51
|
Chen SX, Haas K. Function directs form of neuronal architecture. BIOARCHITECTURE 2014; 1:2-4. [PMID: 21866253 DOI: 10.4161/bioa.1.1.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 12/29/2022]
Affiliation(s)
- Simon Xuan Chen
- Department of Cellular and Physiological Sciences and the Brain Research Centre; University of British Columbia; Vancouver, BC Canada
| | | |
Collapse
|
52
|
Villers A, Giese KP, Ris L. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. ACTA ACUST UNITED AC 2014; 21:616-26. [PMID: 25322797 PMCID: PMC4201817 DOI: 10.1101/lm.035972.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| | - Karl Peter Giese
- MRC Centre for Neurodegeneration, Institute of Psychiatry, King's College London, SE5 9NU, London, United Kingdom
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
53
|
Roy B, Ferdous J, Ali DW. NMDA receptors on zebrafish Mauthner cells require CaMKII-α for normal development. Dev Neurobiol 2014; 75:145-62. [PMID: 25047640 DOI: 10.1002/dneu.22214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/15/2014] [Accepted: 07/20/2014] [Indexed: 12/31/2022]
Abstract
Calcium/calmodulin dependent protein kinase 2 (CaMKII) is a multifunctional protein that is highly enriched in the synapse. It plays important roles in neuronal functions such as synaptic plasticity, synaptogenesis, and neural development. Gene duplication in zebrafish has resulted in the occurrence of seven CaMKII genes (camk2a, camk2b1, camk2b2, camk2g1, camk2g2, camk2d1, and camk2d2) that are developmentally expressed. In this study, we used single cell, real-time quantitative PCR to investigate the expression of CaMKII genes in individual Mauthner cells (M-cells) of 2 days post fertilization (dpf) zebrafish embryos. We found that out of seven different CaMKII genes, only the mRNA for CaMKII-α was expressed in the M-cell at detectable levels, while all other isoforms were undetectable. Morpholino knockdown of CaMKII-α had no significant effect on AMPA synaptic currents (mEPSCs) but decreased the amplitude of NMDA mEPSCs. NMDA events exhibited a biexponential decay with τfast ≈ 30 ms and τslow ≈ 300 ms. Knockdown of CaMKII-α specifically reduced the amplitude of the slow component of the NMDA-mediated currents (mEPSCs), without affecting the fast component, the frequency, or the kinetics of the mEPSCs. Immunolabelling of the M-cell showed increased dendritic arborizations in the morphants compared with controls, and knockdown of CaMKII-α altered locomotor behaviors of touch responses. These results suggest that CaMKII-α is present in embryonic M-cells and that it plays a role in the normal development of excitatory synapses. Our findings pave the way for determining the function of specific CaMKII isoforms during the early stages of M-cell development.
Collapse
Affiliation(s)
- Birbickram Roy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
54
|
Hamodi AS, Pratt KG. Region-specific regulation of voltage-gated intrinsic currents in the developing optic tectum of the Xenopus tadpole. J Neurophysiol 2014; 112:1644-55. [PMID: 24990560 DOI: 10.1152/jn.00068.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Across the rostrocaudal (RC) axis of the Xenopus tadpole optic tectum exists a developmental gradient. This gradient has served as a useful model to study many aspects of synapse and dendrite maturation. To compliment these studies, we characterized how the intrinsic excitability, the ease in which a neuron can fire action potentials, might also be changing across the same axis. Whole-cell recordings from tectal neurons at different points along the RC axis revealed a graded increase in intrinsic excitability: compared with neurons at the caudal end of the tectum, neurons at the rostral end fired more action potentials in response to current injection and expressed greater peak Na⁺ and K⁺ currents, the major intrinsic currents in these neurons that underlie the action potential. We also observed, along the same axis and in the same direction, a previously described increase in the amount of synaptic drive received by individual neurons (Wu GY, Malinow R, Cline HT. Science 274: 972-976, 1996). Thus as synaptic activity ramps up across the RC axis, so does intrinsic excitability. The reduction of overall circuit activity induced a compensatory scaling up of peak Na⁺ and K⁺ currents only in the caudal portion of the tectum, suggesting a region-specific, compensatory form of plasticity.
Collapse
Affiliation(s)
- Ali S Hamodi
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| | - Kara G Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
55
|
Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci 2014; 37:399-407. [PMID: 24910262 PMCID: PMC4113564 DOI: 10.1016/j.tins.2014.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 01/10/2023]
Abstract
The nervous system has the amazing capacity to transform sensory experience from the environment into changes in neuronal activity that, in turn, cause long-lasting alterations in neuronal morphology. Recent findings indicate that, surprisingly, sensory experience concurrently activates molecular signaling pathways that both promote and inhibit dendritic complexity. Historically, a number of positive regulators of activity-dependent dendritic complexity have been described, whereas the list of identified negative regulators of this process is much shorter. In recent years, there has been an emerging appreciation of the importance of the Rad/Rem/Rem2/Gem/Kir (RGK) GTPases as mediators of activity-dependent structural plasticity. In the following review, we discuss the traditional view of RGK proteins, as well as our evolving understanding of the role of these proteins in instructing structural plasticity.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Suzanne Paradis
- Department of Biology, National Center for Behavioral Genomics, and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
56
|
Molas S, Dierssen M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: a window into cognitive pathology. Neurosci Biobehav Rev 2014; 46 Pt 2:315-25. [PMID: 24879992 DOI: 10.1016/j.neubiorev.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/13/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
The involvement of the cholinergic system in learning, memory and attention has long been recognized, although its neurobiological mechanisms are not fully understood. Recent evidence identifies the endogenous cholinergic signaling via nicotinic acetylcholine receptors (nAChRs) as key players in determining the morphological and functional maturation of the glutamatergic system. Here, we review the available experimental and clinical evidence of nAChRs contribution to the establishment of the glutamatergic system, and therefore to cognitive function. We provide some clues of the putative underlying molecular mechanisms and discuss recent human studies that associate genetic variability of the genes encoding nAChR subunits with cognitive disorders. Finally, we discuss the new avenues to therapeutically targeting nAChRs in persons with cognitive dysfunction for which the α7-nAChR subunit is an important etiological mechanism.
Collapse
Affiliation(s)
- Susanna Molas
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona E-08003, Spain; University Pompeu Fabra (UPF), Spain; CIBER de Enfermedades Raras (CIBERER), Barcelona E-08003, Spain.
| |
Collapse
|
57
|
Elzière L, Sar C, Ventéo S, Bourane S, Puech S, Sonrier C, Boukhadaoui H, Fichard A, Pattyn A, Valmier J, Carroll P, Méchaly I. CaMKK-CaMK1a, a new post-traumatic signalling pathway induced in mouse somatosensory neurons. PLoS One 2014; 9:e97736. [PMID: 24840036 PMCID: PMC4026325 DOI: 10.1371/journal.pone.0097736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain. Calcium signalling plays a major role in the different steps occurring after nerve damage. As part of our studies to unravel the roles of injury-induced molecular changes in dorsal root ganglia (DRG) neurons during their regeneration, we show that the calcium calmodulin kinase CaMK1a is markedly induced in mouse DRG neurons in several models of mechanical peripheral nerve injury, but not by inflammation. Intrathecal injection of NRTN or GDNF significantly prevents the post-traumatic induction of CaMK1a suggesting that interruption of target derived factors might be a starter signal in this de novo induction. Inhibition of CaMK signalling in injured DRG neurons by pharmacological means or treatment with CaMK1a siRNA resulted in decreased velocity of neurite growth in vitro. Altogether, the results suggest that CaMK1a induction is part of the intrinsic regenerative response of DRG neurons to peripheral nerve injury, and is thus a potential target for therapeutic intervention to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lucie Elzière
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Chamroeun Sar
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Sylvie Puech
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Corinne Sonrier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Hassan Boukhadaoui
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Ilana Méchaly
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| |
Collapse
|
58
|
Ding JD, Kennedy MB, Weinberg RJ. Subcellular organization of camkii in rat hippocampal pyramidal neurons. J Comp Neurol 2014; 521:3570-83. [PMID: 23749614 DOI: 10.1002/cne.23372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a key role in N-methyl-D-aspartate (NMDA) receptor-dependent long-term synaptic plasticity; its location is critical for signal transduction, and may provide clues that further elucidate its function. We therefore examined the subcellular localization of CaMKII in CA1 stratum radiatum of adult rat hippocampus, by using immuno-electron microscopy after chemical fixation. When tissue was fixed quickly, the concentration of CaMKIIα (assessed by pre-embedding immunogold) was significantly higher in dendritic shafts than in spine heads. However, when tissue was fixed 5 minutes after perfusion with normal saline, the density of labeling decreased in dendritic shaft while increasing in spine heads, implying rapid translocation into the spine during brief perimortem stress. Likewise, in quickly fixed tissue, CaMKII within spine heads was found at comparable concentrations in the "proximal" half (adjacent to the spine neck) and the "distal" half (containing the postsynaptic density [PSD]), whereas after delayed fixation, label density increased in the distal side of the spine head, suggesting that CaMKII within the spine head moves toward the PSD during this interval. To estimate its distribution at the synapse in vivo, we performed postembedding immunogold staining for CaMKII in quick-fixed tissue, and found that the enzyme did not concentrate primarily within the central matrix of the PSD. Instead, labeling density peaked ∼40 nm inside the postsynaptic membrane, at the cytoplasmic fringe of the PSD. Labeling within 25 nm of the postsynaptic membrane concentrated at the lateral edge of the synapse. This lateral "PSD core" pool of CaMKII may play a special role in synaptic plasticity.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, 27710
| | | | | |
Collapse
|
59
|
Abstract
A key feature of the CNS is structural plasticity, the ability of neurons to alter their morphology and connectivity in response to sensory experience and other changes in the environment. How this structural plasticity is achieved at the molecular level is not well understood. We provide evidence that changes in sensory experience simultaneously trigger multiple signaling pathways that either promote or restrict growth of the dendritic arbor; structural plasticity is achieved through a balance of these opposing signals. Specifically, we have uncovered a novel, activity-dependent signaling pathway that restricts dendritic arborization. We demonstrate that the GTPase Rem2 is regulated at the transcriptional level by calcium influx through L-VGCCs and inhibits dendritic arborization in cultured rat cortical neurons and in the Xenopus laevis tadpole visual system. Thus, our results demonstrate that changes in neuronal activity initiate competing signaling pathways that positively and negatively regulate the growth of the dendritic arbor. It is the balance of these opposing signals that leads to proper dendritic morphology.
