51
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
52
|
Subramanian V, Lunin VV, Farmer SJ, Alahuhta M, Moore KT, Ho A, Chaudhari YB, Zhang M, Himmel ME, Decker SR. Phylogenetics-based identification and characterization of a superior 2,3-butanediol dehydrogenase for Zymomonas mobilis expression. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:186. [PMID: 33292448 PMCID: PMC7656694 DOI: 10.1186/s13068-020-01820-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Zymomonas mobilis has recently been shown to be capable of producing the valuable platform biochemical, 2,3-butanediol (2,3-BDO). Despite this capability, the production of high titers of 2,3-BDO is restricted by several physiological parameters. One such bottleneck involves the conversion of acetoin to 2,3-BDO, a step catalyzed by 2,3-butanediol dehydrogenase (Bdh). Several Bdh enzymes have been successfully expressed in Z. mobilis, although a highly active enzyme is yet to be identified for expression in this host. Here, we report the application of a phylogenetic approach to identify and characterize a superior Bdh, followed by validation of its structural attributes using a mutagenesis approach. RESULTS Of the 11 distinct bdh genes that were expressed in Z. mobilis, crude extracts expressing Serratia marcescens Bdh (SmBdh) were found to have the highest activity (8.89 µmol/min/mg), when compared to other Bdh enzymes (0.34-2.87 µmol/min/mg). The SmBdh crystal structure was determined through crystallization with cofactor (NAD+) and substrate (acetoin) molecules bound in the active site. Active SmBdh was shown to be a tetramer with the active site populated by a Gln247 residue contributed by the diagonally opposite subunit. SmBdh showed a more extensive supporting hydrogen-bond network in comparison to the other well-studied Bdh enzymes, which enables improved substrate positioning and substrate specificity. This protein also contains a short α6 helix, which provides more efficient entry and exit of molecules from the active site, thereby contributing to enhanced substrate turnover. Extending the α6 helix to mimic the lower activity Enterobacter cloacae (EcBdh) enzyme resulted in reduction of SmBdh function to nearly 3% of the total activity. In great contrast, reduction of the corresponding α6 helix of the EcBdh to mimic the SmBdh structure resulted in ~ 70% increase in its activity. CONCLUSIONS This study has demonstrated that SmBdh is superior to other Bdhs for expression in Z. mobilis for 2,3-BDO production. SmBdh possesses unique structural features that confer biochemical advantage to this protein. While coordinated active site formation is a unique structural characteristic of this tetrameric complex, the smaller α6 helix and extended hydrogen network contribute towards improved activity and substrate promiscuity of the enzyme.
Collapse
Affiliation(s)
- Venkataramanan Subramanian
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Samuel J Farmer
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Kyle T Moore
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Angela Ho
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Yogesh B Chaudhari
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
- Biodiversity and Ecosystem Research, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
53
|
Abstract
Nowadays, the transport sector is one of the main sources of greenhouse gas (GHG) emissions and air pollution in cities. The use of renewable energies is therefore imperative to improve the environmental sustainability of this sector. In this regard, biofuels play an important role as they can be blended directly with fossil fuels and used in traditional vehicles’ engines. Bioethanol is the most used biofuel worldwide and can replace gasoline or form different gasoline-ethanol blends. Additionally, it is an important building block to obtain different high added-value compounds (e.g., acetaldehyde, ethylene, 1,3-butadiene, ethyl acetate). Today, bioethanol is mainly produced from food crops (first-generation (1G) biofuels), and a transition to the production of the so-called advanced ethanol (obtained from lignocellulosic feedstocks, non-food crops, or industrial waste and residue streams) is needed to meet sustainability criteria and to have a better GHG balance. This work gives an overview of the current production, use, and regulation rules of bioethanol as a fuel, as well as the advanced processes and the co-products that can be produced together with bioethanol in a biorefinery context. Special attention is given to the opportunities for making a sustainable transition from bioethanol 1G to advanced bioethanol.
Collapse
|
54
|
Kurumbang NP, Vera JM, Hebert AS, Coon JJ, Landick R. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose. PLoS One 2020; 15:e0226235. [PMID: 32797046 PMCID: PMC7428164 DOI: 10.1371/journal.pone.0226235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Plant-derived fuels and chemicals from renewable biomass have significant potential to replace reliance on petroleum and improve global carbon balance. However, plant biomass contains significant fractions of oligosaccharides that are not usable natively by many industrial microorganisms, including Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis. Even after chemical or enzymatic hydrolysis, some carbohydrate remains as non-metabolizable oligosaccharides (e.g., cellobiose or longer cellulose-derived oligomers), thus reducing the efficiency of conversion to useful products. To begin to address this problem for Z. mobilis, we engineered a strain (Z. mobilis GH3) that expresses a glycosyl hydrolase (GH) with β-glucosidase activity from a related α-proteobacterial species, Caulobacter crescentus, and subjected it to an adaptation in cellobiose medium. Growth on cellobiose was achieved after a prolonged lag phase in cellobiose medium that induced changes in gene expression and cell composition, including increased expression and extracellular release of GH. These changes were reversible upon growth in glucose-containing medium, meaning they did not result from genetic mutation but could be retained upon transfer of cells to fresh cellobiose medium. After adaptation to cellobiose, our GH-expressing strain was able to convert about 50% of cellobiose to glucose within 24 h and use it for growth and ethanol production. Alternatively, pre-growth of Z. mobilis GH3 in sucrose medium enabled immediate growth on cellobiose. Proteomic analysis of cellobiose- and sucrose-adapted strains revealed upregulation of secretion-, transport-, and outer membrane-related proteins, which may aid release or surface display of GHs, entry of cellobiose into the periplasm, or both. Our two key findings are that Z. mobilis can be reprogrammed to grow on cellobiose as a sole carbon source and that this reprogramming is related to a natural response of Z. mobilis to sucrose that promotes sucrase production.
Collapse
Affiliation(s)
- Nagendra P. Kurumbang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica M. Vera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander S. Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Biochemistry and Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
55
|
Ong WK, Courtney DK, Pan S, Andrade RB, Kiley PJ, Pfleger BF, Reed JL. Model-driven analysis of mutant fitness experiments improves genome-scale metabolic models of Zymomonas mobilis ZM4. PLoS Comput Biol 2020; 16:e1008137. [PMID: 32804944 PMCID: PMC7451989 DOI: 10.1371/journal.pcbi.1008137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genome-scale metabolic models have been utilized extensively in the study and engineering of the organisms they describe. Here we present the analysis of a published dataset from pooled transposon mutant fitness experiments as an approach for improving the accuracy and gene-reaction associations of a metabolic model for Zymomonas mobilis ZM4, an industrially relevant ethanologenic organism with extremely high glycolytic flux and low biomass yield. Gene essentiality predictions made by the draft model were compared to data from individual pooled mutant experiments to identify areas of the model requiring deeper validation. Subsequent experiments showed that some of the discrepancies between the model and dataset were caused by polar effects, mis-mapped barcodes, or mutants carrying both wild-type and transposon disrupted gene copies-highlighting potential limitations inherent to data from individual mutants in these high-throughput datasets. Therefore, we analyzed correlations in fitness scores across all 492 experiments in the dataset in the context of functionally related metabolic reaction modules identified within the model via flux coupling analysis. These correlations were used to identify candidate genes for a reaction in histidine biosynthesis lacking an annotated gene and highlight metabolic modules with poorly correlated gene fitness scores. Additional genes for reactions involved in biotin, ubiquinone, and pyridoxine biosynthesis in Z. mobilis were identified and confirmed using mutant complementation experiments. These discovered genes, were incorporated into the final model, iZM4_478, which contains 747 metabolic and transport reactions (of which 612 have gene-protein-reaction associations), 478 genes, and 616 unique metabolites, making it one of the most complete models of Z. mobilis ZM4 to date. The methods of analysis that we applied here with the Z. mobilis transposon mutant dataset, could easily be utilized to improve future genome-scale metabolic reconstructions for organisms where these, or similar, high-throughput datasets are available.
