51
|
Structural inference of native and partially folded RNA by high-throughput contact mapping. Proc Natl Acad Sci U S A 2008; 105:4144-9. [PMID: 18322008 DOI: 10.1073/pnas.0709032105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (.OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4-P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4-P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.
Collapse
|
52
|
Ozlem Tastan Bishop A, Stelzl U, Pech M, Nierhaus KH. Characterization of RNA-protein interactions by phosphorothioate footprinting and its applications to the ribosome. Methods Mol Biol 2008; 488:129-151. [PMID: 18982288 DOI: 10.1007/978-1-60327-475-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analogs of naturally occurring substances obtained by chemical modifications are powerful tools to study intra- and intermolecular interactions. We have used the phosphorothioate technique to analyze RNA-protein interactions, here the interactions of transfer RNAs (tRNAs) with the three ribosomal binding sites. We describe preparation and purification of thioated tRNAs, formation of functional complexes of programmed ribosomes with tRNAs, and the evaluation of the observed phosphorothioate footprints on the tRNAs.
Collapse
|
53
|
Abstract
Nucleotide analog interference mapping (NAIM) is a powerful chemogenetic approach that allows RNA structure and function to be characterized at the atomic level. Random modifications of base or backbone moieties are incorporated into the RNA transcript as nucleotide analog phosphorothioates. The resulting RNA pool is then subjected to a stringent selection step, in which the RNA has to accomplish a specific task, for example, folding. RNA functional groups important for this process can be identified by physical isolation of the functional and the nonfunctional RNA molecules and subsequent mapping of the modified nucleotide positions in both RNA populations by iodine cleavage of the susceptible phosphorothioate linkage. This approach has been used to analyze a variety of aspects of RNA biochemistry, including RNA structure, catalysis and ligand interaction. Here, I describe how to set up a NAIM assay for studying RNA folding. This protocol can be readily adapted to study any RNAs and their properties. The time required to complete the experiment is dependent on the length of the RNA and the number of atomic modifications tested. In general, a single NAIM experiment can be completed in 1-2 weeks, but expect a time frame of several weeks to obtain reliable and statistically meaningful results.
Collapse
Affiliation(s)
- Christina Waldsich
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr. Bohrgasse 9/5, Vienna 1030, Austria.
| |
Collapse
|
54
|
|
55
|
Kaneda M, Masuda S, Tomohiro T, Hatanaka Y. A simple and efficient photoaffinity method for proteomics of GTP-binding proteins. Chembiochem 2007; 8:595-8. [PMID: 17330901 DOI: 10.1002/cbic.200600527] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masaki Kaneda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
56
|
|
57
|
Affiliation(s)
- Dana A Baum
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
58
|
Yang Z, Sismour AM, Benner SA. Nucleoside alpha-thiotriphosphates, polymerases and the exonuclease III analysis of oligonucleotides containing phosphorothioate linkages. Nucleic Acids Res 2007; 35:3118-27. [PMID: 17452363 PMCID: PMC1888802 DOI: 10.1093/nar/gkm168] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The use of DNA polymerases to incorporate phosphorothioate linkages into DNA, and the use of exonuclease III to determine where those linkages have been incorporated, are re-examined in this work. The results presented here show that exonuclease III degrades single-stranded DNA as a substrate and digests through phosphorothioate linkages having one absolute stereochemistry, assigned (assuming inversion in the polymerase reaction) as S, but not the other absolute stereochemistry. This contrasts with a general view in the literature that exonuclease III favors double-stranded nucleic acid as a substrate and stops completely at phosphorothioate linkages. Furthermore, not all DNA polymerases appear to accept exclusively the (R) stereoisomer of nucleoside alpha-thiotriphosphates [and not the (S) diastereomer], a conclusion inferred two decades ago by examination of five Family-A polymerases and a reverse transcriptase. This suggests that caution is appropriate when extrapolating the detailed behavior of one polymerase from the behaviors of other polymerases. Furthermore, these results provide constraints on how exonuclease III–thiotriphosphate–polymerase combinations can be used to analyze the behavior of the components of a synthetic biology.
Collapse
Affiliation(s)
| | | | - Steven A. Benner
- *To whom correspondence should be addressed at Foundation for Applied Molecular Evolution, P.O. Box 13174, Gainesville FL 32604-1174, USA +1 352 271 7005+1 352 271 7076
| |
Collapse
|
59
|
Reardon JT, Sancar A. Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme systems. Methods Enzymol 2006; 408:189-213. [PMID: 16793370 DOI: 10.1016/s0076-6879(06)08012-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleotide excision repair is a multicomponent, multistep enzymatic system that removes a wide spectrum of DNA damage by dual incisions in the damaged strand on both sides of the lesion. The basic steps are damage recognition, dual incisions, resynthesis to replace the excised DNA, and ligation. Each step has been studied in vitro using cell extracts or highly purified repair factors and radiolabeled DNA of known sequence with DNA damage at a defined site. This chapter describes procedures for preparation of DNA substrates designed for analysis of damage recognition, either the 5' or the 3' incision event, excision (resulting from concerted dual incisions), and repair synthesis. Excision in Escherichia coli is accomplished by the three-subunit Uvr(A)BC excision nuclease and in humans by six repair factors: XPA, RPA, XPChR23B, TFIIH, XPFERCC1, and XPG. This chapter outlines methods for expression and purification of these essential repair factors and provides protocols for performing each of the in vitro repair assays with either the E. coli or the human excision nuclease.