Collapse
|
60
|
Shen W, Liu HH, Schiapparelli L, McClatchy D, He HY, Yates JR, Cline HT. Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus. Cell Rep 2014; 6:737-47. [PMID: 24529705 DOI: 10.1016/j.celrep.2014.01.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 12/30/2013] [Accepted: 01/15/2014] [Indexed: 12/16/2022] Open
Abstract
Neural plasticity requires protein synthesis, but the identity of newly synthesized proteins generated in response to plasticity-inducing stimuli remains unclear. We used in vivo bio-orthogonal noncanonical amino acid tagging (BONCAT) with the methionine analog azidohomoalanine (AHA) combined with the multidimensional protein identification technique (MudPIT) to identify proteins that are synthesized in the tadpole brain over 24 hr. We induced conditioning-dependent plasticity of visual avoidance behavior, which required N-methyl-D-aspartate (NMDA) and Ca(2+)-permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, αCaMKII, and rapid protein synthesis. Combining BONCAT with western blots revealed that proteins including αCaMKII, MEK1, CPEB, and GAD65 are synthesized during conditioning. Acute synthesis of CPEB during conditioning is required for behavioral plasticity as well as conditioning-induced synaptic and structural plasticity in the tectal circuit. We outline a signaling pathway that regulates protein-synthesis-dependent behavioral plasticity in intact animals, identify newly synthesized proteins induced by visual experience, and demonstrate a requirement for acute synthesis of CPEB in plasticity.
Collapse
Affiliation(s)
- Wanhua Shen
- Key Lab of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China; The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Han-Hsuan Liu
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lucio Schiapparelli
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel McClatchy
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hai-Yan He
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
61
|
Taft CE, Turrigiano GG. PSD-95 promotes the stabilization of young synaptic contacts. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130134. [PMID: 24298137 DOI: 10.1098/rstb.2013.0134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.
Collapse
Affiliation(s)
- Christine E Taft
- Department of Biology, Brandeis University, , Waltham, MA 02454, USA
| | | |
Collapse
|
62
|
Gong B, Pan Y, Zhao W, Knable L, Vempati P, Begum S, Ho L, Wang J, Yemul S, Barnum S, Bilski A, Gong BY, Pasinetti GM. IVIG immunotherapy protects against synaptic dysfunction in Alzheimer's disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol Immunol 2013; 56:619-29. [DOI: 10.1016/j.molimm.2013.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
|
63
|
Dickins EM, Salinas PC. Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 2013; 7:162. [PMID: 24223536 PMCID: PMC3819050 DOI: 10.3389/fncel.2013.00162] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/04/2013] [Indexed: 11/13/2022] Open
Abstract
A proper balance between synapse assembly and disassembly is crucial for the formation of functional neuronal circuits and synaptic plasticity in the adult brain. During development, synaptogenesis generates a vast excess of synapses, which are subsequently eliminated. Importantly, aberrant synaptic disassembly during development underpins many neurological disorders. Wnt secreted proteins are robust synaptogenic factors that regulate synapse assembly and function in the developing and mature brain. Recent studies show that Wnt blockade with the antagonist Dickkopf-1 (Dkk1) induces the rapid disassembly of synapses in mature neurons. Importantly, Dkk1 mediates synaptic loss induced by Amyloid-ß, a key pathogenic molecule in Alzheimer's disease (AD). These findings provide new insights into the potential contribution of dysfunctional Wnt signaling to synaptic loss observed in neurodegenerative diseases. In this review, we discuss the role of Wnt signaling in vertebrate synaptic assembly, function and maintenance, and consider how dysfunction of Wnt signaling could contribute to synaptic disassembly in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Ellen M Dickins
- Department of Cell and Developmental Biology, University College London London, UK
| | | |
Collapse
|
64
|
Casanova JR, Nishimura M, Swann JW. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull 2013; 103:39-48. [PMID: 24140049 DOI: 10.1016/j.brainresbull.2013.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the underlying molecular mechanisms will likely prove crucial for developing therapeutic strategies aimed at ameliorating the intellectual developmental disabilities associated with intractable childhood epilepsy.
Collapse
Affiliation(s)
- J R Casanova
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA
| | - Masataka Nishimura
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA
| | - John W Swann
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA.
| |
Collapse
|
65
|
Butz M, van Ooyen A. A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions. PLoS Comput Biol 2013; 9:e1003259. [PMID: 24130472 PMCID: PMC3794906 DOI: 10.1371/journal.pcbi.1003259] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022] Open
Abstract
Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke. The adult brain is less hard-wired than traditionally thought. About ten percent of synapses in the mature visual cortex is continually replaced by new ones (structural plasticity). This percentage greatly increases after lasting changes in visual input. Due to the topographically organized nerve connections from the retina in the eye to the primary visual cortex in the brain, a small circumscribed lesion in the retina leads to a defined area in the cortex that is deprived of input. Recent experimental studies have revealed that axonal sprouting and dendritic spine turnover are massively increased in and around the cortical area that is deprived of input. However, the driving forces for this structural plasticity remain unclear. Using a novel computational model, we examine whether the need for activity homeostasis of individual neurons may drive cortical reorganization after lasting changes in input activity. We show that homeostatic growth rules indeed give rise to structural and functional reorganization of neuronal networks similar to the cortical reorganization observed experimentally. Understanding the principles of structural plasticity may eventually lead to novel treatment strategies for stimulating functional reorganization after brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Markus Butz
- Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| | | |
Collapse
|
66
|
The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 2013; 33:11916-31. [PMID: 23864680 DOI: 10.1523/jneurosci.1760-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory deficits in Drosophila nalyot mutants suggest that the Myb family transcription factor Adf-1 is an important regulator of developmental plasticity in the brain. However, the cellular functions for this transcription factor in neurons or molecular mechanisms by which it regulates plasticity remain unknown. Here, we use in vivo 3D reconstruction of identifiable larval motor neuron dendrites to show that Adf-1 is required cell autonomously for dendritic development and activity-dependent plasticity of motor neurons downstream of CaMKII. Adf-1 inhibition reduces dendrite growth and neuronal excitability, and results in motor deficits and altered transcriptional profiles. Surprisingly, analysis by comparative chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of Adf-1, RNA Polymerase II (Pol II), and histone modifications in Kc cells shows that Adf-1 binding correlates positively with high Pol II-pausing indices and negatively with active chromatin marks such as H3K4me3 and H3K27ac. Consistently, the expression of Adf-1 targets Staufen and Fasciclin II (FasII), identified through larval brain ChIP-Seq for Adf-1, is negatively regulated by Adf-1, and manipulations of these genes predictably modify dendrite growth. Our results imply mechanistic interactions between transcriptional and local translational machinery in neurons as well as conserved neuronal growth mechanisms mediated by cell adhesion molecules, and suggest that CaMKII, Adf-1, FasII, and Staufen influence crucial aspects of dendrite development and plasticity with potential implications for memory formation. Further, our experiments reveal molecular details underlying transcriptional regulation by Adf-1, and indicate active interaction between Adf-1 and epigenetic regulators of gene expression during activity-dependent neuronal plasticity.
