tyrosine-phosphorylated or dephosphorylated within 30 min after insemination. Tyrosine kinase-specific inhibitors genistein and herbimycin A were found to inhibit sperm-induced egg activation judged by the egg cortical contraction. Surprisingly, sodium orthovanadate, a tyrosine phosphatase inhibitor, also inhibited the egg activation. Moreover, we found that fertilization-dependent tyrosine dephosphorylation of 42-kDa mitogen-activated protein kinase was inhibited in genistein-treated eggs. These results suggest that both protein-tyrosine phosphorylation and dephosphorylation pathways play an important role in the sperm-induced Xenopus egg activation.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Japan.
| | | | | | | | | | | |
Collapse
|
84
|
Farah S, Agazie Y, Ohan N, Ngsee JK, Liu XJ. A rho-associated protein kinase, ROKalpha, binds insulin receptor substrate-1 and modulates insulin signaling. J Biol Chem 1998; 273:4740-6. [PMID: 9468537 DOI: 10.1074/jbc.273.8.4740] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is phosphorylated on multiple tyrosine residues by ligand-activated insulin receptors. These tyrosine phosphorylation sites serve to dock several Src homology 2-containing signaling proteins. In addition, IRS-1 contains a pleckstrin homology domain and a phosphotyrosine binding domain (PTB) implicated in protein-protein and protein-lipid interactions. In a yeast two-hybrid screening using Xenopus IRS-1 (xIRS-1) pleckstrin homology-PTB domains as bait, we identified a Xenopus homolog of Rho-associated kinase alpha (xROKalpha) as a potential xIRS-1-binding protein. The original clone contained the carboxyl terminus of xROKalpha (xROK-C) including the putative Rho binding domain but lacking the amino-terminal kinase domain. Further analyses in yeast indicated that xROK-C bound to the putative PTB domain of xIRS-1. Binding of xROK-C to xIRS-1 was confirmed in Xenopus oocytes after microinjection of mRNA corresponding to xROK-C. Furthermore, microinjection of xROK-C mRNA inhibited insulin-induced mitogen-activated protein kinase activation with a concomitant inhibition of oocyte maturation. In contrast, microinjection of xROK-C mRNA did not inhibit mitogen-activated protein kinase activation or oocyte maturation induced by progesterone or by microinjection of viral Ras (v-Ras) mRNA. These results suggest that xROKalpha may play a role in insulin signaling via a direct interaction with xIRS-1.
Collapse
Affiliation(s)
- S Farah
- Ottawa Civic Hospital Loeb Research Institute, Ottawa Civic Hospital, Ottawa K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
85
|
Carnero A, Lacal JC. Wortmannin, an inhibitor of phosphatidyl-inositol 3-kinase, induces oocyte maturation through a MPF-MAPK-dependent pathway. FEBS Lett 1998; 422:155-9. [PMID: 9489996 DOI: 10.1016/s0014-5793(97)01619-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wortmannin has been shown to be a non-competitive and irreversible inhibitor of PI3 kinase. For this reason, it has attracted considerable interest and it has been used, as a selective inhibitor of the PI3 kinase, for the study of signal transduction pathways in different systems including Xenopus oocytes. We show here that wortmannin itself is able to induce meiotic maturation at doses slightly higher that those required for complete inhibition of PI3 kinase. This effect was shown to be independent of the ability to inhibit PI3K since another unrelated PI3K inhibitor, LY294002, was unable to induce oocyte maturation at inhibitory concentrations for PI3 kinase. The mechanism for wortmannin-induced maturation involves the activation of maturation promoting factor (MPF) and MAP kinase activities in a time course that preceded the appearance of germinal vesicle breakdown. Thus, the pathway activated by wortmannin directly or indirectly affects other protein or proteins, besides PI3 kinase, responsible for its activity. This new target is placed independently or downstream of the PI3 kinase inhibition and upstream of protein synthesis. Moreover, the inhibition of either MPF or cAMP phosphodiesterase blocks wortmannin-induced maturation. We conclude that wortmannin may be a valuable tool for the study of the pathway leading to mitotic maturation of oocytes, but cannot be used as a specific PI3 kinase inhibitor.
