51
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
52
|
Manquián-Cerda K, Calderón R, Molina-Roco M, Maldonado T, Arancibia-Miranda N. Cd 2+ Sorption Alterations in Ultisol Soils Triggered by Different Engineered Nanoparticles and Incubation Times. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3115. [PMID: 38133012 PMCID: PMC10745855 DOI: 10.3390/nano13243115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
The progressive influx of engineered nanoparticles (ENPs) into the soil matrix catalyses a fundamental transformation in the equilibrium dynamics between the soil and the edaphic solution. This all-encompassing investigation is geared towards unravelling the implications of an array of ENP types, diverse dosages and varying incubation durations on the kinetics governing Cd2+ sorption within Ultisol soils. These soils have been subjected to detailed characterizations probing their textural and physicochemical attributes in conjunction with an exhaustive exploration of ENP composition, structure and morphology. To decipher the intricate nuances of kinetics, discrete segments of Ultisol soils were subjected to isolated systems involving ENP dosages of 20 and 500 mg ENPs·kg-1 (AgNPs, CuNPs and FeNPs) across intervals of 1, 3 and 6 months. The comprehensive kinetic parameters were unveiled by applying the pseudo-first-order and pseudo-second-order models. At the same time, the underlying sorption mechanisms were studied via the intra-particle diffusion model. This study underscores the substantial impact of this substrate on the kinetic behaviours of contaminants such as Cd, emphasizing the need for its consideration in soil-linked economic activities and regulatory frameworks to optimize resource management.
Collapse
Affiliation(s)
- Karen Manquián-Cerda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins, 3363, Santiago 9170124, Chile
| | - Raúl Calderón
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Fabrica 1990, Segundo Piso, Santiago 8370993, Chile;
| | - Mauricio Molina-Roco
- Departamento de Acuicultura y Recursos Agroalimentarios, Campus Osorno-Chuyaca, Universidad de los Lagos, Osorno 5290000, Chile;
| | - Tamara Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Placilla, Valparaíso 2373223, Chile;
| | - Nicolás Arancibia-Miranda
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O’Higgins, 3363, Santiago 9170124, Chile
| |
Collapse
|
53
|
Hoang KNL, Murphy CJ. Adsorption and Molecular Display of a Redox-Active Protein on Gold Nanoparticle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15974-15985. [PMID: 37906943 DOI: 10.1021/acs.langmuir.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs' biological identity but can also affect the proteins' structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
54
|
Wu M, Shi R, Qi R, Li Y, Du J, Gao P. Four-dimensional electron energy-loss spectroscopy. Ultramicroscopy 2023; 253:113818. [PMID: 37544270 DOI: 10.1016/j.ultramic.2023.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Recent advances in scanning transmission electron microscopy have enabled atomic-scale focused, coherent, and monochromatic electron probes, achieving nanoscale spatial resolution, meV energy resolution, sufficient momentum resolution, and a wide energy detection range in electron energy-loss spectroscopy (EELS). A four-dimensional EELS (4D-EELS) dataset can be recorded with a slot aperture selecting the specific momentum direction in the diffraction plane and the beam scanning in two spatial dimensions. In this paper, the basic principle of the 4D-EELS technique and a few examples of its application are presented. In addition to parallelly acquired dispersion with energy down to a lattice vibration scale, it can map the real space variation of any EELS spectrum features with a specific momentum transfer and energy loss to study various locally inhomogeneous scattering processes. Furthermore, simple mathematical combinations associating the spectra at different momenta are feasible from the 4D dataset, e.g., the efficient acquisition of a reliable electron magnetic circular dichroism (EMCD) signal is demonstrated. This 4D-EELS technique provides new opportunities to probe the local dispersion and related physical properties at the nanoscale.
Collapse
Affiliation(s)
- Mei Wu
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Ruochen Shi
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Ruishi Qi
- Department of Physics, University of California at Berkeley, Berkeley 94720, United States
| | - Yuehui Li
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, Peking University, Beijing 100871, China; Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China.
| |
Collapse
|
55
|
Eid AM, Sayed OM, Hozayen W, Dishisha T. Mechanistic study of copper oxide, zinc oxide, cadmium oxide, and silver nanoparticles-mediated toxicity on the probiotic Lactobacillus reuteri. Drug Chem Toxicol 2023; 46:825-840. [PMID: 35930385 DOI: 10.1080/01480545.2022.2104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
The use of metal/metal oxide nanoparticles (NPs) in consumer products has increased dramatically. Accordingly, human exposure to these NPs has increased. Lactobacillus reuteri, a member of the beneficial gut microbiota, is essential for human health. In the present study, the toxic effect of three metal oxides (CuO, ZnO, and CdO) and one metal (Ag) NPs on L. reuteri were investigated in vitro. L. reuteri was susceptible to all the prepared NPs in a dose-dependent manner, visualized as an increase in the zones of inhibition and a significant reduction in the maximum specific growth rates (µmax). The minimal inhibitory concentrations were 5.8, 26, 560, and 560 µg/mL for CdO-, Ag-, ZnO-, and CuO-NPs, respectively, and the respective minimal bactericidal concentrations were 60, 70, 1500, and 1500 µg/mL. Electron microscopic examinations revealed the adsorption of the prepared NPs on L. reuteri cell surface, causing cell wall disruption and morphological changes. These changes were accompanied by significant leakage of cellular protein content by 214%, 191%, 112%, and 101% versus the untreated control when L. reuteri was treated with CdO-, Ag-, CuO-, and ZnO-NPs, respectively. NPs also induced oxidative damage, where the malondialdehyde level was significantly increased, and glutathione content was significantly decreased. Quantifying the DNA damage using comet assay showed that CuONPs had the maximum DNA tail length (8.2 px vs. 2.1 px for the control). While CdONPs showed the maximum percentage of DNA in tail (15.5% vs. 3.1%). This study provides a mechanistic evaluation of the NPs-mediated toxicity to a beneficial microorganism.
Collapse
Affiliation(s)
- Aya M Eid
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Osama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University Qantra, Ismailia, Egypt
| | - Walaa Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
56
|
Niu Z, Xu M, Guo X, Yan J, Liu M, Yang Y. Uptake of Silver-Containing Nanoparticles in an Estuarine Plant: Speciation and Bioaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16075-16085. [PMID: 37842941 DOI: 10.1021/acs.est.3c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Understanding the bioaccumulation of silver-containing nanoparticles (Ag-NPs) with different species, concentrations, and sizes in estuarine plants is critical to their related environmental risk. Herein, the distribution of Ag-NPs in tidewater, sediments, and plants (Scirpus triqueter) of field-constructed mesocosm was investigated, where tidewater was exposed to Ag0-NPs and Ag+ at environmentally relevant concentrations. Particle number concentrations (PNCs) and sizes of Ag-NPs with various species were analyzed using a multistep selective dissolution method followed by the single-particle- inductively coupled plasma mass spectrometry technique. After 30 days of exposure, more than half of Ag0-NPs were dissolved to Ag+ and about 1/4 of Ag+ were transformed into Ag0-/AgCl-NPs in tidewater. Ag-NPs in stems exposed to Ag0-NPs were found to be dominated by metallic Ag, while Ag+ exposure led to more Ag2S-NPs in stems. In roots, 71% and 51% of Ag-NPs were found as Ag2S-NPs for Ag0-NPs and Ag+ treatment groups, respectively. Plant stems had a significantly higher enrichment of Ag-NPs than roots. Based on both random forests and structure equation models, it is suggested that salinity of tidewater can regulate Ag0-NPs in tidewater indirectly by influencing AgCl-NPs in tidewater and further affect the total PNCs of Ag-NPs in plant stems. Moreover, elevated sulfate-reducing bacteria (SRB) result in more Ag2S-NPs in rhizosphere sediments, thereby enhancing the bioaccumulation of Ag-NPs by roots.