Collapse
|
67
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
68
|
CaMKII-dependent phosphorylation of the GTPase Rem2 is required to restrict dendritic complexity. J Neurosci 2013; 33:6504-15. [PMID: 23575848 DOI: 10.1523/jneurosci.3861-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The morphogenesis of the dendritic arbor is a critical aspect of neuronal development, ensuring that proper neural networks are formed. However, the molecular mechanisms that underlie this dendritic remodeling remain obscure. We previously established the activity-regulated GTPase Rem2 as a negative regulator of dendritic complexity. In this study, we identify a signaling pathway whereby Rem2 regulates dendritic arborization through interactions with Ca(2+)/calmodulin-dependent kinases (CaMKs) in rat hippocampal neurons. Specifically, we demonstrate that Rem2 functions downstream of CaMKII but upstream of CaMKIV in a pathway that restricts dendritic complexity. Furthermore, we show that Rem2 is a novel substrate of CaMKII and that phosphorylation of Rem2 by CaMKII regulates Rem2 function and subcellular localization. Overall, our results describe a unique signal transduction network through which Rem2 and CaMKs function to restrict dendritic complexity.
Collapse
|
69
|
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 2013; 1518:9-25. [PMID: 23632380 DOI: 10.1016/j.brainres.2013.04.042] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/08/2023]
Abstract
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα-GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required.
Collapse
|
70
|
Saito A, Miyajima K, Akatsuka J, Kondo H, Mashiko T, Kiuchi T, Ohashi K, Mizuno K. CaMKIIβ-mediated LIM-kinase activation plays a crucial role in BDNF-induced neuritogenesis. Genes Cells 2013; 18:533-43. [PMID: 23600483 DOI: 10.1111/gtc.12054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 12/01/2022]
Abstract
LIM-kinase 1 (LIMK1) regulates actin cytoskeletal reorganization by phosphorylating and inactivating actin-depolymerizing factor and cofilin. We examined the role of LIMK1 in brain-derived neurotrophic factor (BDNF)-induced neuritogenesis in primary-cultured rat cortical neurons. Knockdown of LIMK1 or expression of a kinase-dead LIMK1 mutant suppressed BDNF-induced enhancement of primary neurite formation. By contrast, expression of an active form of LIMK1 promoted primary neuritogenesis in the absence of BDNF. BDNF-induced neuritogenesis was inhibited by KN-93, an inhibitor of Ca(2+) /calmodulin-dependent protein kinases (CaMKs), but not by STO-609, an inhibitor of CaMK-kinase (CaMKK). CaMKK activity is required for the activation of CaMKI and CaMKIV, but not CaMKII, which suggests that CaMKII is principally involved in BDNF-induced enhancement of neuritogenesis. Knockdown of CaMKIIβ, but not CaMKIIα, suppressed BDNF-induced neuritogenesis. Active CaMKIIβ promoted neuritogenesis, and this promotion was inhibited by knockdown of LIMK1, indicating that CaMKIIβ is involved in BDNF-induced neuritogenesis via activation of LIMK1. Furthermore, in vitro kinase assays revealed that CaMKIIβ phosphorylates LIMK1 at Thr-508 in the kinase domain and activates the cofilin-phosphorylating activity of LIMK1. In summary, these results suggest that CaMKIIβ-mediated activation of LIMK1 plays a crucial role in BDNF-induced enhancement of primary neurite formation.
Collapse
Affiliation(s)
- Akihiko Saito
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tan M, Ma S, Huang Q, Hu K, Song B, Li M. GSK-3α/β-mediated phosphorylation of CRMP-2 regulates activity-dependent dendritic growth. J Neurochem 2013; 125:685-97. [PMID: 23470087 DOI: 10.1111/jnc.12230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Neuronal activity shapes the dendritic arbour; however, most of the molecular players in this process remain to be identified. We observed that depolarization-induced neuronal activity causes an increase in the phosphorylation of glycogen synthase kinase-3 (GSK-3)α/β on Ser21/9 in cerebellar granule neurons. Using several approaches, including gene knockdown and GSK-3α/β(S21A/S21A/S9A/S9A) double knockin mice, we demonstrated that both GSK-3β and GSK-3α mediate activity-dependent dendritic growth and that Ser21/9 phosphorylation of GSK-3α/β plays an important role in this process. Collapsin response mediator protein-2 (CRMP-2), which is crucial for axon development, is phosphorylated at Thr514 and inactivated by GSK-3. We found CRMP-2 was located mainly in the dendrites of cerebellar granule neurons, in contrast to the axonal distribution in hippocampal neurons. Over-expression of CRMP-2 promoted and knockdown of CRMP-2 impaired dendritic growth, suggesting that CRMP-2 is necessary and sufficient for activity-dependent dendritic development. Furthermore, silencing CRMP-2 completely blocked the dendritic growth-promoting effects of GSK-3 knockdown, and expression of Thr514 nonphosphorylated form of CRMP-2 counteracted the inhibitory effect of constitutively active GSK-3. This data indicate that CRMP-2 functions downstream of GSK-3. Together, these findings identify a novel GSK-3/CRMP-2 pathway that connects neuronal activity to dendritic growth.
Collapse
Affiliation(s)
- Minghui Tan
- Department of Pharmacology and the Proteomics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
72
|
A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields. J Neurosci 2013; 32:16872-9. [PMID: 23175839 DOI: 10.1523/jneurosci.2372-12.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neural activity plays an important role in development and maturation of visual circuits in the brain. Activity can be instructive in refining visual projections by directly mediating formation and elimination of specific synaptic contacts through competition-based mechanisms. Alternatively, activity could be permissive-regulating production of factors that create a favorable environment for circuit refinement. Here we used the Xenopus laevis tadpole visual system to test whether activity is instructive or permissive for shaping development of the retinotectal circuit. In vivo spike output was dampened in a small subgroup of tectal neurons, starting from developmental stages 44-46, by overexpressing Shaker-like Xenopus Kv1.1 potassium channels using electroporation. Tadpoles were then reared until stage 49, a time period when significant refinement of the retinotectal map occurs. Kv1.1-expressing neurons had significantly decreased spike output in response to both current injection and visual stimuli compared to untransfected controls, with spiking occurring during a more limited time interval. We found that Kv1.1-expressing neurons had larger visual receptive fields, decreased receptive field sharpness, and more persistent recurrent excitation than control neurons, all of which are characteristics of immature neurons. Transfected cells, however, had normal spontaneous excitatory synaptic currents and dendritic arbors. These results suggest that spike output of a tectal neuron plays an important instructive role in development of its receptive field properties and refinement of local circuits. However, other activity-dependent processes, such as synaptogenesis and dendritic growth, remain unaffected due to the permissive environment created by otherwise normal network activity.
Collapse
|
73
|
Gomez-Monterrey I, Sala M, Rusciano MR, Monaco S, Maione AS, Iaccarino G, Tortorella P, D'Ursi AM, Scrima M, Carotenuto A, De Rosa G, Bertamino A, Vernieri E, Grieco P, Novellino E, Illario M, Campiglia P. Characterization of a selective CaMKII peptide inhibitor. Eur J Med Chem 2013; 62:425-34. [PMID: 23395965 DOI: 10.1016/j.ejmech.2012.12.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022]
Abstract
Analogs of potent CaMKinase II inhibitor, CaM-KNtide, were prepared to explore new structural requirements for the inhibitory activity. The full potency of CaMKII inhibition by CaM-KIINα is contained within a minimal region of 19 amino acids. Here, analysis of the homologous CaM-KIINβ showed that a 17 mer peptide (CN17β) was the shortest sequence that still retained useful inhibitory potency. Ala substitution of almost any residue of CN17β dramatically reduced potency, except for substitution of P3, R14, and V16. Fusion with the tat sequence generated the cell-penetrating inhibitor version tat-5. This tat-5 fusion peptide maintained selectivity for CaMKII over CaMKI and CaMKIV, and appeared to slightly further enhance potency (IC50 ∼30 nM). Within a breast cancer cell line and in primary human fibroblasts, tat-5 inhibited the Erk signaling pathway and proliferation without any measurable cytotoxicity. Structural analysis of CN17β by CD and NMR indicated an α-helix conformation in the Leu6-Arg11 segment well overlapping with the crystal structure of 21-residue segment of CaM-KNtide bound to the kinase domain of CaMKII.