Collapse
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, USA
| | | |
Collapse
|
60
|
Fedorova O, Pyle AM. Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. EMBO J 2005; 24:3906-16. [PMID: 16252007 PMCID: PMC1283951 DOI: 10.1038/sj.emboj.7600852] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/06/2005] [Indexed: 11/09/2022] Open
Abstract
Despite its importance for group II intron catalytic activity, structural information on conserved domain 3 (D3) is extremely limited. This domain is known to specifically stimulate the chemical rate of catalysis and to function as a 'catalytic effector'. Of all the long-range tertiary contacts that have been identified within group II introns, none has included D3 residues. Furthermore, little is known about the atoms and functional groups in D3 that contribute to catalysis. Using a nucleotide analog interference mapping assay with an extended repertoire of nucleotide analogs, we have identified functional groups in D3 that are critical for ribozyme activity. These data, together with mutational analysis, suggest the formation of noncanonical base pairs within the phylogenetically conserved internal loop at the base of D3. Finally, a related nucleotide analog interference suppression study resulted in the identification of a direct tertiary interaction between D3 and catalytic domain 5, which sheds new light on D3 function in the group II intron structure and mechanism.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Box 208114, New Haven, CT 06520, USA. Tel.: +1 203 432 5733; Fax: +1 203 432 5316; E-mail:
| |
Collapse
|
61
|
Buck AH, Kazantsev AV, Dalby AB, Pace NR. Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 2005; 12:958-64. [PMID: 16228004 DOI: 10.1038/nsmb1004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/13/2005] [Indexed: 11/09/2022]
Abstract
Ribonucleoprotein particles are central to numerous cellular pathways, but their study in vitro is often complicated by heterogeneity and aggregation. We describe a new technique to characterize these complexes trapped as homogeneous species in a nondenaturing gel. Using this technique, in conjunction with phosphorothioate footprinting analysis, we identify the protein-binding site and RNA folding states of ribonuclease P (RNase P), an RNA-based enzyme that, in vivo, requires a protein cofactor to catalyze the 5' maturation of precursor transfer RNA (pre-tRNA). Our results show that the protein binds to a patch of conserved RNA structure adjacent to the active site and influences the conformation of the RNA near the tRNA-binding site. The data are consistent with a role of the protein in substrate recognition and support a new model of the holoenzyme that is based on a recently solved crystal structure of RNase P RNA.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
62
|
Wong TS, Tee KL, Hauer B, Schwaneberg U. Sequence saturation mutagenesis with tunable mutation frequencies. Anal Biochem 2005; 341:187-9. [PMID: 15866543 DOI: 10.1016/j.ab.2005.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Indexed: 11/28/2022]
Affiliation(s)
- Tuck Seng Wong
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
63
|
Lupták A, Doudna JA. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron. Nucleic Acids Res 2004; 32:2272-80. [PMID: 15107495 PMCID: PMC407829 DOI: 10.1093/nar/gkh548] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although the active site of group I introns is phylogenetically conserved, subclasses of introns have evolved different mechanisms of stabilizing the catalytic core. Large introns contain weakly conserved 'peripheral' domains that buttress the core through predicted interhelical contacts, while smaller introns use loop-helix interactions for stability. In all cases, specific and non-specific magnesium ion binding accompanies folding into the active structure. Whether similar RNA-RNA and RNA-magnesium ion contacts play related functional roles in different introns is not clear, particularly since it can be difficult to distinguish interactions directly involved in catalysis from those important for RNA folding. Using phosphorothioate interference with RNA activity and structure in the small (249 nt) group I intron from Anabaena, we used two independent assays to detect backbone phosphates important for catalysis and those involved in intron folding. Comparison of the interference sites identified in each assay shows that positions affecting catalysis cluster primarily in the conserved core of the intron, consistent with conservation of functionally important phosphates, many of which are magnesium ion binding sites, in diverse group I introns, including those from Azoarcus and Tetrahymena. However, unique sites of folding interference located outside the catalytic core imply that different group I introns, even within the same subclass, use distinct sets of tertiary interactions to stabilize the structure of the catalytic core.
Collapse
Affiliation(s)
- Andrej Lupták
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
64
|
Pavey JBJ, Lawrence AJ, O'Neil IA, Vortler S, Cosstick R. Synthesis and transcription studies on 5'-triphosphates derived from 2'-C-branched-uridines: 2'-homouridine-5'-triphosphate is a substrate for T7 RNA polymerase. Org Biomol Chem 2004; 2:869-75. [PMID: 15007416 DOI: 10.1039/b314348a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5'-triphosphates of 2'-hydroxymethyluridine (2'-homouridine) and 2'-hydroxyethyluridine were prepared from the corresponding acetyl-protected nucleosides by initial phosphitylation with 2-chloro-5,6-benzo-1,2,3-dioxaphosphorin-4-one. 2'-Acetamidouridine 5'-triphosphate was prepared in an analogous fashion from uridine 2'-C-, 3'-O-gamma-butyrolactone, in which the 3'-hydroxyl group is internally protected as the lactone. Subsequent treatment with ammonia gave the required acetamido triphosphate. All three triphosphates were investigated as substrates for T7 RNA polymerase and a Y639F mutant of this enzyme. 2'-Homouridine triphosphate was found to be a substrate for the wild-type enzyme in the presence of manganese and was specifically incorporated into short RNA transcripts (20 and 21 nucleotides in length). The presence of the analogue within the transcripts was confirmed through its resistance to alkaline hydrolysis. Gel electrophoretic analysis also showed that 2'-homouridine could be multiply incorporated into a transcript with a length of 75 nucleotides. This is the first report of a 2'-deoxy-2'-alpha-C-branched nucleoside 5'-triphosphate acting as a substrate for T7 RNA polymerase. The 2'-hydroxyethyl- and 2'-acetamido -uridine triphosphates were not substrates for the enzymes.
Collapse
Affiliation(s)
- John B J Pavey
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK L69 7ZD
| | | | | | | | | |
Collapse
|
65
|
Wong TS, Tee KL, Hauer B, Schwaneberg U. Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 2004; 32:e26. [PMID: 14872057 PMCID: PMC373423 DOI: 10.1093/nar/gnh028] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sequence saturation mutagenesis (SeSaM) is a conceptually novel and practically simple method that truly randomizes a target sequence at every single nucleotide position. A SeSaM experiment can be accomplished within 2-3 days and comprises four steps: generating a pool of DNA fragments with random length, 'tailing' the DNA fragments with universal base using terminal transferase at 3'-termini, elongating DNA fragments in a PCR to the full-length genes using a single-stranded template and replacing the universal bases by standard nucleotides. Random mutations are created at universal sites due to the promiscuous base-pairing property of universal bases. Using enhanced green fluorescence protein as the model system and deoxyinosine as the universal base, we proved by sequencing 100 genes the concept of the SeSaM method and achieved a random distribution of mutations with the mutational bias expected for deoxyinosine.
Collapse
Affiliation(s)
- Tuck Seng Wong
- International University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
66
|
Rhode BM, Hartmuth K, Urlaub H, Luhrmann R. Analysis of site-specific protein-RNA cross-links in isolated RNP complexes, combining affinity selection and mass spectrometry. RNA (NEW YORK, N.Y.) 2003; 9:1542-51. [PMID: 14624009 PMCID: PMC1370507 DOI: 10.1261/rna.5175703] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 09/03/2003] [Indexed: 05/22/2023]
Abstract
An important aspect of the assembly of RNPs, and in particular of spliceosomes, is the succession of proteins bound to any given site on the RNA. Protein-RNA cross-linking is a well-established technique for investigating this, but the identification of a cross-linked protein has so far relied upon the availability of antibodies for immunoprecipitation or Western blot studies. To facilitate identification of proteins independent of these techniques, site-specific protein-RNA cross-links were purified in a large scale, which were then used for mass spectrometry (MS). This approach was carried out by the use of a minimal pre-mRNA construct containing a single photoactivatable azidophenacyl group and an adjacent biotin-dT tag for affinity purification of the cross-linked product. To test the feasibility of the method, we purified cross-links to nucleotide 9 downstream of the 5' splice site of pre-mRNA in the spliceosomal complexes A ("pre-spliceosome") and H. By this method, we were able to identify several proteins by MS; the hnRNP proteins A2/B1 were cross-linked to the pre-mRNA in complex A, and FUSE 2/FBP (a homolog of the intronic splicing enhancer KSRP) was cross-linked in complex H.
