51
|
Baker C, Shi PY. Construction of Stable Reporter Flaviviruses and Their Applications. Viruses 2020; 12:v12101082. [PMID: 32992987 PMCID: PMC7599567 DOI: 10.3390/v12101082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses are significant human pathogens that cause frequent emerging and reemerging epidemics around the world. Better molecular tools for studying, diagnosing, and treating these diseases are needed. Reporter viruses represent potent tools to fill this gap but have been hindered by genetic instability. Recent advances have overcome these hurdles, opening the way for increased use of stable reporter flaviviruses to diagnose infections, screen and study antiviral compounds, and serve as potential vaccine vectors.
Collapse
Affiliation(s)
- Coleman Baker
- Microbiology and Immunology Department, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Pei-Yong Shi
- Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
52
|
Hsu CS, Liu WL, Li Q, Lowey B, Hertz L, Chao YC, Liang TJ, Chen DS, Kao JH. Hepatitis C virus genotypes 1-3 infections regulate lipogenic signaling and suppress cholesterol biosynthesis in hepatocytes. J Formos Med Assoc 2020; 119:1382-1395. [PMID: 32284164 PMCID: PMC11492201 DOI: 10.1016/j.jfma.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Patients with different hepatitis C virus (HCV) genotype infections are associated with varying metabolic disorders. Although alteration of lipid metabolism has been confirmed as a virus-induced metabolic derangement in chronic hepatitis C patients, the impact of various HCV genotypes on hepatic cholesterol metabolism remains elusive. In this study, we thus investigated the HCV genotype-specific lipogenic and cholesterol metabolism profiles in an in vitro cell culture system. METHODS We first conducted HCV cell culture system (HCVcc) assays by infecting Huh7.5.1 cells with multiple infection-competent HCV strains, including the genotype 2a JFH1 and JFH1-based intergenotypic recombinants 1b and 3a. We then examined the expression levels of various lipid and cholesterol-related genes. RESULTS The data showed that infection with individual HCV genotypes exerted unique gene expression regulatory effects on lipoproteins and cholesterol metabolism genes. Of note, all HCV strains suppressed cholesterol biosynthesis in hepatocytes through downregulating the expression of HMG-CoA reductase (HMGCR) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - two essential enzymes for cholesterol biosynthesis. These HCV-mediated inhibitory effects could be reversed by treatment with sofosbuvir, a pangenotypic NS5B inhibitor. In addition, overexpression of HCV genotype 1b, 2a or 3a core protein significantly suppressed HMGCR mRNA transcription and translation, thus diminished cellular cholesterol biosynthesis. Nonetheless, the core protein had no effect on FDFT1 expression. CONCLUSION Although HCV infection regulates host lipid metabolism in a genotype-specific manner, its inhibition on hepatocellular cholesterogenic gene expression and total cholesterol biosynthesis is a common effect among HCV genotype 1b, 2a and 3a.
Collapse
Affiliation(s)
- Ching-Sheng Hsu
- Liver Diseases Research Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan; School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brianna Lowey
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura Hertz
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - You-Chen Chao
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Nankang, 11549, Taiwan
| | - Jia-Horng Kao
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
53
|
El-badawy FM, Mohamed MA, El-Desoky HS. Fabrication of an electrochemical sensor based on manganese oxide nanoparticles supported on reduced graphene oxide for determination of subnanomolar level of anti-hepatitis C daclatasvir in the formulation and biological models. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
54
|
Khan S, Soni S, Veerapu NS. HCV Replicon Systems: Workhorses of Drug Discovery and Resistance. Front Cell Infect Microbiol 2020; 10:325. [PMID: 32714881 PMCID: PMC7344236 DOI: 10.3389/fcimb.2020.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The development of direct-acting antivirals (DAAs) has revolutionized the state-of-the art treatment of HCV infections, with sustained virologic response rates above 90%. However, viral variants harboring substitutions referred to as resistance-associated substitutions (RASs) may be present in baseline levels and confer resistance to DAAs, thereby posing a major challenge for HCV treatment. HCV replicons have been the primary tools for discovering and evaluating the inhibitory activity of DAAs against viral replication. Interest in replicon systems has further grown as they have become indispensable for discovering genotype-specific and cross-genotype RASs. Here, we review functional replicon systems for HCV, how these replicon systems have contributed to the development of DAAs, and the characteristics and distribution of RASs for DAAs.
Collapse
Affiliation(s)
- Shaheen Khan
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shalini Soni
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Naga Suresh Veerapu
- Virology Section, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| |
Collapse
|
55
|
Goonawardane N, Yin C, Harris M. Phenotypic analysis of mutations at residue 146 provides insights into the relationship between NS5A hyperphosphorylation and hepatitis C virus genome replication. J Gen Virol 2020; 101:252-264. [PMID: 31821131 PMCID: PMC7416608 DOI: 10.1099/jgv.0.001366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis C virus genotype 2a isolate, JFH-1, exhibits much more efficient genome replication than other isolates. Although basic replication mechanisms must be conserved, this raises the question of whether the regulation of replication might exhibit isolate- and/or genotype-specific characteristics. Exemplifying this, the phenotype of NS5A hyperphosphorylation is genotype-dependent; in genotype 1b a loss of hyperphosphorylation correlates with an enhancement of replication. In contrast, the replication of JFH-1 is not regulated by hyperphosphorylation. We previously identified a novel phosphorylation site in JFH-1 NS5A: S146. A phosphomimetic substitution (S146D) had no effect on replication but correlated with a loss of hyperphosphorylation. In genotype 1b, residue 146 is alanine and we therefore investigated whether the substitution of A146 with a phosphorylatable (S), or phosphomimetic, residue would recapitulate the JFH-1 phenotype, decoupling hyperphosphorylation from replication. This was not the case, as A146D exhibited both a loss of hyperphosphorylation and a reduction in replication, accompanied by a perinuclear restriction of replication complexes, reductions in lipid droplet and PI4P lipid accumulation, and a disruption of NS5A dimerization. In contrast, the S232I culture-adaptive mutation in the low-complexity sequence I (LCSI) also exhibited a loss of hyperphosphorylation, but was associated with an increase in replication. Taken together, these data imply that hyperphosphorylation does not directly regulate replication. In contrast, the loss of hyperphosphorylation is a consequence of perturbing genome replication and NS5A function. Furthermore, we show that mutations in either domain I or LCSI of NS5A can disrupt hyperphosphorylation, demonstrating that multiple parameters influence the phosphorylation status of NS5A.
Collapse
Affiliation(s)
- Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: Experimental Medicine, Nuffield Department of Medicine, The Peter Medawar Building for Pathogen Research, South Parks Road, University of Oxford, Oxford, OX1 3SY, UK
| | - Chunhong Yin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Present address: Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
56
|
Genome-Wide Mutagenesis of Hepatitis C Virus Reveals Ability of Genome To Overcome Detrimental Mutations. J Virol 2020; 94:JVI.01327-19. [PMID: 31723027 DOI: 10.1128/jvi.01327-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
To gain insight into the impact of mutations on the viability of the hepatitis C virus (HCV) genome, we created a set of full-genome mutant libraries, differing from the parent sequence as well as each other, by using a random mutagenesis approach; the proportion of mutations increased across these libraries with declining template amount or dATP concentration. The replication efficiencies of full-genome mutant libraries ranged between 71 and 329 focus-forming units (FFU) per 105 Huh7.5 cells. Mutant libraries with low proportions of mutations demonstrated low replication capabilities, whereas those with high proportions of mutations had their replication capabilities restored. Hepatoma cells transfected with selected mutant libraries, with low (4 mutations per 10,000 bp copied), moderate (33 mutations), and high (66 mutations) proportions of mutations, and their progeny were subjected to serial passage. Predominant virus variants (mutants) from these mutant libraries (Mutantl, Mutantm, and Mutanth, respectively) were evaluated for changes in growth kinetics and particle-to-FFU unit ratio, virus protein expression, and modulation of host cell protein synthesis. Mutantm and Mutantl variants produced >3.0-log-higher extracellular progeny per ml than the parent, and Mutanth produced progeny at a rate 1.0-log lower. More than 80% of the mutations were in a nonstructural part of the mutant genomes, the majority were nonsynonymous, and a moderate to large proportion were in the conserved regions. Our results suggest that the HCV genome has the ability to overcome lethal/deleterious mutations because of the high reproduction rate but highly selects for random, beneficial mutations.IMPORTANCE Hepatitis C virus (HCV) in vivo displays high genetic heterogeneity, which is partly due to the high reproduction and random substitutions during error-prone genome replication. It is difficult to introduce random substitutions in vitro because of limitations in inducing mutagenesis from the 5' end to the 3' end of the genome. Our study has overcome this limitation. We synthesized full-length genomes with few to several random mutations in the background of an HCV clone that can recapitulate all steps of the life cycle. Our study provides evidence of the capability of the HCV genome to overcome deleterious mutations and remain viable. Mutants that emerged from the libraries had diverse phenotype profiles compared to the parent, and putative adaptive mutations mapped to segments of the conserved nonstructural genome. We demonstrate the potential utility of our system for the study of sequence variation that ensures the survival and adaptation of HCV.
