51
|
Sun N, Zhang X, Guo S, Le HT, Zhang X, Kim KM. Molecular mechanisms involved in epidermal growth factor receptor-mediated inhibition of dopamine D 3 receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1187-1200. [PMID: 29885323 DOI: 10.1016/j.bbamcr.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
The phenomenon wherein the signaling by a given receptor is regulated by a different class of receptors is termed transactivation or crosstalk. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) is highly diverse and has unique functional implications because of the distinct structural features of the receptors and the signaling pathways involved. The present study used the epidermal growth factor receptor (EGFR) and dopamine D3 receptor (D3R), which are both associated with schizophrenia, as the model system to study crosstalk between RTKs and GPCRs. Loss-of-function approaches were used to identify the cellular components involved in the tyrosine phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which is responsible for EGFR-induced regulation of the functions of D3R. SRC proto-oncogene (Src, non-receptor tyrosine kinase), heterotrimeric G protein Gβγ subunit, and endocytosis of EGFR were involved in the tyrosine phosphorylation of GRK2. In response to EGF treatment, Src interacted with EGFR in a Gβγ-dependent manner, resulting in the endocytosis of EGFR. Internalized EGFR in the cytosol mediated Src/Gβγ-dependent tyrosine phosphorylation of GRK2. The binding of tyrosine-phosphorylated GRK2 to the T142 residue of D3R resulted in uncoupling from G proteins, endocytosis, and lysosomal downregulation. This study identified the molecular mechanisms involved in the EGFR-mediated regulation of the functions of D3R, which can be extended to the crosstalk between other RTKs and GPCRs.
Collapse
Affiliation(s)
- Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Shuohan Guo
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Hang Thi Le
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea.
| |
Collapse
|
52
|
Kankanamge D, Ratnayake K, Samaradivakara S, Karunarathne A. Melanopsin (Opn4) utilizes Gα i and Gβγ as major signal transducers. J Cell Sci 2018; 131:jcs.212910. [PMID: 29712722 DOI: 10.1242/jcs.212910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
Melanopsin (Opn4), a ubiquitously expressed photoreceptor in all classes of vertebrates, is crucial for both visual and non-visual signaling. Opn4 supports visual functions of the eye by sensing radiance levels and discriminating contrast and brightness. Non-image-forming functions of Opn4 not only regulate circadian behavior, but also control growth and development processes of the retina. It is unclear how a single photoreceptor could govern such a diverse range of physiological functions; a role in genetic hardwiring could be one explanation, but molecular and mechanistic evidence is lacking. In addition to its role in canonical Gq pathway activation, here we demonstrate that Opn4 efficiently activates Gi heterotrimers and signals through the G protein βγ. Compared with the low levels of Gi pathway activation observed for several Gq-coupled receptors, the robust Gαi and Gβγ signaling of Opn4 led to both generation of PIP3 and directional migration of RAW264.7 macrophages. We propose that the ability of Opn4 to signal through Gαi and Gβγ subunits is a major contributor to its functional diversity.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Saroopa Samaradivakara
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
53
|
Abstract
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Collapse
|
54
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
55
|
Pack TF, Orlen MI, Ray C, Peterson SM, Caron MG. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation. J Biol Chem 2018; 293:6161-6171. [PMID: 29487132 DOI: 10.1074/jbc.ra117.001300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling.
Collapse
Affiliation(s)
- Thomas F Pack
- From the Departments of Pharmacology and Cancer Biology.,Cell Biology
| | | | | | | | - Marc G Caron
- Cell Biology, .,Neurobiology, and.,Medicine, Duke University Medical Center, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
56
|
Senarath K, Payton JL, Kankanamge D, Siripurapu P, Tennakoon M, Karunarathne A. Gγ identity dictates efficacy of Gβγ signaling and macrophage migration. J Biol Chem 2018; 293:2974-2989. [PMID: 29317505 DOI: 10.1074/jbc.ra117.000872] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
G protein βγ subunit (Gβγ) is a major signal transducer and controls processes ranging from cell migration to gene transcription. Despite having significant subtype heterogeneity and exhibiting diverse cell- and tissue-specific expression levels, Gβγ is often considered a unified signaling entity with a defined functionality. However, the molecular and mechanistic basis of Gβγ's signaling specificity is unknown. Here, we demonstrate that Gγ subunits, bearing the sole plasma membrane (PM)-anchoring motif, control the PM affinity of Gβγ and thereby differentially modulate Gβγ effector signaling in a Gγ-specific manner. Both Gβγ signaling activity and the migration rate of macrophages are strongly dependent on the PM affinity of Gγ. We also found that the type of C-terminal prenylation and five to six pre-CaaX motif residues at the PM-interacting region of Gγ control the PM affinity of Gβγ. We further show that the overall PM affinity of the Gβγ pool of a cell type is a strong predictor of its Gβγ signaling-activation efficacy. A kinetic model encompassing multiple Gγ types and parameterized for empirical Gβγ behaviors not only recapitulated experimentally observed signaling of Gβγ, but also suggested a Gγ-dependent, active-inactive conformational switch for the PM-bound Gβγ, regulating effector signaling. Overall, our results unveil crucial aspects of signaling and cell migration regulation by Gγ type-specific PM affinities of Gβγ.
Collapse
Affiliation(s)
- Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - John L Payton
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Praneeth Siripurapu
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio 43606.
| |
Collapse
|
57
|
Watson U, Jain R, Asthana S, Saini DK. Spatiotemporal Modulation of ERK Activation by GPCRs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:111-140. [DOI: 10.1016/bs.ircmb.2018.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
58
|
Impact of paroxetine on proximal β-adrenergic receptor signaling. Cell Signal 2017; 38:127-133. [PMID: 28711716 DOI: 10.1016/j.cellsig.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022]
Abstract
β-adrenergic receptors (βAR) regulate numerous functions throughout the body, however G protein-coupled receptor kinase (GRK)-dependent desensitization of βAR has long been recognized as a maladaptive process in the progression of various disease states. Thus, the development of small molecule inhibitors of GRKs for the study of these processes and as potential therapeutics has been at the forefront of recent research efforts. Via structural and biochemical analyses, the selective serotonin reuptake inhibitor (SSRI) paroxetine was identified as a GRK2 inhibitor that enhances βAR-dependent cardiomyocyte and cardiac contractility and reverses cardiac dysfunction and myocardial βAR expression in mouse models of heart failure. Despite these functional outcomes, consistent with diminished βAR desensitization, the proximal βAR signaling mechanisms sensitive to paroxetine have not been reported. In this study, we aimed to determine whether paroxetine prevents classic βAR desensitization-related signaling mechanisms at a molecular level. Therefore, via immunoblotting, radioligand binding, fluorescence resonance energy transfer (FRET) and microscopy assays, we have performed an assessment of the effect of paroxetine on proximal βAR signaling responses. Indeed, paroxetine treatment inhibited ligand-induced β2AR phosphorylation in a concentration-dependent manner. Additionally, for both β1AR and β2AR, paroxetine decreased ligand-induced βarrestin2 recruitment and subsequent receptor internalization. Thus, paroxetine inhibits βAR desensitization mechanisms consistent with GRK2 inhibition and provides a useful pharmacological tool for studying these proximal GPCR signaling responses.