Collapse
Affiliation(s)
- Wai Kit Ong
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Dylan K. Courtney
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Shu Pan
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Ramon Bonela Andrade
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
56
|
Todhanakasem T, Wu B, Simeon S. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J Microbiol Biotechnol 2020; 36:112. [PMID: 32656581 DOI: 10.1007/s11274-020-02885-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Zymomonas mobilis is an ethanologenic microbe that has a demonstrated potential for use in lignocellulosic biorefineries for bioethanol production. Z. mobilis exhibits a number of desirable characteristics for use as an ethanologenic microbe, with capabilities for metabolic engineering and bioprocess modification. Many advanced genetic tools, including mutation techniques, screening methods and genome editing have been successively performed to improve various Z. mobilis strains as potential consolidated ethanologenic microbes. Many bioprocess strategies have also been applied to this organism for bioethanol production. Z. mobilis biofilm reactors have been modified with various benefits, including high bacterial populations, less fermentation times, high productivity, high cell stability, resistance to the high concentration of substrates and toxicity, and higher product recovery. We suggest that Z. mobilis biofilm reactors could be used in bioethanol production using lignocellulosic substrates under batch, continuous and repeated batch processes.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro- Industry, Faculty of Biotechnology, Assumption University, Ramkhamhaeng Road, Bangkapi, Bangkok, 10240, Thailand.
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture and Rural Affairs, Renmin Rd. S 4-13, Chengdu, 610041, China
| | - Saw Simeon
- Absolute Clean Energy Public Company Limited, ITF Tower 7th Floor, Silom Road, Bang Rak, Bangkok, 10500, Thailand
| |
Collapse
|
57
|
A reconciliation of genome-scale metabolic network model of Zymomonas mobilis ZM4. Sci Rep 2020; 10:7782. [PMID: 32385302 PMCID: PMC7210963 DOI: 10.1038/s41598-020-64721-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Zymomonas mobilis ZM4 has recently been used for a variety of biotechnological purposes. To rationally enhance its metabolic performance, a reliable genome-scale metabolic network model (GEM) of this organism is required. To this end, we reconstructed a genome-scale metabolic model (iHN446) for Z. mobilis, which involves 446 genes, 859 reactions, and 894 metabolites. We started by first reconciling the existing GEMs previously constructed for Z. mobilis to obtain a draft network. Next, recent gene annotations, up-to-date literature, physiological data and biochemical databases were used to upgrade the network. Afterward, the draft network went through a curative and iterative process of gap-filling by computational tools and manual refinement. The final model was evaluated using experimental data and literature information. We next applied this model as a platform for analyzing the links between transcriptome-flux and transcriptome-metabolome. We found that experimental observations were in agreement with the predicted results from our final GEM. Taken together, this comprehensive model (iHN446) can be utilized for studying metabolism in Z. mobilis and finding rational targets for metabolic engineering applications.
Collapse
|
58
|
Han R, Haning K, Gonzalez-Rivera JC, Yang Y, Li R, Cho SH, Huang J, Simonsen BA, Yang S, Contreras LM. Multiple Small RNAs Interact to Co-regulate Ethanol Tolerance in Zymomonas mobilis. Front Bioeng Biotechnol 2020; 8:155. [PMID: 32195236 PMCID: PMC7064620 DOI: 10.3389/fbioe.2020.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/14/2020] [Indexed: 01/18/2023] Open
Abstract
sRNAs represent a powerful class of regulators that influences multiple mRNA targets in response to environmental changes. However, very few direct sRNA-sRNA interactions have been deeply studied in any organism. Zymomonas mobilis is a bacterium with unique ethanol-producing metabolic pathways in which multiple small RNAs (sRNAs) have recently been identified, some of which show differential expression in ethanol stress. In this study, we show that two sRNAs (Zms4 and Zms6) are upregulated under ethanol stress and have significant impacts on ethanol tolerance and production in Z. mobilis. We conducted multi-omics analysis (combining transcriptomics and sRNA-immunoprecipitation) to map gene networks under the influence of their regulation. We confirmed that Zms4 and Zms6 bind multiple RNA targets and regulate their expressions, influencing many downstream pathways important to ethanol tolerance and production. In particular, Zms4 and Zms6 interact with each other as well as many other sRNAs, forming a novel sRNA-sRNA direct interaction network. This study thus uncovers a sRNA network that co-orchestrates multiple ethanol related pathways through a diverse set of mRNA targets and a large number of sRNAs. To our knowledge, this study represents one of the largest sRNA-sRNA direct interactions uncovered so far.
Collapse
Affiliation(s)
- Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Runxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Seung Hee Cho
- Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ju Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Bobi A Simonsen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
59
|
Metabolic Profiling of Glucose-Fed Metabolically Active Resting Zymomonas mobilis Strains. Metabolites 2020; 10:metabo10030081. [PMID: 32110884 PMCID: PMC7142471 DOI: 10.3390/metabo10030081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Zymomonas mobilis is the most efficient bacterial ethanol producer and its physiology is potentially applicable to industrial-scale bioethanol production. However, compared to other industrially important microorganisms, the Z. mobilis metabolome and adaptation to various nutritional and genetic perturbations have been poorly characterized. For rational metabolic engineering, it is essential to understand how central metabolism and intracellular redox balance are maintained in Z. mobilis under various conditions. In this study, we applied quantitative mass spectrometry-based metabolomics to explore how glucose-fed non-growing Z. mobilis Zm6 cells metabolically adapt to change of oxygen availability. Mutants partially impaired in ethanol synthesis (Zm6 adhB) or oxidative stress response (Zm6 cat) were also examined. Distinct patterns of adaptation of central metabolite pools due to the change in cultivation condition and between the mutants and Zm6 reference strain were observed. Decreased NADH/NAD ratio under aerobic incubation corresponded to higher concentrations of the phosphorylated glycolytic intermediates, in accordance with predictions of the kinetic model of Entner–Doudoroff pathway. The effects on the metabolite pools of aerobic to anaerobic transition were similar in the mutants, yet less pronounced. The present data on metabolic plasticity of non-growing Z. mobilis cells will facilitate the further metabolic engineering of the respective strains and their application as biocatalysts.