Collapse
Affiliation(s)
- Britta M Rhode
- Max Planck Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
67
|
Schwans JP, Cortez CN, Olvera JM, Piccirilli JA. 2'-mercaptonucleotide interference reveals regions of close packing within folded RNA molecules. J Am Chem Soc 2003; 125:10012-8. [PMID: 12914464 DOI: 10.1021/ja035175y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2'-hydroxyl group makes essential contributions to RNA structure and function. As an approach to assess the ability of a mercapto group to serve as a functional analogue for the 2'-hydroxyl group, we synthesized 2'-mercaptonucleotides for use in nucleotide analogue interference mapping. To correlate the observed interference effects with tertiary structure, we used the independently folding DeltaC209 P4-P6 domain from the Tetrahymena group I intron. We generated populations of DeltaC209 P4-P6 molecules containing 2'-mercaptonucleotides located randomly throughout the domain and separated the folded molecules from the unfolded molecules by nondenaturing gel electrophoresis. Iodine-induced cleavage of the RNA molecules revealed the sites at which 2'-mercaptonucleotides interfere with folding. These interferences cluster in the most densely packed regions of the tertiary structure, occurring only at sites that lack the space and flexibility to accommodate a sulfur atom. Interference mapping with 2'-mercaptonucleotides therefore provides a method by which to identify structurally rigid and densely packed regions within folded RNA molecules.
Collapse
Affiliation(s)
- Jason P Schwans
- Howard Hughes Medical Institute, Department of Biochemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
68
|
Abstract
Typical RNA-based cellular catalysts achieve their active structures only as complexes with protein cofactors, implying that protein binding compensates for some structural deficiencies in the RNA. An unresolved question was the extent to which protein-facilitation imposes additional structural costs, by requiring that an RNA maintain structures required for protein binding, beyond those required for catalysis. We used nucleotide analog interference to identify initially 71 functional group substitutions at phosphate, 2'-ribose, and adenosine base positions that compromise RNA self-splicing in the bI5 group I intron. Protein-facilitated splicing by CBP2 suppresses 11 of 30 interfering substitutions at the RNA backbone and a greater fraction, 27 of 41, at the adenosine base, including at structures conserved among group I introns. Only one substitution directly interferes with protein binding but not with self-splicing. This substitution, plus three adenosine base modifications that interfere more strongly in CBP2-dependent splicing than in self-splicing, yield a cost for protein facilitation of only four functional groups, as approximated by this set of analogs. The small observed structural cost provides a strong physical rationale for the evolutionary drive from RNA to RNP-based function in biology. Remarkably, the four extra requirements do not appear to report disruption of direct protein-RNA contacts and instead likely reflect design against misfolding rather than for maintenance of a protein-binding site.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
69
|
Fedorova O, Mitros T, Pyle AM. Domains 2 and 3 interact to form critical elements of the group II intron active site. J Mol Biol 2003; 330:197-209. [PMID: 12823961 DOI: 10.1016/s0022-2836(03)00594-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Group II introns are self-splicing RNA molecules that also behave as mobile genetic elements. The secondary structure of group II intron RNAs is typically described as a series of six domains that project from a central wheel. Most structural and mechanistic analyses of the intron have focused on domains 1 and 5, which contain the residues essential for catalysis, and on domain 6, which contains the branch-point adenosine. Domains 2 and 3 (D2, D3) have been shown to make important contributions to intronic activity; however, information about their function is quite limited. To elucidate the role of D2 and D3 in group II ribozyme catalysis, we built a series of multi-piece ribozyme constructs based on the ai5gamma group II intron. These constructs are designed to shed light on the roles of D2 and D3 in some of the major reactions catalyzed by the intron: 5'-exon cleavage, branching, and substrate hydrolysis. Reactions with these constructs demonstrate that D3 stimulates the chemical rate constant of group II intron reactions, and that it behaves as a form of catalytic effector. However, D3 is unable to associate independently with the ribozyme core. Docking of D3 is mediated by a short duplex that is found at the base of D2. In addition to recruiting D3 into the core, the D2 stem directs the folding of the adjacent j(2/3) linker, which is among the most conserved elements in the group II intron active site. In turn, the D2 stem contributes to 5'-splice site docking and ribozyme conformational change. Nucleotide analog interference mapping suggests an interaction between the D2 stem and D3 that builds on the known theta-theta' interaction and extends it into D3. These results establish that D3 and the base of D2 are key elements of the group II intron core and they suggest a hierarchy for active-site assembly.
Collapse
Affiliation(s)
- Olga Fedorova
- Department of Molecular Biophysics/Biochemistry, Yale University Howard Hughes Medical Institute, 266 Whitney Avenue, Bass Buildings Rm 334, New Haven, CT 06520, USA
| | | | | |
Collapse
|
70
|
Schwartz A, Rahmouni AR, Boudvillain M. The functional anatomy of an intrinsic transcription terminator. EMBO J 2003; 22:3385-94. [PMID: 12840000 PMCID: PMC165636 DOI: 10.1093/emboj/cdg310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To induce dissociation of the transcription elongation complex, a typical intrinsic terminator forms a G.C-rich hairpin structure upstream from a U-rich run of approximately eight nucleotides that define the transcript 3' end. Here, we have adapted the nucleotide analog interference mapping (NAIM) approach to identify the critical RNA atoms and functional groups of an intrinsic terminator during transcription with T7 RNA polymerase. The results show that discrete components within the lower half of the hairpin stem form transient termination-specific contacts with the RNA polymerase. Moreover, disruption of interactions with backbone components of the transcript region hybridized to the DNA template favors termination. Importantly, comparative NAIM of termination events occurring at consecutive positions revealed overlapping but distinct sets of functionally important residues. Altogether, the data identify a collection of RNA terminator components, interactions and spacing constraints that govern efficient transcript release. The results also suggest specific architectural rearrangements of the transcription complex that may participate in allosteric control of intrinsic transcription termination.
Collapse
Affiliation(s)
- Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | |
Collapse
|
71
|
Harris VH, Smith CL, Cummins WJ, Hamilton AL, Hornby DP, Williams DM. Recognition of base-pairing by DNA polymerases during nucleotide incorporation: the properties of the mutagenic nucleotide dPTP alphaS. Org Biomol Chem 2003; 1:2070-4. [PMID: 12945897 DOI: 10.1039/b302011h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly mutagenic nucleoside dP (6-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one) is a bicyclic analogue of N4-methoxy-2'-deoxycytidine. It exists as a mixture of its imino and amino tautomers in solution with a ratio of about 10:1 based on its tautomeric constant. The bicyclic nature of the heterocycle P restrains the amino substituent in an anti conformation and permits effective Watson-Crick base-pairing using either tautomer. The specificity of incorporation of dP by the 3'-5'-exonuclease-free Klenow fragment of DNA polymerase I (exo-free Klenow) has been studied using the 5'-(1-thio)triphosphate dPTP alphaS in combination with phosphorothioate-specific sequencing of the DNA products. The method provides a convenient qualitative assay for studying nucleotide incorporation and reveals for the first time a potential role for the minor tautomeric forms of the natural DNA bases in base misinsertion (substitution mutagenesis) during replication.