Collapse
|
59
|
Min C, Zhang X, Zheng M, Sun N, Acharya S, Zhang X, Kim KM. Molecular Signature That Determines the Acute Tolerance of G Protein-Coupled Receptors. Biomol Ther (Seoul) 2017; 25:239-248. [PMID: 27956717 PMCID: PMC5424633 DOI: 10.4062/biomolther.2016.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the β-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced β-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, β-arrestin2, and Gβγ. Gβγ displayed a stable interaction with receptors and β-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between Gβγ and β-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and Gβγ complex is required for the formation of a complex with β-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, β-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and Gβγ.
Collapse
Affiliation(s)
- Chengchun Min
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mei Zheng
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ningning Sun
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Srijan Acharya
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiaowei Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
60
|
Rajagopal S, Shenoy SK. GPCR desensitization: Acute and prolonged phases. Cell Signal 2017; 41:9-16. [PMID: 28137506 DOI: 10.1016/j.cellsig.2017.01.024] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transduce a wide array of extracellular signals and regulate virtually every aspect of physiology. While GPCR signaling is essential, overstimulation can be deleterious, resulting in cellular toxicity or uncontrolled cellular growth. Accordingly, nature has developed a number of mechanisms for limiting GPCR signaling, which are broadly referred to as desensitization, and refer to a decrease in response to repeated or continuous stimulation. Short-term desensitization occurs over minutes, and is primarily associated with β-arrestins preventing G protein interaction with a GPCR. Longer-term desensitization, referred to as downregulation, occurs over hours to days, and involves receptor internalization into vesicles, degradation in lysosomes and decreased receptor mRNA levels through unclear mechanisms. Phosphorylation of the receptor by GPCR kinases (GRKs) and the recruitment of β-arrestins is critical to both these short- and long-term desensitization mechanisms. In addition to phosphorylation, both the GPCR and β-arrestins are modified post-translationally in several ways, including by ubiquitination. For many GPCRs, receptor ubiquitination promotes degradation of agonist-activated receptors in the lysosomes. Other proteins also play important roles in desensitization, including phosphodiesterases, RGS family proteins and A-kinase-anchoring proteins. Together, this intricate network of kinases, ubiquitin ligases, and adaptor proteins orchestrate the acute and prolonged desensitization of GPCRs.
Collapse
Affiliation(s)
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
61
|
Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1883-1892. [PMID: 28130200 DOI: 10.1016/j.bbadis.2017.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies.
Collapse
|
62
|
Jovancevic N, Dendorfer A, Matzkies M, Kovarova M, Heckmann JC, Osterloh M, Boehm M, Weber L, Nguemo F, Semmler J, Hescheler J, Milting H, Schleicher E, Gelis L, Hatt H. Medium-chain fatty acids modulate myocardial function via a cardiac odorant receptor. Basic Res Cardiol 2017; 112:13. [PMID: 28116519 PMCID: PMC5258789 DOI: 10.1007/s00395-017-0600-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Abstract
Several studies have demonstrated the expression of odorant receptors (OR) in various human tissues and their involvement in different physiological and pathophysiological processes. However, the functional role of ORs in the human heart is still unclear. Here, we firstly report the functional characterization of an OR in the human heart. Initial next-generation sequencing analysis revealed the OR expression pattern in the adult and fetal human heart and identified the fatty acid-sensing OR51E1 as the most highly expressed OR in both cardiac development stages. An extensive characterization of the OR51E1 ligand profile by luciferase reporter gene activation assay identified 2-ethylhexanoic acid as a receptor antagonist and various structurally related fatty acids as novel OR51E1 ligands, some of which were detected at receptor-activating concentrations in plasma and epicardial adipose tissue. Functional investigation of the endogenous receptor was carried out by Ca2+ imaging of human stem cell-derived cardiomyocytes. Application of OR51E1 ligands induced negative chronotropic effects that depended on activation of the OR. OR51E1 activation also provoked a negative inotropic action in cardiac trabeculae and slice preparations of human explanted ventricles. These findings indicate that OR51E1 may play a role as metabolic regulator of cardiac function.
Collapse
Affiliation(s)
- Nikolina Jovancevic
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany.
| | - A Dendorfer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, 80336, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - M Matzkies
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - M Kovarova
- Division of Pathobiochemistry and Clinical Chemistry, University of Tuebingen, 72076, Tuebingen, Germany
| | - J C Heckmann
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - M Osterloh
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - M Boehm
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - L Weber
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - F Nguemo
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - J Semmler
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - J Hescheler
- Institute for Neurophysiology, University of Cologne, 50931, Cologne, Germany
| | - H Milting
- Erich and Hanna Klessmann Institute, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - E Schleicher
- Division of Pathobiochemistry and Clinical Chemistry, University of Tuebingen, 72076, Tuebingen, Germany
| | - L Gelis
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - H Hatt
- Department of Cell Physiology, Ruhr-University Bochum, 44801, Bochum, Germany
| |
Collapse
|
63
|
New Concepts in Dopamine D 2 Receptor Biased Signaling and Implications for Schizophrenia Therapy. Biol Psychiatry 2017; 81:78-85. [PMID: 27832841 PMCID: PMC5702557 DOI: 10.1016/j.biopsych.2016.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The dopamine D2 receptor (D2R) is a G protein-coupled receptor that is a common target for antipsychotic drugs. Antagonism of D2R signaling in the striatum is thought to be the primary mode of action of antipsychotic drugs in alleviating psychotic symptoms. However, antipsychotic drugs are not clinically effective at reversing cortical-related symptoms, such as cognitive deficits in schizophrenia. While the exact mechanistic underpinnings of these cognitive deficits are largely unknown, deficits in cortical dopamine function likely play a contributing role. It is now recognized that similar to most G protein-coupled receptors, D2Rs signal not only through canonical G protein pathways but also through noncanonical beta-arrestin2-dependent pathways. We review the current mechanistic bases for this dual signaling mode of D2Rs and how these new concepts might be leveraged for therapeutic gain to target both cortical and striatal dysfunction in dopamine neurotransmission and hence have the potential to correct both positive and cognitive symptoms of schizophrenia.
