51
|
Abstract
Tuberculosis (TB) remains a devastating infectious disease and, with the emergence of multidrug-resistant forms, represents a major global threat. Much of our understanding of pathogenic and immunologic mechanisms in TB has derived from studies in experimental animals. However, it is becoming increasingly clear in TB as well as in other inflammatory diseases that there are substantial differences in immunological responses of humans not found or predicted by animal studies. Thus, it is critically important to understand mechanisms of pathogenesis and immunological protection in humans. In this review, we will address the key immunological question: What are the necessary and sufficient immune responses required for protection against TB infection and disease in people-specifically protection against infection, protection against the establishment of latency or persistence, and protection against transitioning from latent infection to active disease.
Collapse
Affiliation(s)
- Robert L Modlin
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
52
|
Geluk A, van Meijgaarden KE, Joosten SA, Commandeur S, Ottenhoff THM. Innovative Strategies to Identify M. tuberculosis Antigens and Epitopes Using Genome-Wide Analyses. Front Immunol 2014; 5:256. [PMID: 25009541 PMCID: PMC4069478 DOI: 10.3389/fimmu.2014.00256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022] Open
Abstract
In view of the fact that only a small part of the Mtb expressome has been explored for identification of antigens capable of activating human T-cell responses, which is critically required for the design of better TB vaccination strategies, more emphasis should be placed on innovative ways to discover new Mtb antigens and explore their function at the several stages of infection. Better protective antigens for TB-vaccines are urgently needed, also in view of the disappointing results of the MVA85 vaccine, which failed to induce additional protection in BCG-vaccinated infants (1). Moreover, immune responses to relevant antigens may be useful to identify TB-specific biomarker signatures. Here, we describe the potency of novel tools and strategies to reveal such Mtb antigens. Using proteins specific for different Mtb infection phases, many new antigens of the latency-associated Mtb DosR-regulon as well as resuscitation promoting factor proteins, associated with resuscitating TB, were discovered that were recognized by CD4+ and CD8+ T-cells. Furthermore, by employing MHC binding algorithms and bioinformatics combined with high-throughput human T-cell screens and tetramers, HLA-class Ia restricted polyfunctional CD8+ T-cells were identified in TB patients. Comparable methods, led to the identification of HLA-E-restricted Mtb epitopes recognized by CD8+ T-cells. A genome-wide unbiased antigen discovery approach was applied to analyze the in vivo Mtb gene expression profiles in the lungs of mice, resulting in the identification of IVE-TB antigens, which are expressed during infection in the lung, the main target organ of Mtb. IVE-TB antigens induce strong T-cell responses in long-term latently Mtb infected individuals, and represent an interesting new group of TB antigens for vaccination. In summary, new tools have helped expand our view on the Mtb antigenome involved in human cellular immunity and provided new candidates for TB vaccination.
Collapse
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | | | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
53
|
Differential Effects of Naja naja atra Venom on Immune Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:287631. [PMID: 25024726 PMCID: PMC4082923 DOI: 10.1155/2014/287631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
Previous studies reported that Naja naja atra venom (NNAV) inhibited inflammation and adjuvant arthritis. Here we investigated the role of NNAV in regulation of immune responses in mice. Oral administration of NNAV to normal mice showed significant increase in natural killer cell activity, B lymphocyte proliferation stimulated by lipopolysaccharides, and antibody production in response to sheep red blood cells. Meanwhile, NNAV markedly decreased T lymphocyte proliferation stimulated by concanavalin A, arrested the cell cycle at G0/G1 phase, and suppressed CD4 and CD8 T cell divisions. Furthermore, NNAV inhibited the dinitrofluorobenzene-induced delayed-type hypersensitivity reaction. This modulation of immune responses may be partly attributed to the selective increase in Th1 and Th2 cytokines (IFN-γ, IL-4) secretion and inhibition of Th17 cytokine (IL-17) production. In dexamethasone-induced immunosuppressed mice, NNAV restored the concentration of serum IgG and IgM, while decreasing the percentage of CD4 and CD8 T-cell subsets. These results indicate that NNAV enhances the innate and humoral immune responses while inhibiting CD4 Th17 and CD8 T cell actions, suggesting that NNAV could be a potential therapeutic agent for autoimmune diseases.
Collapse
|
54
|
Geffner L, Basile JI, Yokobori N, Sabio Y García C, Musella R, Castagnino J, Sasiain MC, de la Barrera S. CD4(+) CD25(high) forkhead box protein 3(+) regulatory T lymphocytes suppress interferon-γ and CD107 expression in CD4(+) and CD8(+) T cells from tuberculous pleural effusions. Clin Exp Immunol 2014; 175:235-45. [PMID: 24134738 DOI: 10.1111/cei.12227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 11/26/2022] Open
Abstract
Tuberculous pleural effusion is characterized by a T helper type 1 (Th1) profile, but an excessive Th1 response may also cause tissue damage that might be controlled by regulatory mechanisms. In the current study we investigated the role of regulatory T cells (Treg ) in the modulation of Th1 responses in patients with tuberculous (TB) pleurisy. Using flow cytometry we evaluated the proportion of Treg (CD4(+) CD25(high) forkhead box protein 3(+) ), interferon (IFN)-γ and interleukin (IL)-10 expression and CD107 degranulation in peripheral blood (PB) and pleural fluid (PF) from patients with TB pleurisy. We demonstrated that the proportion of CD4(+) CD25(+) , CD4(+) CD25(high) FoxP3(+) and CD8(+) CD25(+) cells were increased in PF compared to PB samples. Mycobacterium tuberculosis stimulation increased the proportion of CD4(+) CD25(low/neg) IL-10(+) in PB and CD4(+) CD25(low/neg) IFN-γ(+) in PF; meanwhile, CD25(high) mainly expressed IL-10 in both compartments. A high proportion of CD4(+) CD107(+) and CD8(+) CD107(+) cells was observed in PF. Treg depletion enhanced the in-vitro M. tuberculosis-induced IFN-γ and CD4(+) and CD8(+) degranulation responses and decreased CD4(+) IL-10(+) cells in PF. Our results demonstrated that in TB pleurisy Treg cells effectively inhibit not only IFN-γ expression but also the ability of CD4(+) and CD8(+) cells to degranulate in response to M. tuberculosis.