Collapse
|
60
|
Onyeabor M, Martinez R, Kurgan G, Wang X. Engineering transport systems for microbial production. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:33-87. [PMID: 32446412 DOI: 10.1016/bs.aambs.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.
Collapse
Affiliation(s)
- Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
61
|
Zhao Z, Xian M, Liu M, Zhao G. Biochemical routes for uptake and conversion of xylose by microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:21. [PMID: 32021652 PMCID: PMC6995148 DOI: 10.1186/s13068-020-1662-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 05/23/2023]
Abstract
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature. Efficient utilization of xylose is required for the development of economically viable processes to produce biofuels and chemicals from biomass. However, there are still some bottlenecks in the bioconversion of xylose, including the fact that some microorganisms cannot assimilate xylose naturally and that the uptake and metabolism of xylose are inhibited by glucose, which is usually present with xylose in lignocellulose hydrolysate. To overcome these issues, numerous efforts have been made to discover, characterize, and engineer the transporters and enzymes involved in xylose utilization to relieve glucose inhibition and to develop recombinant microorganisms to produce fuels and chemicals from xylose. Here we describe a recent advancement focusing on xylose-utilizing pathways, biosynthesis of chemicals from xylose, and engineering strategies used to improve the conversion efficiency of xylose.
Collapse
Affiliation(s)
- Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
62
|
Haning K, Engels SM, Williams P, Arnold M, Contreras LM. Applying a New REFINE Approach in Zymomonas mobilis Identifies Novel sRNAs That Confer Improved Stress Tolerance Phenotypes. Front Microbiol 2020; 10:2987. [PMID: 31998271 PMCID: PMC6970203 DOI: 10.3389/fmicb.2019.02987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
As global controllers of gene expression, small RNAs represent powerful tools for engineering complex phenotypes. However, a general challenge prevents the more widespread use of sRNA engineering strategies: mechanistic analysis of these regulators in bacteria lags far behind their high-throughput search and discovery. This makes it difficult to understand how to efficiently identify useful sRNAs to engineer a phenotype of interest. To help address this, we developed a forward systems approach to identify naturally occurring sRNAs relevant to a desired phenotype: RNA-seq Examiner for Phenotype-Informed Network Engineering (REFINE). This pipeline uses existing RNA-seq datasets under different growth conditions. It filters the total transcriptome to locate and rank regulatory-RNA-containing regions that can influence a metabolic phenotype of interest, without the need for previous mechanistic characterization. Application of this approach led to the uncovering of six novel sRNAs related to ethanol tolerance in non-model ethanol-producing bacterium Zymomonas mobilis. Furthermore, upon overexpressing multiple sRNA candidates predicted by REFINE, we demonstrate improved ethanol tolerance reflected by up to an approximately twofold increase in relative growth rate compared to controls not expressing these sRNAs in 7% ethanol (v/v) RMG-supplemented media. In this way, the REFINE approach informs strain-engineering strategies that we expect are applicable for general strain engineering.
Collapse
Affiliation(s)
- Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Sean M. Engels
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Paige Williams
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, United States
| | - Margaret Arnold
- Department of Computer Science and Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
63
|
Qiu M, Shen W, Yan X, He Q, Cai D, Chen S, Wei H, Knoshaug EP, Zhang M, Himmel ME, Yang S. Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:15. [PMID: 31998408 PMCID: PMC6982386 DOI: 10.1186/s13068-020-1654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/11/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Biofuels and value-added biochemicals derived from renewable biomass via biochemical conversion have attracted considerable attention to meet global sustainable energy and environmental goals. Isobutanol is a four-carbon alcohol with many advantages that make it attractive as a fossil-fuel alternative. Zymomonas mobilis is a highly efficient, anaerobic, ethanologenic bacterium making it a promising industrial platform for use in a biorefinery. RESULTS In this study, the effect of isobutanol on Z. mobilis was investigated, and various isobutanol-producing recombinant strains were constructed. The results showed that the Z. mobilis parental strain was able to grow in the presence of isobutanol below 12 g/L while concentrations greater than 16 g/L inhibited cell growth. Integration of the heterologous gene encoding 2-ketoisovalerate decarboxylase such as kdcA from Lactococcus lactis is required for isobutanol production in Z. mobilis. Moreover, isobutanol production increased from nearly zero to 100-150 mg/L in recombinant strains containing the kdcA gene driven by the tetracycline-inducible promoter Ptet. In addition, we determined that overexpression of a heterologous als gene and two native genes (ilvC and ilvD) involved in valine metabolism in a recombinant Z. mobilis strain expressing kdcA can divert pyruvate from ethanol production to isobutanol biosynthesis. This engineering improved isobutanol production to above 1 g/L. Finally, recombinant strains containing both a synthetic operon, als-ilvC-ilvD, driven by Ptet and the kdcA gene driven by the constitutive strong promoter, Pgap, were determined to greatly enhance isobutanol production with a maximum titer about 4.0 g/L. Finally, isobutanol production was negatively affected by aeration with more isobutanol being produced in more poorly aerated flasks. CONCLUSIONS This study demonstrated that overexpression of kdcA in combination with a synthetic heterologous operon, als-ilvC-ilvD, is crucial for diverting pyruvate from ethanol production for enhanced isobutanol biosynthesis. Moreover, this study also provides a strategy for harnessing the valine metabolic pathway for future production of other pyruvate-derived biochemicals in Z. mobilis.
Collapse
Affiliation(s)
- Mengyue Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiongyin Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui Wei
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Centers, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
64
|
Zymomonas mobilis metabolism: Novel tools and targets for its rational engineering. Adv Microb Physiol 2020; 77:37-88. [PMID: 34756211 DOI: 10.1016/bs.ampbs.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zymomonas mobilis is an α-proteobacterium that interests the biofuel industry due to its perfect ethanol fermentation yields. From its first description as a bacterial isolate in fermented alcoholic beverages to date, Z. mobilis has been rigorously studied in directions basic and applied. The Z. mobilis powerful Entner-Doudoroff glycolytic pathway has been the center of rigorous biochemical studies and, aside from ethanol, it has attracted interest in terms of high-added-value chemical manufacturing. Energetic balances and the effects of respiration have been explored in fundamental directions as also in applications pursuing strain enhancement and the utilization of alternative carbon sources. Metabolic modeling has addressed the optimization of the biochemical circuitry at various conditions of growth and/or substrate utilization; it has been also critical in predicting desirable end-product yields via flux redirection. Lastly, stress tolerance has received particular attention, since it directly determines biocatalytical performance at challenging bioreactor conditions. At a genetic level, advances in the genetic engineering of the organism have brought forth beneficial manipulations in the Z. mobilis gene pool, e.g., knock-outs, knock-ins and gene stacking, aiming to broaden the metabolic repertoire and increase robustness. Recent omic and expressional studies shed light on the genomic content of the most applied strains and reveal landscapes of activity manifested at ambient or reactor-based conditions. Studies such as those reviewed in this work, contribute to the understanding of the biology of Z. mobilis, enable insightful strain development, and pave the way for the transformation of Z. mobilis into a consummate organism for biomass conversion.