Collapse
|
64
|
Zhang X, Choi BG, Kim KM. Roles of Dopamine D₂ Receptor Subregions in Interactions with β-Arrestin2. Biomol Ther (Seoul) 2016; 24:517-22. [PMID: 27068263 PMCID: PMC5012877 DOI: 10.4062/biomolther.2015.198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/24/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023] Open
Abstract
β-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of β-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with β-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with β-arrestin2. For this, we employed dopamine D2 and D3 receptors (D2R and D3R, respectively), since they display distinct agonist-induced interactions with β-arrestins. Our results showed that the second and third intracellular loops of D2R are involved in the agonist-induced translocation of β-arrestins toward plasma membranes. In contrast, the N- and C-termini of D2R exerted negative effects on the basal interaction with β-arrestins.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Gil Choi
- Medicinal Chemistry Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
65
|
Yang S, Ben-Shalom R, Ahn M, Liptak AT, van Rijn RM, Whistler JL, Bender KJ. β-Arrestin-Dependent Dopaminergic Regulation of Calcium Channel Activity in the Axon Initial Segment. Cell Rep 2016; 16:1518-1526. [PMID: 27452469 DOI: 10.1016/j.celrep.2016.06.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/27/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) initiate a variety of signaling cascades, depending on effector coupling. β-arrestins, which were initially characterized by their ability to "arrest" GPCR signaling by uncoupling receptor and G protein, have recently emerged as important signaling effectors for GPCRs. β-arrestins engage signaling pathways that are distinct from those mediated by G protein. As such, arrestin-dependent signaling can play a unique role in regulating cell function, but whether neuromodulatory GPCRs utilize β-arrestin-dependent signaling to regulate neuronal excitability remains unclear. Here, we find that D3 dopamine receptors (D3R) regulate axon initial segment (AIS) excitability through β-arrestin-dependent signaling, modifying CaV3 voltage dependence to suppress high-frequency action potential generation. This non-canonical D3R signaling thereby gates AIS excitability via pathways distinct from classical GPCR signaling pathways.
Collapse
Affiliation(s)
- Sungchil Yang
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roy Ben-Shalom
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Misol Ahn
- Department of Pathology and Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alayna T Liptak
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Whistler
- Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Alcohol and Addiction Research Group, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
66
|
G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Sci Rep 2016; 6:29205. [PMID: 27412951 PMCID: PMC4944123 DOI: 10.1038/srep29205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism.
Collapse
|
67
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
68
|
Yang P, Homan KT, Li Y, Cruz-Rodríguez O, Tesmer JJG, Chen Z. Effect of Lipid Composition on the Membrane Orientation of the G Protein-Coupled Receptor Kinase 2-Gβ1γ2 Complex. Biochemistry 2016; 55:2841-8. [PMID: 27088923 DOI: 10.1021/acs.biochem.6b00354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between proteins and cell membranes are critical for biological processes such as transmembrane signaling, and specific components of the membrane may play roles in helping to organize or mandate particular conformations of both integral and peripheral membrane proteins. One example of a signaling enzyme whose function is dependent on membrane binding and whose activity is affected by specific lipid components is G protein-coupled receptor (GPCR) kinase 2 (GRK2). Efficient GRK2-mediated phosphorylation of activated GPCRs is dependent not only on its recruitment to the membrane by heterotrimeric Gβγ subunits but also on the presence of highly negatively charged lipids, in particular phosphatidylinositol 4',5'-bisphosphate (PIP2). We hypothesized that PIP2 may favor a distinct orientation of the GRK2-Gβγ complex on the membrane that is more optimal for function. In this study, we compared the possible orientations of the GRK2-Gβγ complex and Gβγ alone on model cell membranes prepared with various anionic phospholipids as deduced from sum frequency generation vibrational and attenuated total reflectance Fourier transform infrared spectroscopic methods. Our results indicate that PIP2 affects the membrane orientation of the GRK2-Gβ1γ2 complex but not that of complexes formed with anionic phospholipid binding deficient mutations in the GRK2 pleckstrin homology (PH) domain. Gβ1γ2 exhibits a similar orientation on the lipid bilayer regardless of its lipid composition. The PIP2-induced orientation of the GRK2-Gβ1γ2 complex is therefore most likely caused by specific interactions between PIP2 and the GRK2 PH domain. Thus, PIP2 not only helps recruit GRK2 to the membrane but also "fine tunes" the orientation of the GRK2-Gβγ complex so that it is better positioned to phosphorylate activated GPCRs.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kristoff T Homan
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yaoxin Li
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Osvaldo Cruz-Rodríguez
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States.,Ph.D. Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
69
|
Jiang K, Liu Y, Fan J, Zhang J, Li XA, Evers BM, Zhu H, Jia J. PI(4)P Promotes Phosphorylation and Conformational Change of Smoothened through Interaction with Its C-terminal Tail. PLoS Biol 2016; 14:e1002375. [PMID: 26863604 PMCID: PMC4749301 DOI: 10.1371/journal.pbio.1002375] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
In Hedgehog (Hh) signaling, binding of Hh to the Patched-Interference Hh (Ptc-Ihog) receptor complex relieves Ptc inhibition on Smoothened (Smo). A longstanding question is how Ptc inhibits Smo and how such inhibition is relieved by Hh stimulation. In this study, we found that Hh elevates production of phosphatidylinositol 4-phosphate (PI(4)P). Increased levels of PI(4)P promote, whereas decreased levels of PI(4)P inhibit, Hh signaling activity. We further found that PI(4)P directly binds Smo through an arginine motif, which then triggers Smo phosphorylation and activation. Moreover, we identified the pleckstrin homology (PH) domain of G protein-coupled receptor kinase 2 (Gprk2) as an essential component for enriching PI(4)P and facilitating Smo activation. PI(4)P also binds mouse Smo (mSmo) and promotes its phosphorylation and ciliary accumulation. Finally, Hh treatment increases the interaction between Smo and PI(4)P but decreases the interaction between Ptc and PI(4)P, indicating that, in addition to promoting PI(4)P production, Hh regulates the pool of PI(4)P associated with Ptc and Smo.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yajuan Liu
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Junkai Fan
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jie Zhang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jianhang Jia
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
70
|
Hewavitharana T, Wedegaertner PB. PAQR3 regulates Golgi vesicle fission and transport via the Gβγ-PKD signaling pathway. Cell Signal 2015; 27:2444-51. [PMID: 26327583 PMCID: PMC4684484 DOI: 10.1016/j.cellsig.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 01/06/2023]
Abstract
Heterotrimeric G proteins function at diverse subcellular locations, in addition to canonical signaling at the plasma membrane (PM). Gβγ signals at the Golgi, via protein kinase D (PKD), to regulate fission of PM-destined vesicles. However, the mechanism by which Gβγ is regulated at the Golgi in this process remains elusive. Recent studies have revealed that PAQR3 (Progestin and AdipoQ Receptor 3), also called RKTG (Raf Kinase Trapping to the Golgi), interacts with the Gβ subunit and localizes Gβ to the Golgi thereby inhibiting Gβγ signaling at the PM. Herein we show that, in contrast to this inhibition of canonical Gβγ signaling at the PM, PAQR3 promotes Gβγ signaling at the Golgi. Expression of PAQR3 causes fragmentation of the Golgi, while a Gβ binding-deficient mutant of PAQR3 does not cause Golgi fragmentation. Also, a C-terminal fragment of GRK2 (GRK2ct), which interacts with Gβγ and inhibits Gβγ signaling, and gallein, a small molecule inhibitor of Gβγ, are both able to inhibit PAQR3-mediated Golgi fragmentation. Furthermore, a dominant negative form of PKD (PKD-DN) and a pharmacological inhibitor of PKD, Gö6976, also inhibit PAQR3-mediated fragmentation of the Golgi. Importantly, expression of the Gβ binding-deficient mutant of PAQR3 inhibits the constitutive transport of the model cargo protein VSV-G from the Golgi to the PM, indicating the involvement of PAQR3 in Golgi-to PM vesicle transport and a dominant negative role for this mutant. Collectively, these results reveal a novel role for the newly characterized, Golgi-localized PAQR3 in regulating Gβγ at the non-canonical subcellular location of the Golgi and thus for controlling Golgi-to-PM protein transport via the Gβγ-PKD signaling pathway.