Collapse
Affiliation(s)
- Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
57
|
Dong Z, Chen Z, Rui J, Li W, Qiu Y. Size effect of graphene oxide from quantum dot to nanoflake on the mobility of nanoplastics in seawater-saturated sand. WATER RESEARCH 2023; 244:120491. [PMID: 37598569 DOI: 10.1016/j.watres.2023.120491] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Marine sedimentary environment serves as an important sink of terrigenous nanoplastics (NP) and graphene oxides (GO). In this study, we discovered that GO of varying sizes exhibited distinct binding modes with 200 nm NP in 35 practical salinity unit (PSU) seawater, resulting in varying impacts on the mobility of NP in porous media. GO-8, with a size of 8±2 nm, firmly adhered to the surface of NP and formed stable primary heterogeneous aggregates, which promoted NP mobility and increased the mass recovery of effluent (Meff) from 24.74% to 31.08%. GO-250 (246±10 nm) partly enveloped NP and only slightly increased the volume of heteroaggregates, which had minimal effect on NP transport. Conversely, GO-850 (855±55 nm) wrapped numerous NP particles to form large secondary heteroaggregates that clung to sand surfaces, providing additional attachment sites for NP, resulting in complete inhibition of NP mobility in porous media (Meff = 0%). In brackish water with 3.5 PSU, all GO-8, GO-250 and GO-850 achieved enhanced mobility of NP, with Meff increasing from 50.35% to 85.62%, 69.45% and 75.41%, respectively. The results indicate that GO size effects on NP mobility are also salinity-dependent.
Collapse
Affiliation(s)
- Zhiqiang Dong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai, 201906, China; China Railway Engineering Group Co., Beijing, 100039, China
| | - Zheng Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Junnan Rui
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Weiying Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Yuping Qiu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
58
|
Karkee H, Gundlach-Graham A. Characterization and Quantification of Natural and Anthropogenic Titanium-Containing Particles Using Single-Particle ICP-TOFMS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14058-14070. [PMID: 37676008 DOI: 10.1021/acs.est.3c04473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Titanium-containing nanoparticles (NPs) and submicrometer particles (μPs) in the environment can come from natural or anthropogenic sources. In this study, we investigate the use of single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) to measure and classify individual Ti-containing particles as either engineered (Ti-eng) or naturally occurring (Ti-nat) based on elemental composition and multielement mass ratios. We analyze mixtures of four Ti-containing particle types: anthropogenic food-grade TiO2 particles and particles from rutile, ilmenite, and biotite mineral samples. Through characterization of neat particle suspensions, we develop a decision-tree-based classification scheme to distinguish Ti-eng from Ti-nat particles and to classify individual Ti-nat particles by mineral type. Engineered TiO2 and rutile particles have the same major-element composition. To distinguish Ti-eng particles from rutile, we developed particle-type detection limits based on the average crustal abundance ratio of titanium to niobium. For our measurements, the average Ti mass needed to classify Ti-eng particles is 9.3 fg, which corresponds to a diameter of 211 nm for TiO2. From neat suspensions, we demonstrate classification rates of 55%, 32%, 75%, and 72% for Ti-eng, rutile, ilmenite, and biotite particles, respectively. Our classification approach minimizes false-positive classifications, with rates below 5% for all particle types. Individual Ti-eng particles can be accurately classified at the submicron size range, while the Ti-nat particles are classified in the nanoregime (diameter < 100 nm). Efficacy of our classification approach is demonstrated through the analysis of controlled mixtures of Ti-eng and Ti-nat and the analysis of natural streamwater spiked with Ti-eng particles. In control mixtures, Ti-eng particles can be measured and classified at particle-number concentrations (PNCs) 60-times lower than that of Ti-nat particles and across a PNC range of at least 3 orders of magnitude. In the streamwater sample, Ti-eng particles are classified at environmentally relevant PNCs that are 44-times lower than the background Ti-nat PNC and 2850-times lower than the total PNC.
Collapse
Affiliation(s)
- Hark Karkee
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | |
Collapse
|
59
|
Wen HG, Zhao JH, Zhang BS, Gao F, Wu XM, Yan YS, Zhang J, Guo HS. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens. NATURE PLANTS 2023; 9:1409-1418. [PMID: 37653339 DOI: 10.1038/s41477-023-01507-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Small RNA (sRNA)-mediated trans-kingdom RNA interference (RNAi) between host and pathogen has been demonstrated and utilized. However, interspecies RNAi in rhizospheric microorganisms remains elusive. In this study, we developed a microbe-induced gene silencing (MIGS) technology by using a rhizospheric beneficial fungus, Trichoderma harzianum, to exploit an RNAi engineering microbe and two soil-borne pathogenic fungi, Verticillium dahliae and Fusarium oxysporum, as RNAi recipients. We first detected the feasibility of MIGS in inducing GFP silencing in V. dahliae. Then by targeting a fungal essential gene, we further demonstrated the effectiveness of MIGS in inhibiting fungal growth and protecting dicotyledon cotton and monocotyledon rice plants against V. dahliae and F. oxysporum. We also showed steerable MIGS specificity based on a selected target sequence. Our data verify interspecies RNAi in rhizospheric fungi and the potential application of MIGS in crop protection. In addition, the in situ propagation of a rhizospheric beneficial microbe would be optimal in ensuring the stability and sustainability of sRNAs, avoiding the use of nanomaterials to carry chemically synthetic sRNAs. Our finding reveals that exploiting MIGS-based biofungicides would offer straightforward design and implementation, without the need of host genetic modification, in crop protection against phytopathogens.