Collapse
Affiliation(s)
- L Geffner
- IMEX-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Geffner L, Basile JI, Yokobori N, Kviatcovsky D, Sabio y García C, Ritacco V, López B, Sasiain MDC, de la Barrera S. Mycobacterium tuberculosis multidrug resistant strain M induces an altered activation of cytotoxic CD8+ T cells. PLoS One 2014; 9:e97837. [PMID: 24836916 PMCID: PMC4024032 DOI: 10.1371/journal.pone.0097837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/25/2014] [Indexed: 01/09/2023] Open
Abstract
In human tuberculosis (TB), CD8+ T cells contribute to host defense by the release of Th1 cytokines and the direct killing of Mycobacterium tuberculosis (Mtb)-infected macrophages via granule exocytosis pathway or the engagement of receptors on target cells. Previously we demonstrated that strain M, the most prevalent multidrug-resistant (MDR) Mtb strain in Argentine, is a weak inducer of IFN-γ and elicits a remarkably low CD8-dependent cytotoxic T cell activity (CTL). In contrast, the closely related strain 410, which caused a unique case of MDR-TB, elicits a CTL response similar to H37Rv. In this work we extend our previous study investigating some parameters that can account for this discrepancy. We evaluated the expressions of the lytic molecules perforin, granzyme B and granulysin and the chemokine CCL5 in CD8+ T cells as well as activation markers CD69 and CD25 and IL-2 expression in CD4+ and CD8+ T cells stimulated with strains H37Rv, M and 410. Our results demonstrate that M-stimulated CD8+ T cells from purified protein derivative positive healthy donors show low intracellular expression of perforin, granzyme B, granulysin and CCL5 together with an impaired ability to form conjugates with autologous M-pulsed macrophages. Besides, M induces low CD69 and IL-2 expression in CD4+ and CD8+ T cells, being CD69 and IL-2 expression closely associated. Furthermore, IL-2 addition enhanced perforin and granulysin expression as well as the degranulation marker CD107 in M-stimulated CD8+ T cells, making no differences with cells stimulated with strains H37Rv or 410. Thus, our results highlight the role of IL-2 in M-induced CTL activity that drives the proper activation of CD8+ T cells as well as CD4+ T cells collaboration.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Cytotoxicity, Immunologic
- Drug Resistance, Multiple, Bacterial
- Female
- Granzymes/genetics
- Granzymes/metabolism
- Humans
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Male
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Perforin/genetics
- Perforin/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Laura Geffner
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan Ignacio Basile
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Noemí Yokobori
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Denise Kviatcovsky
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Sabio y García
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Viviana Ritacco
- Laboratorio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Beatriz López
- Laboratorio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - María del Carmen Sasiain
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Silvia de la Barrera
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
56
|
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014; 5:180. [PMID: 24795723 PMCID: PMC4001014 DOI: 10.3389/fimmu.2014.00180] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed “multifunctional,” can be a better marker of protection in TB than CD4+ T cells. Their effector mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune response in the control of infection and possibly bacterial eradication is important in understanding whether the host immune response will be appropriate in contrasting the infection or not, and, consequently, the inability of the immune response, will determine the dissemination and the transmission of bacilli to new subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets in the immune response toward Mtb infection will be discerned in this review, in order to summarize what is known about the immune response in human TB. In particular, we will discuss the role of CD4 and CD8 T cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Giuliana Guggino
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Marco Pio La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Diana Di Liberto
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| |
Collapse
|
57
|
Hattori Y, Morita D, Fujiwara N, Mori D, Nakamura T, Harashima H, Yamasaki S, Sugita M. Glycerol monomycolate is a novel ligand for the human, but not mouse macrophage inducible C-type lectin, Mincle. J Biol Chem 2014; 289:15405-12. [PMID: 24733387 DOI: 10.1074/jbc.m114.566489] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An array of lipidic compounds that constitute the cell wall of mycobacteria is recognized by host receptors. Examples include trehalose dimycolate (TDM), which is a major surface-exposed glycolipid of mycobacteria, that interacts with the macrophage inducible C-type lectin, Mincle, and exerts its highly potent adjuvant functions. Recent evidence has suggested that glycerol monomycolate (GroMM), another mycolate-containing lipid species produced by mycobacteria, can stimulate innate immune cells; however, its specific host receptors have yet to be identified. We here demonstrated that cell transfectants expressing human Mincle (hMincle) reacted to both TDM and GroMM, while those expressing mouse Mincle (mMincle) only reacted to TDM and failed to recognize GroMM. Studies using domain swap chimeras confirmed that the ectodomain of hMincle, but not that of mMincle, interacted with GroMM, and site-directed mutagenesis analyses revealed that short stretches of amino acid residues at positions 174-176 and 195-196 were involved in GroMM recognition. To further substantiate the differential recognition of GroMM by hMincle and mMincle, hMincle transgenic/mMincle knock-out mice (i.e. hMincle(+) mice) were established and compared with non-transgenic mice (i.e. mMincle(+) mice). We showed that macrophages derived from hMincle(+) mice were activated by GroMM and produced inflammatory cytokines, whereas those derived from mMincle(+) mice did not exhibit any reactivity to GroMM. Furthermore, local inflammatory responses were elicited in the GroMM-injected skin of hMincle(+), but not mMincle(+) mice. These results demonstrated that GroMM is a unique ligand for hMincle that is not recognized by mMincle.
Collapse
Affiliation(s)
- Yuki Hattori
- From the Laboratory of Cell Regulation, Institute for Virus Research and the Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Morita
- From the Laboratory of Cell Regulation, Institute for Virus Research and the Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Nagatoshi Fujiwara
- the Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8585, Japan
| | - Daiki Mori
- the Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan, and
| | - Takashi Nakamura
- the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- the Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sho Yamasaki
- the Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan, and
| | - Masahiko Sugita
- From the Laboratory of Cell Regulation, Institute for Virus Research and the Laboratory of Cell Regulation and Molecular Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan,
| |
Collapse
|
58
|
Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol 2014; 374:211-41. [PMID: 23881288 DOI: 10.1007/82_2013_332] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intimate and persistent connection between Mycobacterium tuberculosis and its human host suggests that the pathogen has evolved extensive mechanisms to evade eradication by the immune system. In particular, the organism has adapted to replicate within phagocytic cells, especially macrophages, which are specialized to kill microbes. Over the past decade of M. tuberculosis research, the means to manipulate both the organism and the host has ushered in an exciting time that has uncovered some of the mechanisms of the innate macrophage-pathogen interactions that lie at the heart of M. tuberculosis pathogenesis, though many interactions likely still await discovery. In this chapter, we will delve into some of these advances, with an emphasis on the interactions that occur on the cellular level when M. tuberculosis cells encounter macrophages. In particular, we focus on two major aspects of M. tuberculosis biology regarding the proximal physical interface between the bacterium and host, namely the interactions with the phagosomal membrane as well as the distinctive mycobacterial cell wall. Importantly, some of the emerging paradigms in M. tuberculosis pathogenesis and host response represent common themes in bacterial pathogenesis, such as the role of host cell membrane perforation in intracellular survival and host response. However, the array of unique bacterial lipid mediators and their interaction with host cells highlights the unique biology of this persistent pathogen.
Collapse
|
59
|
Zhao S, Gao Q, Qin T, Yin Y, Lin J, Yu Q, Yang Q. Effects of virulent and attenuated transmissible gastroenteritis virus on the ability of porcine dendritic cells to sample and present antigen. Vet Microbiol 2014; 171:74-86. [PMID: 24742951 PMCID: PMC7117177 DOI: 10.1016/j.vetmic.2014.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/23/2022]
Abstract
Virulent transmissible gastroenteritis virus (TGEV) results in an acute, severe pathology and high mortality in piglets, while attenuated TGEV only causes moderate clinical reactions. Dendritic cells (DCs), through uptake and presentation of antigens to T cells, initiate distinct immune responses to different infections. In this study, an attenuated TGEV (STC3) and a virulent TGEV (SHXB) were used to determine whether porcine DCs play an important role in pathogenetic differences between these two TGEVs. Our results showed that immature and mature monocyte-derived dendritic cells (Mo-DCs) were susceptible to infection with SHXB and STC3. However, only SHXB inhibited Mo-DCs to activate T-cell proliferation by down-regulating the expression of cell–surface markers and the secretion of cytokines in vitro. In addition, after 48 h of SHXB infection, there was the impairment in the ability of porcine intestinal DCs to sample the antigen, to migrate from the villi to the lamina propria and to activate T-cell proliferation in vivo. In contrast, these abilities of intestinal DCs were enhanced in STC3-infected piglets. In conclusion, our results show that SHXB significantly impaired the functions of Mo-DCs and intestinal DCs in vitro and in vivo, while STC3 had the opposite effect. These differences may underlie the pathogenesis of virulent and attenuated TGEV in piglets, and could help us to develop a better strategy to prevent virulent TGEV infection.