Collapse
Affiliation(s)
- Victoria H Harris
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK S3 7HF
| | | | | | | | | | | |
Collapse
|
72
|
Krebs S, Medugorac I, Seichter D, Förster M. RNaseCut: a MALDI mass spectrometry-based method for SNP discovery. Nucleic Acids Res 2003; 31:e37. [PMID: 12655025 PMCID: PMC152822 DOI: 10.1093/nar/gng037] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MALDI mass spectrometry is an established platform for high-throughput genotyping of single nucleotide polymorphisms (SNPs). For many species and also for specific ethnic groups, the number of described SNPs is far from sufficient. Here we present a method for SNP discovery that can use existing MALDI genotyping platforms and is automation-compatible. The method is based on in vitro RNA transcripts from PCR products, that can be used to obtain highly informative sequence fingerprints by digestion with the guanosine- specific ribonuclease T1. In these fingerprints, a mutation can be detected as either a mass shift, absence of an existing peak or appearance of an additional peak. Due to mass-degeneracy of fragments and multiple presence of shorter fragments in a given sequence, a certain fraction of possible mutations will remain undetected with this method. Screening of both strands from one PCR product is possible by using T3- and T7-tailed primers and the respective RNA polymerases, and markedly decreases the probability of missing an existing SNP. The use of mass-shifted nucleotides can significantly reduce fragment overlaps and hence increase detectability. We have used a simulation of RNase digests of a set of randomly generated sequences to provide estimates for the general detection probability in dependence on PCR product length. A software package is provided that helps to design PCR primers by plotting out regions with a high SNP discovery score, calculates expected mass fingerprints and peaklists from the target sequence selected for screening and helps in interpretation of digest spectra.
Collapse
Affiliation(s)
- Stefan Krebs
- Institute for Animal Breeding, Veterinary Medicine, Ludwig-Maximilian-University, Veterinärstrasse 13, 80539 Munich, Germany.
| | | | | | | |
Collapse
|
73
|
McConnell TS, Lokken RP, Steitz JA. Assembly of the U1 snRNP involves interactions with the backbone of the terminal stem of U1 snRNA. RNA (NEW YORK, N.Y.) 2003; 9:193-201. [PMID: 12554862 PMCID: PMC1370385 DOI: 10.1261/rna.2136103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleotide analog interference mapping (NAIM) is a powerful method for identifying RNA functional groups involved in protein-RNA interactions. We examined particles assembled on modified U1 small nuclear RNAs (snRNAs) in vitro and detected two categories of interferences. The first class affects the stability of two higher-order complexes and comprises changes in two adenosines, A65 and A70, in the loop region previously identified as the binding site for the U1 small nuclear ribonucleoprotein (snRNP)-specific U1A protein. Addition of an exocyclic amine to position 2 of A65 interferes strongly with protein binding, whereas removal or modification of the exocyclic amine at position 6 makes little difference. Modifications of A70 exhibit the opposite effects: Additions at position 2 are permitted, but modification of the exocyclic amine at position 6 significantly inhibits protein binding. These interactions, critical for U1A-U1 snRNA recognition in the context of in vitro snRNP assembly, are consistent with previous structural studies of the isolated protein with the RNA hairpin containing the U1A binding site. The second category of interferences affects all partially assembled U1-protein complexes by decreasing the stability of Sm core protein associations. Interestingly, most strong interferences occur at phosphates in the terminal stem-loop region of U1, rather than in the Sm binding site. These data argue that interactions with the phosphate backbone of the terminal stem loop are essential for the stable association of Sm core proteins with the U1 snRNA. We suggest that the stem loop of all Sm snRNAs may act as a clamp to hold the ring of Sm proteins in place.
Collapse
Affiliation(s)
- Timothy S McConnell
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA
| | | | | |
Collapse
|
74
|
Yang X, Bassett SE, Li X, Luxon BA, Herzog NK, Shope RE, Aronson J, Prow TW, Leary JF, Kirby R, Ellington AD, Gorenstein DG. Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries designed for rapid PCR-based sequencing. Nucleic Acids Res 2002; 30:e132. [PMID: 12466564 PMCID: PMC137987 DOI: 10.1093/nar/gnf132] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 09/23/2002] [Accepted: 10/03/2002] [Indexed: 11/13/2022] Open
Abstract
Chemically synthesized combinatorial libraries of unmodified or modified nucleic acids have not previously been used in methods to rapidly select oligonucleotides binding to target biomolecules such as proteins. Phosphorothioate oligonucleotides (S-ODNs) or phosphorodithioate oligonucleotides (S2-ODNs) with sulfurs replacing one or both of the non-bridging phosphate oxygens bind to proteins more tightly than unmodified oligonucleotides and have the potential to be used as diagnostic reagents and therapeutics. We have applied a split synthesis methodology to create one-bead one-S-ODN and one-bead one-S2-ODN libraries. Binding and selection of specific beads to the transcription factor NF-kappaB p50/p50 protein were demonstrated. Sequencing both the nucleic acid bases and the positions of any 3'-O-thioate/dithioate linkages was carried out by using a novel PCR-based identification tag of the selected beads. This approach allows us to rapidly and conveniently identify S-ODNs or S2-ODNs that bind to proteins.
Collapse
Affiliation(s)
- Xianbin Yang
- Sealy Center for Structural Biology and Department of Human Biological Chemistry and Genetics, 301 University Boulevard, The University of Texas Medical Branch at Galveston, TX 77555-1157, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
This review describes some of the contributions of chemistry to the RNA field with a personal bias towards the phosphorothioate modification and the derivatives at the ribose 2'-position. The usefulness of these modifications is discussed and documented with some examples.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str. 3, 37075 Göttingen, Germany.
| |
Collapse
|
76
|
Abstract
Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions occurred even without incorporation of phosphorothioate moieties into the RNA and DNA target molecules. In fact, LDC conditions were found in which RNA could be fragmented into its component monomers, allowing simultaneous sequencing from both the 5'- and the 3'-termini by mass spectrometry. The results can be explained by alkylation of the (thio)phosphodiester linkages to form less hydrolytically stable (thio)phosphotriesters, which then decompose into 2',3'-cyclic phosphate (or 2'-phosphate) and 5'-hydroxyl terminal products. Analysis of fragmentation and alkylation products of Mycobacterium tuberculosis (Mtb) ribosomal RNA (rRNA) transcripts by polyacrylamide gel electrophoresis was consistent with the model studies. Building upon these results, I found that products from Mtb rRNA amplification products were processed with fluorescent reporters and metal ions in a single reaction milieu for analysis on an Affymetrix GeneChip. Mild conditions were discovered which balanced the need for aggressive alkylation and the need for controlled fragmentation, advantageously yielding GeneChip results with greater than 98% of the nucleotides reported correctly relative to reference sequences, results sufficient for accurately identifying Mtb from other Mycobacterium species. Thus, LDC is a new, straightforward, and rapid aqueous chemistry that is based on metal ion-catalyzed alkylation and alkylation-catalyzed fragmentation of nucleic acids for analysis on microarrays or other hybridization assays and that, possibly, has utility in similar processing of other appropriately functionalized biomolecules.