Collapse
Affiliation(s)
- Han-Guang Wen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| | - Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Feng Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Ming Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yong-Sheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
60
|
Liu B, Han Z, Pan Y, Liu X, Zhang M, Wan A, Wang Z. Synergistic Effects of Organic Ligands and Visible Light on the Reductive Dissolution of CeO 2 Nanoparticles: Mechanisms and Implications for the Transformation in Plant Surroundings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11999-12009. [PMID: 37535498 DOI: 10.1021/acs.est.3c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Cerium oxide (CeO2) nanoparticles are one of the most important engineered nanomaterials with demonstrated applications in industry. Although numerous studies have reported the plant uptake of CeO2, its fate and transformation pathways and mechanisms in plant-related conditions are still not well understood. This study investigated the stability of CeO2 in the presence of organic ligands (maleic and citric acid) and light irradiation. For the first time, we found that organic ligands and visible light had a synergistic effect on the reductive dissolution of CeO2 with up to 30% Ce releases after 3 days, which is the highest release reported so far under environmental conditions. Moreover, the photoinduced dissolution of CeO2 in the presence of citrate was much higher than that in maleate, which are adsorbed on the surface of CeO2 through inner-sphere and outer-sphere complexation, respectively. A novel ligand-dependent photodissolution mechanism was proposed and highlighted: upon electron-hole separation under light irradiation, the inner-sphere complexed citrate is more capable of consuming the hole, prolonging the life of electrons for the reduction of Ce(IV) to Ce(III). Finally, reoxidation of Ce(III) by oxygen was observed and discussed. This comprehensive work advances our knowledge of the fate and transformation of CeO2 in plant surroundings.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zixin Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
61
|
Li G, Liu X, Wang H, Liang S, Xia B, Sun K, Li X, Dai Y, Yue T, Zhao J, Wang Z, Xing B. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. WATER RESEARCH 2023; 242:120242. [PMID: 37390658 DOI: 10.1016/j.watres.2023.120242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Metal-based nanoparticles (NPs) attract increasing concerns because of their adverse effects on aquatic ecosystems. However, their environmental concentrations and size distributions are largely unknown, especially in marine environments. In this work, environmental concentrations and risks of metal-based NPs were examined in Laizhou Bay (China) using single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS). First, separation and detection approaches of metal-based NPs were optimized for seawater and sediment samples with high recoveries of 96.7% and 76.3%, respectively. Spatial distribution results showed that Ti-based NPs had the highest average concentrations for all the 24 stations (seawater, 1.78 × 108 particles/L; sediments, 7.75 × 1012 particles/kg), followed by Zn-, Ag-, Cu-, and Au-based NPs. For all the NPs in seawater, the highest abundance occurred around the Yellow River Estuary, resulting from a huge input from Yellow River. In addition, the sizes of metal-based NPs were generally smaller in sediments than those in seawater (22, 20, 17, and 16 of 22 stations for Ag-, Cu-, Ti-, and Zn-based NPs, respectively). Based on the toxicological data of engineered NPs, predicted no-effect concentrations (PNECs) to marine species were calculated as Ag at 72.8 ng/L < ZnO at 2.66 µg/L < CuO at 7.83 µg/L < TiO2 at 72.0 µg/L, and the actual PNECs of the detected metal-based NPs may be higher due to the possible presence of natural NPs. Station 2 (around the Yellow River Estuary) was assessed as "high risk" for Ag- and Ti-based NPs with risk characterization ratio (RCR) values of 1.73 and 1.66, respectively. In addition, RCRtotal values for all the four metal-based NPs were calculated to fully assess the co-exposure environmental risk, with 1, 20, and 1 of 22 stations as "high risk", "medium risk", and "low risk", respectively. This study helps to better understand the risks of metal-based NPs in marine environments.
Collapse
Affiliation(s)
- Guoxin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Shengkang Liang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao 266100, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Ke Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Xinyu Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
62
|
Zhou S, Li H, Wang H, Wang R, Song W, Li D, Wei C, Guo Y, He X, Deng Y. Nickel Nanoparticles Induced Hepatotoxicity in Mice via Lipid-Metabolism-Dysfunction-Regulated Inflammatory Injury. Molecules 2023; 28:5757. [PMID: 37570729 PMCID: PMC10421287 DOI: 10.3390/molecules28155757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.
Collapse
Affiliation(s)
- Shuang Zhou
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| | - Hua Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Hui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Rui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Wei Song
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Da Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Changlei Wei
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yu Guo
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Xueying He
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yulin Deng
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| |
Collapse
|
63
|
Schiavo B, Morton-Bermea O, Meza-Figueroa D, Acosta-Elías M, González-Grijalva B, Armienta-Hernández MA, Inguaggiato C, Valera-Fernández D. Characterization and Polydispersity of Volcanic Ash Nanoparticles in Synthetic Lung Fluid. TOXICS 2023; 11:624. [PMID: 37505589 PMCID: PMC10383943 DOI: 10.3390/toxics11070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
The inhalation of natural nanoparticles (NPs) emitted from volcanic activity may be a risk to human health. However, the literature rarely reports the fate and response of NPs once in contact with lung fluids. In this work, we studied the particle size distribution of ashfall from Popocatépetl volcano, Mexico. The collected ashes (n = 5) were analyzed with scanning electron microscopy (SEM) to obtain the elemental composition and morphology, and to determine the size of the ash particles using ParticleMetric software (PMS). The PMS reported most of the ash to have submicrometric size (<1 μm) and an average equivalent circle of 2.72 μm. Moreover, to our knowledge, this study investigated for the first time the behavior of ash NPs at different times (0 to 24 h) while in contact with in vitro lung fluid, Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) using dynamic light scattering (DLS). We found a large variability in the hydrodynamic diameter, with values less than 1 nm and greater than 5 μm. Furthermore, aggregation and disaggregation processes were recognized in GS and ALF, respectively. The results of this study increase the knowledge of the interaction between NPs and lung fluids, particularly within the alveolar macrophage region.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ofelia Morton-Bermea
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Mónica Acosta-Elías
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | | | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada 22860, Mexico
| | - Daisy Valera-Fernández
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
64
|
Chen C, Dong Y, Thompson A. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449758 DOI: 10.1021/acs.est.3c01876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II)aq with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of 57Fe-enriched Fe(II)aq with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II)aq for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
Collapse
Affiliation(s)
- Chunmei Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanjun Dong
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
65
|
Li Q, Chen Z, Zhang L, Wei W, Song E, Song Y. Silicon dioxide nanoparticles adsorption alters the secondary and tertiary structures of catalase and undermines its activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121601. [PMID: 37031852 DOI: 10.1016/j.envpol.2023.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
The expanding production and use of nanomaterials in various fields caused big concern for human health. Oxidative stress is the most frequently described mechanism of nanomaterial toxicity. A state of oxidative stress can be defined as the imbalance of reactive oxygen species (ROS) production and antioxidant enzyme activities. Although nanomaterials-triggered ROS generation has been extensively investigated, little is known regarding the regulation of antioxidant enzyme activities by nanomaterials. This study used two typical nanomaterials, SiO2 nanoparticles (NPs) and TiO2 NPs, to predict their binding affinities and interactions with antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). The molecular docking results showed that CAT and SOD had different binding sites, binding affinity, and interaction modes with SiO2 NPs and TiO2 NPs. The binding affinities of the two NPs to CAT were more potent than those to SOD. Consistently, the experimental work indicated NPs adsorption caused the perturbation of the second and tertiary structures of both enzymes and thus resulted in the loss of enzyme activities.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhangde Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihui Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; School of Pharmaceutical Sciences, Tongren Polytechnic College, Tongren, Guizhou, 554300, China
| | - Wei Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
66
|
Wang Y, Liu L, Cao S, Yu J, Li X, Su Y, Li G, Gao H, Zhao Z. Spatio-temporal variation of soil microplastics as emerging pollutant after long-term application of plastic mulching and organic compost in apple orchards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121571. [PMID: 37028788 DOI: 10.1016/j.envpol.2023.121571] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs) pollution in agroecosystems have aroused great alarm and widespread concern. However, the spatial distribution and temporal variation characteristics of MPs in apple orchards with long-term plastic mulching and organic compost input are still poorly understood. This study investigated MPs accumulation characteristics and vertical distribution after applying plastic mulch and organic compost in apple orchards for 3 (AO-3), 9 (AO-9), 17 (AO-17), and 26 (AO-26) years on the Loess Plateau. The clear tillage (no plastic mulching and organic composts) area was used as a control (CK). At a soil depth of 0-40 cm, AO-3, AO-9, AO-17, and AO-26 treatments increased the abundances of MPs, and the black fibers and fragments of rayon and polypropylene were dominant. In the 0-20 cm soil layer, the abundances of MPs increased with the treatment time; the abundance was 4333 pieces kg-1 after 26 years of treatment, gradually decreasing with soil depth. In different treatments and soil layers, the percentages of MPs <1000 μm were dominant (>50%). The AO-17 and AO-26 treatments significantly increased the MPs with the size of 0-500 μm at 0-40 cm and the abundances of pellets in 0-60 cm soil. In conclusion, the long-term (≥17 years) application of plastic mulching and organic composts increased the abundances of small particles at 0-40 cm, and plastic mulching contributed the most to MPs, while organic composts increased the complexity and diversity of MPs.