Collapse
|
57
|
Rabaan AA, Al-Ahmed SH, Bazzi AM, Alfouzan WA, Alsuliman SA, Aldrazi FA, Haque S. Overview of hepatitis C infection, molecular biology, and new treatment. J Infect Public Health 2019; 13:773-783. [PMID: 31870632 DOI: 10.1016/j.jiph.2019.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that 71 million people worldwide have chronic hepatitis C viral infection. A major challenge is overall lack of public awareness of hepatitis C, particularly among infected people of their infection status. Chronic hepatitis C infection is associated with advanced liver disease, is the main cause of hepatocellular carcinoma and causes many extra-hepatic manifestations. The existence of seven viral genotypes complicates targeting of treatment. Recent years have seen the approval of many direct acting antivirals targeted at hepatitis C virus non-structural proteins. These have revolutionized therapy as they allow achievement of extremely high sustained virologic responses. Of great significance is the development of pan-genotypic drug combinations, including the NS3/4A-NS5A inhibitor combinations sofosbuvir-velpatasvir and glecaprevir-pibrentasvir. However, resistance-associated mutations can result in failure of these treatments in a small number of patients. This, combined with the high costs of treatment, highlights the importance of continued research into effective anti-hepatitis C therapies, for example aimed at viral entry. Recent developments include identification of the potential of low-cost anti-histamines for repurposing as inhibitors of hepatitis C viral entry. In this review we focus on molecular biology of hepatitis C virus, and the new developments in hepatitis C treatment.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia.
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Ali M Bazzi
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Faculty of Medicine, Kuwait University, Dasma 35153, Kuwait
| | - Shahab A Alsuliman
- Internal Medicine and Infectious Disease Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Fatimah A Aldrazi
- Infection Control Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Saudi Arabia
| |
Collapse
|
58
|
Structure-activity relationships of fluorene compounds inhibiting HCV variants. Antiviral Res 2019; 174:104678. [PMID: 31862501 DOI: 10.1016/j.antiviral.2019.104678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Approximately 71 million people suffer from hepatitis C virus (HCV) infection worldwide. Persistent HCV infection causes liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, resulting in approximately 400,000 deaths annually. Effective direct-acting antiviral agents (DAAs) have been developed and are currently used for HCV treatment targeting the following three proteins: NS3/4A proteinase that cleaves the HCV polyprotein into various functional proteins, RNA-dependent RNA polymerase (designated as NS5B), and NS5A, which is required for the formation of double membrane vesicles serving as RNA replication organelles. At least one compound inhibiting NS5A is included in current HCV treatment regimens due to the high efficacy and low toxicity of drugs targeting NS5A. Here we report fluorene compounds showing strong inhibitory effects on GT 1b and 3a of HCV. Moreover, some compounds were effective against resistance-associated variants to DAAs. The structure-activity relationships of the compounds were analyzed. Furthermore, we investigated the molecular bases of the inhibitory activities of some compounds by the molecular docking method.
Collapse
|
59
|
Abstract
Evidence for the existence of another hepatitis-causing pathogen, other than the known hepatitis A and B viruses, emerged in the mid-1970s. A frustrating search of 15 years was ended by the identification of the hepatitis C virus in 1989 using a recombinant DNA immunoscreening method. This discovery quickly led to blood tests that eliminated posttransfusion hepatitis C and could show the partial efficacy of type 1 interferon-based therapies. Subsequent knowledge of the viral replication cycle then led to the development of effective direct-acting antivirals targeting its serine protease, polymerase, and nonstructural protein 5A that resulted in the approval of orally available drug combinations that can cure patients within a few months with few side effects. Meanwhile, vaccine strategies have been shown to be feasible, and they are still required to effectively control this global epidemic.
Collapse
Affiliation(s)
- Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
60
|
Wakita T. Cell Culture Systems of HCV Using JFH-1 and Other Strains. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036806. [PMID: 31501261 DOI: 10.1101/cshperspect.a036806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection is seen worldwide and is a significant cause of severe chronic liver diseases. Recently, a large number of direct-acting antivirals (DAAs) have been developed against HCV infection, resulting in significant improvements in treatment efficacy. Rapid progress in HCV research has been largely dependent on the development of HCV culture systems and small animal infection models. In the development of HCV cell culture systems, the discovery of the JFH-1 clone, an HCV strain isolated from a fulminant hepatitis C patient, was a key finding. The JFH-1 strain was the first infectious HCV strain belonging to genotype 2a. JFH-1 replicated efficiently in cultured cell lines without acquiring adaptive mutations, providing the secretion of infectious viral particles into the culture medium. Recently, other HCV strains also were reported to be infectious in cultured cells with adaptive viral mutations, but genotype-1b infectious HCV clones and virus culture systems for clinical isolates are still missing. These infectious HCV systems have provided powerful tools to study the viral life cycle, to construct antiviral strategies, and to develop effective vaccines.
Collapse
Affiliation(s)
- Takaji Wakita
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
61
|
Developments in the HCV Screening Technologies Based on the Detection of Antigens and Antibodies. SENSORS 2019; 19:s19194257. [PMID: 31575036 PMCID: PMC6806196 DOI: 10.3390/s19194257] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) accounts for 15%-20% of cases of acute infection, and chronic HCV infection is developed in about 50%-80% of HCV patients. Unfortunately, due to the lack of proper medical care, difficulty in screening for HCV infection, and lack of awareness resulted in chronic HCV infection in 71 million people on a global scale, and about 399,000 deaths in 2016. It is crucial to recognize that the effective use of antiviral medicines can cure more than 95% of HCV infected people. The Global Health Sector Strategy (GHSS) aim is to reduce the new HCV infections and the HCV associated mortality by 90% and 65%, respectively. Therefore, the methods that are simple, yet powerful enough to detect HCV infections with high sensitivity, specificity, and a shorter window period are crucial to restrain the global burden of HCV healthcare. This article focuses on the technologies used for the detection of HCV in clinical specimens.
Collapse
|
62
|
Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor. Viruses 2019; 11:v11100890. [PMID: 31547617 PMCID: PMC6832221 DOI: 10.3390/v11100890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023] Open
Abstract
Oligostilbenoid compounds, a group of resveratrol multimers, display several anti-microbial activities through the neutralization of cytotoxic oxidants, and by inhibiting essential host and viral enzymes. In our previous study, we identified a series of oligostilbenoid compounds as potent hepatitis C virus (HCV) replication inhibitors. In particular, vitisin B, a resveratrol tetramer, exhibited the most dramatic anti-HCV activity (EC50 = 6 nM and CC50 > 10 μM) via the disruption of the viral helicase NS3 (IC50 = 3 nM). However, its further development as an HCV drug candidate was halted due to its intrinsic drawbacks, such as poor stability, low water solubility, and restricted in vivo absorption. In order to overcome these limitations, we focused on (+)-ε-viniferin, a resveratrol dimer, as an alternative. We prepared three different versions of (+)-ε-viniferin, including one which was extracted from the grapevine root (EVF) and two which were chemically synthesized with either penta-acetylation (SVF-5Ac) or no acetylation (SVF) using a newly established synthesis method. We confirmed their anti-HCV replication activities and minimal cytotoxicity by using genotype 1b and 2a HCV replicon cells. Their anti-HCV replication action also translated into a significant reduction of viral protein expression. Anti-HCV NS3 helicase activity by EVF was also verified in vitro. Finally, we demonstrated that SVF has improved pharmacokinetic properties over vitisin B. Overall, the favorable antiviral and pharmacokinetic properties of these three versions of viniferin warrant their further study as members of a promising new class of anti-HCV therapeutics.
Collapse
|
63
|
Construction and characterization of Genotype-3 hepatitis C virus replicon revealed critical genotype-3-specific polymorphism for drug resistance and viral fitness. Antiviral Res 2019; 171:104612. [PMID: 31542377 DOI: 10.1016/j.antiviral.2019.104612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV), a major causative agent of chronic hepatitis, is a positive-stranded RNA virus and has a high degree of genetic diversity due to its error-prone RNA-dependent RNA polymerase. Development of direct-acting antiviral agents (DAAs) has greatly improved the therapeutic outcome of chronic hepatitis C patients. However, naturally existing resistance-associated variants (RAVs) or occurrence of resistance-associated substitutions (RASs) in the HCV genome may impose a challenge to the long-term success of the DAA-based therapies. Genotype-3 HCV is the most difficult genotype to treat by DAAs, but the underlying molecular mechanisms remain to be explored. Here we developed a novel genotype-3a subgenomic replicon PR87A7 by screening a HCV cDNA pool amplified from a patient serum RNA. PR87A7 replicon displayed strong resistance to anti-NS3 DAAs, mainly owing to a genotype-3-specific polymorphism 168Q in NS3. Introduction of NS3 168Q into a genotype-2a JFH1 strain rendered resistance to anti-NS3 DAAs while greatly diminished the viral replication, and yet this fitness defect can be rescued by additional genotype-3-specific polymorphism. In conclusion, we developed a novel genotype-3a subgenomic replicon by a functional screening approach, and revealed genotype-3-specfic amino acid residues that confer resistance to anti-NS3 DAAs while retaining viral fitness.