Collapse
Affiliation(s)
- Shanshan Zhao
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Qi Gao
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Tao Qin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Yinyan Yin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Jian Lin
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Qinghua Yu
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China
| | - Qian Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine,. Nanjing Agricultural University, Weigang 1, NanJing 210095, Jiangsu, PR China.
| |
Collapse
|
60
|
Mishra G, Kumar N, Kaur G, Jain S, Tiwari PK, Mehra NK. Distribution of HLA-A, B and DRB1 alleles in Sahariya tribe of North Central India: An association with pulmonary tuberculosis. INFECTION GENETICS AND EVOLUTION 2014; 22:175-82. [DOI: 10.1016/j.meegid.2013.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/01/2013] [Accepted: 08/22/2013] [Indexed: 11/16/2022]
|
61
|
Yamasaki M, Araki K, Nakanishi T, Nakayasu C, Yamamoto A. Role of CD4(+) and CD8α(+) T cells in protective immunity against Edwardsiella tarda infection of ginbuna crucian carp, Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2014; 36:299-304. [PMID: 24316500 DOI: 10.1016/j.fsi.2013.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
Edwardsiella tarda is an intracellular pathogen that causes edwardsiellosis in fish. Our previous study suggests that cell-mediated immunity (CMI) plays an essential role in protection against E. tarda infection. In the present study, we adoptively transferred T-cell subsets sensitized with E. tarda to isogenic naïve ginbuna crucian carp to determination the T-cell subsets involved in protecting fish from E. tarda infection. Recipients of CD4(+) and CD8α(+) cells acquired significant resistance to infection with E. tarda 8 days after sensitization, indicating that helper T cells and cytotoxic T lymphocytes plays crucial roles in protective immunity to E. tarda. Moreover, transfer of sensitized CD8α(+) cells up-regulated the expression of genes encoding interferon-γ (IFN-γ) and perforin, suggesting that protective immunity to E. tarda involves cell-mediated cytotoxicity and interferon-γ-mediated induction of CMI. The results establish that CMI plays a crucial role in immunity against E. tarda. These findings provide novel insights into understanding the role of CMI to intracellular pathogens of fish.
Collapse
Affiliation(s)
- Masatoshi Yamasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Kyosuke Araki
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan.
| | - Teruyuki Nakanishi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Chihaya Nakayasu
- National Research Institute of Aquaculture, Fisheries Research Agency, Minami-ise, Mie 516-0193, Japan
| | - Atsushi Yamamoto
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| |
Collapse
|
62
|
Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013; 43:1568-77. [PMID: 23456989 DOI: 10.1002/eji.201243262] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Collapse
Affiliation(s)
- Virginie Rozot
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chevenon M, Naccache M, Eva MM, Khan RT, Malo D. Functional validation of the genetic architecture of Salmonella Enteritidis persistence in 129S6 mice. Mamm Genome 2013; 24:218-27. [PMID: 23588612 DOI: 10.1007/s00335-013-9453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/18/2013] [Indexed: 11/26/2022]
Abstract
The Gram-negative bacteria, Salmonella, cause a broad spectrum of clinical diseases in humans, ranging from asymptomatic carriage to life-threatening sepsis. We have designed an experimental model to study the contribution of genetic factors to the persistence of Salmonella Enteritidis during the late phase of infection in 129S6/SvEvTac and C57BL/6J mice. C57BL/6J mice cleared the bacteria from their reticuloendothelial system within a period of 42 days, whereas the 129S6 mice still presented a high bacterial load. Using this model, we have identified ten Salmonella Enteritidis susceptibility loci (Ses1, Ses1.1, and Ses3-Ses10) associated with bacterial persistence in target organs of 129S6/SvEvTac mice using a two-locus epistasis QTL linkage mapping approach. Significant statistical interactions were detected between Ses1 on chromosome 1 and Ses5 on chromosome 7 and between Ses1 and Ses4 on chromosome X. In this study, we functionally validated the genetic architecture of Salmonella persistence in 129S6 mice using single- (129S6.B6-Ses1.2 that combines Ses1 and Ses1.1 loci, 129S6.B6-Ses4, and 129S6.B6-Ses5) and double-congenic mice (129S6.B6-Ses1.2/Ses4 and 129S6.B6-Ses1.2/Ses5). These experiments demonstrate functional interactions between Ses1.2 and Ses4 or Ses5 that improve Salmonella Enteritidis clearance, validating the critical role played by gene-gene interactions in the contribution to bacterial clearance heritability. Improved bacterial clearance in double-congenic mice could be explained by the impact of Ses4 and Ses5 in combination with Ses1.2 on TH polarization since a TH2 bias (decreased Ifng and increased Il4 mRNA levels and reduced IgG2a immunoglobulins in the serum) was observed in 129S6.B6-Ses1.2/Ses5 mice and a TH17 (high Il17 expression) bias in 129S6.B6-Ses1.2/Ses4.
Collapse
Affiliation(s)
- Marie Chevenon
- Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
64
|
Li X, Zhou Q, Yang WB, Xiong XZ, Du RH, Zhang JC. Pleural mesothelial cells promote expansion of IL-17-producing CD8+ T cells in tuberculous pleural effusion. J Clin Immunol 2013; 33:775-87. [PMID: 23299924 DOI: 10.1007/s10875-012-9860-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022]
Abstract
IL-17-producing CD8(+) T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ-producing CD8(+) T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8(+) T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6(+) CD8(+) T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8(+) T cells at sites of TPE via cell-cell interactions.
Collapse
Affiliation(s)
- X Li
- Department of Respiratory Diseases, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | | | | | | | | | | |
Collapse
|
65
|
Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:181-97. [PMID: 23468110 DOI: 10.1007/978-1-4614-6111-1_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The CD1 system is composed of five types of human CD1 proteins, CD1a, CD1b, CD1c, CD1d, and CD1e, and their mammalian orthologs. Each type of CD1 protein has a distinct antigen binding groove and shows differing patterns of expression within cells and in different tissues. Here we review the molecular mechanisms by which CD1a, CD1b, and CD1c capture distinct classes of self- and mycobacterial antigens. We discuss how CD1-restricted T cells participate in the immune response, emphasizing new evidence for mycobacterial recognition in vivo in human and non-human models.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
66
|
Behar SM. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:141-63. [PMID: 23468108 DOI: 10.1007/978-1-4614-6111-1_8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The continuing HIV/AIDS epidemic and the spread of multi-drug resistant Mycobacterium tuberculosis has led to the perpetuation of the worldwide tuberculosis epidemic. While M. bovis BCG is widely used as a vaccine, it lacks efficacy in preventing pulmonary tuberculosis in adults [1]. To combat this ongoing scourge, vaccine development for tuberculosis is a global priority. Most infected individuals develop long-lived protective immunity, which controls and contains M. tuberculosis in a T cell-dependent manner. An effective T cells response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions, and evaluating whether vaccination can elicit these T cells subsets and induce protective immunity. CD4(+) T cells are critical for resistance to M. tuberculosis in both humans and rodent models. CD4(+) T cells are required to control the initial infection as well as to prevent recrudescence in both humans and mice [2]. While it is generally accepted that class II MHC-restricted CD4(+) T cells are essential for immunity to tuberculosis, M. tuberculosis infection elicits CD8(+) T cells responses in both people and in experimental animals. CD8(+) T cells are also recruited to the lung during M. tuberculosis infection and are found in the granulomas of infected people. Thus, how CD8(+) T cells contribute to overall immunity to tuberculosis and whether antigens recognized by CD8(+) T cells would enhance the efficacy of vaccine strategies continue to be important questions.