Collapse
Affiliation(s)
- Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shan Cao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Li
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yating Su
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gaochao Li
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
67
|
Zhou Y, He G, Bhagwat G, Palanisami T, Yang Y, Liu W, Zhang Q. Nanoplastics alter ecosystem multifunctionality and may increase global warming potential. GLOBAL CHANGE BIOLOGY 2023; 29:3895-3909. [PMID: 37089084 DOI: 10.1111/gcb.16734] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Although the presence of nanoplastics in aquatic and terrestrial ecosystems has received increasing attention, little is known about its potential effect on ecosystem processes and functions. Here, we evaluated if differentially charged polystyrene (PS) nanoplastics (PS-NH2 and PS-SO3 H) exhibit distinct influences on microbial community structure, nitrogen removal processes (denitrification and anammox), emissions of greenhouse gases (CO2 , CH4 , and N2 O), and ecosystem multifunctionality in soils with and without earthworms through a 42-day microcosm experiment. Our results indicated that nanoplastics significantly altered soil microbial community structure and potential functions, with more pronounced effects for positively charged PS-NH2 than for negatively charged PS-SO3 H. Ecologically relevant concentration (3 g kg-1 ) of nanoplastics inhibited both soil denitrification and anammox rates, while environmentally realistic concentration (0.3 g kg-1 ) of nanoplastics decreased the denitrification rate and enhanced the anammox rate. The soil N2 O flux was always inhibited 6%-51% by both types of nanoplastics, whereas emissions of CO2 and CH4 were enhanced by nanoplastics in most cases. Significantly, although N2 O emissions were decreased by nanoplastics, the global warming potential of total greenhouse gases was increased 21%-75% by nanoplastics in soils without earthworms. Moreover, ecosystem multifunctionality was increased 4%-12% by 0.3 g kg-1 of nanoplastics but decreased 4%-11% by 3 g kg-1 of nanoplastics. Our findings provide the only evidence to date that the rapid increase in nanoplastics is altering not only ecosystem structure and processes but also ecosystem multifunctionality, and it may increase the emission of CO2 and CH4 and their global warming potential to some extent.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Geetika Bhagwat
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
68
|
Zeng G, He Y, Wang F, Luo H, Liang D, Wang J, Huang J, Yu C, Jin L, Sun D. Toxicity of Nanoscale Zero-Valent Iron to Soil Microorganisms and Related Defense Mechanisms: A Review. TOXICS 2023; 11:514. [PMID: 37368614 DOI: 10.3390/toxics11060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Soil pollution is a global environmental problem. Nanoscale zero-valent iron (nZVI) as a kind of emerging remedial material is used for contaminated soil, which can quickly and effectively degrade and remove pollutants such as organic halides, nitrates and heavy metals in soil, respectively. However, nZVI and its composites can enter the soil environment in the application process, affect the physical and chemical properties of the soil, be absorbed by microorganisms and affect the growth and metabolism of microorganisms, thus affecting the ecological environment of the entire soil. Because of the potential risks of nZVI to the environment and ecosystems, this paper summarizes the current application of nZVI in the remediation of contaminated soil environments, summarizes the various factors affecting the toxic effects of nZVI particles and comprehensively analyzes the toxic effects of nZVI on microorganisms, toxic mechanisms and cell defense behaviors to provide a theoretical reference for subsequent biosafety research on nZVI.
Collapse
Grants
- 52103156,51901160 National Natural Science Foundation of China
- cstc2021jcyjmsxmX0663 Chongqing Science and Technology Commission Project
- CSTB2022NSCQ-MSX1145, cstc2021jcyjmsxmX0901, cstc2021jcyj-msxmX0559, CSTB2022BSXM-JCX0149, cstc2018jscx-zdyfxmX0001 Natural Science Foundation of Chongqing, China
- KJQN202001530, KJQN202103905, KJQN202101526, KJQN202103902 the Scientific and Technological Research Program of Chongqing Municipal Education Commis-sion
- YS2021089 Chongqing Bayu Scholars Young Scholars Project
- 2021198, 202211551007 College Students Innovation Training Program
- shljzyh2021-09 Provincial and Ministerial Co-constructive of Collaborative Innovation Center for MSW Compre-hensive Utilization
- YKJCX2220602 Postgraduate Innovation Program of Chongqing University of Science and Technology
Collapse
Affiliation(s)
- Guoming Zeng
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Yu He
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fei Wang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Heng Luo
- Geological Research Institute of No. 9 Oil Production Plant of CNPC Changqing Oilfield, Yinchuan 750006, China
| | - Dong Liang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jian Wang
- Chongqing Yubei District Ecological Environment Monitoring Station, Chongqing 401124, China
| | - Jiansheng Huang
- School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
| | - Libo Jin
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
69
|
Dai Y, Sun C, Hou R, Lan R, Su W, Zhao J, Wang Z, Xing B. Transfer of CeO 2 nanoparticles between freshwater omnivorous organisms: Effect of feces and necrophagy. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131137. [PMID: 36913748 DOI: 10.1016/j.jhazmat.2023.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Transfer of CeO2 engineered nanoparticles (NPs) through feces was investigated between two omnivorous organisms, red crucian carp (Carassius auratus red var.) and crayfish (Procambarus clarkii). Upon water exposure (5 mg/L, 7 days), the highest bioaccumulation was observed in carp gills (5.95 μg Ce/g D.W.) and crayfish hepatopancreas (648 μg Ce/g D.W.), with the bioconcentration factors (BCFs) at 0.45 and 3.61, respectively. In addition, 97.4% and 73.0% of ingested Ce were excreted by carp and crayfish, respectively. The feces of carp and crayfish were collected and fed to crayfish and carp, respectively. After feces exposure, bioconcentration was observed in both carp (BCF, 3.00) and crayfish (BCF, 4.56). After feeding crayfish with carp bodies (1.85 μg Ce/g D.W.), CeO2 NPs were not biomagnified (biomagnification factor, 0.28). Upon water exposure, CeO2 NPs were transformed into Ce(III) in the feces of both carp (24.6%) and crayfish (13.6%), and the transformation was stronger after subsequent feces exposure (100% and 73.7%, respectively). Feces exposure lowered histopathological damage, oxidative stress, and nutritional quality (e.g., crude proteins, microelements, amino acids) to carp and crayfish in comparison with water exposure. This research highlights the importance of feces exposure on the transfer and fate of NPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Chunxiao Sun
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Ruifeng Hou
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Ruyi Lan
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Wenli Su
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
70
|
Yu S, Tan Z, Lai Y, Li Q, Liu J. Nanoparticulate pollutants in the environment: Analytical methods, formation, and transformation. ECO-ENVIRONMENT & HEALTH 2023; 2:61-73. [PMID: 38075291 PMCID: PMC10702925 DOI: 10.1016/j.eehl.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2024]
Abstract