Collapse
|
64
|
Interplay of Amino Acid Residues at Positions 28 and 31 in NS5A Defines Resistance Pathways in HCV GT2. Antimicrob Agents Chemother 2019:AAC.01269-19. [PMID: 31527040 DOI: 10.1128/aac.01269-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) genotype (GT) 2 represents approximately 9% of all viral infections globally. While treatment outcomes for GT2-infected patients have improved substantially with direct-acting antiviral agents (DAAs) compared to interferon-α, the presence of polymorphisms in NS5A can impact efficacy of NS5A inhibitor-containing regimens. Thus, pathways of NS5A resistance were explored in GT2 subtypes using elbasvir, an NS5A inhibitor with broad genotype activity. Resistance selection studies, resistance analysis in NS5A-inhibitor treated virologic failures, antiviral activities in replicons bearing a panel of GT2 subtype sequences and amino acid substitutions introduced by site-directed mutagenesis were performed to define determinants of inhibitor susceptibility. Elbasvir showed differential antiviral activity in replicons bearing GT2 sequences. The EC50 values for replicons bearing reference NS5A sequences for GT2a and GT2b were 0.003 and 3.4 nanomolar (nM) respectively. Studies with recombinant replicons demonstrated crosstalk between amino acid positions 28 and 31. The combination of phenylalanine and methionine at positions 28 and 31 respectively, conferred the highest potency reduction for elbasvir in GT2a and GT2b. This combination was observed in failures from the C-SCAPE trial. Addition of grazoprevir, an NS3/4A protease inhibitor, to elbasvir more effectively suppressed the emergence of resistance in GT2 at modest inhibitor concentrations (3X EC90). Ruzasvir, a potent, pan-genotype NS5A inhibitor successfully inhibited replicons bearing GT2 resistance-associated substitutions (RASs) at positions 28 and 31. The studies demonstrate crosstalk between amino acids at positions 28 and 31 in NS5A modulate inhibitor potency and may impact treatment outcomes in some HCV GT2-infected patients.
Collapse
|
65
|
Liraglutide Inhibits Hepatitis C Virus Replication Through an AMP Activated Protein Kinase Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20184569. [PMID: 31540136 PMCID: PMC6769880 DOI: 10.3390/ijms20184569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance and diabetes are both associated with chronic hepatitis C virus (HCV) infection, and the glucagon-like peptide-1(GLP-1) receptor agonist, liraglutide, is a common therapy for diabetes. Our aim was to investigate whether liraglutide treatment can inhibit HCV replication. A cell culture-produced HCV infectious system was generated by transfection of in vitro-transcribed genomic JFH-1 ribonucleic acid (RNA) into Huh-7.5 cells. Total RNA samples were extracted to determine the efficiency of HCV replication. The Ava5 cells were treated with liraglutide and cell viability was calculated. A Western blot analysis of the protein expression was performed. The immunoreactive blot signals were also detected. Liraglutide activated GLP-1 receptors in the HCV infectious system, and inhibited subgenomic HCV RNA replication in the HuH-7.5 cells. The Western blot analysis revealed both HCV protein and replicon RNA were reduced after treatment with liraglutide in a dose-dependent manner. Liraglutide decreased the cell viability of HCV RNA at an optimum concentration of 120 μg/mL, activated the 5′ adenosine monophosphate-activated protein kinase (AMPK) and the phosphorylated- transducer of regulated cyclic adenosine monophosphate (CAMP) response element-binding protein 2 (TORC2), thereby decreasing the cell viability of phosphoenolpyruvate carboxykinase (PEPCK) and G6pase RNA Therefore, we conclude that liraglutide can inhibit HCV replication via an AMPK/TORC2-dependent pathway.
Collapse
|
66
|
Replicons of a Rodent Hepatitis C Model Virus Permit Selection of Highly Permissive Cells. J Virol 2019; 93:JVI.00733-19. [PMID: 31292246 DOI: 10.1128/jvi.00733-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Animal hepaciviruses represent promising surrogate models for hepatitis C virus (HCV), for which there are no efficient immunocompetent animal models. Experimental infection of laboratory rats with rodent hepacivirus isolated from feral Rattus norvegicus (RHV-rn1) mirrors key aspects of HCV infection in humans, including chronicity, hepatitis, and steatosis. Moreover, RHV has been adapted to infect immunocompetent laboratory mice. RHV in vitro systems have not been developed but would enable detailed studies of the virus life cycle crucial for designing animal experiments to model HCV infection. Here, we established efficient RHV-rn1 selectable subgenomic replicons with and without reporter genes. Rat and mouse liver-derived cells did not readily support the complete RHV life cycle, but replicon-containing cell clones could be selected with and without acquired mutations. Replication was significantly enhanced by mutations in NS4B and NS5A and in cell clones cured of replicon RNA. These mutations increased RHV replication of both mono- and bicistronic constructs, and CpG/UpA-dinucleotide optimization of reporter genes allowed replication. Using the replicon system, we show that the RHV-rn1 NS3-4A protease cleaves a human mitochondrial antiviral signaling protein reporter, providing a sensitive readout for virus replication. RHV-rn1 replication was inhibited by the HCV polymerase inhibitor sofosbuvir and high concentrations of HCV NS5A antivirals but not by NS3 protease inhibitors. The microRNA-122 antagonist miravirsen inhibited RHV-rn1 replication, demonstrating the importance of this HCV host factor for RHV. These novel RHV in vitro systems will be useful for studies of tropism, molecular virology, and characterization of virus-host interactions, thereby providing important complements to in vivo systems.IMPORTANCE A vaccine against hepatitis C virus (HCV) is crucial for global control of this important pathogen, which induces fatal human liver diseases. Vaccine development has been hampered by the lack of immunocompetent animal models. Discovery of rodent hepacivirus (RHV) enabled establishment of novel surrogate animal models. These allow robust infection and reverse genetic and immunization studies of laboratory animals, which develop HCV-like chronicity. Currently, there are no RHV in vitro systems available to study tropism and molecular virology. Here, we established the first culture systems for RHV, recapitulating the intracellular phase of the virus life cycle in vitro These replicon systems enabled identification of replication-enhancing mutations and selection of cells highly permissive to RHV replication, which allow study of virus-host interactions. HCV antivirals targeting NS5A, NS5B, and microRNA-122 efficiently inhibited RHV replication. Hence, several important aspects of HCV replication are shared by the rodent virus system, reinforcing its utility as an HCV model.
Collapse
|
67
|
Guo L, Sharma SD, Debes JD, Beisang D, Rattenbacher B, Louis IVS, Wiesner DL, Cameron CE, Bohjanen PR. The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts. Nucleic Acids Res 2019; 46:2537-2547. [PMID: 29385522 PMCID: PMC5861452 DOI: 10.1093/nar/gky061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Numerous mammalian proto-oncogene and other growth-regulatory transcripts are upregulated in malignancy due to abnormal mRNA stabilization. In hepatoma cells expressing a hepatitis C virus (HCV) subgenomic replicon, we found that the viral nonstructural protein 5A (NS5A), a protein known to bind to viral RNA, also bound specifically to human cellular transcripts that encode regulators of cell growth and apoptosis, and this binding correlated with transcript stabilization. An important subset of human NS5A-target transcripts contained GU-rich elements, sequences known to destabilize mRNA. We found that NS5A bound to GU-rich elements in vitro and in cells. Mutation of the NS5A zinc finger abrogated its GU-rich element-binding and mRNA stabilizing activities. Overall, we identified a molecular mechanism whereby HCV manipulates host gene expression by stabilizing host transcripts in a manner that would promote growth and prevent death of virus-infected cells, allowing the virus to establish chronic infection and lead to the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suresh D Sharma
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University 201 Althouse Laboratory, University Park, PA 16802, USA
| | - Jose D Debes
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Beisang
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Rattenbacher
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darin L Wiesner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig E Cameron
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University 201 Althouse Laboratory, University Park, PA 16802, USA
- Correspondence may also be addressed to Craig E. Cameron.