Collapse
Affiliation(s)
- Samuel M Behar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
67
|
Pinheiro MB, Antonelli LR, Sathler-Avelar R, Vitelli-Avelar DM, Spindola-de-Miranda S, Guimarães TMPD, Teixeira-Carvalho A, Martins-Filho OA, Toledo VPCP. CD4-CD8-αβ and γδ T cells display inflammatory and regulatory potentials during human tuberculosis. PLoS One 2012; 7:e50923. [PMID: 23239994 PMCID: PMC3519797 DOI: 10.1371/journal.pone.0050923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022] Open
Abstract
T-cells play an important role controlling immunity against pathogens and therefore influence the outcome of human diseases. Although most T-lymphocytes co-express either CD4 or CD8, a smaller T-cell subset found the in the human peripheral blood that expresses the αβ or γδ T-cell-receptor (TCR) lacks the CD4 and CD8 co-receptors. These double negative (DN) T-cells have been shown to display important immunological functions in human diseases. To better understand the role of DN T-cells in human Mycobacterium tuberculosis, we have characterized their frequency, activation and cytokine profile in a well-defined group of tuberculosis patients, categorized as severe and non-severe based on their clinical status. Our data showed that whereas high frequency of αβ DN T-cells observed in M. tuberculosis-infected patients are associated with disease severity, decreased proportion of γδ DN T-cells are found in patients with severe tuberculosis. Together with activation of CD4+ and CD8+ T-cells, higher frequencies of both αβ and γδ DN T-cells from tuberculosis patients also express the chronic activation marker HLA-DR. However, the expression of CD69, an early activation marker, is selectively observed in DN T-cells. Interestingly, while αβ and γδ DN T-cells from patients with non-severe tuberculosis display a pro-inflammatory cytokine profile, characterized by enhanced IFN-γ, the γδ DN T-cells from patients with severe disease express a modulatory profile exemplified by enhanced interleukin-10 production. Overall, our findings suggest that αβ and γδ DN T-cell present disparate immunoregulatory potentials and seems to contribute to the development/maintenance of distinct clinical aspects of TB, as part of the complex immunological network triggered by the TB infection.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Lineage/immunology
- Female
- HLA-DR Antigens/metabolism
- Humans
- Interleukin-10/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Melina B. Pinheiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lis R. Antonelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
- * E-mail: (LRA); (VPCPT)
| | - Renato Sathler-Avelar
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Danielle M. Vitelli-Avelar
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | - Tânia M. P. D. Guimarães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Andrea Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Olindo A. Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Vicente P. C. P. Toledo
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- * E-mail: (LRA); (VPCPT)
| |
Collapse
|
68
|
Abstract
The immune response against Mycobacterium tuberculosis is multifactorial, involving a network of innate and adaptive immune responses. Characterization of the immune response, a clear understanding of the dynamics and interplay of different arms of the immune response are critical to allow the development of better tools for combating tuberculosis. Dendritic cells (DCs) are one of the key cells in bridging innate and adaptive immune response through their significant role in capturing, processing and presenting antigens. The outcome of interaction of M. tuberculosis with DCs is not fully understood and the available reports are contradictory were some findings reported that DCs strengthen the cellular immune response against mycobacterium infection whereas others reported M. tuberculosis impairs the function of DCs were infected DCs are poor stimulators of M. tuberculosis Ag-specific CD4 T cells. Other studies showed that the outcome depends on M. tuberculosis strain type and type of receptor on DCs during recognition. In this review I shall highlight the recent findings in the outcome of interaction of Mycobacterium tuberculosis with DCs.
Collapse
Affiliation(s)
- Adane Mihret
- Armauer Hansen Research Institute; Addis Ababa, Ethopia.
| |
Collapse
|
69
|
Bruns H, Stegelmann F, Fabri M, Döhner K, van Zandbergen G, Wagner M, Skinner M, Modlin RL, Stenger S. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 189:4069-78. [PMID: 22988030 DOI: 10.4049/jimmunol.1201538] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms that regulate the acidification of intracellular compartments are key to host defense against pathogens. In this paper, we demonstrate that Abl tyrosine kinase, a master switch for cell growth and trafficking of intracellular organelles, controls the acidification of lysosomes in human macrophages. Pharmacological inhibition by imatinib and gene silencing of Abelson (Abl) tyrosine kinase reduced the lysosomal pH in human macrophages by increasing the transcription and expression of the proton pumping enzyme vacuolar-type H(+)-adenosine triphosphatase. Because lysosomal acidification is required for antimicrobial activity against intracellular bacteria, we determined the effect of imatinib on the growth of the major human pathogen Mycobacterium tuberculosis. Imatinib limited the multiplication of M. tuberculosis, and growth restriction was dependent on acidification of the mycobacterial compartment. The effects of imatinib were also active in vivo because circulating monocytes from imatinib-treated leukemia patients were more acidic than monocytes from control donors. Importantly, sera from imatinib-treated patients triggered acidification and growth restriction of M. tuberculosis in macrophages. In summary, our results identify the control of phagosomal acidification as a novel function of Abl tyrosine kinase and provide evidence that the regulation occurs on the level of the vacuolar-type H(+)-adenosine triphosphatase. Given the efficacy of imatinib in a mouse model of tuberculosis and our finding that orally administered imatinib increased the ability of human serum to trigger growth reduction of intracellular M. tuberculosis, clinical evaluation of imatinib as a complementary therapy of tuberculosis, in particular multidrug or extremely drug-resistant disease, is warranted.
Collapse
Affiliation(s)
- Heiko Bruns
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Aranday-Cortes E, Bull NC, Villarreal-Ramos B, Gough J, Hicks D, Ortiz-Peláez Á, Vordermeier HM, Salguero FJ. Upregulation of IL-17A, CXCL9 and CXCL10 in Early-Stage Granulomas Induced byMycobacterium bovisin Cattle. Transbound Emerg Dis 2012; 60:525-37. [DOI: 10.1111/j.1865-1682.2012.01370.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 12/21/2022]
Affiliation(s)
- E. Aranday-Cortes
- TB Research Group; Department of Bacteriology; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - N. C. Bull
- TB Research Group; Department of Bacteriology; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
- Pathology Unit; Department of Specialist Scientific Support; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - B. Villarreal-Ramos
- TB Research Group; Department of Bacteriology; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - J. Gough
- Pathology Unit; Department of Specialist Scientific Support; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - D. Hicks
- Pathology Unit; Department of Specialist Scientific Support; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - Á. Ortiz-Peláez
- Centre for Epidemiology and Risk Analysis; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - H. M. Vordermeier
- TB Research Group; Department of Bacteriology; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| | - F. J. Salguero
- Pathology Unit; Department of Specialist Scientific Support; Animal Health and Veterinary Laboratories Agency, AHVLA - Weybridge; New Haw Addlestone Surrey UK
| |
Collapse
|
71
|
Kato G, Kondo H, Aoki T, Hirono I. Mycobacterium bovis BCG vaccine induces non-specific immune responses in Japanese flounder against Nocardia seriolae. FISH & SHELLFISH IMMUNOLOGY 2012; 33:243-250. [PMID: 22609413 DOI: 10.1016/j.fsi.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
Nocardiosis caused by Nocardia seriolae has been causing severe loss of fish production, so that an effective vaccine is urgently needed. Mycobacterium bovis BCG (BCG) is a live attenuated vaccine for tuberculosis, which is effective against various infectious diseases including nocardiosis in mammals. In this study, the protective efficacy of BCG against N. seriolae was evaluated in Japanese flounder Paralichthys olivaceus and antigen-specific immune responses induced in BCG vaccinated fish were investigated. Cumulative mortality of BCG-vaccinated fish was 21.4% whereas that of PBS-injected fish was 56.7% in N. seriolae challenge. However, gene expression level of IFN-γ was only slightly up-regulated in BCG-vaccinated fish after injection of N. seriolae antigen. In order to reveal non-specific immune responses induced by BCG vaccination, transcriptome of the kidney after BCG vaccination was investigated using oligo DNA microarray. Gene expression levels of antimicrobial peptides such as C-type and G-type lysozyme were significantly up-regulated after BCG vaccination. Consistently, BCG vaccination appeared to increase the bacteriolysis activity of the serum against Micrococcus luteus and N. seriolae. These results suggest that BCG-vaccinated Japanese flounder fight N. seriolae infection mainly by non-specific immune responses such as by the production of bacteriolytic lysozymes.