The wide application of nanomaterials and plastic products generates a substantial number of nanoparticulate pollutants in the environment. Nanoparticulate pollutants are quite different from their bulk counterparts because of their unique physicochemical properties, which may pose a threat to environmental organisms and human beings. To accurately predict the environmental risks of nanoparticulate pollutants, great efforts have been devoted to developing reliable methods to define their occurrence and track their fate and transformation in the environment. Herein, we summarized representative studies on the preconcentration, separation, formation, and transformation of nanoparticulate pollutants in environmental samples. Finally, some perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingcun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
71
|
Ding F, Liu Y. A novel density functional study on the freezing mechanism of a nanodroplet under an external electric field. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
72
|
Li Y, Li J, Jiang S, Zhong C, Zhao C, Jiao Y, Shen J, Chen H, Ye M, Zhou J, Yang X, Gou Z, Xu S, Shen M. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration. Mater Today Bio 2023; 20:100667. [PMID: 37273795 PMCID: PMC10238647 DOI: 10.1016/j.mtbio.2023.100667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023] Open
Abstract
The pore morphology design of bioceramic scaffolds plays a substantial role in the induction of bone regeneration. Specifically, the effects of different scaffold pore geometry designs on angiogenesis and new bone regeneration remain unclear. Therefore, we fabricated Mg/Sr co-doped wollastonite bioceramic (MS-CSi) scaffolds with three different pore geometries (gyroid, cylindrical, and cubic) and compared their effects on osteogenesis and angiogenesis in vitro and in vivo. The MS-CSi scaffolds were fabricated by digital light processing (DLP) printing technology. The pore structure, mechanical properties, and degradation rate of the scaffolds were investigated. Cell proliferation on the scaffolds was evaluated using CCK-8 assays while angiogenesis was assessed using Transwell migration assays, tube formation assays, and immunofluorescence staining. The underlying mechanism was explored by western blotting. Osteogenic ability of scaffolds was evaluated by alkaline phosphatase (ALP) staining, western blotting, and qRT-PCR. Subsequently, a rabbit femoral defect model was prepared to compare differences in the scaffolds in osteogenesis and angiogenesis in vivo. Cell culture experiments showed that the gyroid pore scaffold downregulated YAP/TAZ phosphorylation and enhanced YAP/TAZ nuclear translocation, thereby promoting proliferation, migration, tube formation, and high expression of CD31 in human umbilical vein endothelial cells (HUVECs) while strut-based (cubic and cylindrical pore) scaffolds promoted osteogenic differentiation in bone marrow mesenchymal stem cells and upregulation of osteogenesis-related genes. The gyroid pore scaffolds were observed to facilitate early angiogenesis in the femoral-defect model rabbits while the strut-based scaffolds promoted the formation of new bone tissue. Our study indicated that the pore geometries and pore curvature characteristics of bioceramic scaffolds can be precisely tuned for enhancing both osteogenesis and angiogenesis. These results may provide new ideas for the design of bioceramic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Jiafeng Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Cheng Zhong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Chenchen Zhao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yang Jiao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Jian Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Huaizhi Chen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Meihan Ye
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Jiayu Zhou
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, PR China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, PR China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Miaoda Shen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| |
Collapse
|
73
|
Whittaker ML, Shoaib M, Lammers LN, Zhang Y, Tournassat C, Gilbert B. Smectite phase separation is driven by hydration-mediated interfacial charge. J Colloid Interface Sci 2023; 647:406-420. [PMID: 37269737 DOI: 10.1016/j.jcis.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
Smectite clay minerals have an outsize impact on the response of clay-rich media to common stimuli, such as hydration and ion exchange, motivating extensive effort to understand behaviors resulting from these processes such as swelling and exfoliation. Smectites are common and historic systems for investigating colloidal and interfacial phenomena, with two swelling regimes commonly identified across myriad clays: osmotic swelling at high water activity and crystalline swelling at low water activity. However, no current swelling model seamlessly spans the full ranges of water, salt and clay content encountered in natural or engineered settings. Here, we show that structures previously rationalized as either osmotic or crystalline coexist as a rich array of distinct colloidal phases that differ by water content, layer stacking thickness, and curvature. We present an analytical model for intermolecular potentials among water, salt and clay in both mono- and divalent electrolytes that predicts swelling pressures across high and low water activities. Our results indicate that all clay swelling is osmotic swelling, but that the osmotic pressure of charged mineral interfaces becomes attractive and dominates that of the electrolyte at high clay activities. Global energy minima are often not reached on experimental timescales due to many local energy minima that promote long-lived intermediate states with vast differences in clay, ion, and water mobilities, leading to hyperdiffusive layer dynamics driven by variable hydration-mediated interfacial charge. Teaser Distinct colloidal phases of swelling clays emerge via ion (de)hydration at mineral interfaces that drives hyperdiffusive layer dynamics as metastable smectites approach equilibrium.
Collapse
Affiliation(s)
- Michael L Whittaker
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA.
| | - Mohammad Shoaib
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Laura N Lammers
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christophe Tournassat
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Institut des Sciences de la Terre d'Orléans, Université d'Orléans-CNRS-BRGM, Orléans 45071, France
| | - Benjamin Gilbert
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
74
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
75
|
Lee YS, Chul Park B, Beom Lee D, Min HG, Kim MS, Kim SC, Ok Won S, Wee J, Chae E, Sim C, Kim Y, Kim JG, Keun Kim Y, Cho K. Crystallization-based upcycling of iron oxyhydroxide for efficient arsenic capture in contaminated soils. ENVIRONMENT INTERNATIONAL 2023; 175:107963. [PMID: 37192573 DOI: 10.1016/j.envint.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/08/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Arsenic (As)-contaminated soil inevitably exists in nature and has become a global challenge for a sustainable future. Current processes for As capture using natural and structurally engineered nanomaterials are neither scientifically nor economically viable. Here, we established a feasible strategy to enhance As-capture efficiency and ecosystem health by structurally reorganizing iron oxyhydroxide, a natural As stabilizer. We propose crystallization to reorganize FeOOH-acetate nanoplatelets (r-FAN), which is universal for either scalable chemical synthesis or reproduction from natural iron oxyhydroxide phases. The r-FAN with wide interlayer spacing immobilizes As species through a synergistic mechanism of electrostatic intercalation and surface chemisorption. The r-FAN rehabilitates the ecological fitness of As-contaminated artificial and mine soils, as manifested by the integrated bioassay results of collembolan and plants. Our findings will serve as a cornerstone for crystallization-based material engineering for sustainable environmental applications and for understanding the interactions between soil, nanoparticles, and contaminants.