Collapse
Affiliation(s)
- Thamara Hewavitharana
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th St., 839 BLSB, Philadelphia, PA 19107, United States.
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th St., 839 BLSB, Philadelphia, PA 19107, United States.
| |
Collapse
|
71
|
Zheng M, Zhang X, Guo S, Zhang X, Min C, Cheon SH, Oak MH, Kim YR, Kim KM. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:77-90. [PMID: 26477566 DOI: 10.1016/j.bbamcr.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with Gβγ. These results suggest that agonist-induced Gβγ-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Shuohan Guo
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Chengchun Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Seung Hoon Cheon
- Department of Medicinal Chemistry, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanamdo 534-729, Republic of Korea
| | - Young Ran Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea.
| |
Collapse
|
72
|
Inagaki S, Ghirlando R, Vishnivetskiy SA, Homan KT, White JF, Tesmer JJG, Gurevich VV, Grisshammer R. G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro. Biochemistry 2015; 54:4320-9. [PMID: 26120872 PMCID: PMC4512254 DOI: 10.1021/acs.biochem.5b00285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
G protein-coupled
receptor kinases (GRKs) play an important role
in the desensitization of G protein-mediated signaling of G protein-coupled
receptors (GPCRs). The level of interest in mapping their phosphorylation
sites has increased because recent studies suggest that the differential
pattern of receptor phosphorylation has distinct biological consequences. In vitro phosphorylation experiments using well-controlled
systems are useful for deciphering the complexity of these physiological
reactions and understanding the targeted event. Here, we report on
the phosphorylation of the class A GPCR neurotensin receptor 1 (NTSR1)
by GRKs under defined experimental conditions afforded by nanodisc
technology. Phosphorylation of NTSR1 by GRK2 was agonist-dependent,
whereas phosphorylation by GRK5 occurred in an activation-independent
manner. In addition, the negatively charged lipids in the immediate
vicinity of NTSR1 directly affect phosphorylation by GRKs. Identification
of phosphorylation sites in agonist-activated NTSR1 revealed that
GRK2 and GRK5 target different residues located on the intracellular
receptor elements. GRK2 phosphorylates only the C-terminal Ser residues,
whereas GRK5 phosphorylates Ser and Thr residues located in intracellular
loop 3 and the C-terminus. Interestingly, phosphorylation assays using
a series of NTSR1 mutants show that GRK2 does not require acidic residues
upstream of the phospho-acceptors for site-specific phosphorylation,
in contrast to the β2-adrenergic and μ-opioid
receptors. Differential phosphorylation of GPCRs by GRKs is thought
to encode a particular signaling outcome, and our in vitro study revealed NTSR1 differential phosphorylation by GRK2 and GRK5.
Collapse
Affiliation(s)
- Sayaka Inagaki
- †Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, United States
| | - Rodolfo Ghirlando
- ‡Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Sergey A Vishnivetskiy
- §Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kristoff T Homan
- ∥Departments of Pharmacology and Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jim F White
- †Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, United States
| | - John J G Tesmer
- ∥Departments of Pharmacology and Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vsevolod V Gurevich
- §Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Reinhard Grisshammer
- †Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852, United States
| |
Collapse
|
73
|
Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, Poitout V. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1. J Biol Chem 2015; 290:21131-21140. [PMID: 26157145 DOI: 10.1074/jbc.m115.644450] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
FFAR1/GPR40 is a seven-transmembrane domain receptor (7TMR) expressed in pancreatic β cells and activated by FFAs. Pharmacological activation of GPR40 is a strategy under consideration to increase insulin secretion in type 2 diabetes. GPR40 is known to signal predominantly via the heterotrimeric G proteins Gq/11. However, 7TMRs can also activate functionally distinct G protein-independent signaling via β-arrestins. Further, G protein- and β-arrestin-based signaling can be differentially modulated by different ligands, thus eliciting ligand-specific responses ("biased agonism"). Whether GPR40 engages β-arrestin-dependent mechanisms and is subject to biased agonism is unknown. Using bioluminescence resonance energy transfer-based biosensors for real-time monitoring of cell signaling in living cells, we detected a ligand-induced GPR40-β-arrestin interaction, with the synthetic GPR40 agonist TAK-875 being more effective than palmitate or oleate in recruiting β-arrestins 1 and 2. Conversely, TAK-875 acted as a partial agonist of Gq/11-dependent GPR40 signaling relative to both FFAs. Pharmacological blockade of Gq activity decreased FFA-induced insulin secretion. In contrast, knockdown or genetic ablation of β-arrestin 2 in an insulin-secreting cell line and mouse pancreatic islets, respectively, uniquely attenuated the insulinotropic activity of TAK-875, thus providing functional validation of the biosensor data. Collectively, these data reveal that in addition to coupling to Gq/11, GPR40 is functionally linked to a β-arrestin 2-mediated insulinotropic signaling axis. These observations expose previously unrecognized complexity for GPR40 signal transduction and may guide the development of biased agonists showing improved clinical profile in type 2 diabetes.
Collapse
Affiliation(s)
- Arturo D Mancini
- Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada
| | - Gyslaine Bertrand
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universités de Montpellier 1 & 2, 34060 Montpellier, France
| | - Kevin Vivot
- Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada
| | - Éric Carpentier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Quebec H3C 3J7, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Quebec H3C 3J7, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, Research Center of the University of Montreal Hospital Center (CRCHUM), and Department of Medicine, University of Montreal, Quebec H2X 0A9, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
74
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
75
|
Burczyk M, Burkhalter MD, Blätte T, Matysik S, Caron MG, Barak LS, Philipp M. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2. Biochemistry 2015; 54:765-75. [PMID: 25555130 PMCID: PMC4310627 DOI: 10.1021/bi501061h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The evolutionarily conserved DRY
motif at the end of the third
helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs)
is a major regulator of receptor stability, signaling activity, and
β-arrestin-mediated internalization. Substitution of the DRY
arginine with histidine in the human vasopressin receptor results
in a loss-of-function phenotype associated with diabetes insipidus.