Collapse
Affiliation(s)
- Isabel Gomez-Monterrey
- Depart. of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
The molecular basis of experience-dependent motor system development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 782:23-38. [PMID: 23296479 DOI: 10.1007/978-1-4614-5465-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons in the vertebrate nervous system acquire their mature features over an extended period in pre-natal and early post-natal life. The interaction of the organism with its environment (“experience”) has been shown to profoundly influence sensory neuron development. Over the past ~2 decades, it has become increasingly clear that motor system development is also experience-dependent. Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype have been implicated in both sensory and motor system experience-dependent development. An additional molecular mechanism involves the GluA1 subunit of the 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) subtype glutamate receptors. GluA1-dependent development operates in an NMDA-R independent manner and uses a distinct set of signaling molecules. The synapse associated protein of 97 kDa molecular weight (SAP97) is key. A deeper understanding of how experiences guides motor system development may lead to new ways to improve function after central nervous system insult.
Collapse
|
75
|
Activity-dependent modulation of the interaction between CaMKIIα and Abi1 and its involvement in spine maturation. J Neurosci 2012; 32:13177-88. [PMID: 22993434 DOI: 10.1523/jneurosci.2257-12.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Remodeling of dendritic spines through regulation of actin dynamics is a key event in activity-dependent structural plasticity. However, the molecular mechanism underlying this process is poorly understood. Here, we show that activity-dependent modulation of Abl interactor 1-Ca(2+)/calmodulin-dependent kinase IIα (Abi1-CaMKIIα) interaction, and thereby their activity, is important for regulation of spine morphology in cultured rat hippocampal neurons. Abi1 interacts with CaMKIIα at resting conditions through Abi1's tSNARE (target membrane-associated SNARE), which harbors striking homology with CaMKIIα regulatory domain. The interaction of the two proteins, Abi1 and CaMKIIα, results in their simultaneous inhibition, inhibition of CaMKIIα activity, and also inhibition of Abi1-dependent Rac activation. Their functional impediment is released when they dissociate from each other by calmodulin binding through glutamate receptor activation. Before dissociation, Abi1 is phosphorylated by CaMKIIα at serine 88, which may involve in regulation of Rac activation and spine maturation. Our results suggest that modulation of the interaction between Abi1 and CaMKIIα, through the glutamate receptor pathway, may be a molecular mechanism underlying activity-regulated structural plasticity in rat hippocamapal neurons.
Collapse
|
76
|
McFarlane S, Lom B. The Xenopus retinal ganglion cell as a model neuron to study the establishment of neuronal connectivity. Dev Neurobiol 2012; 72:520-36. [PMID: 21634016 DOI: 10.1002/dneu.20928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons receive inputs through their multiple branched dendrites and pass this information on to the next neuron via long axons, which branch within the target. The shape the neuron acquires is thus the key to its proper functioning in the neural circuit in which it participates. Both axons and dendrites grow in a directed fashion to their target partner neurons by responding to a large number of molecular cues in the milieu through which they extend. They then go through the process of synaptogenesis, first choosing a neuron on which to synapse, and then the appropriate subcellular location. How a neuron acquires its unique shape, establishes and modifies appropriate synaptic connectivity, and the molecular signals involved, are key questions in developmental neurobiology. Such questions of nervous system wiring are being pursued actively with a variety of different animal models and neuron types, each with its own unique advantages. Among these, the developing retinal ganglion cell (RGC) of the South African clawed frog, Xenopus laevis, has proven particularly fruitful for revealing the secrets of how axons and dendrites acquire their final morphology and connectivity. In this review, we describe how this system can be used to understand the multiple molecular events that instruct the incorporation of RGCs into the neural circuit that controls vision.
Collapse
Affiliation(s)
- Sarah McFarlane
- Department of Cell Biology and Anatomy, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| | | |
Collapse
|
77
|
TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 2012; 32:9383-95. [PMID: 22764246 DOI: 10.1523/jneurosci.6363-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurotrophin-3 (NT-3) plays numerous important roles in the CNS and the elevation of intracellular Ca(2+) ([Ca(2+)](i)) is critical for these functions of NT-3. However, the mechanism by which NT-3 induces [Ca(2+)](i) elevation remains largely unknown. Here, we found that transient receptor potential canonical (TRPC) 5 protein and TrkC, the NT-3 receptor, exhibited a similar temporal expression in rat hippocampus and cellular colocalization in hippocampal neurons. Stimulation of the neurons by NT-3 induced a nonselective cation conductance and PLCγ-dependent [Ca(2+)](i) elevation, which were both blocked when TRPC5, but not TRPC6 channels, were inhibited. Moreover, the Ca(2+) influx through TRPC5 induced by NT-3 inhibited the neuronal dendritic growth through activation of calmodulin-dependent kinase (CaMK) IIα. In contrast, the Ca(2+) influx through TRPC6 induced by NT-4 promoted the dendritic growth. Thus, TRPC5 acts as a novel and specific mediator for NT-3 to regulate dendrite development through CaMKIIα.
Collapse
|
78
|
Majumder P, Chen YT, Bose JK, Wu CC, Cheng WC, Cheng SJ, Fang YH, Chen YL, Tsai KJ, Lien CC, Shen CKJ. TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1. Acta Neuropathol 2012; 124:231-45. [PMID: 22760527 DOI: 10.1007/s00401-012-1006-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/13/2022]
Abstract
Impairment of learning and memory is a significant pathological feature of many neurodegenerative diseases including FTLD-TDP. Appropriate regulation and fine tuning of spinogenesis of the dendrites, which is an integral part of the learning/memory program of the mammalian brain, are essential for the normal function of the hippocampal neurons. TDP-43 is a nucleic acid-binding protein implicated in multi-cellular functions and in the pathogenesis of a range of neurodegenerative diseases including FTLD-TDP and ALS. We have combined the use of single-cell dye injection, shRNA knockdown, plasmid rescue, immunofluorescence staining, Western blot analysis and patch clamp electrophysiological measurement of primary mouse hippocampal neurons in culture to study the functional role of TDP-43 in mammalian spinogenesis. We found that depletion of TDP-43 leads to an increase in the number of protrusions/spines as well as the percentage of matured spines among the protrusions. Significantly, the knockdown of TDP-43 also increases the level of Rac1 and its activated form GTP-Rac1, a known positive regulator of spinogenesis. Clustering of the AMPA receptors on the dendritic surface and neuronal firing are also induced by depletion of TDP-43. Furthermore, use of an inhibitor of Rac1 activation negatively regulated spinogenesis of control hippocampal neurons as well as TDP-43-depleted hippocampal neurons. Mechanistically, RT-PCR assay and cycloheximide chase experiments have indicated that increases in Rac1 protein upon TDP-43 depletion is regulated at the translational level. These data together establish that TDP-43 is an upstream regulator of spinogenesis in part through its action on the Rac1 → GTP-Rac1 → AMPAR pathway. This study provides the first evidence connecting TDP-43 with the GTP-Rac1 → AMPAR regulatory pathway of spinogenesis. It establishes that mis-metabolism of TDP-43, as occurs in neurodegenerative diseases with TDP-43 proteinopathies, e.g., FTLD-TDP, would alter its homeostatic cellular concentration, thus leading to impairment of hippocampal plasticity.