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- To whom correspondence should be addressed.
| |
Collapse
|
68
|
Rabinowitch I. What would a synthetic connectome look like? Phys Life Rev 2019; 33:1-15. [PMID: 31296448 DOI: 10.1016/j.plrev.2019.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
A major challenge of contemporary neuroscience is to unravel the structure of the connectome, the ensemble of neural connections that link between different functional units of the brain, and to reveal how this structure relates to brain function. This thriving area of research largely follows the general tradition in biology of reverse-engineering, which consists of first observing and characterizing a biological system or process, and then deconstructing it into its fundamental building blocks in order to infer its modes of operation. However, a complementary form of biology has emerged, synthetic biology, which emphasizes construction-based forward-engineering. The synthetic biology approach comprises the assembly of new biological systems out of elementary biological parts. The rationale is that the act of building a system can be a powerful method for gaining deep understanding of how that system works. As the fields of connectomics and synthetic biology are independently growing, I propose to consider the benefits of combining the two, to create synthetic connectomics, a new form of neuroscience and a new form of synthetic biology. The goal of synthetic connectomics would be to artificially design and construct the connectomes of live behaving organisms. Synthetic connectomics could serve as a unifying platform for unraveling the complexities of brain operation and perhaps also for generating new forms of artificial life, and, in general, could provide a valuable opportunity for empirically exploring theoretical predictions about network function. What would a synthetic connectome look like? What purposes would it serve? How could it be constructed? This review delineates the novel notion of a synthetic connectome and aims to lay out the initial steps towards its implementation, contemplating its impact on science and society.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, IMRIC - Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, 9112002, Israel.
| |
Collapse
|
69
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Microbes Infect 2019; 21:263-270. [PMID: 31295571 DOI: 10.1016/j.micinf.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France; Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France; INSERM UMS-20, Institut Pasteur, Paris, France; Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
70
|
Pan TC, Lo CW, Chong WM, Tsai CN, Lee KY, Chen PY, Liao JC, Yu MJ. Differential Proteomics Reveals Discrete Functions of Proteins Interacting with Hypo- versus Hyper-phosphorylated NS5A of the Hepatitis C Virus. J Proteome Res 2019; 18:2813-2825. [PMID: 31199160 DOI: 10.1021/acs.jproteome.9b00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics. We identified 629 proteins, of which 238 were quantified in three replicates. Bioinformatics showed 46 proteins that preferentially bind hypo-phosphorylated NS5A are involved in antiviral response and another 46 proteins that bind pS235 hyper-phosphorylated NS5A are involved in liver cancer progression. We further identified a DNA-dependent kinase (DNA-PK) that binds hypo-phosphorylated NS5A. Inhibition of DNA-PK with an inhibitor or via gene-specific knockdown significantly reduced S232 phosphorylation and NS5A hyper-phosphorylation. Because S232 phosphorylation initiates sequential S232/S235/S238 phosphorylation leading to NS5A hyper-phosphorylation, we identified a new protein kinase that regulates a delicate balance of NS5A between hypo- and hyper-phosphorylation states, respectively, involved in host antiviral responses and liver cancer progression.
Collapse
Affiliation(s)
- Ting-Chun Pan
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Chieh-Wen Lo
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Weng Man Chong
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| | - Chia-Ni Tsai
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Kuan-Ying Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Pin-Yin Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| |
Collapse
|
71
|
Chen WC, Wei CK, Lee JC. MicroRNA-let-7c suppresses hepatitis C virus replication by targeting Bach1 for induction of haem oxygenase-1 expression. J Viral Hepat 2019; 26:655-665. [PMID: 30706605 DOI: 10.1111/jvh.13072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 01/05/2019] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that are central factors between hepatitis C virus (HCV) and host cellular factors for viral replication and liver disease progression, including liver fibrosis, cirrhosis and hepatocellular carcinoma. In the present study, we found that overexpressing miR-let-7c markedly reduced HCV replication because it induced haem oxygenase-1 (HO-1) expression by targeting HO-1 transcriptional repressor Bach1, ultimately leading to stimulating an antiviral interferon response and blockade of HCV viral protease activity. In contrast, the antiviral actions of miR-let-7c were attenuated by miR-let-7c inhibitor treatment, exogenously expressing Bach1 or suppressing HO-1 activity and expression. A proposed model indicates a key role for miR-let-7c targeting Bach1 to transactivate HO-1-mediated antiviral actions against HCV. miR-let-7c may serve as an attractive target for antiviral development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
72
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Genes Immun 2019; 20:436-446. [PMID: 31019253 DOI: 10.1038/s41435-019-0066-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease, which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection, which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations, which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France. .,Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France. .,INSERM UMS-20, Institut Pasteur, Paris, France. .,Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
73
|
Advances in the role of HCV nonstructural protein 5a (NS5A) of 3a genotype in inducing insulin resistance by possible phosphorylation of AKT/PKB. Sci Rep 2019; 9:6150. [PMID: 30992506 PMCID: PMC6468007 DOI: 10.1038/s41598-019-42602-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
HCV genes interfere with host cellular genes and play crucial role in pathogenesis. The mechanism under which HCV genes induce insulin resistance is not much clear. This study is aimed to examine the role of HCV NS5A in inducing insulin resistance by examining its affect in the phosphorylation level of AKT/PKB. In the present study, HepG2 cells were transfected with HCV NS5A and after 24 hours of transfection, protein was extracted from cells that were pre induced with insulin at three different time intervals i.e. 1hour, 2 hours and 3hours. Dot Blot analysis was performed to study the phosphorylation level of AKT. Results showed that there is clear upregulation of serine 473 phosphorylation level of AKT in NS5A transfected cells as compared with control (without NS5A). In conclusion, upregulation of serine 473 phosphorylation by NS5A of HCV genotype 3a suggests that this gene impairs the normal insulin AKT/PKB signaling pathway that leads towards insulin resistance and Type 2 diabetes mellitus. Therefore, HCV non-structural protein NS5A should be considered as promising candidate to be studied in detail for HCV induced insulin resistance and should be regarded as a therapeutically important target for the prevention of chronic liver diseases.
Collapse
|
74
|
Luna JM, Saeed M, Rice CM. Taming a beast: lessons from the domestication of hepatitis C virus. Curr Opin Virol 2019; 35:27-34. [PMID: 30875640 PMCID: PMC6556422 DOI: 10.1016/j.coviro.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
"What I cannot create, I do not understand." Richard Feynman may have championed reasoning from first principles in his famous blackboard missive, but he could just as well have been referring to the plight of a molecular virologist. What cannot be grown in a controlled laboratory setting, we cannot fully understand. The story of the laboratory domestication of hepatitis C virus (HCV) is now a classic example of virologists applying all manner of inventive skill to create cell-based models of infection in order to clarify prospective drug targets. In this review, we highlight key successes and failures that were instructive in achieving cell-based models for HCV studies and drug development. We also emphasize the lessons learned from the ∼40 year saga that may be applicable to viruses yet unknown and uncultured.
Collapse
Affiliation(s)
- Joseph M Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Mohsan Saeed
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
75
|
Klinker S, Stindt S, Gremer L, Bode JG, Gertzen CGW, Gohlke H, Weiergräber OH, Hoffmann S, Willbold D. Phosphorylated tyrosine 93 of hepatitis C virus nonstructural protein 5A is essential for interaction with host c-Src and efficient viral replication. J Biol Chem 2019; 294:7388-7402. [PMID: 30862675 DOI: 10.1074/jbc.ra119.007656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural protein 5A (NS5A) plays a key role in viral replication and virion assembly, and the regulation of the assembly process critically depends on phosphorylation of both serine and threonine residues in NS5A. We previously identified SRC proto-oncogene, nonreceptor tyrosine kinase (c-Src), as an essential host component of the HCV replication complex consisting of NS5A, the RNA-dependent RNA polymerase NS5B, and c-Src. Pulldown assays revealed an interaction between NS5A and the Src homology 2 (SH2) domain of c-Src; however, the precise binding mode remains undefined. In this study, using a variety of biochemical and biophysical techniques, along with molecular dynamics simulations, we demonstrate that the interaction between NS5A and the c-Src SH2 domain strictly depends on an intact phosphotyrosine-binding competent SH2 domain and on tyrosine phosphorylation within NS5A. Detailed analysis of c-Src SH2 domain binding to a panel of phosphorylation-deficient NS5A variants revealed that phosphorylation of Tyr-93 located within domain 1 of NS5A, but not of any other tyrosine residue, is crucial for complex formation. In line with these findings, effective replication of subgenomic HCV replicons as well as production of infectious virus particles in mammalian cell culture models were clearly dependent on the presence of tyrosine at position 93 of NS5A. These findings indicate that phosphorylated Tyr-93 in NS5A plays an important role during viral replication by facilitating NS5A's interaction with the SH2 domain of c-Src.