Collapse
Affiliation(s)
- Kenneth A Browne
- Gen-Probe Incorporated, 10210 Genetic Center Drive, San Diego, California 92121, USA.
| |
Collapse
|
77
|
Klostermeier D, Millar DP. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers 2002; 61:159-79. [PMID: 11987179 DOI: 10.1002/bip.10146] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological functions of nucleic acids in processes of DNA replication, transcription, homologous recombination, mRNA translation, and ribozyme catalysis are intimately linked to their three-dimensional structures and to conformational changes induced by proteins, metal ions and other ligands. Fluorescence spectroscopy is a powerful technique for probing the structure and conformational dynamics of biological macromolecules under a wide range of solution conditions. Fluorescence resonance energy transfer (FRET) provides long-range distance information from 10 to 100 A, a range that is useful for probing the global structure of nucleic acids. While steady-state measurements of FRET provide the average distance between donor and acceptor, much more information is available from the analysis of the nanosecond emission decay of the donor in time-resolved FRET (trFRET) experiments. Analysis of the decay in terms of donor-acceptor distance distributions can resolve different conformers in a heterogeneous mixture, providing information on the global structure and flexibility of each species as well as their equilibrium populations. In this review, we outline the principles of trFRET and the methods used to incorporate fluorescent probes into DNA and RNA. Examples of specific applications are presented to illustrate the versatility of trFRET as a tool to define global structures, to identify conformational heterogeneity and flexibility, to investigate the energetics of tertiary structure formation and to probe structural rearrangements of nucleic acids.
Collapse
Affiliation(s)
- D Klostermeier
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
78
|
Ming X, Smith K, Suga H, Hou YM. Recognition of tRNA backbone for aminoacylation with cysteine: evolution from Escherichia coli to human. J Mol Biol 2002; 318:1207-20. [PMID: 12083512 DOI: 10.1016/s0022-2836(02)00232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The underlying basis of the genetic code is specific aminoacylation of tRNAs by aminoacyl-tRNA synthetases. Although the code is conserved, bases in tRNA that establish aminoacylation are not necessarily conserved. Even when the bases are conserved, positions of backbone groups that contribute to aminoacylation may vary. We show here that, although the Escherichia coli and human cysteinyl-tRNA synthetases both recognize the same bases (U73 and the GCA anticodon) of tRNA for aminoacylation, they have different emphasis on the tRNA backbone. The E. coli enzyme recognizes two clusters of phosphate groups. One is at A36 in the anticodon and the other is in the core of the tRNA structure and includes phosphate groups at positions 9, 12, 14, and 60. Metal-ion rescue experiments show that those at positions 9, 12, and 60 are involved with binding divalent metal ions that are important for aminoacylation. The E. coli enzyme also recognizes 2'-hydroxyl groups within the same two clusters: at positions 33, 35, and 36 in the anticodon loop, and at positions 49, 55, and 61 in the core. The human enzyme, by contrast, recognizes few phosphate or 2'-hydroxy groups for aminoacylation. The evolution from the backbone-dependent recognition by the E. coli enzyme to the backbone-independent recognition by the human enzyme demonstrates a previously unrecognized shift that nonetheless has preserved the specificity for aminoacylation with cysteine.
Collapse
Affiliation(s)
- Xiaotian Ming
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
79
|
Sood VD, Yekta S, Collins RA. The contribution of 2'-hydroxyls to the cleavage activity of the Neurospora VS ribozyme. Nucleic Acids Res 2002; 30:1132-8. [PMID: 11861903 PMCID: PMC101248 DOI: 10.1093/nar/30.5.1132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used nucleotide analog interference mapping and site-specific substitution to determine the effect of 2'-deoxynucleotide substitution of each nucleotide in the VS ribozyme on the self-cleavage reaction. A large number of 2'-hydroxyls (2'-OHs) that contribute to cleavage activity of the VS ribozyme were found distributed throughout the core of the ribozyme. The locations of these 2'-OHs in the context of a recently developed helical orientation model of the VS ribozyme suggest roles in multi-stem junction structure, helix packing, internal loop structure and catalysis. The functional importance of three separate 2'-OHs supports the proposal that three uridine turns contribute to local and long-range tertiary structure formation. A cluster of important 2'-OHs near the loop that is the candidate region for the active site and one very important 2'-OH in the loop that contains the cleavage site confirm the functional importance of these two loops. A cluster of important 2'-OHs lining the minor groove of stem-loop I and helix II suggests that these regions of the backbone may play an important role in positioning helices in the active structure of the ribozyme.
Collapse
Affiliation(s)
- Vanita D Sood
- Department of Molecular and Medical Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
80
|
Abstract
Removal of intervening sequences from eukaryotic messenger RNA precursors is carried out by the spliceosome, a complex assembly of five small nuclear RNAs (snRNAs) and a large number of proteins. Although it has been suggested that the spliceosome might be an RNA enzyme, direct evidence for this has been lacking, and the identity of the catalytic domain of the spliceosome is unknown. Here we show that a protein-free complex of two snRNAs, U2 and U6, can bind and position a small RNA containing the sequence of the intron branch site, and activate the branch adenosine to attack a catalytically critical domain of U6 in a reaction that is related to the first step of splicing. Our data provide direct evidence for the catalytic potential of spliceosomal snRNAs.
Collapse
Affiliation(s)
- S Valadkhan
- Department of Biological Sciences, Sherman Fairchild Center of Life Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
81
|
McConnell TS, Steitz JA. Proximity of the invariant loop of U5 snRNA to the second intron residue during pre-mRNA splicing. EMBO J 2001; 20:3577-86. [PMID: 11432844 PMCID: PMC125517 DOI: 10.1093/emboj/20.13.3577] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A photoactivatable azidophenacyl group has been introduced into seven positions in the backbone of the 11 nucleotide invariant loop of U5 snRNA. By reconstituting depleted splicing extracts with reassembled U5 snRNP particles, molecular neighbors were assessed as a function of splicing. All cross-links to the pre-mRNA mapped to the second nucleotide downstream of the 5' splice site, and formed most readily when the reactive group was at the phosphate between U5 positions 42 and 43 or 43 and 44. Both their kinetics of appearance and sensitivity to oligonucleotide inhibition suggest that these cross-links capture a late state in spliceosome assembly occurring immediately prior to the first step. A later forming, second cross-linked species is a splicing product of the first cross-link, suggesting that the U5 loop backbone maintains this position through the first step. The proximity of the U5 loop backbone to the intron's 5' end provides sufficient restrictions to develop a three-dimensional model for the arrangement of RNA components in the spliceosome during the first step of pre-mRNA splicing.