Collapse
Affiliation(s)
- Pritha Majumder
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Néant-Fery M, Pérès E, Nasrallah C, Kessner M, Gribaudo S, Greer C, Didier A, Trembleau A, Caillé I. A role for dendritic translation of CaMKIIα mRNA in olfactory plasticity. PLoS One 2012; 7:e40133. [PMID: 22768241 PMCID: PMC3387027 DOI: 10.1371/journal.pone.0040133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022] Open
Abstract
Local protein synthesis in dendrites contributes to the synaptic modifications underlying learning and memory. The mRNA encoding the α subunit of the calcium/calmodulin dependent Kinase II (CaMKIIα) is dendritically localized and locally translated. A role for CaMKIIα local translation in hippocampus-dependent memory has been demonstrated in mice with disrupted CaMKIIα dendritic translation, through deletion of CaMKIIα 3′UTR. We studied the dendritic localization and local translation of CaMKIIα in the mouse olfactory bulb (OB), the first relay of the olfactory pathway, which exhibits a high level of plasticity in response to olfactory experience. CaMKIIα is expressed by granule cells (GCs) of the OB. Through in situ hybridization and synaptosome preparation, we show that CaMKIIα mRNA is transported in GC dendrites, synaptically localized and might be locally translated at GC synapses. Increases in the synaptic localization of CaMKIIα mRNA and protein in response to brief exposure to new odors demonstrate that they are activity-dependent processes. The activity-induced dendritic transport of CaMKIIα mRNA can be inhibited by an NMDA receptor antagonist and mimicked by an NMDA receptor agonist. Finally, in mice devoid of CaMKIIα 3′UTR, the dendritic localization of CaMKIIα mRNA is disrupted in the OB and olfactory associative learning is severely impaired. Our studies thus reveal a new functional modality for CaMKIIα local translation, as an essential determinant of olfactory plasticity.
Collapse
Affiliation(s)
- Marie Néant-Fery
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
| | - Eléonore Pérès
- Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Univ Lyon 1, Lyon, France
- Institut National Scientifique d’Études et de Recherches Médicales (INSERM), UMR 1028, Lyon, France
- CNRS, UMR5292, Lyon, France
| | - Carole Nasrallah
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
| | - Monica Kessner
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
| | - Simona Gribaudo
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
| | - Charles Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anne Didier
- Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Univ Lyon 1, Lyon, France
- Institut National Scientifique d’Études et de Recherches Médicales (INSERM), UMR 1028, Lyon, France
- CNRS, UMR5292, Lyon, France
| | - Alain Trembleau
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
| | - Isabelle Caillé
- Team “Development and Plasticity of Neural Networks”, UPMC Univ Paris 06, UMR Centre National de la Recherche Scientifique 7102, Paris, France
- CNRS, UMR 7102, Paris, France
- University Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
80
|
Neural activity and branching of embryonic retinal ganglion cell dendrites. Mech Dev 2012; 129:125-35. [PMID: 22587886 DOI: 10.1016/j.mod.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/24/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022]
Abstract
The shape of a neuron's dendritic arbor is critical for its function as it determines the number of inputs the neuron can receive and how those inputs are processed. During development, a neuron initiates primary dendrites that branch to form a simple arbor. Subsequently, growth occurs by a process that combines the extension and retraction of existing dendrites, and the addition of new branches. The loss and addition of the fine terminal branches of retinal ganglion cells (RGCs) is dependent on afferent inputs from its synaptic partners, the amacrine and bipolar cells. It is unknown, however, whether neural activity regulates the initiation of primary dendrites and their initial branching. To investigate this, Xenopus laevis RGCs developing in vivo were made to express either a delayed rectifier type voltage-gated potassium (KV) channel, Xenopus Kv1.1, or a human inward rectifying channel, Kir2.1, shown previously to modulate the electrical activity of Xenopus spinal cord neurons. Misexpression of either potassium channel increased the number of branch points and the total length of all the branches. As a result, the total dendritic arbor was bigger than for control green fluorescent protein-expressing RGCs and those ectopically expressing a highly related mutant non-functional Kv1.1 channel. Our data indicate that membrane excitability regulates the earliest differentiation of RGC dendritic arbors.
Collapse
|
81
|
Abstract
Dendrites represent the compartment of neurons primarily devoted to collecting and computating input. Far from being static structures, dendrites are highly dynamic during development and appear to be capable of plastic changes during the adult life of animals. During development, it is a combination of intrinsic programs and external signals that shapes dendrite morphology; input activity is a conserved extrinsic factor involved in this process. In adult life, dendrites respond with more modest modifications of their structure to various types of extrinsic information, including alterations of input activity. Here, the author reviews classical and recent evidence of dendrite plasticity in invertebrates and vertebrates and current progress in the understanding of the molecular mechanisms that underlie this plasticity. Importantly, some fundamental questions such as the functional role of dendrite remodeling and the causal link between structural modifications of neurons and plastic processes, including learning, are still open.
Collapse
Affiliation(s)
- Gaia Tavosanis
- Department of Molecular Neurobiology, Dendrite Differentiation Group, MPI of Neurobiology, Munich, Germany.
| |
Collapse
|
82
|
Hossain S, Sesath Hewapathirane D, Haas K. Dynamic morphometrics reveals contributions of dendritic growth cones and filopodia to dendritogenesis in the intact and awake embryonic brain. Dev Neurobiol 2012; 72:615-27. [DOI: 10.1002/dneu.20959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
83
|
Kumar S, Chakraborty S, Barbosa C, Brustovetsky T, Brustovetsky N, Obukhov AG. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol 2012; 227:1408-19. [PMID: 21618530 DOI: 10.1002/jcp.22855] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Cellular and Integrative Physiology, IUPUI-Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
84
|
Staffend NA, Meisel RL. DiOlistic labeling in fixed brain slices: phenotype, morphology, and dendritic spines. ACTA ACUST UNITED AC 2012; Chapter 2:Unit 2.13. [PMID: 21462159 DOI: 10.1002/0471142301.ns0213s55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identifying neuronal morphology is a key component in understanding neuronal function. Several techniques have been developed to address this issue, including Golgi staining, electroporation of fluorescent dyes, and transfection of fluorescent constructs. Ballistic delivery of transgenic constructs has been a successful means of rapidly transfecting a nonbiased population of cells within tissue or culture. Recently, this technique was modified for the ballistic delivery of dye-coated gold or tungsten particles, enabling a nonbiased, rapid fluorescent membrane labeling of individual neurons in both fixed and nonfixed tissue. This unit outlines a step-by-step protocol for the ballistic method of dye delivery ("DiOlistic" labeling) to fixed tissue, including optimal tissue fixation conditions. In addition, a protocol for coupling "DiOlistic" labeling with other immunofluorescent methods is detailed, enabling the association of neuronal morphology with a specific cellular phenotype.
Collapse
Affiliation(s)
- Nancy A Staffend
- Department of Neuroscience, University of Minnesota, Minneapolis, USA
| | | |
Collapse
|
85
|
Constitutive activation of Ca2+/calmodulin-dependent protein kinase II during development impairs central cholinergic transmission in a circuit underlying escape behavior in Drosophila. J Neurosci 2012; 32:170-82. [PMID: 22219280 DOI: 10.1523/jneurosci.6583-10.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of neural circuitry relies on precise matching between correct synaptic partners and appropriate synaptic strength tuning. Adaptive developmental adjustments may emerge from activity and calcium-dependent mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been associated with developmental synaptic plasticity, but its varied roles in different synapses and developmental stages make mechanistic generalizations difficult. In contrast, we focused on synaptic development roles of CaMKII in a defined sensory-motor circuit. Thus, different forms of CaMKII were expressed with UAS-Gal4 in distinct components of the giant fiber system, the escape circuit of Drosophila, consisting of photoreceptors, interneurons, motoneurons, and muscles. The results demonstrate that the constitutively active CaMKII-T287D impairs development of cholinergic synapses in giant fiber dendrites and thoracic motoneurons, preventing light-induced escape behavior. The locus of the defects is postsynaptic as demonstrated by selective expression of transgenes in distinct components of the circuit. Furthermore, defects among these cholinergic synapses varied in severity, while the glutamatergic neuromuscular junctions appeared unaffected, demonstrating differential effects of CaMKII misregulation on distinct synapses of the same circuit. Limiting transgene expression to adult circuits had no effects, supporting the role of misregulated kinase activity in the development of the system rather than in acutely mediating escape responses. Overexpression of wild-type transgenes did not affect circuit development and function, suggesting but not proving that the CaMKII-T287D effects are not due to ectopic expression. Therefore, regulated CaMKII autophosphorylation appears essential in central synapse development, and particular cholinergic synapses are affected differentially, although they operate via the same nicotinic receptor.