Collapse
Affiliation(s)
- A Carnero
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | |
Collapse
|
86
|
Regulation of amyloid precursor protein catabolism involves the mitogen-activated protein kinase signal transduction pathway. J Neurosci 1998. [PMID: 9390997 DOI: 10.1523/jneurosci.17-24-09415.1997] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Catabolic processing of the amyloid precursor protein (APP) is subject to regulatory control by protein kinases. We hypothesized that this regulation involves sequential activation of the enzymes mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated protein kinase (ERK). In the present investigation, we provide evidence that MEK is critically involved in regulating APP processing by both nerve growth factor and phorbol esters. Western blot analysis of the soluble N-terminal APP derivative APPs demonstrated that the synthetic MEK inhibitor PD 98059 antagonized nerve growth factor stimulation of both APPs production and ERK activation in PC12 cells. Moreover, PD 98059 inhibited phorbol ester stimulation of APPs production and activation of ERK in both human embryonic kidney cells and cortical neurons. Furthermore, overexpression of a kinase-inactive MEK mutant inhibited phorbol ester stimulation of APP secretion and activation of ERK in human embryonic kidney cell lines. Most important, PD 98059 antagonized phorbol ester-mediated inhibition of Abeta secretion from cells overexpressing human APP695 carrying the "Swedish mutation." Taken together, these data indicate that MEK and ERK may be critically involved in protein kinase C and nerve growth factor regulation of APP processing. The mitogen-activated protein kinase cascade may provide a novel target for altering catabolic processing of APP.
Collapse
|
87
|
Abstract
In frog oocytes, activation of mitogen-activated protein kinase (MAPK, ERK) leads to activation of cdc2 and germinal vesicle breakdown (GVBD). By contrast, in starfish, MAPK is activated after GVBD. Here we have examined the relative involvements of MAPK and cdc2 in GVBD of Chaetopterus oocytes. MAPK was rapidly tyrosine-phosphorylated and activated (within 1-2 min) in response to exposure of the oocytes either to natural seawater (the normal trigger of GVBD in this organism) or to the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which can also elicit GVBD. This response preceded the tyrosine dephosphorylation and activation of cdc2 by several minutes. MAPK phosphorylation and activation were transient, lasting only until GVBD occurred and the spindle migrated to the cortex. The enzyme was not phosphorylated again as a result of egg activation. These results are consistent with the hypothesis that the activation of MAPK has a role in GVBD. However, PD 98059, a potent and selective inhibitor of MEK, the protein kinase that phosphorylates and activates MAPK, blocked the phosphorylation of MAPK but did not block GVBD, the dephosphorylation and activation of cdc2, or spindle formation and migration. Oocytes that underwent GVBD in PD 98059 could be fertilized and cleaved normally. Ionophore A23187, although it caused germinal vesicles to disappear and caused transient phosphorylation of MAPK, did not cause dephosphorylation of cdc2, and therefore this disappearance is artifactual. These results suggest that MAPK activation is neither obligatory nor sufficient for either GVBD or meiotic metaphase arrest in Chaetopterus and that activation of MAPK and cdc2 occur on independent, parallel pathways.
Collapse
Affiliation(s)
- W R Eckberg
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
88
|
Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 1997; 272:29309-16. [PMID: 9361011 DOI: 10.1074/jbc.272.46.29309] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interaction of type I collagen (COL(I)) with alpha2beta1 integrin causes differentiation and transforming growth factor (TGF)-beta receptor down-regulation in osteoblastic cells (Takeuchi, Y., Nakayama, K., and Matsumoto, T. (1996) J. Biol. Chem. 271, 3938-3644). The TGF-beta receptor down-regulation enables cells to escape from the inhibition of differentiation by TGF-beta. To clarify how the cell-matrix interaction regulates these phenotypic changes, signaling pathways were examined in murine MC3T3-E1 cells. Attachment of cells to COL(I) stimulated tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase (MAPK), and enhanced MAPK activity. Inhibition of tyrosine kinase by herbimycin A, destruction of focal adhesion by cytochalasin D, or overexpression of antisense FAK mRNA prevented the activation of ERK/MAPK and the increase in alkaline phosphatase (ALP) activity. Transient expression of a MAPK-specific phosphatase, CL100, also suppressed the elevation of ALP activity. In addition, introduction of a constitutively active MAPK kinase enhanced ALP activity in the absence of collagen production. TGF-beta receptor down-regulation was abrogated by treatments that inactivate FAK, whereas the expression of CL100 had no effect. These results demonstrate that COL(I)-alpha2beta1 integrin interaction facilitates differentiation and down-regulates TGF-beta receptors via the activation of FAK and its diverse downstream signals. These signaling pathways may play an important role in the sequential differentiation of osteoblasts during bone formation.