Collapse
Affiliation(s)
- Stefan Klinker
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf
| | - Sabine Stindt
- the Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf
| | - Lothar Gremer
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf.,the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Johannes G Bode
- the Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf
| | - Christoph G W Gertzen
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich.,the John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, and.,the Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich.,the John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, and.,the Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver H Weiergräber
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Silke Hoffmann
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Dieter Willbold
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, .,the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| |
Collapse
|
76
|
Lohmann V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2019; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, INF 344, 1st Floor, 69120, Heidelberg, Germany.
| |
Collapse
|
77
|
Mahboubi Rabbani SMI, Vahabpour R, Hajimahdi Z, Zarghi A. Design, Synthesis, Molecular Modeling Studies and Biological Evaluation of N'-Arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide Derivatives as Novel Anti-HCV Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1790-1802. [PMID: 32184846 PMCID: PMC7059030 DOI: 10.22037/ijpr.2019.112186.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives were designed based on the pharmacophores of HCV NS5B active site binding inhibitors. Designed compounds were synthesized and evaluated for their inhibitory activities in a cell-based HCV replicon system assay. Among tested compounds, compounds 18 and 20 were found to be the most active (EC50 = 35 and 70 µM, respectively) with good selectivity index (SI > 2) in the corresponding series. Molecular modeling studies showed that the designed compounds are capable of forming key coordination with the two magnesium ions as well as interactions with other key residues at the active site of HCV NS5B.
Collapse
Affiliation(s)
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
78
|
Abstract
The method outlined here enables evaluation of the neutralization potency of monoclonal and polyclonal antibodies against in vitro cultured hepatitis C virus (HCV). The high variation in envelope protein sequence among HCV isolates necessitates the inclusion of several isolates, spanning the major genotypes of HCV, in order to make strong conclusions concerning the cross-reactive neutralization potential of a given antibody. This would be particularly relevant for any neutralization experiments aimed at uncovering novel therapeutic- or vaccine-relevant antibodies. In addition, these assays can also be used to compare neutralization sensitivity of novel cultured HCV to that of previously characterized isolates.
Collapse
Affiliation(s)
- Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
79
|
Schenk C, Meyrath M, Warnken U, Schnölzer M, Mier W, Harak C, Lohmann V. Characterization of a Threonine-Rich Cluster in Hepatitis C Virus Nonstructural Protein 5A and Its Contribution to Hyperphosphorylation. J Virol 2018; 92:JVI.00737-18. [PMID: 30258001 PMCID: PMC6258934 DOI: 10.1128/jvi.00737-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a phosphoprotein with key functions in regulating viral RNA replication and assembly. Two phosphoisoforms are discriminated by their different apparent molecular weights: a basally phosphorylated (p56) and a hyperphosphorylated (p58) variant. The precise mechanisms governing p58 synthesis and specific functions of the isoforms are poorly understood. Our study aimed at a deeper understanding of determinants involved in p58 synthesis. We analyzed two variants of p56 and p58 of isolate JFH-1 separately by mass spectrometry using an expression model and thereby identified a threonine-rich phosphopeptide exclusively found in the hyperphosphorylated variant. Individual exchange of possible phosphoacceptor sites to phosphoablatant or -mimetic residues had little impact on HCV replication or assembly in cell culture. A phosphospecific antibody recognizing pT242 revealed that this position was indeed phosphorylated only in p58 and depended on casein kinase Iα. Importantly, phosphoablative mutations at positions T244 and S247 abrogated pT242 detection without substantial effects on global p58 levels, whereas mutations in the preceding serine-rich cluster dramatically reduced total p58 levels but had minor impact on pT242 levels, suggesting the existence of distinct subspecies of hyperphosphorylated NS5A. Mass spectrometry analyses of different genotypes showed variable phosphorylation patterns across NS5A and suggested that the threonine-rich region is also phosphorylated at T242 in gt4a and at S249 in gt1a, gt1b, and gt4a. Our data therefore indicate that p58 is not a single homogenously phosphorylated protein species but rather a population of various phosphoisoforms, with high variability between genotypes.IMPORTANCE Hepatitis C virus infections affect 71 million people worldwide and cause severe chronic liver disease. Recently, efficient antiviral therapies have been established, with inhibitors of nonstructural protein NS5A as a cornerstone. NS5A is a central regulator of HCV replication and assembly but is still enigmatic in its molecular functions. It exists in two phosphoisoforms, p56 and p58. We identified a phosphopeptide exclusively found in p58 and analyzed the determinants involved in phosphorylation of this region. We found evidence for very different phosphorylation patterns resulting in p58. These results challenge the concept of p58 being a homogenous species of NS5A molecules phosphorylated at the same positions and argues for at least two independently phosphorylated variants showing the same electrophoretic mobility, likely serving different functions.
Collapse
Affiliation(s)
- Christian Schenk
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Max Meyrath
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Harak
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
80
|
Saleh M, Rüschenbaum S, Welsch C, Zeuzem S, Moradpour D, Gouttenoire J, Lange CM. Glycogen Synthase Kinase 3β Enhances Hepatitis C Virus Replication by Supporting miR-122. Front Microbiol 2018; 9:2949. [PMID: 30542341 PMCID: PMC6278592 DOI: 10.3389/fmicb.2018.02949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with alterations in host lipid and insulin signaling cascades, which are partially explained by a dependence of the HCV life cycle on key molecules in these metabolic pathways. Yet, little is known on the role in the HCV life cycle of glycogen synthase kinase 3 (GSK3), one of the most important kinases in cellular metabolism. Therefore, the impact of GSK3 on the HCV life cycle was assessed in human hepatoma cell lines harboring subgenomic genotype 1b and 2a replicons or producing cell culture-derived HCV genotype 2a by exposure to synthetic GSK3 inhibitors, GSK3 gene silencing, overexpression of GSK3 constructs and immunofluorescence analyses. In addition, the role of GSK3 in hepatitis E virus (HEV) replication was investigated to assess virus specificity of the observed findings. We found that both inhibition of GSK3 function by synthetic inhibitors as well as silencing of GSK3β gene expression resulted in a decrease of HCV replication and infectious particle production, whereas silencing of the GSK3α isoform had no relevant effect on the HCV life cycle. Conversely, overexpression of GSK3β resulted in enhanced HCV replication. In contrast, GSK3β had no effect on replication of subgenomic HEV replicon. The pro-viral effect of GSK3β on HCV replication was mediated by supporting expression of microRNA-122 (miR-122), a micro-RNA which is mandatory for wild-type HCV replication, as GSK3 inhibitors suppressed miR-122 levels and as inhibitors of GSK3 had no antiviral effect on a miR-122-independent HCV mutant. In conclusion, we have identified GSK3β is a novel host factor supporting HCV replication by maintaining high levels of hepatic miR-122 expression.
Collapse
Affiliation(s)
- Maged Saleh
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Sabrina Rüschenbaum
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christian M Lange
- Department of Internal Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
81
|
Asante-Appiah E, Liu R, Curry S, McMonagle P, Agrawal S, Carr D, Rokosz L, Lahser F, Bystol K, Chase R, Black S, Ferrari E, Ingravallo P, Tong L, Yu W, Kozlowski J. In Vitro Antiviral Profile of Ruzasvir, a Potent and Pangenotype Inhibitor of Hepatitis C Virus NS5A. Antimicrob Agents Chemother 2018; 62:e01280-18. [PMID: 30150466 PMCID: PMC6201069 DOI: 10.1128/aac.01280-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition of NS5A has emerged as an attractive strategy to intervene in hepatitis C virus (HCV) replication. Ruzasvir (formerly MK-8408) was developed as a novel NS5A inhibitor to improve upon the potency and barrier to resistance of early compounds. Ruzasvir inhibited HCV RNA replication with 50% effective concentrations (EC50s) of 1 to 4 pM in Huh7 or Huh7.5 cells bearing replicons for HCV genotype 1 (GT1) to GT7. The antiviral activity was modestly (10-fold) reduced in the presence of 40% normal human serum. The picomolar potency in replicon cells extended to sequences of clinical isolates available in public databases that were synthesized and tested as replicons. In GT1a, ruzasvir inhibited common NS5A resistance-associated substitutions (RASs), with the exception of M28G. De novo resistance selection studies identified pathways with certain amino acid substitutions at residues 28, 30, 31, and 93 across genotypes. Substitutions at position 93 were more common in GT1 to -4, while changes at position 31 emerged frequently in GT5 and -6. With the exception of GT4, the reintroduction of selected RASs conferred a ≥100-fold potency reduction in the antiviral activity of ruzasvir. Common RASs from other classes of direct-acting antiviral agents (DAAs) did not confer cross-resistance to ruzasvir. The interaction of ruzasvir with an NS3/4A protease inhibitor (grazoprevir) and an NS5B polymerase prodrug (uprifosbuvir) was additive to synergistic, with no evidence of antagonism or cytotoxicity. The antiviral profile of ruzasvir supported its further evaluation in human trials in combination with grazoprevir and uprifosbuvir.