Collapse
Affiliation(s)
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA
Corresponding author e-mail:
| |
Collapse
|
82
|
Webb AE, Rose MA, Westhof E, Weeks KM. Protein-dependent transition states for ribonucleoprotein assembly. J Mol Biol 2001; 309:1087-100. [PMID: 11399081 DOI: 10.1006/jmbi.2001.4714] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Native folding and splicing by the Saccharomyces cerevisiae mitochondrial bI5 group I intron RNA is facilitated by both the S. cerevisiae CBP2 and Neurospora crassa CYT-18 protein cofactors. Both protein-bI5 RNA complexes splice at similar rates, suggesting that the RNA active site structure is similar in both ribonucleoproteins. In contrast, the two proteins assemble with the bI5 RNA by distinct mechanisms and bind opposing, but partially overlapping, sides of the group I intron catalytic core. Assembly with CBP2 is limited by a slow, unimolecular RNA folding step characterized by a negligible activation enthalpy. We show that assembly with CYT-18 shows four distinctive features. (1) CYT-18 binds stably to the bI5 RNA at the diffusion controlled limit, but assembly to a catalytically active RNA structure is still limited by RNA folding, as visualized directly using time-resolved footprinting. (2) This mechanism of rapid stable protein binding followed by subsequent assembly steps has a distinctive kinetic signature: the apparent ratio of k(off) to k(on), determined in a partitioning experiment, differs from the equilibrium K(d) by a large factor. (3) Assembly with CYT-18 is characterized by a large activation enthalpy, consistent with a rate limiting conformational rearrangement. (4) Because assembly from the kinetically trapped state is faster at elevated temperature, we can identify conditions where CYT-18 accelerates (catalyzes) bI5 RNA folding relative to assembly with CBP2.
Collapse
Affiliation(s)
- A E Webb
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
83
|
Abstract
Many RNAs, including the ribosome, RNase P, and the group II intron, explicitly require monovalent cations for activity in vitro. Although the necessity of monovalent cations for RNA function has been known for more than a quarter of a century, the characterization of specific monovalent metal sites within large RNAs has been elusive. Here we describe a biochemical approach to identify functionally important monovalent cations in nucleic acids. This method uses thallium (Tl+), a soft Lewis acid heavy metal cation with chemical properties similar to those of the physiological alkaline earth metal potassium (K+). Nucleotide analog interference mapping (NAIM) with the sulfur-substituted nucleotide 6-thioguanosine in combination with selective metal rescue of the interference with Tl+ provides a distinct biochemical signature for monovalent metal ion binding. This approach has identified a K+ binding site within the P4-P6 domain of the Tetrahymena group I intron that is also present within the X-ray crystal structure. The technique also predicted a similar binding site within the Azoarcus group I intron where the structure is not known. The approach is applicable to any RNA molecule that can be transcribed in vitro and whose function can be assayed.
Collapse
Affiliation(s)
- S Basu
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
84
|
Sung JS, Bennett SE, Mosbaugh DW. Fidelity of uracil-initiated base excision DNA repair in Escherichia coli cell extracts. J Biol Chem 2001; 276:2276-85. [PMID: 11035036 DOI: 10.1074/jbc.m008147200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The error frequency and mutational specificity associated with Escherichia coli uracil-initiated base excision repair were measured using an M13mp2 lacZalpha DNA-based reversion assay. Repair was detected in cell-free extracts utilizing a form I DNA substrate containing a site-specific uracil residue. The rate and extent of complete uracil-DNA repair were measured using uracil-DNA glycosylase (Ung)- or double-strand uracil-DNA glycosylase (Dug)-proficient and -deficient isogenic E. coli cells. In reactions utilizing E. coli NR8051 (ung(+) dug(+)), approximately 80% of the uracil-DNA was repaired, whereas about 20% repair was observed using NR8052 (ung(-) dug(+)) cells. The Ung-deficient reaction was insensitive to inhibition by the PBS2 uracil-DNA glycosylase inhibitor protein, implying the involvement of Dug activity. Under both conditions, repaired form I DNA accumulated in conjunction with limited DNA synthesis associated with a repair patch size of 1-20 nucleotides. Reactions conducted with E. coli BH156 (ung(-) dug(+)), BH157 (ung(+) dug(-)), and BH158 (ung(-) dug(-)) cells provided direct evidence for the involvement of Dug in uracil-DNA repair. The rate of repair was 5-fold greater in the Ung-proficient than in the Ung-deficient reactions, while repair was not detected in reactions deficient in both Ung and Dug. The base substitution reversion frequency associated with uracil-DNA repair was determined to be approximately 5.5 x 10(-)(4) with transversion mutations dominating the mutational spectrum. In the presence of Dug, inactivation of Ung resulted in up to a 7.3-fold increase in mutation frequency without a dramatic change in mutational specificity.
Collapse
Affiliation(s)
- J S Sung
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301, USA
| | | | | |
Collapse
|
85
|
Nyanguile O, Verdine GL. Template-directed interference footprinting of protein-phosphate contacts in DNA. Org Lett 2001; 3:71-4. [PMID: 11429875 DOI: 10.1021/ol006792j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[figure: see text] We have developed a method for interference footprinting of contacted phosphates in protein-DNA complexes. Template-directed enzymatic polymerization using a synthetic triphosphate analogue (alpha Me-dTTP) generates a product having a modified Internucleotide linkage, which perturbs protein-phosphate contacts. We found that treatment of the methylphosphonodiester-substituted extension product under nonaqueous conditions (MeO-/MeOH) led to the formation of a single cleavage product at each T residue but to two cleavage products when treated under the standard aqueous piperidine cleavage protocol.
Collapse
Affiliation(s)
- O Nyanguile
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
86
|
Strauss-Soukup JK, Strobel SA. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. J Mol Biol 2000; 302:339-58. [PMID: 10970738 DOI: 10.1006/jmbi.2000.4056] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite its small size, the 205 nt group I intron from Azoarcus tRNA(Ile) is an exceptionally stable self-splicing RNA. This IC3 class intron retains the conserved secondary structural elements common to group I ribozymes, but lacks several peripheral helices. These features make it an ideal system to establish the conserved chemical basis of group I intron activity. We collected nucleotide analog interference mapping (NAIM) data of the Azoarcus intron using 14 analogs that modified the phosphate backbone, the ribose sugar, or the purine base functional groups. In conjunction with a complete interference set collected on the Tetrahymena group I intron (IC1 class), these data define a "chemical phylogeny" of functional groups that are important for the activity of both introns and that may be common chemical features of group I intron catalysts. The data identify the functional moieties most likely to play a conserved role as ligands for catalytic metal ions, the substrate helix, and the guanosine cofactor. These include backbone functional groups whose nucleotide identity is not conserved, and hence are difficult to identify by standard phylogenetic sequence comparisons. The data suggest that both introns utilize an equivalent set of long range tertiary interactions for 5'-splice site selection between the P1 substrate helix and its receptor in the J4/5 asymmetric bulge, as well as an equivalent set of 2'-OH groups for P1 helix docking into most of the single stranded segment J8/7. However, the Azoarcus intron appears to make an alternative set of interactions at the base of the P1 helix and at the 5'-end of the J8/7. Extensive differences were observed within the intron peripheral domains, particularly in P2 and P8 where the Azoarcus data strongly support the proposed formation of a tetraloop-tetraloop receptor interaction. This chemical phylogeny for group I intron catalysis helps to refine structural models of the RNA active site and identifies functional groups that should be carefully investigated for their role in transition state stabilization.