The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1
phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but
also impairs heart field migration. We hypothesized that constitutive
S1p2 desensitization is the underlying cause of this strong zebrafish
developmental defect. We observed in cell assays that the wild-type
S1p2 receptor is at the cell surface whereas in distinct contrast
the S1p2 R150H receptor is found in intracellular vesicles, blocking
G protein but not arrestin signaling activity. Surface S1p2 R150H
expression could be restored by inhibition of G protein-coupled receptor
kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and
GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion
of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued
cardia bifida. The ability of reduced GRK2 activity to reverse a developmental
phenotype associated with constitutive desensitization supports efforts
to genetically or pharmacologically target this kinase in diseases
involving biased GPCR signaling.
Collapse
Affiliation(s)
- Martina Burczyk
- Institute for Biochemistry and Molecular Biology, Ulm University , 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
76
|
Woo AYH, Song Y, Xiao RP, Zhu W. Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br J Pharmacol 2014; 172:5444-56. [PMID: 25298054 DOI: 10.1111/bph.12965] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 09/28/2014] [Indexed: 12/27/2022] Open
Abstract
The body is constantly faced with a dynamic requirement for blood flow. The heart is able to respond to these changing needs by adjusting cardiac output based on cues emitted by circulating catecholamine levels. Cardiac β-adrenoceptors transduce the signal produced by catecholamine stimulation via Gs proteins to their downstream effectors to increase heart contractility. During heart failure, cardiac output is insufficient to meet the needs of the body; catecholamine levels are high and β-adrenoceptors become hyperstimulated. The hyperstimulated β1-adrenoceptors induce a cardiotoxic effect, which could be counteracted by the cardioprotective effect of β2-adrenoceptor-mediated Gi signalling. However, β2-adrenoceptor-Gi signalling negates the stimulatory effect of the Gs signalling on cardiomyocyte contraction and further exacerbates cardiodepression. Here, further to the localization of β1- and β2-adrenoceptors and β2-adrenoceptor-mediated β-arrestin signalling in cardiomyocytes, we discuss features of the dysregulation of β-adrenoceptor subtype signalling in the failing heart, and conclude that Gi-biased β2-adrenoceptor signalling is a pathogenic pathway in heart failure that plays a crucial role in cardiac remodelling. In contrast, β2-adrenoceptor-Gs signalling increases cardiomyocyte contractility without causing cardiotoxicity. Finally, we discuss a novel therapeutic approach for heart failure using a Gs-biased β2-adrenoceptor agonist and a β1-adrenoceptor antagonist in combination. This combination treatment normalizes the β-adrenoceptor subtype signalling in the failing heart and produces therapeutic effects that outperform traditional heart failure therapies in animal models. The present review illustrates how the concept of biased signalling can be applied to increase our understanding of the pathophysiology of diseases and in the development of novel therapies.
Collapse
Affiliation(s)
- Anthony Yiu-Ho Woo
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Song
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weizhong Zhu
- Department of Pharmacology, Nantong University School of Pharmacy, Nantong, China
| |
Collapse
|
77
|
Nader N, Dib M, Daalis A, Kulkarni RP, Machaca K. Role for endocytosis of a constitutively active GPCR (GPR185) in releasing vertebrate oocyte meiotic arrest. Dev Biol 2014; 395:355-66. [PMID: 25220151 DOI: 10.1016/j.ydbio.2014.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/04/2014] [Accepted: 08/28/2014] [Indexed: 01/20/2023]
Abstract
Vertebrate oocytes are naturally arrested at prophase of meiosis I for sustained periods of time before resuming meiosis in a process called oocyte maturation that prepares the egg for fertilization. Members of the constitutively active GPR3/6/12 family of G-protein coupled receptors represent important mediators of meiotic arrest. In the frog oocyte the GPR3/12 homolog GPRx (renamed GPR185) has been shown to sustain meiotic arrest by increasing intracellular cAMP levels through GαSβγ. Here we show that GPRx is enriched at the cell membrane (~80%), recycles through an endosomal compartment at steady state, and loses its ability to signal once trapped intracellularly. Progesterone-mediated oocyte maturation is associated with significant internalization of both endogenous and overexpressed GPRx. Furthermore, a GPRx mutant that does not internalize in response to progesterone is significantly more efficient than wild-type GPRx at blocking oocyte maturation. Collectively our results argue that internalization of the constitutively active GPRx is important to release oocyte meiotic arrest.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Arwa Daalis
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Rashmi P Kulkarni
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Doha, Qatar.
| |
Collapse
|
78
|
Abstract
SIGNIFICANCE Heart failure (HF) is a common end point for many underlying cardiovascular diseases. Down-regulation and desensitization of β-adrenergic receptors (β-AR) caused by G-protein-coupled receptor (GPCR) kinase 2 (GRK2) are prominent features of HF. Recent Advances and Critical Issues: Significant progress has been made to understand the pathological role of GRK2 in the heart both as a GPCR kinase and as a molecule that can exert GPCR-independent effects. Inhibition of cardiac GRK2 has proved to be therapeutic in the failing heart and may offer synergistic and additional benefits to β-blocker therapy. However, the mechanisms of how GRK2 directly contributes to the pathogenesis of HF need further investigation, and additional verification of the mechanistic details are needed before GRK2 inhibition can be used for the treatment of HF. FUTURE DIRECTIONS The newly identified characteristics of GRK2, including the S-nitrosylation of GRK2 and the localization of GRK2 on mitochondria, merit further investigation. They may contribute to it being a pro-death kinase and result in HF under stressed conditions through regulation of intracellular signaling, including cardiac reduction-oxidation (redox) balance. A thorough understanding of the functions of GRK2 in the heart is necessary in order to finalize it as a candidate for drug development.