Collapse
Affiliation(s)
- Y Takeuchi
- Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Tokyo 112, Japan.
| | | | | | | | | | | |
Collapse
|
89
|
Lisbona C, Alemany S, Fernández-Renart M. Regulation of ERK2 dephosphorylation in G1-stimulated rat T lymphoblasts. J Clin Immunol 1997; 17:494-501. [PMID: 9418190 DOI: 10.1023/a:1027375828134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rat T lymphoblasts arrested in the G1 phase of the cell cycle by interleukin-2 (IL-2) deprivation can be forced to proceed to the S phase when they are stimulated with IL-2 or the phorbol ester phorbol 12,13-dibutyrate (PDBu). When PDBu is used as a stimulus, extracellular regulated kinase 2 (ERK2) is activated by threonine and tyrosine phosphorylation by the dual-specificity kinase MEK. Here we have studied the regulation of ERK2 dephosphorylation as a mechanism for inactivation of this kinase. In vivo inhibition of ERK2 dephosphorylation observed after preincubation with translation or transcription inhibitors (cycloheximide or actinomycin, respectively) indicates the involvement of at least one inducible phosphatase, the best candidate for which is the dual-specificity phosphatase PAC-1. Other noninducible phosphatases must act as well, however, because sodium orthovanadate is a more effective dephosphorylation blocker than cycloheximide. In addition, the okadaic acid effect in ERK2 dephosphorylation indicates that Ser/Thr phosphatases are also involved, directly and/or indirectly.
Collapse
Affiliation(s)
- C Lisbona
- Departamento Bioquímica, Facultad de Medicina, UAM, Madrid, Spain
| | | | | |
Collapse
|
90
|
Deeg MA, Bowen RF, Oram JF, Bierman EL. High density lipoproteins stimulate mitogen-activated protein kinases in human skin fibroblasts. Arterioscler Thromb Vasc Biol 1997; 17:1667-74. [PMID: 9327761 DOI: 10.1161/01.atv.17.9.1667] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein kinase C (PKC) seems to play an important role in many of HDL effects on cells, including removal of excess cholesterol. HDL removes cholesterol by at least two mechanisms. One mechanism involves desorption/diffusion of cholesterol from the plasma membrane onto the acceptor particle, whereas the second is mediated by apolipoproteins and may involve intracellular translocation of cholesterol to the plasma membrane for subsequent efflux. In this report, we examined the possibility that mitogen-activated protein (MAP) kinase is one of the downstream events from HDL activation of PKC. Using a gel kinase assay with myelin basic protein incorporated into the gel, HDL (50 micrograms protein/mL) stimulated multiple kinases of 42, 50, 52, 58, and 60 kDa. The 42-kDa protein kinase, corresponding to the unresolved MAP kinases ERK1 and ERK2 based on immunoblotting, was activated over 2-fold by HDL. HDL activated all identified kinases in a concentration- and time-dependent manner, which became maximal within 5 to 10 minutes and remained activated for at least 60 minutes. HDL activation of MAP kinase seems to be partially mediated by PKC, because down-regulation of PKC and known PKC inhibitors inhibited the HDL effect by 40 to 50%. Free apolipoproteins A-I (10 micrograms/mL) and A-II (10 micrograms/mL) had no significant effect on MAP kinase activation. Moreover, modifying HDL with trypsin or tetranitromethane, which abolishes apolipoprotein-mediated cholesterol efflux, had no effect on HDL activation of MAP kinase. These results suggest that HDL activates MAP kinase via multiple signal transduction pathways that are likely involved in an HDL effect unrelated to apolipoprotein-mediated cholesterol translocation and efflux.