Collapse
|
65
|
Yang Y, Rong Z, Song H, Yang X, Li M, Yang S. Identification and characterization of ethanol-inducible promoters of Zymomonas mobilis based on omics data and dual reporter-gene system. Biotechnol Appl Biochem 2019; 67:158-165. [PMID: 31626362 DOI: 10.1002/bab.1838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022]
Abstract
Zymomonas mobilis is a model bacterial ethanologen and has been engineered to produce lignocellulosic biofuels and biochemicals such as 2,3-butanediol. We have previously identified promoters of different strengths using systems biology datasets and characterized them using the flow cytometry-based dual reporter-gene system. Here, we further demonstrated the capability of applying the dual reporter-gene system and omics datasets on discovering inducible promoters. Ten candidate ethanol-inducible promoters were identified through omics datasets mining and clustering. Using the dual reporter-gene system, these promoters were characterized under natural growth, ethanol stress, and ethanol-induced condition to investigate the transcriptional strength and ethanol inducibility. The results demonstrated that three promoters of P0405, P0435, and P0038 driving the expression of native genes of ZMO0405, ZMO0435, and ZMO0038, correspondingly, are potential ethanol-responsive promoters and may be growth related. This study not only identified and verified three ethanol-inducible promoters as biological parts, which can be used to synchronize the expression of heterologous pathway genes with the ethanol production process of Z. mobilis, but also demonstrated the power of combining omics datasets and dual reporter-gene system to identify biological parts for metabolic engineering and synthetic biology applications in Z. mobilis and related microorganisms.
Collapse
Affiliation(s)
- Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Ziyue Rong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Haoyue Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xiuxiu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
66
|
Kalnenieks U, Balodite E, Rutkis R. Metabolic Engineering of Bacterial Respiration: High vs. Low P/O and the Case of Zymomonas mobilis. Front Bioeng Biotechnol 2019; 7:327. [PMID: 31781557 PMCID: PMC6861446 DOI: 10.3389/fbioe.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.
Collapse
Affiliation(s)
- Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
67
|
Singhvi MS, Gokhale DV. Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl Microbiol Biotechnol 2019; 103:9305-9320. [DOI: 10.1007/s00253-019-10212-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022]
|
68
|
Zhang Y, Vera JM, Xie D, Serate J, Pohlmann E, Russell JD, Hebert AS, Coon JJ, Sato TK, Landick R. Multiomic Fermentation Using Chemically Defined Synthetic Hydrolyzates Revealed Multiple Effects of Lignocellulose-Derived Inhibitors on Cell Physiology and Xylose Utilization in Zymomonas mobilis. Front Microbiol 2019; 10:2596. [PMID: 31787963 PMCID: PMC6853872 DOI: 10.3389/fmicb.2019.02596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/25/2019] [Indexed: 01/14/2023] Open
Abstract
Utilization of both C5 and C6 sugars to produce biofuels and bioproducts is a key goal for the development of integrated lignocellulosic biorefineries. Previously we found that although engineered Zymomonas mobilis 2032 was able to ferment glucose to ethanol when fermenting highly concentrated hydrolyzates such as 9% glucan-loading AFEX-pretreated corn stover hydrolyzate (9% ACSH), xylose conversion after glucose depletion was greatly impaired. We hypothesized that impaired xylose conversion was caused by lignocellulose-derived inhibitors (LDIs) in hydrolyzates. To investigate the effects of LDIs on the cellular physiology of Z. mobilis during fermentation of hydrolyzates, including impacts on xylose utilization, we generated synthetic hydrolyzates (SynHs) that contained nutrients and LDIs at concentrations found in 9% ACSH. Comparative fermentations of Z. mobilis 2032 using SynH with or without LDIs were performed, and samples were collected for end product, transcriptomic, metabolomic, and proteomic analyses. Several LDI-specific effects were observed at various timepoints during fermentation including upregulation of sulfur assimilation and cysteine biosynthesis, upregulation of RND family efflux pump systems (ZMO0282-0285) and ZMO1429-1432, downregulation of a Type I secretion system (ZMO0252-0255), depletion of reduced glutathione, and intracellular accumulation of mannose-1P and mannose-6P. Furthermore, when grown in SynH containing LDIs, Z. mobilis 2032 only metabolized ∼50% of xylose, compared to ∼80% in SynH without LDIs, recapitulating the poor xylose utilization observed in 9% ACSH. Our metabolomic data suggest that the overall flux of xylose metabolism is reduced in the presence of LDIs. However, the expression of most genes involved in glucose and xylose assimilation was not affected by LDIs, nor did we observe blocks in glucose and xylose metabolic pathways. Accumulations of intracellular xylitol and xylonic acid was observed in both SynH with and without LDIs, which decreased overall xylose-to-ethanol conversion efficiency. Our results suggest that xylose metabolism in Z. mobilis 2032 may not be able to support the cellular demands of LDI mitigation and detoxification during fermentation of highly concentrated lignocellulosic hydrolyzates with elevated levels of LDIs. Together, our findings identify several cellular responses to LDIs and possible causes of impaired xylose conversion that will enable future strain engineering of Z. mobilis.
Collapse
Affiliation(s)
- Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica M Vera
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Dan Xie
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Serate
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Edward Pohlmann
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason D Russell
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander S Hebert
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua J Coon
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Trey K Sato
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
69
|
Mechanism of Tolerance to the Lignin-Derived Inhibitor p-Benzoquinone and Metabolic Modification of Biorefinery Fermentation Strains. Appl Environ Microbiol 2019; 85:AEM.01443-19. [PMID: 31492664 DOI: 10.1128/aem.01443-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/26/2019] [Indexed: 11/20/2022] Open
Abstract
p-Benzoquinone (BQ) is a lignin-derived inhibitor of biorefinery fermentation strains produced during pretreatment of lignocellulose. Unlike the well-studied inhibitors furan aldehydes, weak acids, and phenolics, the inhibitory properties of BQ, the microbial tolerance mechanism, and the detoxification strategy for this inhibitor have not been clearly elucidated. Here, BQ was identified as a by-product generated during acid pretreatment of various lignocellulose feedstocks, including corn stover, wheat straw, rice straw, tobacco stem, sunflower stem, and corncob residue. BQ at 20 to 200 mg/liter severely inhibited the cell growth and fermentability of various bacteria and yeast strains used in biorefinery fermentations. The BQ tolerance of the strains was found to be closely related to their capacity to convert BQ to nontoxic hydroquinone (HQ). To identify the key genes responsible for BQ tolerance, transcription levels of 20 genes potentially involved in the degradation of BQ in Zymomonas mobilis were investigated using real-time quantitative PCR in BQ-treated cells. One oxidoreductase gene, one hydroxylase gene, three reductase genes, and three dehydrogenase genes were found to be responsible for the conversion of BQ to HQ. Overexpression of the five key genes in Z. mobilis (ZMO1696, ZMO1949, ZMO1576, ZMO1984, and ZMO1399) accelerated its cell growth and cellulosic ethanol production in BQ-containing medium and lignocellulose hydrolysates.IMPORTANCE This study advances our understanding of BQ inhibition behavior and the mechanism of microbial tolerance to this inhibitor and identifies the key genes responsible for BQ detoxification. The insights here into BQ toxicity and tolerance provide the basis for future synthetic biology to engineer industrial fermentation strains with enhanced BQ tolerance.