Collapse
Affiliation(s)
- Ernest Asante-Appiah
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Rong Liu
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Stephanie Curry
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Patricia McMonagle
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Sony Agrawal
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Donna Carr
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Laura Rokosz
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Frederick Lahser
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Karin Bystol
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Robert Chase
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Stuart Black
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Eric Ferrari
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Paul Ingravallo
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ling Tong
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Wensheng Yu
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Joseph Kozlowski
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
82
|
Saleh M, Welsch C, Cai C, Döring C, Gouttenoire J, Friedrich J, Haselow K, Sarrazin C, Badenhoop K, Moradpour D, Zeuzem S, Rueschenbaum S, Lange CM. Differential modulation of hepatitis C virus replication and innate immune pathways by synthetic calcitriol-analogs. J Steroid Biochem Mol Biol 2018; 183:142-151. [PMID: 29885880 DOI: 10.1016/j.jsbmb.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Vitamin D signaling is involved in infectious and non-infectious liver diseases, yet the natural vitamin D metabolites are suboptimal therapeutic agents. In the present study, we therefore aimed to explore the potential and mechanism of selected calcitriol analogs to regulate the hepatocellular transcriptome and to inhibit hepatitis C virus (HCV) in comparison with calcitriol. METHODS Human hepatoma cell lines and primary human macrophages were stimulated with calcitriol and selected calcitriol analogs. The effect of calcitriol and its derivatives on hepatocellular gene expression and vitamin D receptor (VDR) signaling as well as on replication of HCV were assessed by quantitative PCR, microarray analyses and in silico analyses of ligand-VDR complexes. RESULTS The structurally related vitamin D analogs calcipotriol and tacalcitiol, but not calcitriol itself, suppressed HCV replication in a VDR-dependent manner. Using a residue-interaction network approach we outline structural and functional differences between VDR-ligand complexes. In particular we find characteristics in the VDR structure bound to calcipotriol with distinct local residue interaction patterns that affect key functional residues that pertain to the VDR charge clamp, H397 and F422, a VDR regulatory element for interaction with co-activators and -repressors. As a consequence, we show calcipotriol in comparison to calcitriol to induce stronger regulatory actions on the transcriptome of hepatocytes and macrophages including key antimicrobial peptides. CONCLUSION Calcipotriol induces local structure rearrangements in VDR that could possibly translate into a superior clinical potential to execute important non-classical vitamin D effects such as inhibition of HCV replication.
Collapse
Affiliation(s)
- Maged Saleh
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christoph Welsch
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Chengcong Cai
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Claudia Döring
- Senckenberg Institute of Pathology, Goethe University Hospital, D-60596, Frankfurt a. M., Germany
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, University Hospital Lausanne, CH-1011, Lausanne, Switzerland
| | - Judith Friedrich
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Katrin Haselow
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christoph Sarrazin
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany; Medical Department II Gastroenterology, Hepatology, Infectiology, Diabetology, St. Josefs-Hospital, D-65189, Wiesbaden, Germany
| | - Klaus Badenhoop
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, University Hospital Lausanne, CH-1011, Lausanne, Switzerland
| | - Stefan Zeuzem
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Sabrina Rueschenbaum
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany
| | - Christian M Lange
- Department of Medicine 1, J.W. Goethe University Hospital, D-60590, Frankfurt a.M., Germany.
| |
Collapse
|
83
|
Graphite/Nanocrystalline Zeolite Platform for Selective Electrochemical Determination of Hepatitis C Inhibitor Ledipasvir. ELECTROANAL 2018. [DOI: 10.1002/elan.201800500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
84
|
You Y, Kim HS, Park JW, Keum G, Jang SK, Kim BM. Sulfur(vi) fluoride exchange as a key reaction for synthesizing biaryl sulfate core derivatives as potent hepatitis C virus NS5A inhibitors and their structure-activity relationship studies. RSC Adv 2018; 8:31803-31821. [PMID: 35548241 PMCID: PMC9085918 DOI: 10.1039/c8ra05471a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Extremely potent, new hepatitis C virus (HCV) nonstructural 5A (NS5A) featuring substituted biaryl sulfate core structures was designed and synthesized. Based on the previously reported novel HCV NS5A inhibitors featuring biaryl sulfate core structures which exhibit two-digit picomolar half-maximal effective concentration (EC50) values against HCV genotype 1b and 2a, the new inhibitors equipped with the sulfate core structures containing diversely substituted aryl groups were explored. In this study, highly efficient, chemoselective coupling reactions between an arylsulfonyl fluoride and an aryl silyl ether, known as the sulfur(vi) fluoride exchange (SuFEx) reaction, were utilized. Among the inhibitors prepared based on the SuFEx chemistry, compounds 14, 15 and 29 exhibited two-digit picomolar EC50 values against GT-1b and single digit or sub nanomolar activities against the HCV GT-2a strain. Nonsymmetrical inhibitors containing an imidazole and amide moieties on each side of the sulfate core structures were also synthesized. In addition, a biotinylated probe targeting NS5A protein was prepared for labeling using the same synthetic methodology.
Collapse
Affiliation(s)
- Youngsu You
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| | - Hee Sun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology Pohang 37673 South Korea
| | - Jung Woo Park
- Supercomputing Modeling & Simulation Center, Division of Data Analysis, Korea Institute of Science and Technology Information (KISTI) 245 Daehak-ro, Yuseong-gu Daejeon 34141 South Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST) Hwarangno 14-gil 5, Seongbuk-gu Seoul 02455 South Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology Pohang 37673 South Korea
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| |
Collapse
|
85
|
Zhang H, Qiao L, Luo G. Characterization of apolipoprotein C1 in hepatitis C virus infection and morphogenesis. Virology 2018; 524:1-9. [PMID: 30130702 DOI: 10.1016/j.virol.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that apolipoprotein C1 (apoC1)-specific antibodies precipitated hepatitis C virus (HCV) and neutralized HCV infectivity, suggesting that apoC1 is a HCV component. However, the importance of apoC1 in the HCV life cycle has not been experimentally examined. In the present study, we sought to determine the role of apoC1 in the HCV infection and morphogenesis by knocking out the apoC1 gene using the CRISPR/Cas9 system. Strikingly, apoC1 gene knockout markedly enhanced apoE expression. As a result, apoC1 gene knockout per se didn't significantly affect HCV infection or morphogenesis, probably ascribing to its redundant functions with apoE. However, knockout of apoC1 gene potentiated the impairment of HCV infection and/or morphogenesis by apoE-specific small interfering RNAs. Additionally, a recombinant apoC1 protein efficiently blocked HCV infection. Collectively, these findings suggest that apoC1 and apoE have redundant functions in the HCV infection and morphogenesis.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, United States
| | - Guangxiang Luo
- Department of Microbiology, Peking University School of Basic Medical Sciences, Beijing 100191, China; Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, United States.
| |
Collapse
|
86
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
87
|
Humes D, Ramirez S, Jensen TB, Li YP, Gottwein JM, Bukh J. Recombinant hepatitis C virus genotype 5a infectious cell culture systems expressing minimal JFH1 NS5B sequences permit polymerase inhibitor studies. Virology 2018; 522:177-192. [PMID: 30032031 DOI: 10.1016/j.virol.2018.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The six major epidemiologically important hepatitis C virus (HCV) genotypes differ in global distribution and antiviral responses. Full-length infectious cell-culture adapted clones, the gold standard for HCV studies in vitro, are missing for genotypes 4 and 5. To address this challenge for genotype 5, we constructed a consensus full-length clone of strain SA13 (SA13fl), which was found non-viable in Huh7.5 cells. Step-wise adaptation of SA13fl-based recombinants, beginning with a virus encoding the NS5B-thumb domain and 3´UTR of JFH1 (SA13/JF372-X), resulted in a high-titer SA13 virus with only 41 JFH1-encoded NS5B-thumb residues (SA13/JF470-510cc); this required sixteen cell-culture adaptive substitutions within the SA13fl polyprotein and two 3´UTR-changes. SA13/JF372-X and SA13/JF470-510cc were equally sensitive to nucleoside polymerase inhibitors, including sofosbuvir, but showed differential sensitivity to inhibitors targeting the NS5B palm or thumb. SA13/JF470-510cc represents a model to elucidate the influence of HCV RNA elements on viral replication and map determinants of sensitivity to polymerase inhibitors.