Collapse
Affiliation(s)
- Goshi Kato
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
72
|
Torrelles JB, Sieling PA, Zhang N, Keen MA, McNeil MR, Belisle JT, Modlin RL, Brennan PJ, Chatterjee D. Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells. Glycobiology 2012; 22:1118-27. [PMID: 22534567 PMCID: PMC3382347 DOI: 10.1093/glycob/cws078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/23/2022] Open
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a complex lipoglycan abundantly present in the Mycobacterium tuberculosis cell envelope. Many biological properties have been ascribed to ManLAM, from directly interacting with the host and participating in the intracellular survival of M. tuberculosis, to triggering innate and adaptive immune responses, including the activation of CD1b-restricted T cells. Due to its structural complexity, ManLAM is considered a heterogeneous population of molecules which may explain its different biological properties. The presence of various modifications such as fatty acids, succinates, lactates, phosphoinositides and methylthioxylose in ManLAM have proven to correlate directly with its biological activity and may potentially be involved in the interactions between CD1b and the T cell population. To further delineate the specific ManLAM epitopes involved in CD1b-restricted T cell recognition, and their potential roles in mediating immune responses in M. tuberculosis infection, we established a method to resolve ManLAM into eight different isoforms based on their different isoelectric values. Our results show that a ManLAM isoform with an isoelectric value of 5.8 was the most potent in stimulating the production of interferon-γ in different CD1b-restricted T-cell lines. Compositional analyses of these isoforms of ManLAM revealed a direct relationship between the overall charge of the ManLAM molecule and its capacity to be presented to T cells via the CD1 compartment.
Collapse
Affiliation(s)
- Jordi B Torrelles
- Mycobacterial Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Cruz AR, Ramirez LG, Zuluaga AV, Pillay A, Abreu C, Valencia CA, La Vake C, Cervantes JL, Dunham-Ems S, Cartun R, Mavilio D, Radolf JD, Salazar JC. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis 2012; 6:e1717. [PMID: 22816000 PMCID: PMC3398964 DOI: 10.1371/journal.pntd.0001717] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The clinical syndrome associated with secondary syphilis (SS) reflects the propensity of Treponema pallidum (Tp) to escape immune recognition while simultaneously inducing inflammation. METHODS To better understand the duality of immune evasion and immune recognition in human syphilis, herein we used a combination of flow cytometry, immunohistochemistry (IHC), and transcriptional profiling to study the immune response in the blood and skin of 27 HIV(-) SS patients in relation to spirochetal burdens. Ex vivo opsonophagocytosis assays using human syphilitic sera (HSS) were performed to model spirochete-monocyte/macrophage interactions in vivo. RESULTS Despite the presence of low-level spirochetemia, as well as immunophenotypic changes suggestive of monocyte activation, we did not detect systemic cytokine production. SS subjects had substantial decreases in circulating DCs and in IFNγ-producing and cytotoxic NK-cells, along with an emergent CD56-/CD16+ NK-cell subset in blood. Skin lesions, which had visible Tp by IHC and substantial amounts of Tp-DNA, had large numbers of macrophages (CD68+), a relative increase in CD8+ T-cells over CD4+ T-cells and were enriched for CD56+ NK-cells. Skin lesions contained transcripts for cytokines (IFN-γ, TNF-α), chemokines (CCL2, CXCL10), macrophage and DC activation markers (CD40, CD86), Fc-mediated phagocytosis receptors (FcγRI, FcγR3), IFN-β and effector molecules associated with CD8 and NK-cell cytotoxic responses. While HSS promoted uptake of Tp in conjunction with monocyte activation, most spirochetes were not internalized. CONCLUSIONS Our findings support the importance of macrophage driven opsonophagocytosis and cell mediated immunity in treponemal clearance, while suggesting that the balance between phagocytic uptake and evasion is influenced by the relative burdens of bacteria in blood and skin and the presence of Tp subpopulations with differential capacities for binding opsonic antibodies. They also bring to light the extent of the systemic innate and adaptive immunologic abnormalities that define the secondary stage of the disease, which in the skin of patients trends towards a T-cell cytolytic response.
Collapse
Affiliation(s)
- Adriana R. Cruz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Lady G. Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Ana V. Zuluaga
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Allan Pillay
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christine Abreu
- Clinical Research Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Carlos A. Valencia
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Carson La Vake
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Jorge L. Cervantes
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Star Dunham-Ems
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Richard Cartun
- Department of Pathology, Hartford Hospital, Hartford, Connecticut, United States of America
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Justin D. Radolf
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
| | - Juan C. Salazar
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Division of Pediatric Infectious Diseases, Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
74
|
Verschoor JA, Baird MS, Grooten J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 2012; 51:325-39. [PMID: 22659327 DOI: 10.1016/j.plipres.2012.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 03/05/2012] [Accepted: 05/23/2012] [Indexed: 01/08/2023]
Abstract
Mycolic acids constitute the waxy layer of the outer cell wall of Mycobacterium spp. and a few other genera. They are diverse in structure, providing a unique chromatographic foot-print for almost each of the more than 70 Mycobacterium species. Although mainly esterified to cell wall arabinogalactan, trehalose or glucose, some free mycolic acid is secreted during in vitro growth of Mycobacterium tuberculosis. In M. tuberculosis, α-, keto- and methoxy-mycolic acids are the main classes, each differing in their ability to attract neutrophils, induce foamy macrophages or adopt an antigenic structure for antibody recognition. Of interest is their particular relationship to cholesterol, discovered by their ability to attract cholesterol, to bind Amphotericin B or to be recognised by monoclonal antibodies that cross-react with cholesterol. The structural elements that determine this diverse functionality include the carboxylic acid in the mycolic motif, as well as the nature and stereochemistry of the two functional groups in the merochain. The functional diversity of mycolic acid classes implies that much information may be contained in the selective expression and secretion of mycolic acids to establish tuberculosis after infection of the host. Their cholesteroid nature may relate to how they utilize host cholesterol for their persistent survival.
Collapse
Affiliation(s)
- Jan A Verschoor
- Department Biochemistry, University of Pretoria, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
75
|
Rahman S, Magalhaes I, Rahman J, Ahmed RK, Sizemore DR, Scanga CA, Weichold F, Verreck F, Kondova I, Sadoff J, Thorstensson R, Spångberg M, Svensson M, Andersson J, Maeurer M, Brighenti S. Prime-boost vaccination with rBCG/rAd35 enhances CD8⁺ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates. Mol Med 2012; 18:647-58. [PMID: 22396020 DOI: 10.2119/molmed.2011.00222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 12/27/2022] Open
Abstract
To prevent the global spread of tuberculosis (TB) infection, a novel vaccine that triggers potent and long-lived immunity is urgently required. A plasmid-based vaccine has been developed to enhance activation of major histocompatibility complex (MHC) class I-restricted CD8⁺ cytolytic T cells using a recombinant Bacille Calmette-Guérin (rBCG) expressing a pore-forming toxin and the Mycobacterium tuberculosis (Mtb) antigens Ag85A, 85B and TB10.4 followed by a booster with a nonreplicating adenovirus 35 (rAd35) vaccine vector encoding the same Mtb antigens. Here, the capacity of the rBCG/rAd35 vaccine to induce protective and biologically relevant CD8⁺ T-cell responses in a nonhuman primate model of TB was investigated. After prime/boost immunizations and challenge with virulent Mtb in rhesus macaques, quantification of immune responses at the single-cell level in cryopreserved tissue specimen from infected organs was performed using in situ computerized image analysis as a technological platform. Significantly elevated levels of CD3⁺ and CD8⁺ T cells as well as cells expressing interleukin (IL)-7, perforin and granulysin were found in TB lung lesions and spleen from rBCG/rAd35-vaccinated animals compared with BCG/rAd35-vaccinated or unvaccinated animals. The local increase in CD8⁺ cytolytic T cells correlated with reduced expression of the Mtb antigen MPT64 and also with prolonged survival after the challenge. Our observations suggest that a protective immune response in rBCG/rAd35-vaccinated nonhuman primates was associated with enhanced MHC class I antigen presentation and activation of CD8⁺ effector T-cell responses at the local site of infection in Mtb-challenged animals.
Collapse
Affiliation(s)
- Sayma Rahman
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Mycobacteria and biological response modifiers: two sides of the relationship. Infect Dis Clin North Am 2012; 25:865-93. [PMID: 22054761 DOI: 10.1016/j.idc.2011.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
With increasing use of biological response modifiers (BRMs) for various systemic inflammatory diseases there is a need to be vigilant about complications with the use of these therapies. It is important to have appropriate screening for the infections in patients requiring BRMs. However, many studies have reported benefits of certain BRMs in the treatment of infections such as tuberculosis as adjuncts. Continued research and technical advances in immunogenetics helps understand complex mechanisms in the usage of the BRMs. This article summarizes the different aspects of the relationship between mycobacterial infections and the use of various BRMs for inflammatory conditions.