Collapse
|
70
|
Banerjee S, Mishra G, Roy A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
71
|
Shen W, Zhang J, Geng B, Qiu M, Hu M, Yang Q, Bao W, Xiao Y, Zheng Y, Peng W, Zhang G, Ma L, Yang S. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microb Cell Fact 2019; 18:162. [PMID: 31581942 PMCID: PMC6777028 DOI: 10.1186/s12934-019-1219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. RESULTS Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. CONCLUSIONS This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mengyue Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mimi Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Weiwei Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
72
|
Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability. J Biotechnol 2019; 303:1-7. [DOI: 10.1016/j.jbiotec.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022]
|
73
|
Xia J, Yang Y, Liu CG, Yang S, Bai FW. Engineering Zymomonas mobilis for Robust Cellulosic Ethanol Production. Trends Biotechnol 2019; 37:960-972. [DOI: 10.1016/j.tibtech.2019.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
74
|
Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Biotechnol J 2019; 14:e1800441. [PMID: 31297978 DOI: 10.1002/biot.201800441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/08/2019] [Indexed: 11/10/2022]
Abstract
Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome-scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole-genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations' involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next-generation biofuels.
Collapse
Affiliation(s)
- Joonhoon Kim
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Mary Tremaine
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jeffrey A Grass
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Hugh M Purdy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Robert Landick
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Patricia J Kiley
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jennifer L Reed
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| |
Collapse
|
75
|
Jacobson TB, Adamczyk PA, Stevenson DM, Regner M, Ralph J, Reed JL, Amador-Noguez D. 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. Metab Eng 2019; 54:301-316. [DOI: 10.1016/j.ymben.2019.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/30/2022]
|
76
|
Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 2019; 37:491-504. [DOI: 10.1016/j.biotechadv.2019.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
|
77
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
78
|
Zhang K, Lu X, Li Y, Jiang X, Liu L, Wang H. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl Microbiol Biotechnol 2019; 103:2087-2099. [PMID: 30661108 DOI: 10.1007/s00253-019-09620-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Bioethanol has been considered as a potentially renewable energy source, and metabolic engineering plays an important role in the production of biofuels. As an efficient ethanol-producing bacterium, Zymomonas mobilis has garnered special attention due to its high sugar uptake, ethanol yield, and tolerance. Different metabolic engineering strategies have been used to establish new metabolic pathways for Z. mobilis to broaden its substrate range, remove competing pathways, and enhance its tolerance to ethanol and lignocellulosic hydrolysate inhibitors. Recent advances in omics technology, computational modeling and simulation, system biology, and synthetic biology contribute to the efficient re-design and manipulation of microbes via metabolic engineering at the whole-cell level. In this review, we summarize the progress of some new technologies used for metabolic engineering to improve bioethanol production and tolerance in Z. mobilis. Some successful examples of metabolic engineering used to develop strains for ethanol production are described in detail. Lastly, some important strategies for future metabolic engineering efforts are also highlighted.
Collapse
Affiliation(s)
- Kun Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xinxin Lu
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yi Li
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xiaobing Jiang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lei Liu
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Hailei Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
79
|
Yang Y, Shen W, Huang J, Li R, Xiao Y, Wei H, Chou YC, Zhang M, Himmel ME, Chen S, Yi L, Ma L, Yang S. Prediction and characterization of promoters and ribosomal binding sites of Zymomonas mobilis in system biology era. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:52. [PMID: 30911332 PMCID: PMC6417218 DOI: 10.1186/s13068-019-1399-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/08/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Zymomonas mobilis is a model bacterial ethanologen with many systems biology studies reported. Besides lignocellulosic ethanol production, Z. mobilis has been developed as a platform for biochemical production through metabolic engineering. However, identification and rigorous understanding of the genetic origins of cellular function, especially those based in non-coding region of DNA, such as promoters and ribosomal binding sites (RBSs), are still in its infancy. This knowledge is crucial for the effective application of Z. mobilis to new industrial applications of biotechnology for fuels and chemicals production. RESULTS In this study, we explored the possibility to systematically predict the strength of promoters based on systems biology datasets. The promoter strength was clustered based on the expression values of downstream genes (or proteins) from systems biology studies including microarray, RNA-Seq and proteomics. Candidate promoters with different strengths were selected for further characterization, which include 19 strong, nine medium, and ten weak ones. A dual reporter-gene system was developed which included appropriate reporter genes. These are the opmCherry reporter gene driven by the constitutive PlacUV5 promoter for calibration, and EGFP reporter gene driven by candidate promoters for quantification. This dual reporter-gene system was confirmed using the inducible promoter, Ptet, which was used to determine the strength of these predicted promoters with different strengths. In addition, the dual reporter-gene system was applied to determine four synthetic RBSs with different translation initiation rates based on the prediction from bioinformatics server RBS calculator. Our results showed that the correlations between the prediction and experimental results for the promoter and RBS strength are relatively high, with R 2 values more than 0.7 and 0.9, respectively. CONCLUSIONS This study not only identified and characterized 38 promoters and four RBSs with different strengths for future metabolic engineering in Z. mobilis, but also established a flow cytometry-based dual reporter-gene system to characterize genetic elements including, but not limited to the promoters and RBSs studied in this work. This study also suggested the feasibility of predicting and selecting candidate genetic elements based on omics datasets and bioinformatics tools. Moreover, the dual reporter-gene system developed in this study can be utilized to characterize other genetic elements of Z. mobilis, which can also be applied to other microorganisms.
Collapse
Affiliation(s)
- Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ju Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Runxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yat-Chen Chou
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
80
|
Parra-Ramírez D, Martinez A, Cardona CA. Technical and economic potential evaluation of the strain Escherichia coli MS04 in the ethanol production from glucose and xylose. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
Strazdina I, Balodite E, Lasa Z, Rutkis R, Galinina N, Kalnenieks U. Aerobic catabolism and respiratory lactate bypass in Ndh-negative Zymomonas mobilis. Metab Eng Commun 2018; 7:e00081. [PMID: 30591903 PMCID: PMC6260413 DOI: 10.1016/j.mec.2018.e00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022] Open
Abstract
Ability to ferment in the presence of oxygen increases the robustness of bioprocesses and opens opportunity for novel industrial setups. The ethanologenic bacterium Zymomonas mobilis performs rapid and efficient anaerobic ethanol fermentation, yet its respiratory NADH dehydrogenase (Ndh)-deficient strain (ndh-) is known to produce ethanol with high yield also under oxic conditions. Compared to the wild type, it has a lower rate of oxygen consumption, and an increased expression of the respiratory lactate dehydrogenase (Ldh). Here we present a quantitative study of the product spectrum and carbon balance for aerobically growing ndh-. Ldh-deficient and Ldh-overexpressing ndh- strains were constructed and used to examine the putative role of the respiratory lactate bypass for aerobic growth and production. We show that aerobically growing ndh- strains perform fermentative metabolism with a near-maximum ethanol yield, irrespective of their Ldh expression background. Yet, Ldh activity strongly affects the aerobic product spectrum in glucose-consuming non-growing cells. Also, Ldh-deficiency hampers growth at elevated temperature (42 °C) and delays the restart of growth after 10-15 h of aerobic starvation.