Collapse
Affiliation(s)
- Yun-Sik Lee
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - Bum Chul Park
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dae Beom Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Hyun-Gi Min
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Min-Suk Kim
- Waste Resources Management Division Resource Recirculation Bureau, Ministry of Environment, Sejong-si 30103, Republic of Korea
| | - Sung-Chul Kim
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ok Won
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - June Wee
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Eunji Chae
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Youngeun Kim
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Gyu Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea.
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
76
|
Hendriks L, Mitrano DM. Direct Measurement of Microplastics by Carbon Detection via Single Particle ICP-TOFMS in Complex Aqueous Suspensions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7263-7272. [PMID: 37104680 DOI: 10.1021/acs.est.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multiple analytical techniques to measure microplastics (MPs) in complex environmental matrices are currently under development, and which is most suited often depends on the aim(s) of the research question and the experimental design. Here, we further broaden the suite of possible techniques which can directly detect MPs in suspension while differentiating the carbon contained in MPs from other natural particles and dissolved organic carbon (DOC). Single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) is well suited to measuring particles at trace concentrations, and the use of ICP time-of-flight-MS (ICP-TOFMS) allows one to simultaneously monitor the entire elemental spectrum to assess the full elemental composition of individual particles through developing elemental fingerprints. Because carbon is not detected in a standard operation mode with icp TOF, a dedicated optimization was necessary. Subsequently, to assess the feasibility of monitoring 12C particle pulses for the detection of MPs in more complex natural waters, two proof-of-principle studies were performed to measure MPs in waters with environmentally relevant DOC backgrounds (≤20 mg/L) and in the presence of other carbon containing particles, here, algae. Elevated DOC concentrations did not impact the enumeration of particles in suspension, and individual MPs, single algae, and aggregates of MPs and algae were clearly distinguished. The simultaneous identification of different analytes of interest allows for multiplexed sp-ICP-TOFMS experiments utilizing elemental fingerprinting of particles and is a step forward in quantifying MPs in aqueous environmental samples.
Collapse
Affiliation(s)
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitatstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
77
|
Vignardi CP, Adeleye AS, Kayal M, Oranu E, Miller RJ, Keller AA, Holden PA, Lenihan HS. Aging of Copper Nanoparticles in the Marine Environment Regulates Toxicity for a Coastal Phytoplankton Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6989-6998. [PMID: 37083408 DOI: 10.1021/acs.est.2c07953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental conditions in aquatic ecosystems transform toxic chemicals over time, influencing their bioavailability and toxicity. Using an environmentally relevant methodology, we tested how exposure to seawater for 1-15 weeks influenced the accumulation and toxicity of copper nanoparticles (nano-Cu) in a marine phytoplankton species. Nano-Cu rapidly agglomerated in seawater and then decreased in size due to Cu dissolution. Dissolution rates declined during weeks 1-4 and remained low until 15 weeks, when the large agglomerates that had formed began to rapidly dissolve again. Marine phytoplankton species were exposed for 5-day periods to nano-Cu aged from 1 to 15 weeks at concentrations from 0.01 to 20 ppm. Toxicity to phytoplankton, measured as change in population growth rate, decreased significantly with particle aging from 0 to 4 weeks but increased substantially in the 15-week treatment due apparently to elevated Cu dissolution of reagglomerated particles. Results indicate that the transformation, fate, and toxicity of nano-Cu in marine ecosystems are influenced by a highly dynamic physicochemical aging process.
Collapse
Affiliation(s)
- Caroline P Vignardi
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Mohsen Kayal
- UMR ENTROPIE, IRD, IFREMER, CNRS, University of La Reunion, University of New Caledonia, Noumea 98848, New Caledonia
| | - Ekene Oranu
- College of Letters & Science, University of California, Santa Barbara, California 93106, United States
| | - Robert J Miller
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| | - Hunter S Lenihan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
78
|
Guo J, Liu N, Xie Q, Zhu L, Ge F. Polystyrene microplastics facilitate the biotoxicity and biomagnification of ZnO nanoparticles in the food chain from algae to daphnia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121181. [PMID: 36736564 DOI: 10.1016/j.envpol.2023.121181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Ubiquitous microplastics (MPs) may affect the trophic transfer of nanoparticles (NPs), in turn threatening aquatic organisms and even human health. Thus, this study explored the influence of polystyrene microplastics (PS MPs) on the biotoxicity and biomagnification of ZnO nanoparticles (ZnO NPs) in the aquatic food chain from Chlorella vulgaris (C. vulgaris) to Daphnia magna (D. magna). The results showed that PS MPs facilitated the biotoxicity of ZnO NPs towards D. magna after dietary exposure. Compared to the control (single ZnO NPs), the heart rate and the level of reactive oxygen species were remarkably increased by 21.25% and 16.32% in the combined system (PS MPs + ZnO NPs), respectively. Notably, PS MPs suppressed the ZnO NPs accumulation in C. vulgaris, while remarkably facilitating the trophic transfer of ZnO NPs to D. magna. The biomagnification of ZnO NPs was evident with a maximal biomagnification factor (BMF) of 1.49 under acute dietary exposure of PS MPs (72 h), but was absent in the single ZnO NPs system (BMF <0.90). Moreover, PS MPs resulted in a larger biomagnification of ZnO NPs with a maximal BMF of 2.11 under chronic dietary exposure (21 days). Furthermore, the Zn element (including ZnO NPs and released Zn2+) was observed to accumulate in the intestine, thus causing ultrastructural damage and lipid droplet (LD) aggregate. Overall, these findings highlight the importance of considering the impact of MPs on co-existed pollutants and contribute to a better understanding of the ecological risks of MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Jingyi Guo
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Qiting Xie
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
79
|
Khalifa EB, Cecone C, Bracco P, Malandrino M, Paganini MC, Magnacca G. Eco-friendly PVA-LYS fibers for gold nanoparticle recovery from water and their catalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65659-65674. [PMID: 37086312 DOI: 10.1007/s11356-023-26912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
In this work, we grafted lysine on PVA electrospun fibers, using a green preparation technique. The resulting fiber mats were proposed for gold nanoparticles (AuNPs) removal from water. The efficiency of three fibers with different lysine amounts (10, 20, and 30%) was investigated. The incorporation of amino groups in PVA fibers was firstly proved by FTIR, SEM, and elemental analysis, confirming the presence of lysine. Among the three different fibers, PVA-LYS 30% has shown the best removal efficiency, reaching 65%, at pH equal to 5. Adsorption isotherms were studied and showed that the Langmuir model is the best model fitting our experimental results, with a maximum adsorption capacity of 20.1 mg g-1. Metal-ligand interactions and electrostatic attraction between protonated amino groups of lysine on the fibers and negatively charged, citrate capped, AuNPs are the main proposed mechanisms for AuNP adsorption on the fibers. Sustainability of AuNPs adsorbed on these fibers has been checked through their reuse as catalyst for the reduction of 4-nitrophenol to 4-aminophenol. The process was completed within 60 min, and their reusability showed more than 99% efficiency after 5 reduction cycles. Our results prove that green PVA-LYS fibers can extract nanoparticles from water, as low cost-effective and eco-friendly adsorbent, and contribute to the promotion of a circular economy approach, through their reuse as catalyst in the reduction of pollutants.