Collapse
|
77
|
MAGOMBEDZE GESHAM, GARIRA WINSTON, MWENJE EDDIE. IN-VIVOMATHEMATICAL STUDY OF CO-INFECTION DYNAMICS OF HIV-1 ANDMYCOBACTERIUM TUBERCULOSIS. J BIOL SYST 2011. [DOI: 10.1142/s0218339008002551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) fuels the pathogenesis of Mycobacterium tuberculosis (Mtb) in humans. We develop a mathematical model in an attempt to understand the immune mechanisms that are involved during the co-infection of Mtb and HIV-1. Our study reveals that infection of an Mtb infected individual with HIV-1 results in fast development of active TB. The mathematical model analysis and simulations show that Mtb infection is linked to HIV infection through macrophages and CD4+ T cells. The study shows that depletion of macrophages and CD4+ T cells by HIV-1 worsens the picture of Mtb infection and in-turn Mtb infection affects the progression of HIV-1 infection since it is also capable of inducing rapid replication of HIV. Our analytical and numerical simulations show that macrophages are a potential reservoir of HIV particles during HIV-1 infection. Co-infection simulations reveal that co-infection exacerbates more the pathogen that caused the first infection. Simulations also show that co-infection disease progression patterns converge to a similar trend after a considerable time interval irrespective of which pathogen first caused infection and the second pathogen that caused co-infection. This work suggests directions for further studies and potential treatment strategies.
Collapse
Affiliation(s)
- GESHAM MAGOMBEDZE
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - WINSTON GARIRA
- Departments of Applied Mathematics, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| | - EDDIE MWENJE
- Departments of Applied Biology, National University of Science and Technology, P. O. Box AC939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
78
|
MAGOMBEDZE GESHAM, GARIRA WINSTON, MWENJE EDDIE. MATHEMATICAL MODELING OF CHEMOTHERAPY OF HUMAN TB INFECTION. J BIOL SYST 2011. [DOI: 10.1142/s0218339006001945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work assesses the impact of the first line drug regimen on active disease control under the stipulated time of tuberculosis (TB) treatment. In an effort to understand why a robust immune response mechanism sometimes fails to completely control TB infection, we first developed a model that captures the human immune response mechanisms to Mycobacterium tuberculosis (Mtb) infection. We then extended the model to include drug therapy. The drug therapy model is used to assess the potency of the recommended six-month TB drug chemotherapy in infected individuals. The efficacy of each drug was explored and observations show that low drug efficacy values result in extension of treatment period. The numerical results confirm typical clinical disease progression patterns noticed in individuals under TB therapy. The drug model simulations and analysis show that administration of the recommended first line three-drug regimen normally cures the TB infection. Using the model, we established that only Isoniazid monotherapy drug treatment, and any combination therapy of two drugs including Isoniazid are potent enough to resolve the TB infection.
Collapse
Affiliation(s)
- GESHAM MAGOMBEDZE
- Departments of Applied Mathematics, National University of Science and Technology, PO Box AC939 Ascot, Bulawayo, Zimbabwe
| | - WINSTON GARIRA
- Departments of Applied Mathematics, National University of Science and Technology, PO Box AC939 Ascot, Bulawayo, Zimbabwe
| | - EDDIE MWENJE
- Applied Biology, National University of Science and Technology, PO Box AC939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
79
|
MAGOMBEDZE GESHAM, GARIRA WINSTON, MWENJE EDDIE. THE ROLE OF DENDRITIC CELLS AND OTHER IMMUNE MECHANISMS DURING HUMAN INFECTION WITHMYCOBACTERIUM TUBERCULOSIS. INT J BIOMATH 2011. [DOI: 10.1142/s1793524509000534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human immune response mechanisms are crucial in the control of Mycobacterium tuberculosis (Mtb) infection. Understanding the human immune mechanisms and Mtb dynamics will assist in understanding the occurrence of different clinical outcomes experienced by individuals infected with Mtb. This work elaborates the role of dendritic cells (DCs) and other immune mechanisms in Mtb infection. We develop a model to predict disease progression scenarios, that is latency or active disease. Model analysis shows that occurrence of active disease is much attributed to the Mtb pathogen's ability to persist outside the intracellular environment and that strong immune response results in latent TB while relatively weak immune response result in active tuberculosis (TB). Our numerical results show that DCs recruitment, antigen (Ag) uptake and maturation affect the priming of the immune response and T cells levels at the site of infection. This study shows the crucial link between the innate immune mechanisms and the adaptive immune mechanisms. It also suggests directions for further basic studies and potential new treatment strategies.
Collapse
Affiliation(s)
- GESHAM MAGOMBEDZE
- Biomedical Research Group, Department of Applied Mathematics, National University of Science and Technology, P O Box AC939 Ascot, Bulawayo, Zimbabwe
| | - WINSTON GARIRA
- Biomedical Research Group, National University of Science and Technology, P O Box AC939, Ascot, Bulawayo, Zimbabwe
- Department of Mathematics and Applied Mathematics, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - EDDIE MWENJE
- Department of Applied Biology, National University, of Science and Technology, P O Box AC939 Ascot, Bulawayo, Zimbabwe
| |
Collapse
|
80
|
Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur J Pharm Sci 2011; 45:482-91. [PMID: 21888971 DOI: 10.1016/j.ejps.2011.08.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/12/2011] [Indexed: 12/31/2022]
Abstract
Induction of CD8(+) T-cell responses is critical for the immunological control of a variety of diseases upon vaccination. Modern subunit vaccines are based on highly purified recombinant proteins. The high purity represents a major advancement in terms of vaccine safety compared to previous vaccination strategies with live attenuated or whole killed pathogens, but typically renders vaccine antigens poorly immunogenic and insufficient in mobilizing protective immunity. Adjuvants are therefore needed in vaccine formulations to enhance, direct and maintain the immune response to vaccine antigens. However, a weakness of many adjuvants is the lack of induction of CD8(+) T-cell responses against protein antigens, which are required for protection against challenging and difficult infectious diseases such as AIDS and for therapeutic cancer vaccination. Within the last decade, adjuvant systems that can induce CD8(+) T-cell responses have been developed and the first clinical trials demonstrating the clinical relevance of such formulations have been performed. This paper reviews the current status of lipid- and polymer-based particulate antigen delivery systems capable of stimulating CD8(+) T-cell immunity with special focus on mechanisms of priming and pharmaceutical requirements for optimal activation of cytotoxic T-lymphocytes that can kill virus-infected or abnormal (cancer) cells.
Collapse
Affiliation(s)
- Camilla Foged
- University of Copenhagen, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
81
|
Abstract
A syndemic is defined as the convergence of two or more diseases that act synergistically to magnify the burden of disease. The intersection and syndemic interaction between the human immunodeficiency virus (HIV) and tuberculosis (TB) epidemics have had deadly consequences around the world. Without adequate control of the TB-HIV syndemic, the long-term TB elimination target set for 2050 will not be reached. There is an urgent need for additional resources and novel approaches for the diagnosis, treatment, and prevention of both HIV and TB. Moreover, multidisciplinary approaches that consider HIV and TB together, rather than as separate problems and diseases, will be necessary to prevent further worsening of the HIV-TB syndemic. This review examines current knowledge of the state and impact of the HIV-TB syndemic and reviews the epidemiological, clinical, cellular, and molecular interactions between HIV and TB.