Collapse
Affiliation(s)
- M A Deeg
- Department of Medicine, University of Washington, Seattle 98195-6426, USA
| | | | | | | |
Collapse
|
91
|
Abe JI, Takahashi M, Ishida M, Lee JD, Berk BC. c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem 1997; 272:20389-94. [PMID: 9252345 DOI: 10.1074/jbc.272.33.20389] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Big mitogen-activated kinase 1 (BMK1) or extracellular signal-regulated kinase-5 (ERK5) has recently been identified as a new member of the mitogen-activated protein kinase family. We have shown that BMK1 is activated to a greater extent by H2O2 than growth factors, suggesting that in comparison with other mitogen-activated protein kinase family members, BMK1 is a redox-sensitive kinase. Previous investigations indicate that the tyrosine kinase c-Src mediates signal transduction by reactive oxygen species, including H2O2. Therefore, the role of Src kinase family members (c-Src and Fyn) in activation of the BMK1 by H2O2 in mouse fibroblasts was studied. An essential role for c-Src was suggested by four experiments. First, H2O2 stimulated c-Src activity rapidly in fibroblasts (peak at 5 min), which preceded peak activity of BMK1 (20 min). Second, specific Src family tyrosine kinase inhibitors (herbimycin A and CP-118,556) blocked BMK1 activation by H2O2 in a concentration-dependent manner. Third, BMK1 activation in the response to H2O2 was completely inhibited in cells derived from mice deficient in c-Src, but not Fyn. Finally, BMK1 activity was much greater in v-Src-transformed NIH-3T3 cells than wild type cells. These results demonstrate an essential role for c-Src in H2O2-mediated activation of BMK1 and suggest that redox-sensitive regulation of BMK1 is a new function for c-Src.
Collapse
Affiliation(s)
- J i Abe
- Department of Medicine, Cardiology Division, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
92
|
Chesnel F, Bonnec G, Tardivel A, Boujard D. Comparative effects of insulin on the activation of the Raf/Mos-dependent MAP kinase cascade in vitellogenic versus postvitellogenic Xenopus oocytes. Dev Biol 1997; 188:122-33. [PMID: 9245517 DOI: 10.1006/dbio.1997.8631] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Xenopus postvitellogenic oocytes resume meiosis in vitro upon exposure to insulin or insulin-like growth factor 1 (IGF-1) via a ras-dependent pathway, whereas stage IV (600 micron < diameter < 1000 micron) oocytes cannot. The aim of the present study was to determine which event(s) of the transduction pathway from IGF-1 receptor to maturation-promoting factor (MPF) activation is deficient in the small, vitellogenic, oocytes to explain their inability to undergo germinal vesicle breakdown (GVB) after insulin treatment. We thus analyzed the effect of insulin on the Ras/Raf-dependent mitogen-activated protein kinase cascade because of its crucial role prior to MPF activation. The effect of insulin on pp39mos synthesis in stage IV oocytes was also studied since this protein kinase participates in the mitogen-activated protein kinase (MAPK) pathway as a MAPKK kinase like Raf. Contrary to what is observed in postvitellogenic oocytes, MAPK was not activated in insulin-treated stage IV oocytes even 20 hr after the stimulation. This was not caused by the absence of MAPK activators like MEK (MAPKK), Raf, or Ras, but rather by the inability of insulin to activate Ras. Interestingly, injection of constitutively active raf mRNA as well as oncogenic Ras protein, Ha-Ras lys12, in stage IV oocytes resulted in MAPK activation, whereas neither Mos accumulation nor GVB occurred, suggesting that the Ras --> Raf --> MAPKK --> MAPK cascade was functional but that MAPK activation alone was not sufficient for the mitogenic signal to proceed further down in the pathway leading to MPF activation. Treatment of stage IV oocytes with insulin did not stimulate Mos synthesis either, indicating a dysfunction in the "Mos synthesis machinery." The present results show that incompetence of Xenopus stage IV oocytes to activate MPF in response to insulin is primarily due to the inability of the peptide to activate Ras and to stimulate pp39mos synthesis and secondarily to a deficiency in the mitogenic pathway that connects MAPK to MPF activation.
Collapse
Affiliation(s)
- F Chesnel
- Biologie Cellulaire et Reproduction, Université de Rennes 1, Rennes Cedex, 35042, France.