Collapse
Affiliation(s)
- Daryl Humes
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tanja B Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yi-Ping Li
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
88
|
Wang Q, Hagedorn C, Liu S. Adapted HCV JFH1 variant is capable of accommodating a large foreign gene insert and allows lower level HCV replication and viral production. Int J Biol Sci 2018; 14:1211-1220. [PMID: 30123070 PMCID: PMC6097470 DOI: 10.7150/ijbs.27411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/05/2022] Open
Abstract
Infectious HCV carrying reporter genes have further applications in understanding the HCV life cycle including replication, viral assembly and release. In this study, a full-length 3039bp LacZ gene was inserted into the derivative of JFH1-AM120 to develop an additional reporter virus. The results showed that the recombinant reporter virus JFH1-AM120-LacZ can replicate and produce lower titers of infectious virus. However, insertion of the LacZ gene in the C-terminal region of the NS5A in HCV JFH1-AM120-LacZ decreased viral replication and dramatically impaired the production of infectious viral particles. Moreover, the JFH1-AM120-LacZ reporter virus lost the LacZ gene after serial passage. Nevertheless, the JFH1-AM120-LacZ reporter virus displayed the entire life cycle of HCV, from replication to production of infectious virus, in Huh7.5 cells. This study demonstrates that the NS5A region of HCV JFH1-AM120 has the capacity to accommodate large foreign genes up to 3,039 bp and suggests that other relatively large gene inserts can be accommodated at this site.
Collapse
Affiliation(s)
- Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, No.8 Jingshun East Street, Chaoyang District, Beijing, China 100015
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT USA 84112, United States of America
| | - Curt Hagedorn
- The Central Arkansas Veterans Healthcare System, 4300 West 7 th St. 111/LR, Little Rock, AR USA 72205
- Departments of Medicine and Genetics, University of Arkansas for Medical Sciences, 4300 West 7 th St. 111/LR, Little Rock, AR USA 72205
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT USA 84112, United States of America
| | - Shuanghu Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT USA 84112, United States of America
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT USA 84112, United States of America
| |
Collapse
|
89
|
Microscopy in Infectious Disease Research-Imaging Across Scales. J Mol Biol 2018; 430:2612-2625. [PMID: 29908150 DOI: 10.1016/j.jmb.2018.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
A comprehensive understanding of host-pathogen interactions requires quantitative assessment of molecular events across a wide range of spatiotemporal scales and organizational complexities. Due to recent technical developments, this is currently only achievable with microscopy. This article is providing a general perspective on the importance of microscopy in infectious disease research, with a focus on new imaging modalities that promise to have a major impact in biomedical research in the years to come. Every major technological breakthrough in light microscopy depends on, and is supported by, advancements in computing and information technologies. Bioimage acquisition and analysis based on machine learning will pave the way toward more robust, automated and objective implementation of new imaging modalities and in biomedical research in general. The combination of novel imaging technologies with machine learning and near-physiological model systems promises to accelerate discoveries and breakthroughs in our understanding of infectious diseases, from basic research all the way to clinical applications.
Collapse
|
90
|
Osteopontin Regulates Hepatitis C Virus (HCV) Replication and Assembly by Interacting with HCV Proteins and Lipid Droplets and by Binding to Receptors αVβ3 and CD44. J Virol 2018; 92:JVI.02116-17. [PMID: 29669827 DOI: 10.1128/jvi.02116-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) replication and assembly occur at the specialized site of endoplasmic reticulum (ER) membranes and lipid droplets (LDs), respectively. Recently, several host proteins have been shown to be involved in HCV replication and assembly. In the present study, we demonstrated the important relationship among osteopontin (OPN), the ER, and LDs. OPN is a secreted phosphoprotein, and overexpression of OPN in hepatocellular carcinoma (HCC) tissue can lead to invasion and metastasis. OPN expression is also enhanced in HCV-associated HCC. Our recent studies have demonstrated the induction, proteolytic cleavage, and secretion of OPN in response to HCV infection. We also defined the critical role of secreted OPN in human hepatoma cell migration and invasion through binding to receptors integrin αVβ3 and CD44. However, the role of HCV-induced OPN in the HCV life cycle has not been elucidated. In this study, we showed a significant reduction in HCV replication, assembly, and infectivity in HCV-infected cells transfected with small interfering RNA (siRNA) against OPN, αVβ3, and CD44. We also observed the association of endogenous OPN with HCV proteins (NS3, NS5A, NS4A/B, NS5B, and core). Confocal microscopy revealed the colocalization of OPN with HCV NS5A and core in the ER and LDs, indicating a possible role for OPN in HCV replication and assembly. Interestingly, the secreted OPN activated HCV replication, infectivity, and assembly through binding to αVβ3 and CD44. Collectively, these observations provide evidence that HCV-induced OPN is critical for HCV replication and assembly.IMPORTANCE Recently, our studies uncovered the critical role of HCV-induced endogenous and secreted OPN in migration and invasion of hepatocytes. However, the role of OPN in the HCV life cycle has not been elucidated. In this study, we investigated the importance of OPN in HCV replication and assembly. We demonstrated that endogenous OPN associates with HCV NS3, NS5A, NS5B, and core proteins, which are in close proximity to the ER and LDs. Moreover, we showed that the interactions of secreted OPN with cell surface receptors αVβ3 and CD44 are critical for HCV replication and assembly. These observations provide evidence that HCV-induced endogenous and secreted OPN play pivotal roles in HCV replication and assembly in HCV-infected cells. Taken together, our findings clearly demonstrate that targeting OPN may provide opportunities for therapeutic intervention of HCV pathogenesis.
Collapse
|
91
|
Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor 1α via Chaperone-Mediated Autophagy. J Virol 2018; 92:JVI.00639-18. [PMID: 29695419 DOI: 10.1128/jvi.00639-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA.IMPORTANCE Many viruses use a protein degradation system, such as the ubiquitin-proteasome pathway or the autophagy pathway, for facilitating viral propagation and viral pathogenesis. We investigated the mechanistic details of the selective lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) induced by hepatitis C virus (HCV) NS5A protein. Using site-directed mutagenesis, we demonstrated that HNF-1α contains a pentapeptide chaperone-mediated autophagy (CMA)-targeting motif within the POU-specific domain of HNF-1α. The CMA-targeting motif is important for the association with HSC70. LAMP-2A is required for degradation of HNF-1α caused by NS5A. We propose that HCV NS5A interacts with HSC70, a key component of the CMA machinery, and recruits HSC70 to HNF-1α to target HNF-1α for CMA-mediated lysosomal degradation, thereby facilitating HCV pathogenesis. We discovered a role of HCV NS5A in CMA-dependent degradation of HNF-1α. Our results may lead to a better understanding of the role of CMA in the pathogenesis of HCV.
Collapse
|
92
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
93
|
Chen S, Yang C, Zhang W, Mahalingam S, Wang M, Cheng A. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development. Pharmacol Ther 2018; 190:1-14. [PMID: 29742479 DOI: 10.1016/j.pharmthera.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
94
|
Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. J Virol 2018; 92:JVI.01982-17. [PMID: 29491159 DOI: 10.1128/jvi.01982-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.
Collapse
|
95
|
Wagner R, Randolph JT, Patel SV, Nelson L, Matulenko MA, Keddy R, Pratt JK, Liu D, Krueger AC, Donner PL, Hutchinson DK, Flentge C, Betebenner D, Rockway T, Maring CJ, Ng TI, Krishnan P, Pilot-Matias T, Collins C, Panchal N, Reisch T, Dekhtyar T, Mondal R, Stolarik DF, Gao Y, Gao W, Beno DA, Kati WM. Highlights of the Structure-Activity Relationships of Benzimidazole Linked Pyrrolidines Leading to the Discovery of the Hepatitis C Virus NS5A Inhibitor Pibrentasvir (ABT-530). J Med Chem 2018; 61:4052-4066. [PMID: 29653491 DOI: 10.1021/acs.jmedchem.8b00082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Curative interferon and ribavirin sparing treatments for hepatitis C virus (HCV)-infected patients require a combination of mechanistically orthogonal direct acting antivirals. A shared component of these treatments is usually an HCV NS5A inhibitor. First generation FDA approved treatments, including the component NS5A inhibitors, do not exhibit equivalent efficacy against HCV virus genotypes 1-6. In particular, these first generation NS5A inhibitors tend to select for viral drug resistance. Ombitasvir is a first generation HCV NS5A inhibitor included as a key component of Viekira Pak for the treatment of patients with HCV genotype 1 infection. Since the launch of next generation HCV treatments, functional cure for genotype 1-6 HCV infections has been achieved, as well as shortened treatment duration across a wider spectrum of genotypes. In this paper, we show how we have modified the anchor, linker, and end-cap architecture of our NS5A inhibitor design template to discover a next generation NS5A inhibitor pibrentasvir (ABT-530), which exhibits potent inhibition of the replication of wild-type genotype 1-6 HCV replicons, as well as improved activity against replicon variants demonstrating resistance against first generation NS5A inhibitors.