Collapse
|
86
|
Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, Bonni A. A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev 2011; 25:2659-73. [PMID: 22135323 DOI: 10.1101/gad.174060.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient receptor potential (TRP) channels have been implicated as sensors of diverse stimuli in mature neurons. However, developmental roles for TRP channels in the establishment of neuronal connectivity remain largely unexplored. Here, we identify an essential function for TRPC5, a member of the canonical TRP subfamily, in the regulation of dendrite patterning in the mammalian brain. Strikingly, TRPC5 knockout mice harbor long, highly branched granule neuron dendrites with impaired dendritic claw differentiation in the cerebellar cortex. In vivo RNAi analyses suggest that TRPC5 regulates dendrite morphogenesis in the cerebellar cortex in a cell-autonomous manner. Correlating with impaired dendrite patterning in the cerebellar cortex, behavioral analyses reveal that TRPC5 knockout mice have deficits in gait and motor coordination. Finally, we uncover the molecular basis of TRPC5's function in dendrite patterning. We identify the major protein kinase calcium/calmodulin-dependent kinase II β (CaMKIIβ) as a critical effector of TRPC5 function in neurons. Remarkably, TRPC5 forms a complex specifically with CaMKIIβ, but not the closely related kinase CaMKIIα, and thereby induces the CaMKIIβ-dependent phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accordingly, centrosomal CaMKIIβ signaling mediates the ability of TRPC5 to regulate dendrite morphogenesis in neurons. Our findings define a novel function for TRPC5 that couples calcium signaling to a ubiquitin ligase pathway at the centrosome and thereby orchestrates dendrite patterning and connectivity in the brain.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Hamad MIK, Ma-Högemeier ZL, Riedel C, Conrads C, Veitinger T, Habijan T, Schulz JN, Krause M, Wirth MJ, Hollmann M, Wahle P. Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 2011; 138:4301-13. [DOI: 10.1242/dev.071076] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutamatergic transmission converging on calcium signaling plays a key role in dendritic differentiation. In early development, AMPA receptor (AMPAR) transcripts are extensively spliced and edited to generate subunits that differ in their biophysical properties. Whether these subunits have specific roles in the context of structural differentiation is unclear. We have investigated the role of nine GluA variants and revealed a correlation between the expression of flip variants and the period of major dendritic growth. In interneurons, only GluA1(Q)-flip increased dendritic length and branching. In pyramidal cells, GluA2(Q)-flop, GluA2(Q)-flip, GluA3(Q)-flip and calcium-impermeable GluA2(R)-flip promoted dendritic growth, suggesting that flip variants with slower desensitization kinetics are more important than receptors with elevated calcium permeability. Imaging revealed significantly higher calcium signals in pyramidal cells transfected with GluA2(R)-flip as compared with GluA2(R)-flop, suggesting a contribution of voltage-activated calcium channels. Indeed, dendritic growth induced by GluA2(R)-flip in pyramidal cells was prevented by blocking NMDA receptors (NMDARs) or voltage-gated calcium channels (VGCCs), suggesting that they act downstream of AMPARs. Intriguingly, the action of GluA1(Q)-flip in interneurons was also dependent on NMDARs and VGCCs. Cell class-specific effects were not observed for spine formation, as GluA2(Q)-flip and GluA2(Q)-flop increased spine density in pyramidal cells as well as in interneurons. The results suggest that AMPAR variants expressed early in development are important determinants for activity-dependent dendritic growth in a cell type-specific and cell compartment-specific manner.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Zhan-Lu Ma-Högemeier
- Department of Biochemistry I – Receptor Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Christian Riedel
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Claudius Conrads
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Thomas Veitinger
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Tim Habijan
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jan-Niklas Schulz
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Martin Krause
- Department of Zoology and Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Marcus J. Wirth
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I – Receptor Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Petra Wahle
- Department of Developmental Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
88
|
Abstract
The development of the nervous system involves the generation of a stunningly diverse array of neuronal subtypes that enable complex information processing and behavioral outputs. Deciphering how the nervous system acquires and interprets information and orchestrates behaviors will be greatly enhanced by the identification of distinct neuronal circuits and by an understanding of how these circuits are formed, changed, and/or maintained over time. Addressing these challenging questions depends in part on the ability to accurately identify and characterize the unique neuronal subtypes that comprise individual circuits. Distinguishing characteristics of neuronal subgroups include but are not limited to neurotransmitter phenotype, dendritic morphology, the identity of synaptic partners, and the expression of constellations of subgroup-specific proteins, including ion channel subtypes.
Collapse
|
89
|
Gustin RM, Shonesy BC, Robinson SL, Rentz TJ, Baucum AJ, Jalan-Sakrikar N, Winder DG, Stanwood GD, Colbran RJ. Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Mol Cell Neurosci 2011; 47:286-92. [PMID: 21627991 DOI: 10.1016/j.mcn.2011.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
In order to provide insight into in vivo roles of CaMKIIα autophosphorylation at Thr286 during postnatal development, behavioral, biochemical, and electrophysiological phenotypes of pre-adolescent Thr286 to Ala CaMKIIα knock-in (T286A-KI) and WT mice were examined. T286A-KI mice displayed cognitive deficits in a novel object recognition test and an anxiolytic phenotype in the elevated plus maze, suggesting disruption of normal developmental processes. At the molecular level, the ratio of total CaMKIIα to CaMKIIβ in hippocampal lysates was significantly decreased≈2-fold in T286A-KI mice, and levels of both isoforms in synaptic subcellular fractions were decreased by≈80%. Total levels of GluA1 AMPA-glutamate receptor subunits and phosphorylation of GluA1 at the CaMKII site (Ser831) in synaptic fractions were unaltered, as were the frequency and amplitude of AMPAR-mediated spontaneous excitatory postsynaptic currents at hippocampal CA3-CA1 synapses. Synaptic levels of NMDA-glutamate receptor GluN1, GluN2A and GluN2B subunits also were unaltered. However, the reduced ratio of CaMKII to NMDAR subunits in synaptic fractions was linked to increased synaptic NMDAR-mediated currents in T286A-KI mice, apparently due to increased functional contributions by GluN2B NMDARs (assessed by Ro 25-6981 sensitivity). Thus, disruption of CaMKII synaptic targeting caused by elimination of Thr286 autophosphorylation leads to synaptic and behavioral deficits during pre-adolescence.
Collapse
Affiliation(s)
- Richard M Gustin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wang H, Dávila-García MI, Yarl W, Gondré-Lewis MC. Gestational nicotine exposure regulates expression of AMPA and NMDA receptors and their signaling apparatus in developing and adult rat hippocampus. Neuroscience 2011; 188:168-81. [PMID: 21596105 DOI: 10.1016/j.neuroscience.2011.04.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 01/20/2023]
Abstract
Untimely activation of nicotinic acetylcholine receptors (nAChRs) by nicotine results in short- and long-term consequences on learning and behavior. In this study, the aim was to determine how prenatal nicotine exposure affects components of glutamatergic signaling in the hippocampus during postnatal development. We investigated regulation of both nAChRs and glutamate receptors for AMPA and N-methyl-D-aspartate (NMDA), from postnatal day 1 (P1) to P63 after a temporally restricted exposure to saline or nicotine for 14 days in utero. We analyzed postsynaptic density components associated with AMPA receptor (AMPAR) and NMDA receptor (NMDAR) signaling: calmodulin (CaM), CaM Kinase II alpha (CaMKIIα), and postsynaptic density-95 (PSD95), as well as presynaptically localized synaptosomal-associated protein 25 (SNAP25). At P1, there was significantly heightened expression of AMPAR subunit GluR1 but not GluR2, and of NMDAR subunits NR1, NR2a, and NR2d but not NR2b. NR2c was not detectable. CaM, CaMKIIα, and PSD95 were also significantly upregulated at P1, together with presynaptic SNAP25. This enhanced expression of glutamate receptors and signaling proteins was concomitant with elevated levels of [³H]epibatidine (³H]EB) binding in prenatal nicotine-exposed hippocampus, indicating that α4β2 nAChR may influence glutamatergic function in the hippocampus at P1. By P14, neither [³H]EB binding nor the expression levels of subunits GluR1, GluR2, NR1, NR2a, NR2b, NR2c, or NR2d seemed changed with prenatal nicotine. However, CaMKIIα was significantly upregulated with nicotine treatment while CaM showed downregulation at P14. The effects of nicotine persisted in P63 young adult brains which exhibited significantly downregulated GluR2, NR1, and NR2c expression levels in hippocampal homogenates and a considerably muted overall distribution of [³H]AMPA binding in areas CA1, CA2 and CA3, and the dentate gyrus. Our results suggest that prenatal nicotine exposure can regulate the glutamatergic signaling system throughout postnatal development by enhancing or inhibiting availability of AMPAR and NMDAR or their signaling components. The persistent depression, in adults, of the requisite NR1 subunit for NMDAR assembly, and of GluR2, important for assembly, trafficking, and biophysical properties of AMPAR, indicates that nicotine may alter ionotropic glutamate receptor stoichiometry and functional properties in adults after prenatally restricted nicotine exposure.