| | | | | | | |
Collapse
|
93
|
Ferrell JE, Bhatt RR. Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 1997; 272:19008-16. [PMID: 9228083 DOI: 10.1074/jbc.272.30.19008] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous work on the responses of mitogen-activated protein (MAP) kinase cascade components in a Xenopus oocyte extract system demonstrated that p42 MAP kinase (MAPK) exhibits a sharp, sigmoidal stimulus/response curve, rather than a more typical hyperbolic curve. One plausible explanation for this behavior requires the assumption that MAP kinase kinase (MAPKK) carries out its dual phosphorylation of p42 MAPK by a distributive mechanism, where MAPKK dissociates from MAPK between the first and second phosphorylations, rather than a processive mechanism, where MAPKK carries out both phosphorylations before dissociating. Here we have investigated the mechanism through which a constitutively active form of human MAPKK-1 (denoted MAPKK-1 R4F or MAPKK-1*) phosphorylates Xenopus p42 MAPK in vitro. We found that the amount of monophosphorylated MAPK formed during the phosphorylation reaction exceeded the amount of MAPKK-1* present, which would not be possible if the phosphorylation occurred exclusively by a processive mechanism. The monophosphorylated MAPK was phosphorylated predominantly on tyrosine, but a small proportion was phosphorylated on threonine, indicating that the first phosphorylation is usually, but not invariably, the tyrosine phosphorylation. We also found that the rate at which pulse-labeled monophosphorylated MAPK became bisphosphorylated depended on the MAPKK-1* concentration, behavior that is predicted by the distributive model but incompatible with the processive model. These findings indicate that MAPKK-1* phosphorylates p42 MAPK by a two-collision, distributive mechanism rather than a single-collision, processive mechanism, and provide a mechanistic basis for understanding how MAP kinase can convert graded inputs into switch-like outputs.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305-5332, USA.
| | | |
Collapse
|
94
|
Jiang Y, Li Z, Schwarz EM, Lin A, Guan K, Ulevitch RJ, Han J. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J Biol Chem 1997; 272:11096-102. [PMID: 9111004 DOI: 10.1074/jbc.272.17.11096] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several mitogen-activated protein kinase (MAPK) cascades have been identified in eukaryotic cells. The activation of MAPKs is carried out by distinct MAPK kinases (MEKs or MKKs), and individual MAPKs have different substrate preferences. Here we have examined how amino acid sequences encompassing the dual phosphorylation motif located in the loop 12 linker (L12) between kinase subdomains VII and VIII and the length and amino acid sequence of L12 influence autophosphorylation, substrate specificity, and upstream kinase selectivity for the MAPK p38. Conversion of L12 of p38 to an "ERK-like" structure was accomplished in several ways: (i) by replacing glycine with glutamate in the dual phosphorylation site, (ii) by placing a six-amino acid sequence present in L12 of ERK (but absent in p38) into p38, and (iii) by mutations of amino acid residues in loop 12. Two predominant effects were noted: (i) the Xaa residue in the dual phosphorylation motif Thr-Xaa-Tyr as well as the length of L12 influence p38 substrate specificity, and (ii) the length of L12 plays a major role in controlling autophosphorylation. In contrast, these modifications do not result in any change in the selection of p38 by individual MAPK kinases.
Collapse
Affiliation(s)
- Y Jiang
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997; 16:1909-20. [PMID: 9155017 PMCID: PMC1169794 DOI: 10.1093/emboj/16.8.1909] [Citation(s) in RCA: 753] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mitogen-activated protein (MAP) kinases bind tightly to many of their physiologically relevant substrates. We have identified a new subfamily of murine serine/threonine kinases, whose members, MAP kinase-interacting kinase 1 (Mnk1) and Mnk2, bind tightly to the growth factor-regulated MAP kinases, Erk1 and Erk2. MNK1, but not Mnk2, also binds strongly to the stress-activated kinase, p38. MNK1 complexes more strongly with inactive than active Erk, implying that Mnk and Erk may dissociate after mitogen stimulation. Erk and p38 phosphorylate MNK1 and Mnk2, which stimulates their in vitro kinase activity toward a substrate, eukaryotic initiation factor-4E (eIF-4E). Initiation factor eIF-4E is a regulatory phosphoprotein whose phosphorylation is increased by insulin in an Erk-dependent manner. In vitro, MNK1 rapidly phosphorylates eIF-4E at the physiologically relevant site, Ser209. In cells, Mnk1 is post-translationally modified and enzymatically activated in response to treatment with either peptide growth factors, phorbol esters, anisomycin or UV. Mitogen- and stress-mediated MNK1 activation is blocked by inhibitors of MAP kinase kinase 1 (Mkk1) and p38, demonstrating that Mnk1 is downstream of multiple MAP kinases. MNK1 may define a convergence point between the growth factor-activated and one of the stress-activated protein kinase cascades and is a candidate to phosphorylate eIF-4E in cells.