Collapse
Affiliation(s)
- Rolf Wagner
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - John T Randolph
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Sachin V Patel
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Lissa Nelson
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Mark A Matulenko
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Ryan Keddy
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - John K Pratt
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Dachun Liu
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - A Chris Krueger
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Pamela L Donner
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Douglas K Hutchinson
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Charles Flentge
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - David Betebenner
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Todd Rockway
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Clarence J Maring
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Teresa I Ng
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Preethi Krishnan
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Tami Pilot-Matias
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Christine Collins
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Neeta Panchal
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Thomas Reisch
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Tatyana Dekhtyar
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Rubina Mondal
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - DeAnne F Stolarik
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Yi Gao
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Wenqing Gao
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - David A Beno
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| | - Warren M Kati
- Global Pharmaceutical Research and Development , AbbVie , 1 North Waukegan Road , North Chicago , Illinois 60064 , United States
| |
Collapse
|
96
|
Cai C, Koch B, Morikawa K, Suda G, Sakamoto N, Rueschenbaum S, Akhras S, Dietz J, Hildt E, Zeuzem S, Welsch C, Lange CM. Macrophage-Derived Extracellular Vesicles Induce Long-Lasting Immunity Against Hepatitis C Virus Which Is Blunted by Polyunsaturated Fatty Acids. Front Immunol 2018; 9:723. [PMID: 29706960 PMCID: PMC5906748 DOI: 10.3389/fimmu.2018.00723] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. In this study, we aimed to further characterize the role of macrophage-derived EVs in immune responses against hepatitis C virus (HCV) and the potential of polyunsaturated fatty acids (PUFAs) to modulate this modality of innate immunity. To this end, EVs were isolated from interferon-stimulated macrophage cultures or from serum of patients with acute or chronic hepatitis C. EVs were characterized by electron microscopy, flow cytometry, RNA-sequencing, and Western blot analysis. The effect of EVs on replication of HCV was assessed in coculture models. Functional analyses were performed to assess the impact of PUFAs on EV-mediated antiviral immunity. We found that macrophages secreted various cytokines shortly after stimulation with type I and II IFN, which orchestrated a fast but short-lasting antiviral state. This rapid innate immune answer was followed by the production of macrophage-derived EVs, which induced a late, but long-lasting inhibitory effect on HCV replication. Of note, exposure of macrophages to PUFAs, which are important regulators of immune responses, dampened EV-mediated antiviral immune responses. Finally, EVs from patients with hepatitis C exhibited long-lasting antiviral activities during IFN therapy as well. The antiviral effect of EVs from Caucasian and Japanese patients differed, which may be explained by different nutritional uptake of PUFAs. In conclusion, our data indicate that macrophage-derived EVs mediate long-lasting inhibitory effects on HCV replication, which may bridge the time until efficient adaptive immune responses are established, and which can be blunted by PUFAs.
Collapse
Affiliation(s)
- Chengcong Cai
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Benjamin Koch
- Department of Medicine 3, Goethe University Hospital, Frankfurt am Main, Germany
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Sabrina Rueschenbaum
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Sami Akhras
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Julia Dietz
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christoph Welsch
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christian M Lange
- Department of Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
97
|
Asselah T, Hassanein T, Waked I, Mansouri A, Dusheiko G, Gane E. Eliminating hepatitis C within low-income countries - The need to cure genotypes 4, 5, 6. J Hepatol 2018; 68:814-826. [PMID: 29229584 DOI: 10.1016/j.jhep.2017.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Around 70 to 100 million people are chronically infected with HCV worldwide. HCV antiviral drug development has revolutionised the treatment of HCV, with several direct-acting antiviral agents offering patients the chance of cure after only 8-12 weeks of treatment. Drug development was initially focussed on HCV genotype 1 (GT1) infection, since this was the most prevalent worldwide, although clinical trials included all genotypes prevalent in the US and Europe. Because the earliest in vitro assays utilised the GT1b and 2 replicons, the initial classes of direct-acting antivirals (protease inhibitors, non-nucleotide polymerase inhibitors) were GT1-specific, albeit they had an effect on other less prevalent genotypes. Epidemiological data has shown the regional importance of other HCV genotypes. More than 50% of all HCV infections around the globe are not with GT1. The prevalence of HCV genotype 4 (GT4), 5 (GT5), and 6 (GT6) is increasing in North America and Europe due to migration from the Middle East, Africa and South-East Asia. With the successful development of the multi and pan-genotypic non-structural protein 5A inhibitors, second generation protease inhibitors and nucleotide non-structural protein 5B inhibitors comes a unique opportunity to achieve global HCV elimination. The goal of this review is to summarise the available information pertaining to GT4, GT5 and GT6, with a specific focus on direct-acting antiviral agents.
Collapse
Affiliation(s)
- Tarik Asselah
- Centre de Recherche sur l'Inflammation, Viral Hepatitis INSERM UMR 1149, Université Paris Diderot, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| | - Tarek Hassanein
- Southern California GI and Liver Centers and Southern California Research Center, Coronado, CA, USA
| | - Imam Waked
- National Liver Institute, Menoufiya, Egypt
| | - Abdellah Mansouri
- Centre de Recherche sur l'Inflammation, Viral Hepatitis INSERM UMR 1149, Université Paris Diderot, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France
| | - Geoffrey Dusheiko
- UCL Institute of Liver and Digestive Health, University College London Medical School, Kings College Hospital, London, UK
| | - Edward Gane
- Liver Unit, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
98
|
Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1). Virology 2018; 518:253-263. [PMID: 29549787 DOI: 10.1016/j.virol.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction.
Collapse
|
99
|
Genetic Analysis of Serum-Derived Defective Hepatitis C Virus Genomes Revealed Novel Viral cis Elements for Virus Replication and Assembly. J Virol 2018; 92:JVI.02182-17. [PMID: 29367245 DOI: 10.1128/jvi.02182-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Defective viral genomes (DVGs) of hepatitis C virus (HCV) exist, but their biological significances have not been thoroughly investigated. Here, we analyzed HCV DVGs circulating in patient sera that possess deletions in the structural protein-encoding region. About 30% of 41 HCV clinical isolates possess DVGs that originated from the full-length genome in the same patients. No correlation between DVGs, viremia, and alanine aminotransferase (ALT) levels was found. Sequencing analysis of DVGs revealed the existence of deletion hot spots, with upstream sites in E1 and downstream sites in E2 and NS2. Interestingly, the coding sequences for the core protein and the C-terminal protease domain of NS2 were always intact in DVGs despite the fact that both proteins are dispensable for HCV genome replication. Mechanistic studies showed that transmembrane segment 3 (TMS3) of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. Moreover, we identified a highly conserved secondary structure (SL750) within the core domain 2-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed novel viral cis elements that play important roles in virus replication and assembly.IMPORTANCE HCV DVGs have been identified in vivo and in vitro, but their biogenesis and physiological significances remain elusive. In addition, a conventional packaging signal has not yet been identified on the HCV RNA genome, and mechanisms underlying the specificity in the encapsidation of the HCV genome into infectious particles remain to be uncovered. Here, we identified new viral cis elements critical for the HCV life cycle by determining genetic constraints that define the boundary of serum-derived HCV DVGs. We found that transmembrane segment 3 of NS2, located immediately upstream of its protease domain, was required for the cleavage of NS2-NS3 and the replication of DVGs. We identified a highly conserved secondary structure (SL750) within the core-coding region that is critical for HCV genome packaging. In summary, our analysis of serum-derived HCV DVGs revealed previously unexpected novel cis elements critical for HCV replication and morphogenesis.
Collapse
|
100
|
El-Wekil MM, Mahmoud AM, Alkahtani SA, Marzouk AA, Ali R. A facile synthesis of 3D NiFe 2O 4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study. Biosens Bioelectron 2018; 109:164-170. [PMID: 29554476 DOI: 10.1016/j.bios.2018.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/24/2018] [Accepted: 03/08/2018] [Indexed: 01/17/2023]
Abstract
Novel and sensitive electrochemical sensor was fabricated for the assay of anti-HCV ledipasvir (LEDV) in different matrices. The designed sensor was based on 3D spinel ferromagnetic NiFe2O4 nanospheres and reduced graphene oxide (RGO) supported by morpholinium acid sulphate (MHS), as an ionic liquid (RGO/NSNiFe2O4/MHS). This sensor design was assigned to synergistically tailor the unique properties of nanostructured ferrites, RGO, and ionic liquid to maximize the sensor response. Electrode modification prevented aggregation of NiFe2O4, increasing electroactive surface area and allowed remarkable electro-catalytic oxidation of LEDV with an enhanced oxidation response. Differential pulse voltammetry was used for detection LEDV in complex matrices whereas; cyclic voltammetry and other techniques were employed to characterize the developed sensor properties. All experimental factors regarding sensor fabrication and chemical sensing properties were carefully studied and optimized. Under the optimum conditions, the designated sensor displayed a wide linear range (0.4-350 ng mL-1) with LOD of 0.133 ng mL-1. Additionally, the proposed sensor demonstrated good selectivity, stability and reproducibility, enabling the quantitative detection of LEDV in Harvoni® tablets, human plasma and in a pharmacokinetic study. Our findings suggest that the developed sensor is a potential prototype material for fabrication of high-performance electrochemical sensors.
Collapse
Affiliation(s)
- Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| | - Ramadan Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt
| |
Collapse
|