Collapse
Affiliation(s)
- J K Strauss-Soukup
- Department of Molecular Biophysics and Biochemistry Department of Chemistry, Yale University, 260 Whitney Avenue, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|
87
|
Vörtler LC, Eckstein F. Phosphorothioate modification of RNA for stereochemical and interference analyses. Methods Enzymol 2000; 317:74-91. [PMID: 10829273 DOI: 10.1016/s0076-6879(00)17007-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- L C Vörtler
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
88
|
Ryder SP, Ortoleva-Donnelly L, Kosek AB, Strobel SA. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol 2000; 317:92-109. [PMID: 10829274 DOI: 10.1016/s0076-6879(00)17008-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S P Ryder
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
89
|
Abstract
In this review I will outline several chemogenetic approaches used to determine the chemical basis of large ribozyme function and structure. The term chemogenetics was first used to describe site-specific functional group modification experiments in the analysis of DNA-protein interactions. Within the past few years equivalent experiments have been performed on large catalytic RNAs using both single-site substitution and interference mapping techniques with nucleotide analogues. While functional group mutagenesis is an important aspect of a chemogenetic approach, chemical correlates to genetic revertants and suppressors must also be realized for the genetic analogy to be intellectually valid and experimentally useful. Several examples of functional group revertants and suppressors have now been obtained within the Tetrahymena group I ribozyme. These experiments define an ensemble of tertiary hydrogen bonds that have made it possible to construct a detailed model of the ribozyme catalytic core. The model includes a functionally important monovalent metal ion binding site, a wobble-wobble receptor motif for helix-helix packing interactions, and a minor groove triple helix.
Collapse
Affiliation(s)
- S A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
90
|
Soukup GA, Emilsson GA, Breaker RR. Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol 2000; 298:623-32. [PMID: 10788325 DOI: 10.1006/jmbi.2000.3704] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a continuing effort to explore structural and functional dynamics in RNA catalysis, we have created a series of allosteric hammerhead ribozymes that are activated by theophylline. Representative ribozymes exhibit greater than 3000-fold activation upon effector-binding and cleave with maximum rate constants that are equivalent to the unmodified hammerhead ribozyme. In addition, we have evolved a variant allosteric ribozyme that exhibits an effector specificity change from theophylline to 3-methylxanthine. Molecular discrimination between the two effectors appears to be mediated by subtle conformational differences that originate from displacement of the phosphodiester backbone near the effector binding pocket. These findings reveal the importance of abstruse aspects of molecular recognition by nucleic acids that are likely to be unapproachable by current methods of rational design.
Collapse
Affiliation(s)
- G A Soukup
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
91
|
|
92
|
Abstract
Almost two dozen nucleotide analogs have been synthesized with alpha-phosphorothioate-tagged triphosphates and utilized in an interference modification approach termed Nucleotide Analog Interference Mapping. This method has made it possible to determine the chemical basis of RNA function and structure, including the identification of new rules for RNA helix packing, the functional analysis of a binding site for monovalent metal ions within RNA and the characterization of the catalytic mechanism of RNA enzymes.
Collapse
Affiliation(s)
- S A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
93
|
Abstract
Single-atom substitution experiments provide atomic resolution biochemical information concerning RNA structure and function. Traditionally, these experiments are performed using chimeric RNAs generated by reassembly of full-length RNA from a synthetic substituted oligonucleotide and a truncated RNA transcript. Unfortunately, this technique is limited by the technical difficulty of assembling and measuring the effect of each singly substituted molecule in a given RNA. Here we review an alternate method for rapidly screening the effect of chemical group substitutions on RNA function. Nucleotide analog interference mapping is a chemogenetic approach that utilizes a series 5'-O-(1-thio)-nucleoside analog triphosphates to simultaneously, yet individually, probe the contribution of a functional group at every nucleotide position in an RNA molecule. A population of randomly substituted RNAs is prepared by including phosphorothioate-tagged nucleotide analogs in an in vitro transcription reaction. The active molecules in the RNA population are selected by an activity assay, and the location of the analog substitution detrimental to activity is identified by cleavage at the phosphorothioate tag with iodine and resolution of the cleavage fragments by gel electrophoresis. This method, which is as easy as RNA sequencing, is applicable to any RNA that can be transcribed in vitro and has an assayable function. Here we describe protocols for the synthesis of phosphorothioate-tagged analogs and their incorporation into RNA transcripts. The incorporation properties and unique biochemical signatures of each individual analog are discussed.
Collapse
Affiliation(s)
- S P Ryder
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
94
|
Abstract
Derivatization of RNA with heterobifunctional photocrosslinking reagents becomes an increasingly popular method for the analysis of structural properties of ribonucleoprotein complexes. This article describes a simple chemical modification-derivatization strategy used to introduce selected chemical groups at specific internal positions within the RNA ribose backbone. The strategy is based on the coupling of a haloacetyl adduct to a thiol residue in the phosphodiester bond. The use of a number of RNA probes derivatized with several different photoreactive groups can provide invaluable information on the structural distribution of components in complex ribonucleoprotein assemblies.
Collapse
Affiliation(s)
- M M Konarska
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
95
|
Abstract
Site-specific probes provide a powerful tool for structure and function studies of nucleic acids, especially in elucidating tertiary structures of large ribozymes and other folded RNA molecules. Among many types of extrinsic labels, fluorophores are most attractive because they can provide structural information at millisecond time resolution, thus allowing real-time observation of structural transition during biological function. Methods for introducing fluorophores in RNA molecules are summarized here. These methods are robust and readily applicable to the labeling of other types of probes. However, as each case of RNA modification is unique, fine tuning of the general methodology is beneficial.
Collapse
Affiliation(s)
- P Z Qin
- Department of Biochemistry and Molecular Biophysics, The Howard Hughes Medical Institute, New York, New York 10032, USA
| | | |
Collapse
|
96
|
He K, Porter KW, Hasan A, Briley and JD, Shaw BR. Synthesis of 5-substituted 2'-deoxycytidine 5'-(alpha-P-borano)triphosphates, their incorporationinto DNA and effects on exonuclease. Nucleic Acids Res 1999; 27:1788-94. [PMID: 10101185 PMCID: PMC148385 DOI: 10.1093/nar/27.8.1788] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Direct PCR sequencing with boronated nucleotides provides an alternative to current PCR sequencing methods. The positions of boranophosphate-modified nucleotides incorporated randomly into DNA during PCR can be revealed directly by exonuclease digestion to give sequencing ladders. Cytosine nucleotides, however, are especially sensitive to exonuclease digestion and provide suboptimal sequencing ladders. Therefore, a series of 5-substituted analogs of 2'-deoxycytidine 5'-(alpha-P-borano)triphosphates (dCTPalphaB) were synthesized with the hope of increasing the nuclease resistance of deoxycytosine residues and thereby enhancing the deoxycytosine band intensities. These dCTP analogs contain a boranophosphate modification at the alpha-phosphate group in 2'-deoxycytidine 5'-triphosphate (dCTP) as well as a 5-methyl, 5-ethyl, 5-bromo or 5-iodo substitution for the 5-hydrogen of cytosine. The two diastereomers of each new dCTP derivative were separated by reverse phase HPLC. The first eluted diastereomer (putatively Rp) of each dCTP analog was a substrate for T7 DNA polymerase (Sequenase) and had an incorporation efficiency similar to normal dCTP and dCTPalphaB, with the 5-iodo-dCTPalphaB analog being the least efficient. Substitution at the C-5 position of cytosine by alkyl groups (ethyl and methyl) markedly enhanced the dCTPalphaB resistance towards exonuclease III (5-Et-dCTPalphaB >5-Me-dCTPalphaB >dCTPalphaB approximately 5-Br-dCTPalphaB >5-I-dCTPalphaB), thereby generating DNA sequences that better define the deoxycytosine positions. The introduction of modified dCTPalphaB should increase the utility of direct DNA sequencing with boronated nucleoside 5'-triphosphates.