Collapse
Affiliation(s)
| | | | | | | | | | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas street 1, Riga LV-1004, Latvia
| |
Collapse
|
82
|
Cheng K, Zheng W, Chen H, Zhang YHPJ. Upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering. Metab Eng 2018; 52:1-8. [PMID: 30389613 DOI: 10.1016/j.ymben.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/09/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
The upgrade of D-xylose, the most abundant pentose, to value-added biochemicals is economically important to next-generation biorefineries. myo-Inositol, as vitamin B8, has a six-carbon carbon-carbon ring. Here we designed an in vitro artificial NAD(P)-free 12-enzyme pathway that can effectively convert the five-carbon xylose to inositol involving xylose phosphorylation, carbon-carbon (C-C) rearrangement, C-C bond circulation, and dephosphorylation. The reaction conditions catalyzed by all thermostable enzymes from hyperthermophilic microorganisms Thermus thermophiles, Thermotoga maritima, and Archaeoglobus fulgidus were optimized in reaction temperature, buffer type and concentration, enzyme composition, Mg2+ concentration, and fed-batch addition of ATP. The 11-enzyme cocktail, whereas a fructose 1,6-bisphosphatase from T. maritima has another function of inositol monophosphatase, converted 20 mM xylose to 16.1 mM inositol with a conversion efficiency of 96.6% at 70 °C. Polyphosphate was found to replace ATP for xylulose phosphorylation due to broad substrate promiscuity of the T. maritima xylulokinase. The Tris-HCl buffer effectively mitigated the Maillard reaction at 70 °C or higher temperature. The co-production of value-added biochemicals, such as inositol, from wood sugar could greatly improve economics of new biorefineries, similar to oil refineries that make value-added plastic precursors to subsidize gasoline/diesel production.
Collapse
Affiliation(s)
- Kun Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hongge Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
83
|
Nosrati-Ghods N, Harrison STL, Isafiade AJ, Tai SL. Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose - A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nosaibeh Nosrati-Ghods
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Adeniyi J. Isafiade
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Siew L. Tai
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
84
|
Xia J, Liu CG, Zhao XQ, Xiao Y, Xia XX, Bai FW. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol Bioeng 2018; 115:2714-2725. [PMID: 30063083 DOI: 10.1002/bit.26806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 07/23/2018] [Indexed: 11/09/2022]
Abstract
Due to the unique Entner-Doudoroff pathway, Zymomonas mobilis has been acknowledged as a potential host to be engineered for biorefinery to produce biofuels and biobased chemicals. The self-flocculation of Z. mobilis can make the bacterial cells self-immobilized within bioreactors for high density to improve product productivities, and in the meantime enhance their tolerance to stresses, particularly product inhibition and the toxicity of byproducts released during the pretreatment of lignocellulosic biomass. In this work, we explored mechanism underlying such a phenotype with the self-flocculating strain ZM401 developed from the regular non-flocculating strain ZM4. Cellulase de-flocculation and the restoration of the self-flocculating phenotype for the de-flocculated bacterial cells subjected to culture confirmed the essential role of cellulose biosynthesis in the self-flocculation of ZM401. Furthermore, the deactivation of both Type I and Type IV restriction-modification systems was performed for ZM4 and ZM401 to improve their transformation efficiencies. Comparative genome analysis detected the deletion of a thymine from ZMO1082 in ZM401, leading to a frame-shift mutation for the putative gene to be integrated into the neighboring downstream gene ZMO1083 encoding the catalytic subunit A of cellulose synthase, and consequently created a new gene to encode a larger transmembrane protein BcsA_401 for more efficient synthesis of cellulose as well as the development of cellulose fibrils and their entanglement for the self-flocculation of the mutant. These speculations were confirmed by the morphological observation of the bacterial cells under scanning electron microscopy, the impact of the gene deletion on the self-flocculation of ZM401, and the restoration of the self-flocculating phenotype of ZM401 ΔbcsA by the gene complementation. The progress will lay a foundation not only for fundamental research in deciphering molecular mechanisms underlying the self-flocculation of Z. mobilis and stress tolerance associated with the morphological change but also for technological innovations in engineering non-flocculating Z. mobilis and other bacterial species with the self-flocculating phenotype.
Collapse
Affiliation(s)
- Juan Xia
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xiao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xia Xia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
85
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
86
|
Deletion of pyruvate decarboxylase gene in Zymomonas mobilis by recombineering through bacteriophage lambda red genes. J Microbiol Methods 2018; 151:111-117. [PMID: 29958909 DOI: 10.1016/j.mimet.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022]
Abstract
Zymomonas mobilis ZM4 is a gram negative ethanologenic bacterium used in several biotechnological applications. Metabolic engineering in this bacterium is limited because of the available genome engineering tools. In the present study, we report genome engineering in this bacterium using bacteriophage lambda Red genes. Stability of plasmid replicons RK2 (pSIM9) and pBBR1 (pSIM7) containing the lambda Red genes was found to be 78% and 74%, respectively. We demonstrate successful deletion of pyruvate decarboxylase gene by recombineering in Z. mobilis. The deletion was confirmed by PCR and by estimating the metabolites formed. Ethanol, which was the main product in wild type cells, was formed in almost negligible amount in the pdc-deleted mutant. The developed Δpdc Z. mobilis cells can be exploited for production of desired bioproducts by expression of suitable enzymes that can regenerate NAD+.
Collapse
|
87
|
Todhanakasem T, Sowatad A, Kanokratana P, Havanapan PO, Champreda V. Expression and Extracellular Secretion of Endo-glucanase and Xylanase by Zymomonas mobilis. Appl Biochem Biotechnol 2018; 187:239-252. [PMID: 29923149 DOI: 10.1007/s12010-018-2821-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Recombinant Zymomonas mobilis (pGEX-4T-3 BI 120-2) was constructed to encode endo-glucanase (CelA) and endo-xylanase (Xyn11) from Z. mobilis ZM4 (ATCC 31821) and an uncultured bacterium. The recombinant was genetically engineered with the N-terminus of a predicted SecB-dependent (type II) secretion signal from phoC of Z. mobilis to translocate the enzymes extracellularly. Both the enzymes were characterized regarding their functional optimum pH and temperature, with the highest multi-enzyme activities at pH 6.0 and a temperature of 30 °C, which approximates the optimum conditions for ethanol production by Z. mobilis. The crude intracellular and extracellular fractions of the recombinant were characterized in terms of substrate specificity using carboxymethyl cellulose (CMC), beechwood xylan, filter paper, Avicel, and pretreated rice straw. The crude extracellular and intracellular enzymes with cellulolytic and xylanolytic activities were more robustly produced and secreted from the recombinant strain compared to the wild-type and ampicillin-sensitive strains, using CMC and beechwood xylan as the substrates. Ethanol production by the recombinant strain was greater than the production by the wild-type strain when pretreated rice straw was used as a sole carbon source.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Ramkhamhaeng Road, Bangkapi, Bangkok, 10240, Thailand.