Collapse
|
82
|
Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S, Innes J, Kon OM, Lammas DA, Minnikin DE, Besra GS, Willcox BE, Lalvani A. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 2011; 121:2493-503. [PMID: 21576820 DOI: 10.1172/jci46216] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/30/2011] [Indexed: 11/17/2022] Open
Abstract
Current tuberculosis (TB) vaccine strategies are largely aimed at activating conventional T cell responses to mycobacterial protein antigens. However, the lipid-rich cell wall of Mycobacterium tuberculosis (M. tuberculosis) is essential for pathogenicity and provides targets for unconventional T cell recognition. Group 1 CD1-restricted T cells recognize mycobacterial lipids, but their function in human TB is unclear and their ability to establish memory is unknown. Here, we characterized T cells specific for mycolic acid (MA), the predominant mycobacterial cell wall lipid and key virulence factor, in patients with active TB infection. MA-specific T cells were predominant in TB patients at diagnosis, but were absent in uninfected bacillus Calmette-Guérin-vaccinated (BCG-vaccinated) controls. These T cells were CD1b restricted, detectable in blood and disease sites, produced both IFN-γ and IL-2, and exhibited effector and central memory phenotypes. MA-specific responses contracted markedly with declining pathogen burden and, in patients followed longitudinally, exhibited recall expansion upon antigen reencounter in vitro long after successful treatment, indicative of lipid-specific immunological memory. T cell recognition of MA is therefore a significant component of the acute adaptive and memory immune response in TB, suggesting that mycobacterial lipids may be promising targets for improved TB vaccines.
Collapse
Affiliation(s)
- Damien J Montamat-Sicotte
- Tuberculosis Research Unit, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Glycerol monomycolate, a latent tuberculosis-associated mycobacterial lipid, induces eosinophilic hypersensitivity responses in guinea pigs. Biochem Biophys Res Commun 2011; 409:304-7. [PMID: 21575604 DOI: 10.1016/j.bbrc.2011.04.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/30/2011] [Indexed: 11/21/2022]
Abstract
Dynamic changes in the lipid composition of the cell wall occur in pathogenic mycobacteria that are often intended for adaptation to the host environment. Dormant mycobacteria should have evolved efficient maneuvers for cohabitation, allowing the microbes to persist for years within the host. Glycerol monomycolate (GroMM) has been implicated as a specific immune target in human individuals with latent, but not active, tuberculosis, but the in vivo response to GroMM and the relevance of it to latent infection remain poorly understood. Here, we immunized guinea pigs with bacillus Calmette-Guerin (BCG) expressing high levels of GroMM and then, monitored skin reactions at the site of challenge with GroMM-containing liposome. We found that BCG-immunized guinea pigs mounted enhanced skin reactions to GroMM with prominent local infiltration by eosinophils. Consistent with this, GroMM-stimulated lymph node cells upregulated the expression of T helper (Th)2-type cytokines, such as interleukin (IL)-5 and IL-10, that could potentially counteract the microbe-eliminating Th1-type cytokine response. On the basis of these observations, we predict that the host response to GroMM produced by dormant mycobacteria would contribute to their long-term survival in the host.
Collapse
|
84
|
The M. tuberculosis phosphate-binding lipoproteins PstS1 and PstS3 induce Th1 and Th17 responses that are not associated with protection against M. tuberculosis infection. Clin Dev Immunol 2011; 2011:690328. [PMID: 21603219 PMCID: PMC3095447 DOI: 10.1155/2011/690328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/10/2011] [Indexed: 12/04/2022]
Abstract
The M. tuberculosis phosphate-binding transporter lipoproteins PstS1 and PstS3 were good immunogens inducing CD8+ T-cell activation and both Th1 and Th17 immunity in mice. However, this antigen-specific immunity, even when amplified by administration of the protein with the adjuvant LTK63 or by the DNA priming/protein boosting regimen, was not able to contain M. tuberculosis replication in the lungs of infected mice. The lack of protection might be ascribed with the scarce/absent capacity of PstS1/PstS3 antigens to modulate the IFN-γ response elicited by M. tuberculosis infection during which, however, PstS1-specific IL-17 secreting cells were generated in both unvaccinated and BCG-vaccinated mice. In spite of a lack of protection by PstS1/PstS3 immunizations, our results do show that PstS1 is able to induce IL-17 response upon M. tuberculosis infection which is of interest in the study of anti-M. tuberculosis immunity and as potential immunomodulator in combined vaccines.
Collapse
|
85
|
Komori T, Nakamura T, Matsunaga I, Morita D, Hattori Y, Kuwata H, Fujiwara N, Hiromatsu K, Harashima H, Sugita M. A microbial glycolipid functions as a new class of target antigen for delayed-type hypersensitivity. J Biol Chem 2011; 286:16800-6. [PMID: 21454504 DOI: 10.1074/jbc.m110.217224] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Delayed-type hypersensitivity (DTH) is marked by high levels of protein antigen-specific T cell responses in sensitized individuals. Recent evidence has revealed a distinct pathway for T cell immunity directed against glycolipid antigens, but DTH to this class of antigen has been undetermined and difficult to prove due to their insolubility in aqueous solutions. Here, glucose monomycolate (GMM), a highly hydrophobic glycolipid of the cell wall of mycobacteria, was dispersed in aqueous solutions in the form of octaarginine-modified liposomes and tested for its ability to elicit cutaneous DTH responses in bacillus Calmette-Guerin (BCG)-immunized guinea pigs. After an intradermal challenge with the GMM liposome, a significant skin induration was observed in BCG-immunized, but not mock-treated, animals. The skin reaction peaked at around 2 days with local infiltration by mononuclear cells, and therefore, the response shared basic features with the classical DTH to protein antigens. Lymph node T cells from BCG-immunized guinea pigs specifically increased IFN-γ transcription in response to the GMM liposome, and this response was completely blocked by antibodies to CD1 lipid antigen-presenting molecules. Finally, whereas the T cells increased transcription of both T helper (Th) 1-type (IFN-γ and TNF-α) and Th2-type (IL-5 and IL-10) cytokines in response to the purified protein derivative or tuberculin, their GMM-specific response was skewed to Th1-type cytokine production known to be critical for protection against tuberculosis. Thus, our study reveals a novel form of DTH with medical implications.
Collapse
Affiliation(s)
- Takaya Komori
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
87
|
Antibody responses to glycolipid‐borne carbohydrates require CD4
+
T cells but not CD1 or NKT cells. Immunol Cell Biol 2011; 89:502-10. [DOI: 10.1038/icb.2010.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
88
|
Over K, Crandall PG, O'Bryan CA, Ricke SC. Current perspectives on Mycobacterium avium subsp. paratuberculosis, Johne's disease, and Crohn's disease: a review. Crit Rev Microbiol 2011; 37:141-56. [PMID: 21254832 DOI: 10.3109/1040841x.2010.532480] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes the disease of cattle, Johne's. The economic impact of this disease includes early culling of infected cattle, reduced milk yield, and weight loss of cattle sold for slaughter. There is a possible link between MAP and Crohn's disease, a human inflammatory bowel disease. MAP is also a potential human food borne pathogen because it survives current pasteurization treatments. We review the current knowledge of MAP, Johne's disease and Crohn's disease and note directions for future work with this organism including rapid and economical detection, effective management plans and preventative measures.
Collapse
Affiliation(s)
- Ken Over
- Center for Food Safety and Food Science Department, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA
| | | | | | | |
Collapse
|
89
|
Vilani-Moreno FR, Belone ADFF, Lara VS, Venturini J, Lauris JRP, Soares CT. Detection of cytokines and nitric oxide synthase in skin lesions of Jorge Lobo's disease patients. Med Mycol 2011; 49:643-8. [PMID: 21208026 DOI: 10.3109/13693786.2010.547993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies investigating the immunopathological aspects of Jorge Lobo's disease have shown that the inflammatory infiltrate consists mainly of histiocytes and multinucleated giant cells involving numerous yeast-like cells of Lacazia loboi, with the T lymphocytes more common than B lymphocytes and plasma cells. The quantification of cytokines in peripheral blood mononuclear cells culture supernatant has revealed alterations in the cytokines profile, characterized by predominance of a Th2 profile. In view of these findings and of the role of cytokines in cell interactions, the objective of the present study was to investigate the presence of the cytokines IL-10, TGF-ß1 and TNF-α, as well as iNOS enzyme in granulomas induced by L. loboi. Histological sections obtained from skin lesions of 16 patients were analyzed by immunohistochemistry for the presence of these cytokines and iNOS. The results showed that TGF-ß1 was the cytokine most frequently expressed by cells present in the inflammatory infiltrate, followed by IL-10. There was a minimum to discrete positivity of cells expressing TNF-α and iNOS. The results suggest that the presence of immunosuppressive cytokines in skin lesions of patients with the mycosis might be responsible for the lack of containment of the pathogen as demonstrated by the presence of numerous fungi in the granuloma.