Collapse
Affiliation(s)
- K He
- Department of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
97
|
Strobel SA, Ortoleva-Donnelly L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. CHEMISTRY & BIOLOGY 1999; 6:153-65. [PMID: 10074469 DOI: 10.1016/s1074-5521(99)89007-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The group I intron is an RNA enzyme capable of efficiently catalyzing phosphoryl-transfer reactions. Functional groups that stabilize the chemical transition state of the cleavage reaction have been identified, but they are all located within either the 5'-exon (P1) helix or the guanosine cofactor, which are the substrates of the reaction. Functional groups within the ribozyme active site are also expected to assist in transition-state stabilization, and their role must be explored to understand the chemical basis of group I intron catalysis. RESULTS Using nucleotide analog interference mapping and site-specific functional group substitution experiments, we demonstrate that the 2'-OH at A207, a highly conserved nucleotide in the ribozyme active site, specifically stabilizes the chemical transition state by approximately 2 kcal mol-1. The A207 2'-OH only makes its contribution when the U(-1) 2'-OH immediately adjacent to the scissile phosphate is present, suggesting that the 2'-OHs of A207 and U(-1) interact during the chemical step. CONCLUSIONS These data support a model in which the 3'-oxyanion leaving group of the transesterification reaction is stabilized by a hydrogen-bonding triad consisting of the 2'-OH groups of U(-1) and A207 and the exocyclic amine of G22. Because all three nucleotides occur within highly conserved non-canonical base pairings, this stabilization mechanism is likely to occur throughout group I introns. Although this mechanism utilizes functional groups distinctive of RNA enzymes, it is analogous to the transition states of some protein enzymes that perform similar phosphoryl-transfer reactions.
Collapse
Affiliation(s)
- S A Strobel
- Department of Molecular Biophysics, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
98
|
Holeman LA, Robinson SL, Szostak JW, Wilson C. Isolation and characterization of fluorophore-binding RNA aptamers. FOLDING & DESIGN 1999; 3:423-31. [PMID: 9889155 DOI: 10.1016/s1359-0278(98)00059-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND In vitro selection has been shown previously to be a powerful method for isolating nucleic acids with specific ligand-binding functions ('aptamers'). Given this capacity, we have sought to isolate RNA motifs that can confer fluorescent labeling to tagged RNA transcripts, potentially allowing in vivo detection and in vitro spectroscopic analysis of RNAs. RESULTS Two aptamers that recognize the fluorophore sulforhodamine B were isolated by the in vitro selection process. An unusually large motif of approximately 60 nucleotides is responsible for binding in one RNA (SRB-2). This motif consists of a three-way helical junction with two large, highly conserved unpaired regions. Phosphorothioate mapping with an iodoacetamide-tagged form of the ligand shows that these two regions make close contacts with the fluorophore, suggesting that the two loops combine to form separate halves of a binding pocket. The aptamer binds the fluorophore with high affinity, recognizing both the planar aromatic ring system and a negatively charged sulfonate, a rare example of anion recognition by RNA. An aptamer (FB-1) that specifically binds fluorescein has also been isolated by mutagenesis of a sulforhodamine aptamer followed by re-selection. In a simple in vitro test, SRB-2 and FB-1 have been shown to discriminate between sulforhodamine and fluorescein, specifically localizing each fluorophore to beads tagged with the corresponding aptamer. CONCLUSIONS In addition to serving as a model system for understanding the basis of RNA folding and function, these experiments demonstrate potential applications for the aptamers in transcript double labeling or fluorescence resonance energy transfer studies.
Collapse
Affiliation(s)
- L A Holeman
- Department of Biology and Center for the Molecular Biology of RNA, University of California at Santa Cruz, 95064, USA
| | | | | | | |
Collapse
|
99
|
Boudvillain M, Pyle AM. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J 1998; 17:7091-104. [PMID: 9843513 PMCID: PMC1171056 DOI: 10.1093/emboj/17.23.7091] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Group II introns are self-splicing RNA molecules that are of considerable interest as ribozymes, mobile genetic elements and examples of folded RNA. Although these introns are among the most common ribozymes, little is known about the chemical and structural determinants for their reactivity. By using nucleotide analog interference mapping (NAIM), it has been possible to identify the nucleotide functional groups (Rp phosphoryls, 2'-hydroxyls, guanosine exocyclic amines, adenosine N7 and N6) that are most important for composing the catalytic core of the intron. The majority of interference effects occur in clusters located within the two catalytically essential Domains 1 and 5 (D1 and D5). Collectively, the NAIM results indicate that key tetraloop-receptor interactions display a specific chemical signature, that the epsilon-epsilon' interaction includes an elaborate array of additional features and that one of the most important core structures is an uncharacterized three-way junction in D1. By combining NAIM with site-directed mutagenesis, a new tertiary interaction, kappa-kappa', was identified between this region and the most catalytically important section of D5, adjacent to the AGC triad in stem 1. Together with the known zeta-zeta' interaction, kappa-kappa' anchors D5 firmly into the D1 scaffold, thereby presenting chemically essential D5 functionalities for participation in catalysis.
Collapse
Affiliation(s)
- M Boudvillain
- The Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, 701 W. 168th Street, Room 616, Hammer Health Sciences Center, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
100
|
Basu S, Rambo RP, Strauss-Soukup J, Cate JH, Ferré-D'Amaré AR, Strobel SA, Doudna JA. A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. NATURE STRUCTURAL BIOLOGY 1998; 5:986-92. [PMID: 9808044 DOI: 10.1038/2960] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metal ions are essential for the folding and activity of large catalytic RNAs. While divalent metal ions have been directly implicated in RNA tertiary structure formation, the role of monovalent ions has been largely unexplored. Here we report the first specific monovalent metal ion binding site within a catalytic RNA. As seen crystallographically, a potassium ion is coordinated immediately below AA platforms of the Tetrahymena ribozyme P4-P6 domain, including that within the tetraloop receptor. Interference and kinetic experiments demonstrate that potassium ion binding within the tetraloop receptor stabilizes the folding of the P4-P6 domain and enhances the activity of the Azoarcus group I intron. Since a monovalent ion binding site is integral to the tetraloop receptor, a tertiary structural motif that occurs frequently in RNA, monovalent metal ions are likely to participate in the folding and activity of a wide diversity of RNAs.
Collapse
Affiliation(s)
- S Basu
- Center for Chemical Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|