Collapse
Affiliation(s)
- Zheng Maggie Huang
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
79
|
Wolters V, Krasel C, Brockmann J, Bünemann M. Influence of gαq on the dynamics of m3-acetylcholine receptor-g-protein-coupled receptor kinase 2 interaction. Mol Pharmacol 2014; 87:9-17. [PMID: 25316767 DOI: 10.1124/mol.114.094722] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase with an important function in the desensitization of G-protein-coupled receptors. Based on its ability to bind G-protein βγ subunits as well as activated Gαq subunits, it can be considered as an effector for G-proteins. The recruitment of GRK2 to activated receptors is well known to be mediated by Gβγ together with negatively charged membrane phospholipids. In the current study, we address the role of Gαq on the interaction of GRK2 with activated Gq-protein-coupled receptors. Therefore, we established new Förster resonance energy transfer (FRET)-based assays to study the interaction of GRK2 with the M3-acetylcholine (M3-ACh) receptor as well as Gq-protein subunits with high spatiotemporal resolution in single living human embryonic kidney 293T cells. M3-ACh receptor stimulation with 10 µM acetylcholine resulted in distinct changes in FRET, which reflects interaction of the respective proteins. GRK2 mutants with reduced binding affinity toward Gαq [GRK2(D110A)] and Gβγ [GRK2(R587Q)] were used to determine the specific role of Gq-protein-binding by GRK2. Comparison of absolute FRET amplitudes demonstrated that Gαq enhances the extent and stability of the GRK2-M3-ACh receptor interaction, and that not only Gβγ but also Gαq can target GRK2 to the membrane. This reveals an important role of Gαq in efficient recruitment of GRK2 to M3-ACh receptors. Furthermore, interactions between Gαq and GRK2 were associated with a prolongation of the interaction between GRK2 and the M3-ACh receptor and enhanced arrestin recruitment by these receptors, indicating that Gαq influences signaling and desensitization.
Collapse
Affiliation(s)
- Valerie Wolters
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (V.W., C.K., M.B.); and Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (J.B.)
| | - Cornelius Krasel
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (V.W., C.K., M.B.); and Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (J.B.)
| | - Jörg Brockmann
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (V.W., C.K., M.B.); and Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (J.B.)
| | - Moritz Bünemann
- Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany (V.W., C.K., M.B.); and Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (J.B.)
| |
Collapse
|
80
|
Bristow MR. Polymorphic variation in the G-protein beta-3 subunit gene and response to BiDil in A-HeFT: Basis for an African-American pharmacogenetic advantage to nitric oxide donor therapy? JACC-HEART FAILURE 2014; 2:558-60. [PMID: 25306449 DOI: 10.1016/j.jchf.2014.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Michael R Bristow
- Division of Cardiology and Cardiovascular Institute, University of Colorado, Aurora, Colorado.
| |
Collapse
|
81
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
82
|
Philipp M, Berger IM, Just S, Caron MG. Overlapping and opposing functions of G protein-coupled receptor kinase 2 (GRK2) and GRK5 during heart development. J Biol Chem 2014; 289:26119-26130. [PMID: 25104355 DOI: 10.1074/jbc.m114.551952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptor kinases 2 (GRK2) and 5 (GRK5) are fundamental regulators of cardiac performance in adults but are less well characterized for their function in the hearts of embryos. GRK2 and -5 belong to different subfamilies and function as competitors in the control of certain receptors and signaling pathways. In this study, we used zebrafish to investigate whether the fish homologs of GRK2 and -5, Grk2/3 and Grk5, also have unique, complementary, or competitive roles during heart development. We found that they differentially regulate the heart rate of early embryos and equally facilitate heart function in older embryos and that both are required to develop proper cardiac morphology. A loss of Grk2/3 results in dilated atria and hypoplastic ventricles, and the hearts of embryos depleted in Grk5 present with a generalized atrophy. This Grk5 morphant phenotype was associated with an overall decrease of early cardiac progenitors as well as a reduction in the area occupied by myocardial progenitor cells. In the case of Grk2/3, the progenitor decrease was confined to a subset of precursor cells with a committed ventricular fate. We attempted to rescue the GRK loss-of-function heart phenotypes by downstream activation of Hedgehog signaling. The Grk2/3 loss-of-function embryos were rescued by this approach, but Grk5 embryos failed to respond. In summary, we found that GRK2 and GRK5 control cardiac function as well as morphogenesis during development although with different morphological outcomes.
Collapse
Affiliation(s)
- Melanie Philipp
- Institute of Biochemistry and Molecular Biology and Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ina M Berger
- Department of Internal Medicine II-Cardiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany and
| | - Steffen Just
- Department of Internal Medicine II-Cardiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany and
| | - Marc G Caron
- Departments of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710; Departments of Medicine, and Duke University Medical Center, Durham, North Carolina 27710; Departments of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
83
|
Beautrait A, Michalski KR, Lopez TS, Mannix KM, McDonald DJ, Cutter AR, Medina CB, Hebert AM, Francis CJ, Bouvier M, Tesmer JJG, Sterne-Marr R. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. J Biol Chem 2014; 289:25262-75. [PMID: 25049229 PMCID: PMC4155688 DOI: 10.1074/jbc.m114.593178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and β-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation. Expanded mutagenesis of the αN and AST allowed us to further assess the role of these two regions in kinase activation and receptor phosphorylation in vitro and in intact cells. We also developed a bioluminescence resonance energy transfer-based assay to monitor the recruitment of GRK2 to activated α2A-adrenergic receptors (α2AARs) in living cells. The bioluminescence resonance energy transfer signal exhibited a biphasic response to norepinephrine concentration, suggesting that GRK2 is recruited to Gβγ and α2AAR with EC50 values of 15 nm and 8 μm, respectively. We show that mutations in αN (L4A, V7E, L8E, V11A, S12A, Y13A, and M17A) and AST (G475I, V477D, and I485A) regions impair or potentiate receptor phosphorylation and/or recruitment. We suggest that a surface of GRK2, including Leu4, Val7, Leu8, Val11, and Ser12, directly interacts with receptors, whereas residues such as Asp10, Tyr13, Ala16, Met17, Gly475, Val477, and Ile485 are more important for kinase domain closure and activation. Taken together with data on GRK1 and GRK6, our data suggest that all three GRK subfamilies make conserved interactions with G protein-coupled receptors, but there may be unique interactions that influence selectivity.
Collapse
Affiliation(s)
- Alexandre Beautrait
- From the Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | - Michel Bouvier
- From the Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - John J G Tesmer
- the Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
84
|
Xu H, Jiang X, Shen K, Fischer CC, Wedegaertner PB. The regulator of G protein signaling (RGS) domain of G protein-coupled receptor kinase 5 (GRK5) regulates plasma membrane localization and function. Mol Biol Cell 2014; 25:2105-15. [PMID: 24807909 PMCID: PMC4072583 DOI: 10.1091/mbc.e13-09-0547] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GRK5/GRK4 chimeras and point mutations in GRK5 identify a short sequence within the RGS domain in GRK5 that is critical for GRK5 PM localization. CoIP and acceptor photobleaching FRET assays show that expressed GRK5 self-associates in cells, and RGS domain mutations disrupt the coIP. Taken together, the results provide evidence for a novel mechanism in which RGS domain–mediated dimerization is necessary for plasma membrane localization of GRK5. The G protein–coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs at the plasma membrane (PM). Here GRK5/GRK4 chimeras and point mutations in GRK5 identify a short sequence within the regulator of G protein signaling (RGS) domain in GRK5 that is critical for GRK5 PM localization. This region of the RGS domain of GRK5 coincides with a region of GRK6 and GRK1 shown to form a hydrophobic dimeric interface (HDI) in crystal structures. Coimmunoprecipitation (coIP) and acceptor photobleaching fluorescence resonance energy transfer assays show that expressed GRK5 self-associates in cells, whereas GRK5-M165E/F166E (GRK5-EE), containing hydrophilic mutations in the HDI region of the RGS domain, displays greatly decreased coIP interactions. Both forcing dimerization of GRK5-EE, via fusion to leucine zipper motifs, and appending an extra C-terminal membrane-binding region to GRK5-EE (GRK5-EE-CT) recover PM localization. In addition, GRK5-EE displays a decreased ability to inhibit PAR1-induced calcium release compared with GRK5 wild type (wt). In contrast, PM-localized GRK5-EE-CaaX (appending a C-terminal prenylation and polybasic motif from K-ras) or GRK5-EE-CT shows comparable ability to GRK5 wt to inhibit PAR1-induced calcium release. The results suggest a novel model in which GRK5 dimerization is important for its plasma membrane localization and function.