Collapse
Affiliation(s)
- Eya Ben Khalifa
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy
| | - Claudio Cecone
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy.
| | - Pierangiola Bracco
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy
| | - Mery Malandrino
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy
| | - Maria Cristina Paganini
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy
| | - Giuliana Magnacca
- Department of Chemistry and NIS Interdepartmental Centre, Torino University, Via P. Giuria 7, 10125, Turin, Italy
| |
Collapse
|
80
|
Guillet É, Brun É, Ferard C, Hardonnière K, Nabhan M, Legrand FX, Pallardy M, Biola-Vidamment A. Human dendritic cell maturation induced by amorphous silica nanoparticles is Syk-dependent and triggered by lipid raft aggregation. Part Fibre Toxicol 2023; 20:12. [PMID: 37076877 PMCID: PMC10114393 DOI: 10.1186/s12989-023-00527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Synthetic amorphous silica nanoparticles (SAS-NPs) are widely employed in pharmaceutics, cosmetics, food and concretes. Workers and the general population are exposed daily via diverse routes of exposure. SAS-NPs are generally recognized as safe (GRAS) by the Food and Drug Administration, but because of their nanoscale size and extensive uses, a better assessment of their immunotoxicity is required. In the presence of immune "danger signals", dendritic cells (DCs) undergo a maturation process resulting in their migration to regional lymph nodes where they activate naive T-cells. We have previously shown that fumed silica pyrogenic SAS-NPs promote the two first steps of the adaptative immune response by triggering DC maturation and T-lymphocyte response, suggesting that SAS-NPs could behave as immune "danger signals". The present work aims to identify the mechanism and the signalling pathways involved in DC phenotype modifications provoked by pyrogenic SAS-NPs. As a pivotal intracellular signalling molecule whose phosphorylation is associated with DC maturation, we hypothesized that Spleen tyrosine kinase (Syk) may play a central role in SAS-NPs-induced DC response. RESULTS In human monocyte-derived dendritic cells (moDCs) exposed to SAS-NPs, Syk inhibition prevented the induction of CD83 and CD86 marker expression. A significant decrease in T-cell proliferation and IFN-γ, IL-17F and IL-9 production was found in an allogeneic moDC:T-cell co-culture model. These results suggested that the activation of Syk was necessary for optimal co-stimulation of T-cells. Moreover, Syk phosphorylation, observed 30 min after SAS-NP exposure, occurred upstream of the c-Jun N-terminal kinase (JNK) Mitogen-activated protein kinases (MAPK) and was elicited by the Src family of protein tyrosine kinases. Our results also showed for the first time that SAS-NPs provoked aggregation of lipid rafts in moDCs and that MβCD-mediated raft destabilisation altered Syk activation. CONCLUSIONS We showed that SAS-NPs could act as an immune danger signal in DCs through a Syk-dependent pathway. Our findings revealed an original mechanism whereby the interaction of SAS-NPs with DC membranes promoted aggregation of lipid rafts, leading to a Src kinase-initiated activation loop triggering Syk activation and functional DC maturation.
Collapse
Affiliation(s)
- Éléonore Guillet
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Émilie Brun
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Céline Ferard
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Kévin Hardonnière
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Myriam Nabhan
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | | | - Marc Pallardy
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France
| | - Armelle Biola-Vidamment
- INSERM UMR-996, Inserm, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 17, Avenue Des Sciences, 91400, Orsay, France.
| |
Collapse
|
81
|
Yang YM, Naseer M, Zhu Y, Wang BZ, Wang S, Ma Y, Zhang XL, Zhao XZ, Wang WY, Zhu SG, Tao HY, Xiong YC. Priming effects of nZVI on carbon sequestration and iron uptake are positively mediated by AM fungus in semiarid agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163632. [PMID: 37080320 DOI: 10.1016/j.scitotenv.2023.163632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
We investigated the priming effect of nanoscale zero-valent iron (nZVI) on carbon sink and iron uptake, and the possible mediation by AMF (arbuscular mycorrhizal fungi, Funneliformis mosseae) in semiarid agricultural soils. Maize seed dressings comprised of three nZVI concentrations of 0, 1, 2 g·kg-1 and was tested with and without AMF inoculation under high and low soil moistures, respectively. The ICP-OES observations indicated that both low dose of nZVI (1 g·kg-1) and high dose of nZVI (2 g·kg-1) significantly increased the iron concentrations in roots (L: 54.5-109.8 %; H: 119.1-245.4 %) and shoots (L: 40.8-78.9 %; H: 81.1-99.4 %). Importantly, the absorption and translocation rate of iron were substantially improved by AMF inoculation under the low-dose nZVI. Yet, the excess nanoparticles as a stress were efficiently relieved by rhizosphere hyphae, and the iron concentration in leaves and stems can maintain as high as about 300 mg·kg-1 while the iron translocation efficiency was reduced. Moreover, next-generation sequencing confirmed that appropriate amount of nZVI clearly improved the rhizosphere colonization of Funneliformis mosseae (p < 0.001) and the development of soil fungal community. Soil observations further showed that the hyphae development and GRSP (glomalin-related soil protein) secretion were significantly promoted (p < 0.05), with the increased R0.25 (< 0.25 mm) by 35.97-41.16 %. As a return, AMF and host plant turned to input more organic matter into soils for microbial growth and Fe uptake, and such interactions became more pronounced under drought stress. In contrast, high dose of nZVI (2 g·kg-1) tended to agglomerate on the surface of hyphae and spores, causing severe deformation and inactivation of AMF symbionts. Therefore, the priming effects of nZVI on carbon sequestration and Fe uptake in agricultural soils were positively mediated by AMF via the feedback loop of the plant-soil-microbe system for enhanced adaptation to global climate change.