Collapse
Affiliation(s)
- H Wang
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
91
|
|
92
|
Yang SH, Jeng CJ, Chen CH, Chen Y, Chen YC, Wang SM. Schisandrin enhances dendrite outgrowth and synaptogenesis in primary cultured hippocampal neurons. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:694-702. [PMID: 21302324 DOI: 10.1002/jsfa.4238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Schisandra chinensis, commonly used in Asia for tea material and traditional Chinese medicine, is presumed to enhance mental and intellectual functions. In this study, the effects and signalling mechanisms of a purified compound schisandrin, one of the lignan of Schisandra chinensis, on primary cultured hippocampal neurons were investigated. RESULTS Schisandrin treatment enhanced total dendritic length and branching complexity, both of which were significantly suppressed in the presence of specific blockers for calmodulin-dependent kinase II (CaMKII), protein kinase C epsilon (PKCε), and mitogen activated protein kinase kinase (MEK). Moreover, schisandrin induced calcium influx, and phosphorylation of CaMKII, PKCε, and MEK. Inhibition of CAMKII and PKCε attenuated the schisandrin-induced phosphorylation of PKCε and MEK, and the phosphorylation of MEK, respectively. Moreover, schisandrin also stimulated the phosphorylation of cyclic AMP responsive-element binding protein (CREB) at Ser-133, an effect that was blocked by KN93. In addition to its neuritogenic effects, schisandrin increased the numbers of postsynaptic density-95-positive and FM1-43-positive puncta in dendrites and synaptic boutons, respectively. CONCLUSION In hippocampal neurons, schisandrin exhibits neurotrophic properties that are mediated by the CaMKII-PKCε-MEK pathway.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 10051, Taiwan
| | | | | | | | | | | |
Collapse
|
93
|
Lin YC, Koleske AJ. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci 2011; 33:349-78. [PMID: 20367247 DOI: 10.1146/annurev-neuro-060909-153204] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Emerging evidence indicates that once established, synapses and dendrites can be maintained for long periods, if not for the organism's entire lifetime. In contrast to the wealth of knowledge regarding axon, dendrite, and synapse development, we understand comparatively little about the cellular and molecular mechanisms that enable long-term synapse and dendrite maintenance. Here, we review how the actin cytoskeleton and its regulators, adhesion receptors, and scaffolding proteins mediate synapse and dendrite maintenance. We examine how these mechanisms are reinforced by trophic signals passed between the pre- and postsynaptic compartments. We also discuss how synapse and dendrite maintenance mechanisms are compromised in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024, USA.
| | | |
Collapse
|
94
|
Li J, Erisir A, Cline H. In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements. Neuron 2011; 69:273-86. [PMID: 21262466 PMCID: PMC3052740 DOI: 10.1016/j.neuron.2010.12.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Dendrites, axons, and synapses are dynamic during circuit development; however, changes in microcircuit connections as branches stabilize have not been directly demonstrated. By combining in vivo time-lapse imaging of Xenopus tectal neurons with electron microscope reconstructions of imaged neurons, we report the distribution and ultrastructure of synapses on individual vertebrate neurons and relate these synaptic properties to dynamics in dendritic and axonal arbor structure over hours or days of imaging. Dynamic dendrites have a high density of immature synapses, whereas stable dendrites have sparser, mature synapses. Axons initiate contacts from multisynapse boutons on stable branches. Connections are refined by decreasing convergence from multiple inputs to postsynaptic dendrites and by decreasing divergence from multisynapse boutons to postsynaptic sites. Visual deprivation or NMDAR antagonists decreased synapse maturation and elimination, suggesting that coactive input activity promotes microcircuit development by concurrently regulating synapse elimination and maturation of remaining contacts.
Collapse
Affiliation(s)
- Jianli Li
- The Scripps Research Institute, La Jolla, CA 92037
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Hollis Cline
- The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
95
|
Buchser WJ, Slepak TI, Gutierrez-Arenas O, Bixby JL, Lemmon VP. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Mol Syst Biol 2010; 6:391. [PMID: 20664637 PMCID: PMC2925531 DOI: 10.1038/msb.2010.52] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/12/2010] [Indexed: 01/20/2023] Open
Abstract
Kinases and phosphatases that regulate neurite number versus branching versus extension are weakly correlated. The kinase family that most strongly enhances neurite growth is a family of non-protein kinases; sugar kinases related to NADK. Pathway analysis revealed that genes in several cancer pathways were highly active in enhancing neurite growth.
In neural development, neuronal precursors differentiate, migrate, extend long axons and dendrites, and finally establish connections with their targets. Clinical conditions such as spinal cord injury, traumatic brain injury, stroke, multiple sclerosis, Parkinson's disease, Huntington's disease, and Alzheimer's disease are often associated with a loss of axon and/or dendrite connectivity and treatment strategies would be enhanced by new therapies targeting cell intrinsic mechanisms of axon elongation and regeneration. Phosphorylation controls most cellular processes, including the cell cycle, proliferation, metabolism, and apoptosis. Neuronal differentiation, including axon formation and elongation, is also regulated by a wide range of kinases and phosphatases. For example, the non-receptor tyrosine kinase Src is required for cell adhesion molecule-dependent neurite outgrowth. In addition to individual kinases and phosphatases, signaling pathways like the MAPK, growth factor signaling, PIP3, cytoskeletal, and calcium-dependent pathways have been shown to impinge on or control neuronal process development. Recent results have implicated GSK3 and PTEN as therapeutically relevant targets in axonal regeneration after injury. However, these and other experiments have studied only a small fraction of the total kinases and phosphatases in the genome. Because of recent advances in genomic knowledge, large-scale cDNA production, and high-throughput phenotypic analysis, it is now possible to take a more comprehensive approach to understanding the functions of kinases and phosphatases in neurons. We performed a large, unbiased set of experiments to answer the question ‘what effect does the overexpression of genes encoding kinases, phosphatases, and related proteins have on neuronal morphology?' We used ‘high-content analysis' to obtain detailed results about the specific phenotypes of neurons. We studied embryonic rat hippocampal neurons because of their stereotypical development in vitro (Dotti et al, 1988) and their widespread use in studies of neuronal differentiation and signaling. We transfected over 700 clones encoding kinases and phosphatases into hippocampal neurons and analyzed the resulting changes in neuronal morphology. Many known genes, including PP1a, ERK1, ErbB2, atypical PKC, Calcineurin, CaMK2, IGF1R, FGFR, GSK3, and PIK3 were observed to have significant effects on neurite outgrowth in our system, consistent with earlier findings in the literature. We obtained quantitative data for many cellular and neuronal morphological parameters from each neuron imaged. These included nuclear morphology (nuclear area and Hoechst dye intensity), soma morphology (tubulin intensity, area, and shape), and numerous parameters of neurite morphology (e.g. tubulin intensity along the neurites, number of primary neurites, neurite length, number of branches, distance from the cell body to the branches, number of crossing points, width and area of the neurites, and longest neurite; Supplementary Figure 1). Other parameters were reported on a ‘per well' basis, including the percentage of transfected neurons in a condition, as well as the percentage of neurons initiating neurite growth. Data for each treatment were normalized to a control (pSport CAT) within the same experiment, then aggregated across replicate experiments. Correlations among the 19 normalized parameters were analyzed for neurons transfected with all kinase and phosphatase clones (Figure 2). On the basis of this analysis, the primary variables that define the neurite morphology are primary neurite count, neurite average length, and average branches. Interestingly, primary neurite count was not well correlated with neurite length or branching. The Pearson correlation coefficient (r2) between the number of primary neurites and the average length of the neurites was 0.3, and between the number of primary neurites and average branching was 0.2. In contrast, the correlation coefficient of average branching with neurite average length was 0.7. The most likely explanation is that signaling mechanisms underlying the neurite number determination are different than those controlling length/branching of the neurites. Related proteins are often involved in similar neuronal functions. For example, families of receptor protein tyrosine phosphatases are involved in motor axon extension and guidance in both Drosophila and in vertebrates, and a large family of Eph receptor tyrosine kinases regulates guidance of retinotectal projections, motor axons, and axons in the corpus callosum. We therefore asked whether families of related genes produced similar phenotypes when overexpressed in hippocampal neurons. Our set of genes covered 40% of the known protein kinases, and many of the non-protein kinases and phosphatases. Gene families commonly exhibit redundant function. Redundant gene function has often been identified when two or more knockouts are required to produce a phenotype. Our technique allowed us to measure whether different members of gene families had similar (potentially redundant) or distinct effects on neuronal phenotype. To determine whether groups of related genes affect neuronal morphology in similar ways, we used sequence alignment information to construct gene clusters (Figure 6). Genes were clustered at nine different thresholds of similarity (called ‘tiers'). The functional effect for a particular parameter was then averaged within each cluster of a given tier, and statistics were performed to determine the significance of the effect. We analyzed the results for three key neurite parameters (average neurite length, primary neurite count, and average branching). Genes that perturbed each of these phenotypes are grouped in Figure 6. Eight families, most with only a few genes, produced significant changes for one or two parameters. A diverse family of non-protein kinases had a positive effect on neurite outgrowth in three of the four parameters analyzed. This family of kinases consisted of a variety of enzymes, mostly sugar and lipid kinases. A similar analysis was performed using pathway cluster analysis with pathways from the KEGG database, rather than sequence homology. Interestingly, pathways involved in cancer cell proliferation potentiated neurite extension and branching. Our studies have identified a large number of kinases and phosphatases, as well as structurally and functionally defined families of these proteins, that affect neuronal process formation in specific ways. We have provided an analytical methodology and new tools to analyze functional data, and have implicated genes with novel functions in neuronal development. Our studies are an important step towards the goal of a molecular description of the intrinsic control of axodendritic growth. Development and regeneration of the nervous system requires the precise formation of axons and dendrites. Kinases and phosphatases are pervasive regulators of cellular function and have been implicated in controlling axodendritic development and regeneration. We undertook a gain-of-function analysis to determine the functions of kinases and phosphatases in the regulation of neuron morphology. Over 300 kinases and 124 esterases and phosphatases were studied by high-content analysis of rat hippocampal neurons. Proteins previously implicated in neurite growth, such as ERK1, GSK3, EphA8, FGFR, PI3K, PKC, p38, and PP1a, were confirmed to have effects in our functional assays. We also identified novel positive and negative neurite growth regulators. These include neuronal-developmentally regulated kinases such as the activin receptor, interferon regulatory factor 6 (IRF6) and neural leucine-rich repeat 1 (LRRN1). The protein kinase N2 (PKN2) and choline kinase α (CHKA) kinases, and the phosphatases PPEF2 and SMPD1, have little or no established functions in neuronal function, but were sufficient to promote neurite growth. In addition, pathway analysis revealed that members of signaling pathways involved in cancer progression and axis formation enhanced neurite outgrowth, whereas cytokine-related pathways significantly inhibited neurite formation.