Collapse
Affiliation(s)
- Hua Xu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Xiaoshan Jiang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ke Shen
- Center for Science Research, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Christopher C Fischer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Philip B Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
85
|
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1. [PMID: 24597858 PMCID: PMC3973964 DOI: 10.1186/1750-2187-9-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
86
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|
87
|
Abstract
G-protein-coupled receptors (GPCRs) are the primary interaction partners for arrestins. The visual arrestins, arrestin1 and arrestin4, physiologically bind to only very few receptors, i.e., rhodopsin and the color opsins, respectively. In contrast, the ubiquitously expressed nonvisual variants β-arrestin1 and 2 bind to a large number of receptors in a fairly nonspecific manner. This binding requires two triggers, agonist activation and receptor phosphorylation by a G-protein-coupled receptor kinase (GRK). These two triggers are mediated by two different regions of the arrestins, the "phosphorylation sensor" in the core of the protein and a less well-defined "activation sensor." Binding appears to occur mostly in a 1:1 stoichiometry, involving the N-terminal domain of GPCRs, but in addition a second GPCR may loosely bind to the C-terminal domain when active receptors are abundant.Arrestin binding initially uncouples GPCRs from their G-proteins. It stabilizes receptors in an active conformation and also induces a conformational change in the arrestins that involves a rotation of the two domains relative to each other plus changes in the polar core. This conformational change appears to permit the interaction with further downstream proteins. The latter interaction, demonstrated mostly for β-arrestins, triggers receptor internalization as well as a number of nonclassical signaling pathways.Open questions concern the exact stoichiometry of the interaction, possible specificity with regard to the type of agonist and of GRK involved, selective regulation of downstream signaling (=biased signaling), and the options to use these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany,
| | | |
Collapse
|
88
|
Nickolls SA, Humphreys S, Clark M, McMurray G. Co-expression of GRK2 reveals a novel conformational state of the µ-opioid receptor. PLoS One 2013; 8:e83691. [PMID: 24376730 PMCID: PMC3869807 DOI: 10.1371/journal.pone.0083691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Agonists at the µ-opioid receptor are known to produce potent analgesic responses in the clinical setting, therefore, an increased understanding of the molecular interactions of ligands at this receptor could lead to improved analgesics. As historically morphine has been shown to be a poor recruiter of β-arrestin in recombinant cell systems and this can be overcome by the co-expression of GRK2, we investigated the effects of GRK2 co-expression, in a recombinant µ-opioid receptor cell line, on ligand affinity and intrinsic activity in both β-arrestin recruitment and [(35)S]GTPγS binding assays. We also investigated the effect of receptor depletion in the β-arrestin assay. GRK2 co-expression increased both agonist Emax and potency in the β-arrestin assay. The increase in agonist potency could not be reversed using receptor depletion, supporting that the effects were due to a novel receptor conformation not system amplification. We also observed a small but significant effect on agonist KL values. Potency values in the [(35)S]GTPγS assay were unchanged; however, inverse agonist activity became evident with GRK2 co-expression. We conclude that this is direct evidence that the µ-opioid receptor is an allosteric protein and the co-expression of signalling molecules elicits changes in its conformation and thus ligand affinity. This has implications when describing how ligands interact with the receptor and how efficacy is determined.
Collapse
Affiliation(s)
- Sarah A. Nickolls
- Neusentis, A Pfizer Research Unit, Granta Park, Cambridge, United Kingdom
- * E-mail:
| | - Sian Humphreys
- Neusentis, A Pfizer Research Unit, Granta Park, Cambridge, United Kingdom
| | - Mellissa Clark
- Neusentis, A Pfizer Research Unit, Granta Park, Cambridge, United Kingdom
| | - Gordon McMurray
- Neusentis, A Pfizer Research Unit, Granta Park, Cambridge, United Kingdom
| |
Collapse
|
89
|
Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2013; 35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-β, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Veronica G Taylor
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
90
|
Structural insights into G protein-coupled receptor kinase function. Curr Opin Cell Biol 2013; 27:25-31. [PMID: 24680427 DOI: 10.1016/j.ceb.2013.10.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
The atomic structure of a protein can greatly advance our understanding of molecular recognition and catalysis, properties of fundamental importance in signal transduction. However, a single structure is incapable of fully describing how a protein functions, particularly when allostery is involved. Recent advances in the structure and function of G protein-coupled receptor (GPCR) kinases (GRKs) have concentrated on the mechanism of their inhibition by small and large molecules. These studies have generated a wealth of new information on the conformational flexibility of these enzymes, which opens new avenues for the development of selective chemical probes and provides deeper insights into the molecular basis for activation of these enzymes by GPCRs and phospholipids.