| | - Apinya Sowatad
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Ramkhamhaeng Road, Bangkapi, Bangkok, 10240, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Phahonyothin Road, Klong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
88
|
Sun J, Tian K, Wang J, Dong Z, Liu X, Permaul K, Singh S, Prior BA, Wang Z. Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization. Microb Cell Fact 2018; 17:66. [PMID: 29720171 PMCID: PMC5930954 DOI: 10.1186/s12934-018-0915-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/24/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lignocellulosic ethanol could offer a sustainable source to meet the increasing worldwide demand for fuel. However, efficient and simultaneous metabolism of all types of sugars in lignocellulosic hydrolysates by ethanol-producing strains is still a challenge. Results An engineered strain Escherichia coli B0013-2021HPA with regulated glucose utilization, which could use all monosaccharides in lignocellulosic hydrolysates except glucose for cell growth and glucose for ethanol production, was constructed. In E. coli B0013-2021HPA, pta-ackA, ldhA and pflB were deleted to block the formation of acetate, lactate and formate and additional three mutations at glk, ptsG and manZ generated to block the glucose uptake and catabolism, followed by the replacement of the wild-type frdA locus with the ptsG expression cassette under the control of the temperature-inducible λ pR and pL promoters, and the final introduction of pEtac-PA carrying Zymomonas mobilis pdc and adhB for the ethanol pathway. B0013-2021HPA was able to utilize almost all xylose, galactose and arabinose but not glucose for cell propagation at 34 °C and converted all sugars to ethanol at 42 °C under oxygen-limited fermentation conditions. Conclusions Engineered E. coli strain with regulated glucose utilization showed efficient metabolism of mixed sugars in lignocellulosic hydrolysates and thus higher productivity of ethanol production. Electronic supplementary material The online version of this article (10.1186/s12934-018-0915-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinfeng Sun
- Center for Bioresource and Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1st East Meicheng Road, Huaian, 223003, China
| | - Kangming Tian
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, Tianjin, 300457, China
| | - Jie Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, Tianjin, 300457, China
| | - Zixing Dong
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, Tianjin, 300457, China
| | - Xiaoguang Liu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, Tianjin, 300457, China
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4002, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4002, South Africa
| | - Bernard A Prior
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, South Africa
| | - Zhengxiang Wang
- Center for Bioresource and Bioenergy, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, TEDA, Tianjin, 300457, China.
| |
Collapse
|
89
|
Wang X, He Q, Yang Y, Wang J, Haning K, Hu Y, Wu B, He M, Zhang Y, Bao J, Contreras LM, Yang S. Advances and prospects in metabolic engineering of Zymomonas mobilis. Metab Eng 2018; 50:57-73. [PMID: 29627506 DOI: 10.1016/j.ymben.2018.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 12/22/2022]
Abstract
Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era.
Collapse
Affiliation(s)
- Xia Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Qiaoning He
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Yongfu Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jingwen Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Katie Haning
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Yun Hu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Bo Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, South Renmin Road, Chengdu 610041, China.
| | - Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, United States.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States.
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
90
|
A semi-synthetic regulon enables rapid growth of yeast on xylose. Nat Commun 2018; 9:1233. [PMID: 29581426 PMCID: PMC5964326 DOI: 10.1038/s41467-018-03645-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 03/01/2018] [Indexed: 01/27/2023] Open
Abstract
Nutrient assimilation is the first step that allows biological systems to proliferate and produce value-added products. Yet, implementation of heterologous catabolic pathways has so far relied on constitutive gene expression without consideration for global regulatory systems that may enhance nutrient assimilation and cell growth. In contrast, natural systems prefer nutrient-responsive gene regulation (called regulons) that control multiple cellular functions necessary for cell survival and growth. Here, in Saccharomyces cerevisiae, by partially- and fully uncoupling galactose (GAL)-responsive regulation and metabolism, we demonstrate the significant growth benefits conferred by the GAL regulon. Next, by adapting the various aspects of the GAL regulon for a non-native nutrient, xylose, we build a semi-synthetic regulon that exhibits higher growth rate, better nutrient consumption, and improved growth fitness compared to the traditional and ubiquitous constitutive expression strategy. This work provides an elegant paradigm to integrate non-native nutrient catabolism with native, global cellular responses to support fast growth. Efficient assimilation of nutrients is essential for the production of value-added products in microbial fermentation. Here the authors design a semi-synthetic xylose regulon to improve growth characteristics of Saccharomyces cerevisiae on this non-native sugar.
Collapse
|
91
|
A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate. Biotechnol Lett 2018; 40:781-788. [PMID: 29564679 DOI: 10.1007/s10529-018-2537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery. RESULTS Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate. CONCLUSIONS By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.
Collapse
|
92
|
Yang Y, Hu M, Tang Y, Geng B, Qiu M, He Q, Chen S, Wang X, Yang S. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0193-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
93
|
Cho SH, Haning K, Shen W, Blome C, Li R, Yang S, Contreras LM. Identification and Characterization of 5' Untranslated Regions (5'UTRs) in Zymomonas mobilis as Regulatory Biological Parts. Front Microbiol 2017; 8:2432. [PMID: 29375488 PMCID: PMC5770649 DOI: 10.3389/fmicb.2017.02432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/23/2017] [Indexed: 01/03/2023] Open
Abstract
Regulatory RNA regions within a transcript, particularly in the 5' untranslated region (5'UTR), have been shown in a variety of organisms to control the expression levels of these mRNAs in response to various metabolites or environmental conditions. Considering the unique tolerance of Zymomonas mobilis to ethanol and the growing interest in engineering microbial strains with enhanced tolerance to industrial inhibitors, we searched natural cis-regulatory regions in this microorganism using transcriptomic data and bioinformatics analysis. Potential regulatory 5'UTRs were identified and filtered based on length, gene function, relative gene counts, and conservation in other organisms. An in vivo fluorescence-based screening system was developed to confirm the responsiveness of 36 5'UTR candidates to ethanol, acetate, and xylose stresses. UTR_ZMO0347 (5'UTR of gene ZMO0347 encoding the RNA binding protein Hfq) was found to down-regulate downstream gene expression under ethanol stress. Genomic deletion of UTR_ZMO0347 led to a general decrease of hfq expression at the transcript level and increased sensitivity for observed changes in Hfq expression at the protein level. The role of UTR_ZMO0347 and other 5'UTRs gives us insight into the regulatory network of Z. mobilis in response to stress and unlocks new strategies for engineering robust industrial strains as well as for harvesting novel responsive regulatory biological parts for controllable gene expression platforms in this organism.