Collapse
Affiliation(s)
- William J Buchser
- The Miami Project to Cure Paralysis, Department of Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136-1060, USA
| | | | | | | | | |
Collapse
|
96
|
Novak G, Seeman P. Hyperactive mice show elevated D2(High) receptors, a model for schizophrenia: Calcium/calmodulin-dependent kinase II alpha knockouts. Synapse 2010; 64:794-800. [PMID: 20336626 DOI: 10.1002/syn.20786] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cerebral frontal cortex of patients who had schizophrenia shows elevated levels of RNA for calcium/calmodulin-dependent protein kinase II beta (CaMKIIbeta). In addition, recent research shows that animal models for schizophrenia, such as amphetamine-sensitized rats, consistently show elevated levels of D2 receptors in their high-affinity state (D2(High)), the major target for antipsychotic medication. The present study was done, therefore, to examine whether an alteration in the levels of CaMKIIbeta could lead to altered levels of D2(High) receptors. We found that the CaMKII inhibitor, KN-93, markedly reduced D2(High) states in rat striatum. In addition, we studied heterozygous CaMKIIalpha knock-out mice that show features analogous to schizophrenia. The striata of these mice revealed a 2.8-fold increase in D2(High) receptors. In frontal cortex of the heterozygous CaMKIIalpha knock-out mice, CaMKIIalpha mRNA levels were reduced by 50%, while CaMKIIbeta mRNA levels were unaltered. In striatum, CaMKIIbeta mRNA levels were increased by 29%, suggesting the presence of a new CaMKIIbeta regulatory pathway not previously described. The elevated levels of CaMKIIbeta mRNA in the striatum suggest that this enzyme may increase D2(High) in animals and possibly in schizophrenia itself.
Collapse
Affiliation(s)
- Gabriela Novak
- Department of Pharmacology, Medical Science Building, Room 4345, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
97
|
Chen SX, Tari PK, She K, Haas K. Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo. Neuron 2010; 67:967-83. [PMID: 20869594 DOI: 10.1016/j.neuron.2010.08.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 01/24/2023]
Abstract
Cell adhesion molecules are well characterized for mediating synapse initiation, specification, differentiation, and maturation, yet their contribution to directing dendritic arborization during early brain circuit formation remains unclear. Using two-photon time-lapse imaging of growing neurons within intact and awake embryonic Xenopus brain, we examine roles of β-neurexin (NRX) and neuroligin-1 (NLG1) in dendritic arbor development. Using methods of dynamic morphometrics for comprehensive 3D quantification of rapid dendritogenesis, we find initial trans-synaptic NRX-NLG1 adhesions confer transient morphologic stabilization independent of NMDA receptor activity, whereas persistent stabilization requires NMDA receptor-dependent synapse maturation. Disrupting NRX-NLG1 function destabilizes filopodia while reducing synaptic density and AMPA receptor mEPSC frequency. Altered dynamic growth culminates in reduced dendritic arbor complexity as neurons mature over days. These results expand the synaptotropic model of dendritogenesis to incorporate cell adhesion molecule-mediated morphological stabilization necessary for directing normal dendritic arborization, providing a potential morphological substrate for developmental cognitive impairment associated with cell adhesion molecule mutations.
Collapse
Affiliation(s)
- Simon Xuan Chen
- Department of Cellular and Physiological Sciences and the Brain Research Centre, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | | | | | | |
Collapse
|
98
|
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29:3082-93. [PMID: 20729808 DOI: 10.1038/emboj.2010.199] [Citation(s) in RCA: 577] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/16/2010] [Indexed: 12/19/2022] Open
Abstract
A growing number of long nuclear-retained non-coding RNAs (ncRNAs) have recently been described. However, few functions have been elucidated for these ncRNAs. Here, we have characterized the function of one such ncRNA, identified as metastasis-associated lung adenocarcinoma transcript 1 (Malat1). Malat1 RNA is expressed in numerous tissues and is highly abundant in neurons. It is enriched in nuclear speckles only when RNA polymerase II-dependent transcription is active. Knock-down studies revealed that Malat1 modulates the recruitment of SR family pre-mRNA-splicing factors to the transcription site of a transgene array. DNA microarray analysis in Malat1-depleted neuroblastoma cells indicates that Malat1 controls the expression of genes involved not only in nuclear processes, but also in synapse function. In cultured hippocampal neurons, knock-down of Malat1 decreases synaptic density, whereas its over-expression results in a cell-autonomous increase in synaptic density. Our results suggest that Malat1 regulates synapse formation by modulating the expression of genes involved in synapse formation and/or maintenance.
Collapse
Affiliation(s)
- Delphine Bernard
- Laboratoire de Biologie Cellulaire de la Synapse, Inserm 1024/CNRS 8197, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Takemoto-Kimura S, Suzuki K, Kamijo S, Ageta-Ishihara N, Fujii H, Okuno H, Bito H. Differential roles for CaM kinases in mediating excitation-morphogenesis coupling during formation and maturation of neuronal circuits. Eur J Neurosci 2010; 32:224-30. [DOI: 10.1111/j.1460-9568.2010.07353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
100
|
Wang DD, Kriegstein AR. Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. ACTA ACUST UNITED AC 2010; 21:574-87. [PMID: 20624842 DOI: 10.1093/cercor/bhq124] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A high incidence of seizures occurs during the neonatal period when immature networks are hyperexcitable and susceptible to hypersyncrhonous activity. During development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in adults, typically excites neurons due to high expression of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). NKCC1 facilitates seizures because it renders GABA activity excitatory through intracellular Cl(-) accumulation, while blocking NKCC1 with bumetanide suppresses seizures. Bumetanide is currently being tested in clinical trials for treatment of neonatal seizures. By blocking NKCC1 with bumetanide during cortical development, we found a critical period for the development of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate synapses. Disruption of GABA signaling during this window resulted in permanent decreases in excitatory synaptic transmission and sensorimotor gating deficits, a common feature in schizophrenia. Our study identifies an essential role for GABA-mediated depolarization in regulating the balance between cortical excitation and inhibition during a critical period and suggests a cautionary approach for using bumetanide in treating neonatal seizures.
Collapse
Affiliation(s)
- Doris D Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco CA 94143, USA.
| | | |
Collapse
|