Collapse
|
91
|
Yang P, Glukhova A, Tesmer JJG, Chen Z. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies. PLoS One 2013; 8:e82072. [PMID: 24278472 PMCID: PMC3838385 DOI: 10.1371/journal.pone.0082072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are integral membrane proteins involved in a wide variety of biological processes in eukaryotic cells, and are targeted by a large fraction of marketed drugs. GPCR kinases (GRKs) play important roles in feedback regulation of GPCRs, such as of β-adrenergic receptors in the heart, where GRK2 and GRK5 are the major isoforms expressed. Membrane targeting is essential for GRK function in cells. Whereas GRK2 is recruited to the membrane by heterotrimeric Gβγ subunits, the mechanism of membrane binding by GRK5 is not fully understood. It has been proposed that GRK5 is constitutively associated with membranes through elements located at its N-terminus, its C-terminus, or both. The membrane orientation of GRK5 is also a matter of speculation. In this work, we combined sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) to help determine the membrane orientation of GRK5 and a C-terminally truncated mutant (GRK51-531) on membrane lipid bilayers. It was found that GRK5 and GRK51-531 adopt a similar orientation on model cell membranes in the presence of PIP2 that is similar to that predicted for GRK2 in prior studies. Mutation of the N-terminal membrane binding site of GRK5 did not eliminate membrane binding, but prevented observation of this discrete orientation. The C-terminus of GRK5 does not have substantial impact on either membrane binding or orientation in this model system. Thus, the C-terminus of GRK5 may drive membrane binding in cells via interactions with other proteins at the plasma membrane or bind in an unstructured manner to negatively charged membranes.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alisa Glukhova
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John J. G. Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ZC); (JJGT)
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ZC); (JJGT)
| |
Collapse
|
92
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
93
|
Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel laureates in chemistry. Proc Natl Acad Sci U S A 2013; 110:5274-5. [PMID: 23412332 DOI: 10.1073/pnas.1221820110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
94
|
Thal DM, Homan KT, Chen J, Wu EK, Hinkle PM, Huang ZM, Chuprun JK, Song J, Gao E, Cheung JY, Sklar LA, Koch WJ, Tesmer JJ. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem Biol 2012; 7:1830-9. [PMID: 22882301 DOI: 10.1021/cb3003013] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. Herein we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine-Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice with paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.
Collapse
Affiliation(s)
- David M. Thal
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristoff T. Homan
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jun Chen
- Center for Molecular Discovery, University of New Mexico Health Sciences Center, Albuquerque,
New Mexico 87131, United States
| | - Emily K. Wu
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Patricia M. Hinkle
- Department of Pharmacology and
Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Z. Maggie Huang
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - J. Kurt Chuprun
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Jianliang Song
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Joseph Y. Cheung
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - Larry A. Sklar
- Center for Molecular Discovery, University of New Mexico Health Sciences Center, Albuquerque,
New Mexico 87131, United States
| | - Walter J. Koch
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia,
Pennsylvania 19140, United States
| | - John J.G. Tesmer
- Life Sciences
Institute and
the Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
95
|
Kamal FA, Travers JG, Blaxall BC. G protein-coupled receptor kinases in cardiovascular disease: why "where" matters. Trends Cardiovasc Med 2012; 22:213-9. [PMID: 23062971 DOI: 10.1016/j.tcm.2012.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cardiac function is mainly controlled by β-adrenergic receptors (β-ARs), members of the G protein-coupled receptor (GPCR) family. GPCR signaling and expression are tightly controlled by G protein-coupled receptor kinases (GRKs), which induce GPCR internalization and signal termination through phosphorylation. Reduced β-AR density and activity associated with elevated cardiac GRK expression and activity have been described in various cardiovascular diseases. Moreover, alterations in extracardiac GRKs have been observed in blood vessels, adrenal glands, kidneys, and fat cells. The broad tissue distribution of GPCRs and GRKs suggests that a keen appreciation of integrative physiology may drive future therapeutic development. In this review, we provide a brief summary of GRK isoforms, subcellular localization, and interacting partners that impinge directly or indirectly on the cardiovascular system. We also discuss GRK/GPCR interactions and their implications in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
96
|
von Lueder TG, Gravning J, How OJ, Vinge LE, Ahmed MS, Krobert KA, Levy FO, Larsen TS, Smiseth OA, Aasum E, Attramadal H. Cardiomyocyte-restricted inhibition of G protein-coupled receptor kinase-3 attenuates cardiac dysfunction after chronic pressure overload. Am J Physiol Heart Circ Physiol 2012; 303:H66-74. [PMID: 22542621 DOI: 10.1152/ajpheart.00724.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.
Collapse
Affiliation(s)
- Thomas G von Lueder
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Wood JF, Wang J, Benovic JL, Ferkey DM. Structural domains required for Caenorhabditis elegans G protein-coupled receptor kinase 2 (GRK-2) function in vivo. J Biol Chem 2012; 287:12634-44. [PMID: 22375004 PMCID: PMC3339999 DOI: 10.1074/jbc.m111.336818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gβγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gβγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.
Collapse
Affiliation(s)
- Jordan F. Wood
- From the Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260 and
| | - Jianjun Wang
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffrey L. Benovic
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Denise M. Ferkey
- From the Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260 and
| |
Collapse
|
98
|
Mushegian A, Gurevich VV, Gurevich EV. The origin and evolution of G protein-coupled receptor kinases. PLoS One 2012; 7:e33806. [PMID: 22442725 PMCID: PMC3307776 DOI: 10.1371/journal.pone.0033806] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/22/2012] [Indexed: 01/25/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals.
Collapse
Affiliation(s)
- Arcady Mushegian
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Microbiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
99
|
Abstract
β-adrenergic receptor (βAR) stimulation by the sympathetic nervous system or circulating catecholamines is broadly involved in peripheral blood circulation, metabolic regulation, muscle contraction, and central neural activities. In the heart, acute βAR stimulation serves as the most powerful means to regulate cardiac output in response to a fight-or-flight situation, whereas chronic βAR stimulation plays an important role in physiological and pathological cardiac remodeling.There are three βAR subtypes, β(1)AR, β(2)AR and β(3)AR, in cardiac myocytes. Over the past two decades, we systematically investigated the molecular and cellular mechanisms underlying the different even opposite functional roles of β(1)AR and β(2)AR subtypes in regulating cardiac structure and function, with keen interest in the development of novel therapies based on our discoveries. We have made three major discoveries, including (1) dual coupling of β(2)AR to G(s) and G(i) proteins in cardiomyocytes, (2) cardioprotection by β(2)AR signaling in improving cardiac function and myocyte viability, and (3) PKA-independent, CaMKII-mediated β(1)AR apoptotic and maladaptive remodeling signaling in the heart. Based on these discoveries and salutary effects of β(1)AR blockade on patients with heart failure, we envision that activation of β(2)AR in combination with clinically used β(1)AR blockade should provide a safer and more effective therapy for the treatment of heart failure.
Collapse
|
100
|
The connection between GRKs and various signaling pathways involved in diabetic nephropathy. Mol Biol Rep 2012; 39:7717-26. [PMID: 22350265 DOI: 10.1007/s11033-012-1608-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is a known microvascular complication in patients with diabetes mellitus. DN has become one of the main causes of death in diabetic patients. The occurrence and development of DN results from the comprehensive action of multi-factors, though the exact mechanism is not very clear. Recently, a study found that numerous pathways are activated during the course of the disease, including the PGE2-EP-G protein system, the renin-angiotensin system, protein kinase C, MAPK and oxidative stress, and transforming growth factor-β. G protein-coupled receptor kinases (GRKs), specifically recognize and phosphorylate agonist-activated G protein-coupled receptors, which play a major role in the above-mentioned pathways. The purpose of this paper is to review current information concerning the connection between GRKs and various signaling pathways involved in DN.
Collapse
|