Collapse
Affiliation(s)
- A J Waskiewicz
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
96
|
Ishihara H, Sasaoka T, Ishiki M, Takata Y, Imamura T, Usui I, Langlois WJ, Sawa T, Kobayashi M. Functional importance of Shc tyrosine 317 on insulin signaling in Rat1 fibroblasts expressing insulin receptors. J Biol Chem 1997; 272:9581-6. [PMID: 9083103 DOI: 10.1074/jbc.272.14.9581] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Shc is phosphorylated on Tyr-317, which serves as a docking site for Grb2. To investigate the specific role of Shc phosphorylation and Shc.Grb2 coupling on insulin signaling, we generated expression vectors for wild-type (WT-Shc) and a mutant Shc with a Tyr-317 --> Phe substitution (317Y/F-Shc) and stably transfected them into Rat1 fibroblasts expressing insulin receptors (HIRc). From different clonal cell lines, cells expressing 10 times greater amounts of WT-Shc or 317Y/F-Shc compared with endogenous Shc were chosen for analysis of insulin signaling. Insulin-induced Shc phosphorylation and subsequent association with Grb2 was enhanced in WT-Shc cells. Because of competition between Shc and IRS-1 for interaction with the insulin receptor, insulin-stimulated tyrosine phosphorylation of IRS-1 was decreased in WT-Shc cells compared with that in HIRc cells. Likewise, reduction of endogenous Shc expression by antisense Shc mRNA resulted in increased insulin stimulation of IRS-1 phosphorylation. Although 317Y/F-Shc was also able to interact with insulin receptor, decreased amounts of Shc phosphorylation and Shc association with Grb2 were observed in 317Y/F-Shc cells, indicating that 317Y/F-Shc functions as a dominant-negative mutant. The kinetics of mitogen-activated protein (MAP) kinase activation closely paralleled the kinetics of Shc phosphorylation. Thus, insulin stimulation of MAP kinase activation occurred more rapidly and was prolonged in WT-Shc cells, while the activation was delayed and transient in 317Y/F-Shc cells compared with that in HIRc cells. Importantly, WT-Shc cells displayed enhanced sensitivity to insulin stimulation of thymidine and bromodeoxyuridine incorporation, whereas the sensitivity was decreased in 317Y/F-Shc cells. These results indicate that Shc Tyr-317 phosphorylation plays an important role, via coupling with Grb2 and competition with IRS-1, in signal transduction to MAP kinase by insulin, ultimately leading to mitogenesis in Rat1 fibroblasts.
Collapse
Affiliation(s)
- H Ishihara
- First Department of Medicine, Toyama Medical & Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS, Ahn NG. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol 1997; 17:1947-58. [PMID: 9121442 PMCID: PMC232041 DOI: 10.1128/mcb.17.4.1947] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The K562 erythroleukemia cell line was used to study the molecular mechanisms regulating lineage commitment of hematopoietic stem cells. Phorbol esters, which initiate megakaryocyte differentiation in this cell line, caused a rapid increase in extracellular-signal-regulated kinase (ERK), which remained elevated for 2 h and returned to near-basal levels by 24 h. In the absence of extracellular stimuli, ERK could be activated by expression of constitutively active mutants of mitogen-activated protein (MAP) kinase kinase (MKK), resulting in cell adhesion and spreading, increased cell size, inhibition of cell growth, and induction of the platelet-specific integrin alphaIIb beta3, all hallmarks of megakaryocytic differentiation. In contrast, expression of wild-type MKK had little effect. In addition, constitutively active MKK suppressed the expression of an erythroid marker, alpha-globin, indicating the ability to suppress cellular responses necessary for alternative cell lineages. The MKK inhibitor PD98059 blocked MKK/ERK activation and cellular responses to phorbol ester, demonstrating that activation of MKK is necessary and sufficient to induce a differentiation program along the megakaryocyte lineage. Thus, the MAP kinase cascade, which promotes cell growth and proliferation in many cell types, instead inhibits cell proliferation and initiates lineage-specific differentiation in K562 cells, establishing a model system to investigate the mechanisms by which this signal transduction pathway specifies cell fate and developmental processes.