Collapse
Affiliation(s)
- Seung Hee Cho
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - Katie Haning
- Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| | - Wei Shen
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Cameron Blome
- Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| | - Runxia Li
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Lydia M Contreras
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States.,Department of Chemical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
94
|
Yao R, Hou W, Bao J. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2017; 244:1188-1192. [PMID: 28844838 DOI: 10.1016/j.biortech.2017.08.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Non-glucose sugars derived from lignocellulose cover approximately 40% of the total carbohydrates of lignocellulose biomass. The conversion of the non-glucose sugars to the target products is an important task of lignocellulose biorefining research. Here we report a fast and complete conversion of the total non-glucose sugars from corn stover into the corresponding sugar acids by whole cell catalysis and aerobic fermentation of Gluconobacter oxydans. The conversions include xylose to xylonate, arabinose to arabonate, mannose to mannonate, and galactose to galactonate, as well as with glucose into gluconate. These cellulosic non-glucose sugar acids showed the excellent cement retard setting property. The mixed cellulosic sugar acids could be used as cement retard additives without separation. The conversion of the non-glucose sugars not only makes full use of lignocellulose derived sugars, but also effectively reduces the wastewater treatment burden by removal of residual sugars.
Collapse
Affiliation(s)
- Ruimiao Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiliang Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
95
|
Sievers DA, Kuhn EM, Tucker MP, McMillan JD. Effects of dilute-acid pretreatment conditions on filtration performance of corn stover hydrolyzate. BIORESOURCE TECHNOLOGY 2017; 243:474-480. [PMID: 28689140 DOI: 10.1016/j.biortech.2017.06.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
The reaction conditions used during dilute-acid pretreatment of lignocellulosic biomass control the carbohydrate digestion yield and also hydrolyzate properties. Depending on the conversion route of interest, solid-liquid separation (SLS) may be required to split the hemicellulose-rich liquor from the cellulose-rich insoluble solids, and slurry properties are important for SLS. Corn stover was pretreated at different reaction conditions and the slurries were assessed for conversion yield and filtration performance. Increasing pretreatment temperature reduced the solids mean particle size and resulted in slower slurry filtration rates when vacuum filtered or pressure filtered. Corn stover pretreated at 165°C for 10min and with 1% H2SO4 exhibited the highest xylose yield and best filtration performance with a no-wash filtration rate of 80kg/hm2 and cake permeability of 15x10-15.
Collapse
Affiliation(s)
- David A Sievers
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80403, United States.
| | - Erik M Kuhn
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80403, United States
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80403, United States
| | - James D McMillan
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80403, United States
| |
Collapse
|
96
|
Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 2017; 45:5523-5538. [PMID: 28334800 PMCID: PMC5435917 DOI: 10.1093/nar/gkx115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/14/2017] [Indexed: 11/17/2022] Open
Abstract
Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs.
Collapse
Affiliation(s)
- Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mia K Mihailovic
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kristofer G Reyes
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Seung Hee Cho
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Paul Amador
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
97
|
Liu YF, Hsieh CW, Chang YS, Wung BS. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol 2017; 17:63. [PMID: 28764759 PMCID: PMC5540488 DOI: 10.1186/s12896-017-0385-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/25/2017] [Indexed: 02/03/2023] Open
Abstract
Background Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. Results In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N′-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. Conclusion The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.
Collapse
Affiliation(s)
- Yu-Fan Liu
- Division of Allergy, Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Hsieh
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan.
| | - Yao-Sheng Chang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Being-Sun Wung
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
98
|
Sievert C, Nieves LM, Panyon LA, Loeffler T, Morris C, Cartwright RA, Wang X. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Proc Natl Acad Sci U S A 2017; 114:7349-7354. [PMID: 28655843 PMCID: PMC5514714 DOI: 10.1073/pnas.1700345114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial production of fuels and chemicals from lignocellulosic biomass provides promising biorenewable alternatives to the conventional petroleum-based products. However, heterogeneous sugar composition of lignocellulosic biomass hinders efficient microbial conversion due to carbon catabolite repression. The most abundant sugar monomers in lignocellulosic biomass materials are glucose and xylose. Although industrial Escherichia coli strains efficiently use glucose, their ability to use xylose is often repressed in the presence of glucose. Here we independently evolved three E. coli strains from the same ancestor to achieve high efficiency for xylose fermentation. Each evolved strain has a point mutation in a transcriptional activator for xylose catabolic operons, either CRP or XylR, and these mutations are demonstrated to enhance xylose fermentation by allelic replacements. Identified XylR variants (R121C and P363S) have a higher affinity to their DNA binding sites, leading to a xylose catabolic activation independent of catabolite repression control. Upon introducing these amino acid substitutions into the E. coli D-lactate producer TG114, 94% of a glucose-xylose mixture (50 g⋅L-1 each) was used in mineral salt media that led to a 50% increase in product titer after 96 h of fermentation. The two amino acid substitutions in XylR enhance xylose utilization and release glucose-induced repression in different E. coli hosts, including wild type, suggesting its potential wide application in industrial E. coli biocatalysts.
Collapse
Affiliation(s)
- Christian Sievert
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Lizbeth M Nieves
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Larry A Panyon
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Taylor Loeffler
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Chandler Morris
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Reed A Cartwright
- School of Life Sciences, Arizona State University, Tempe, AZ 85287;
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287;
| |
Collapse
|
99
|
Zhang H, Han X, Wei C, Bao J. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2017; 224:573-580. [PMID: 27955866 DOI: 10.1016/j.biortech.2016.11.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption.
Collapse
Affiliation(s)
- Hongsen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xushen Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengxiang Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
100
|
Wang X, Gao Q, Bao J. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:24. [PMID: 28163781 PMCID: PMC5282692 DOI: 10.1186/s13068-017-0714-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/18/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Furfural and 5-hydroxymethylfurfural (HMF) are the two major furan aldehyde inhibitors generated from lignocellulose dilute acid pretreatment which significantly inhibit subsequent microbial cell growth and ethanol fermentation. Zymomonas mobilis is an important strain for cellulosic ethanol fermentation but can be severely inhibited by furfural and (or) HMF. Previous study showed that Z. mobilis contains its native oxidoreductases to catalyze the conversion of furfural and HMF, but the corresponding genes have not been identified. RESULTS This study identified a NADPH-dependent alcohol dehydrogenase gene ZMO1771 from Z. mobilis ZM4, which is responsible for the efficient reduction of furfural and HMF. Over-expression of ZMO1771 in Z. mobilis significantly increased the conversion rate to both furfural and HMF and resulted in an accelerated cell growth and improved ethanol productivity in corn stover hydrolysate. Further, the ethanol fermentation performance was enhanced again by co-expression of the transhydrogenase gene udhA with ZMO1771 by elevating the NADPH availability. CONCLUSIONS A genetically modified Z. mobilis by co-expressing alcohol dehydrogenase gene ZMO1771 with transhydrogenase gene udhA showed enhanced conversion rate of furfural and HMF and accelerated ethanol fermentability from lignocellulosic hydrolysate. The results presented in this study provide an important method on constructing robust strains for efficient ethanol fermentation from lignocellulose feedstock.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|