Collapse
|
90
|
Tang ST, van Meijgaarden KE, Caccamo N, Guggino G, Klein MR, van Weeren P, Kazi F, Stryhn A, Zaigler A, Sahin U, Buus S, Dieli F, Lund O, Ottenhoff THM. Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. THE JOURNAL OF IMMUNOLOGY 2010; 186:1068-80. [PMID: 21169544 DOI: 10.4049/jimmunol.1002212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.
Collapse
Affiliation(s)
- Sheila T Tang
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Tuberculosis immunity: opportunities from studies with cattle. Clin Dev Immunol 2010; 2011:768542. [PMID: 21197095 PMCID: PMC3004413 DOI: 10.1155/2011/768542] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis and M. bovis share >99% genetic identity and induce similar host responses and disease profiles upon infection. There is a rich history of codiscovery in the development of control measures applicable to both human and bovine tuberculosis (TB) including skin-testing procedures, M. bovis BCG vaccination, and interferon-γ release assays. The calf TB infection model offers several opportunities to further our understanding of TB immunopathogenesis. Recent observations include correlation of central memory immune responses with TB vaccine efficacy, association of SIRPα+ cells in ESAT-6:CFP10-elicited multinucleate giant cell formation, early γδ T cell responses to TB, antimycobacterial activity of memory CD4+ T cells via granulysin production, association of specific antibody with antigen burden, and suppression of innate immune gene expression in infected animals. Partnerships teaming researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in man and animals.
Collapse
|
92
|
Kaufmann SHE. Future vaccination strategies against tuberculosis: thinking outside the box. Immunity 2010; 33:567-77. [PMID: 21029966 DOI: 10.1016/j.immuni.2010.09.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 08/30/2010] [Indexed: 02/08/2023]
Abstract
With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
93
|
Direct microbicidal activity of cytotoxic T-lymphocytes. J Biomed Biotechnol 2010; 2010:249482. [PMID: 20617144 PMCID: PMC2896662 DOI: 10.1155/2010/249482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/22/2010] [Indexed: 01/04/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTL) are famous for their ability to kill tumor, allogeneic and virus-infected cells. However, an emerging literature has now demonstrated that CTL also possess the ability to directly recognize and kill bacteria, parasites, and fungi. Here, we review past and recent findings demonstrating the direct microbicidal activity of both CD4+ and CD8+ CTL against various microbial pathogens. Further, this review will outline what is known regarding the mechanisms of direct killing and their underlying signalling pathways.
Collapse
|
94
|
Palma C, Vendetti S, Cassone A. Role of 4-1BB receptor in the control played by CD8(+) T cells on IFN-gamma production by Mycobacterium tuberculosis antigen-specific CD4(+) T Cells. PLoS One 2010; 5:e11019. [PMID: 20544034 PMCID: PMC2882340 DOI: 10.1371/journal.pone.0011019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Background Antigen-specific IFN-γ producing CD4+ T cells are the main mediators of protection against Mycobacterium tuberculosis infection both under natural conditions and following vaccination. However these cells are responsible for lung damage and poor vaccine efficacy when not tightly controlled. Discovering new tools to control nonprotective antigen-specific IFN-γ production without affecting protective IFN-γ is a challenge in tuberculosis research. Methods and Findings Immunization with DNA encoding Ag85B, a candidate vaccine antigen of Mycobacterium tuberculosis, elicited in mice a low but protective CD4+ T cell-mediated IFN-γ response, while in mice primed with DNA and boosted with Ag85B protein a massive increase in IFN-γ response was associated with loss of protection. Both protective and non-protective Ag85B-immunization generated antigen-specific CD8+ T cells which suppressed IFN-γ-secreting CD4+ T cells. However, ex vivo ligation of 4-1BB, a member of TNF-receptor super-family, reduced the massive, non-protective IFN-γ responses by CD4+ T cells in protein-boosted mice without affecting the low protective IFN-γ-secretion in mice immunized with DNA. This selective inhibition was due to the induction of 4-1BB exclusively on CD8+ T cells of DNA-primed and protein-boosted mice following Ag85B protein stimulation. The 4-1BB-mediated IFN-γ inhibition did not require soluble IL-10, TGF-β, XCL-1 and MIP-1β. In vivo Ag85B stimulation induced 4-1BB expression on CD8+ T cells and in vivo 4-1BB ligation reduced the activation, IFN-γ production and expansion of Ag85B-specific CD4+ T cells of DNA-primed and protein-boosted mice. Conclusion/Significance Antigen-specific suppressor CD8+ T cells are elicited through immunization with the mycobacterial antigen Ag85B. Ligation of 4-1BB receptor further enhanced their suppressive activity on IFN-γ-secreting CD4+ T cells. The selective expression of 4-1BB only on CD8+ T cells in mice developing a massive, non-protective IFN-γ response opens novel strategies for intervention in tuberculosis pathology and vaccination through T-cell co-stimulatory-based molecular targeting.
Collapse
Affiliation(s)
- Carla Palma
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | |
Collapse
|
95
|
Brighenti S, Andersson J. Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection. Biochem Biophys Res Commun 2010; 396:50-7. [DOI: 10.1016/j.bbrc.2010.02.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/20/2010] [Indexed: 12/15/2022]
|
96
|
Van Rhijn I, Nguyen TKA, Michel A, Cooper D, Govaerts M, Cheng TY, van Eden W, Moody DB, Coetzer JAW, Rutten V, Koets AP. Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur J Immunol 2010; 39:3031-41. [PMID: 19688747 DOI: 10.1002/eji.200939619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although CD1 proteins are known to present mycobacterial lipid antigens to T cells, there is little understanding of the in vivo behavior of T cells restricted by CD1a, CD1b and CD1c, and the relative immunogenicity and immunodominance of individual lipids within the total array of lipids that comprise a bacterium. Because bovines express multiple CD1 proteins and are natural hosts of Mycobacterium bovis and Mycobacterium avium paratuberculosis (MAP), we used them as a new animal model of CD1 function. Here, we report the surprisingly divergent responses against lipids produced by these two pathogens during infection. Despite considerable overlap in lipid content, only three out of 69 animals cross-react with M. bovis and MAP total lipid preparations. The unidentified immunodominant compound of M. bovis is a hydrophilic compound, whereas the immunodominant lipid of MAP is presented by CD1b and was identified as glucose monomycolate (GMM). The preferential recognition of GMM antigen by MAP-infected cattle may be explained by the higher expression of GMM by MAP than by M. bovis. The bacterial species-specific nature of the CD1-restricted, adaptive T-cell response affects the approach to development of lipid based immunodiagnostic tests.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
98
|
|
99
|
Hernandez-Pando R, Orozco H, Aguilar D. Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) 2009; 57:355-67. [PMID: 19707720 DOI: 10.1007/s00005-009-0042-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/16/2009] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.
Collapse
Affiliation(s)
- Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Tlalpan, Mexico City, CP-14000, México.
| | | | | |
Collapse
|
100
|
Nakao H, Matsunaga I, Morita D, Aboshi T, Harada T, Nakagawa Y, Mori N, Sugita M. Mycolyltransferase from Mycobacterium leprae Excludes Mycolate-containing Glycolipid Substrates. J Biochem 2009; 146:659-65. [DOI: 10.1093/jb/mvp113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|