Collapse
Affiliation(s)
- A M Whalen
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309, USA
| | | | | | | | | |
Collapse
|
98
|
Chen M, Li D, Krebs EG, Cooper JA. The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol Cell Biol 1997; 17:1904-12. [PMID: 9121438 PMCID: PMC232037 DOI: 10.1128/mcb.17.4.1904] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mos is a germ cell-specific serine/threonine kinase and is required for Xenopus oocyte maturation. Active Mos stimulates a mitogen-activated protein kinase (MAPK) by directly phosphorylating and activating MAPK kinase (MKK). We report here that the Xenopus homolog of the beta subunit of casein kinase II (CKII beta) binds to and regulates Mos. The Mos-interacting region of CKII beta was mapped to the C terminus. Mos bound to CKII beta in somatic cells ectopically expressing Mos and CKII beta as well as in unfertilized Xenopus eggs. CKII beta inhibited Mos-mediated MAPK activation in rabbit reticulocyte lysates and repressed MKK activation by v-Mos in a coupled kinase assay. In addition, microinjection of CKII beta mRNA into Xenopus oocytes inhibited progesterone-induced meiotic maturation and MAPK activation, presumably by binding of CKII beta to Mos and thereby inhibiting MAPK activation. Moreover, this inhibitory phenotype could be rescued by another protein that binds to CKII beta, CKII alpha. The ability of ectopic CKII beta to inhibit meiotic maturation and the detection of a complex between endogenous Mos and CKII beta suggest that CKII beta may act as an inhibitor of Mos during oocyte maturation, perhaps setting a threshold beyond which Mos protein must accumulate before it can activate the MAPK pathway.
Collapse
Affiliation(s)
- M Chen
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
99
|
Healy JI, Dolmetsch RE, Timmerman LA, Cyster JG, Thomas ML, Crabtree GR, Lewis RS, Goodnow CC. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 1997; 6:419-28. [PMID: 9133421 DOI: 10.1016/s1074-7613(00)80285-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is not known how immunogenic versus tolerogenic cellular responses are signaled by receptors such as the B cell antigen receptor (BCR). Here we compare BCR signaling in naive cells that respond positively to foreign antigen and self-tolerant cells that respond negatively to self-antigen. In naive cells, foreign antigen triggered a large biphasic calcium response and activated nuclear signals through NF-AT, NF-kappa B, JNK, and ERK/pp90rsk. In tolerant B cells, self-antigen stimulated low calcium oscillations and activated NF-AT and ERK/pp90rsk but not NF-kappa B or JNK. Self-reactive B cells lacking the phosphatase CD45 did not exhibit calcium oscillations or ERK/pp90rsk activation, nor did they repond negatively to self-antigen. These data reveal striking biochemical differences in BCR signaling to the nucleus during positive selection by foreign antigens and negative selection by self-antigens.
Collapse
Affiliation(s)
- J I Healy
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Sweeney FP, Quinn PA, Ng LL. Enhanced mitogen-activated protein kinase activity and phosphorylation of the Na+/H+ exchanger isoform-1 of human lymphoblasts in hypertension. Metabolism 1997; 46:297-302. [PMID: 9054473 DOI: 10.1016/s0026-0495(97)90257-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased activity of the Na+/H+ exchanger isoform-1 (NHE-1) is recognized as an intermediate phenotype for hypertension, but the basis for this association is unclear. We have previously demonstrated an increased phosphorylation of NHE-1 in lymphoblasts from hypertensives that was associated with increased cell proliferation. Due to the central importance of mitogen-activated protein kinases (MAPKs) in signaling cascades transducing responses from extracellular growth factors and hormones, we examined the activity of this kinase in a specific peptide phosphorylation assay. Cells from hypertensives showed a significant twofold enhancement of MAPK activity (P < .001). This was not associated with any increase in p42mapk and p44mapk protein content. There was no significant increase in the level of tyrosine phosphorylation of MAPK in cells from hypertensives. MAPK activity was correlated with NHE-1 activity (r(s) = .55, P < .01) and phosphorylation (r(s) = .51, P < .02). These findings suggest that the increased cell proliferation rate, NHE-1 activity, and phosphorylation of lymphoblasts from hypertensives may be associated with enhanced MAPK activity, suggesting upregulation of this signaling pathway in hypertension.
Collapse
Affiliation(s)
- F P Sweeney
- Department of Medicine, Leicester Royal Infirmary, UK
| | | | | |
Collapse
|