Collapse
Affiliation(s)
- Yu-Miao Yang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Minha Naseer
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China
| | - Bao-Zhong Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Song Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yue Ma
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Lin Zhang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xu-Zhe Zhao
- College of Life Science, China West Normal University, Nanchong 637009, China
| | - Wen-Ying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810001, China
| | - Shuang-Guo Zhu
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong-Yan Tao
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
82
|
Wang H, Zhao Y, Yin S, Dai Y, Zhao J, Wang Z, Xing B. Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130857. [PMID: 36709738 DOI: 10.1016/j.jhazmat.2023.130857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of CuO nanoparticles (NPs) to marine microalgae (Emiliania huxleyi) under ocean acidification (OA) conditions (pHs 8.10, 7.90, 7.50) was investigated. CuO NPs (5.0 mg/L) caused significant toxicity (e.g., 48-h growth inhibition, 20%) under normal pH (8.10), and severe OA (pH 7.50) increased the toxicity of CuO NPs (e.g., 48-h growth inhibition, 68%). However, toxicity antagonism was observed with a growth inhibition (48 h) decreased to 37% after co-exposure to CuO NPs and mild OA (pH 7.90), which was attributed to the released Cu2+ ions from CuO NPs. Based on biological responses as obtained from RNA-sequencing, the dissolved Cu2+ ions (0.078 mg/L) under mild OA were found to increase algae division (by 17%) and photosynthesis (by 28%) through accelerating photosynthetic electron transport and promoting ATP synthesis. In addition, mild OA enhanced EPS secretion by 41% and further increased bioavailable Cu2+ ions, thus mitigating OA-induced toxicity. In addition, excess Cu2+ ions could be transformed into less toxic Cu2S and Cu2O based on X-ray absorption near-edge spectroscopy (XANES) and high-resolution transmission electron microscopy (HR-TEM), which could additionally regulate the antagonism effect of CuO NPs and mild OA. The information advances our knowledge in nanotoxicity to marine organisms under global climate change.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yating Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Shuang Yin
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
83
|
Bruvold AS, Bienfait AM, Ervik TK, Loeschner K, Valdersnes S. Vertical distribution of inorganic nanoparticles in a Norwegian fjord. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105975. [PMID: 37086530 DOI: 10.1016/j.marenvres.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (<LOD) - 269, <LOD - 1, <LOD - 1981 and <LOD - 127 ng/L with particle number concentrations up to 108 particles per liter. Total metals concentrations were at least an order of magnitude higher, at concentrations in μg/L of 1-12 for Al, 2-13 for Fe, 0.3-11 Mn, 0.02-0.5 for Pb, 46 to 318 Si and 0.04-0.4 for Ti. A strong depth dependence was observed for both trace elements and particles with concentrations increasing with depth. Our results provide a baseline for the fjord and new data on environmental levels of both total metals and metal containing nanoparticles including the vertical and horizontal distribution of natural nanoparticles.
Collapse
Affiliation(s)
- Are S Bruvold
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020, Bergen, Norway.
| | | | - Torunn Kringlen Ervik
- Norwegian Institute of Occupational Health, P.O. Box 5330, Majorstuen, 0304, Oslo, Norway
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800, Kgs, Lyngby, Denmark
| | - Stig Valdersnes
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; University of Bergen, Department of Chemistry, P.O. Box 7803, N-5020, Bergen, Norway
| |
Collapse
|
84
|
Ishitani Y, Ciacci C, Ujiié Y, Tame A, Tiboni M, Tanifuji G, Inagaki Y, Frontalini F. Fascinating strategies of marine benthic organisms to cope with emerging pollutant: Titanium dioxide nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121538. [PMID: 37011780 DOI: 10.1016/j.envpol.2023.121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Titanium dioxide nanoparticles (NPs) have numerous applications, and their demands have increased as an alternative for banned sunscreen filters. However, the underlying mechanisms of their toxicity, remain largely unknown. Here, we investigate the mechanism of TiO2 NP cytotoxicity and detoxification through time-course experiments (1, 6, and 24 h) based on cellular observations and single-cell transcriptome analyses in a marine benthic foraminifer strain, derived from a common unicellular eukaryotic organism worldwide. After exposure for 1 h, cells enhanced the production of reactive oxygen species (ROS) in acidic endosomes containing TiO2 NPs as well as in mitochondria. In acidic endosomes, ROS were produced through the Fenton reaction on the surface of charged TiO2 NPs. In mitochondria, ROS were associated with porphyrin synthesis that chelated metal ions. Glutathione peroxide and neutral lipids acted as a sink for free radicals, whereas lipid peroxides were excreted to prevent further radical chain reactions. By 24 h, aggregated TiO2 NPs were encapsulated in organic compounds, possibly ceramide, and excreted as mucus, thereby preventing their further uptake. Thus, we reveal that foraminifers can tolerate the toxicity of TiO2 NPs and even prevent their further phagocytosis and uptake by trapping TiO2 NPs inside mucus. This previously unknown strategy could be applied in bioremediation to sequester NPs from the marine environment and can guide management of TiO2 pollution.
Collapse
Affiliation(s)
- Yoshiyuki Ishitani
- Institute for Extra-Cutting-Edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Caterina Ciacci
- Department of Biomolecular Science, Universita Degli Studi di Urbino, Urbino, Italy
| | - Yurika Ujiié
- Center for Advanced Marine Core Research, Kochi University, Kochi, Japan
| | - Akihiro Tame
- Department of Marine and Earth Sciences, Marine Works Japan Ltd, Yokosuka, Japan
| | - Mattia Tiboni
- Department of Biomolecular Science, Universita Degli Studi di Urbino, Urbino, Italy
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabrizio Frontalini
- Department of Pure and Applied Science, Universita Degli Studi di Urbino, Urbino, Italy
| |
Collapse
|
85
|
Gottschalk F, Debray B, Klaessig F, Park B, Lacome JM, Vignes A, Portillo VP, Vázquez-Campos S, Hendren CO, Lofts S, Harrison S, Svendsen C, Kaegi R. Predicting accidental release of engineered nanomaterials to the environment. NATURE NANOTECHNOLOGY 2023; 18:412-418. [PMID: 36732591 DOI: 10.1038/s41565-022-01290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Challenges in distinguishing between natural and engineered nanomaterials (ENMs) and the lack of historical records on ENM accidents have hampered attempts to estimate the accidental release and associated environmental impacts of ENMs. Building on knowledge from the nuclear power industry, we provide an assessment of the likelihood of accidental release rates of ENMs within the next 10 and 30 years. We evaluate risk predictive methodology and compare the results with empirical evidence, which enables us to propose modelling approaches to estimate accidental release risk probabilities. Results from two independent modelling approaches based on either assigning 0.5% of reported accidents to ENM-releasing accidents (M1) or based on an evaluation of expert opinions (M2) correlate well and predict severe accidental release of 7% (M1) in the next 10 years and of 10% and 20% for M2 and M1, respectively, in the next 30 years. We discuss the relevance of these results in a regulatory context.
Collapse
Affiliation(s)
- Fadri Gottschalk
- ETSS AG, Engineering, Technical and Scientific Services, Strada, Switzerland
| | - Bruno Debray
- Institut national de l'environment industriel et des risques, Verneuil-en-Halatte, France
| | | | | | - Jean-Marc Lacome
- Institut national de l'environment industriel et des risques, Verneuil-en-Halatte, France
| | - Alexis Vignes
- Institut national de l'environment industriel et des risques, Verneuil-en-Halatte, France
| | | | | | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nano Technology (CEINT), Duke University, Durham, NC, USA
| | - Stephen Lofts
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Samuel Harrison
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | | | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
86
|
Yan H, Zhang W, Li C, Wang Y. Uptake of TiO 2 Nanoparticles was Linked to Variation in net Cation flux in Wheat Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:71. [PMID: 36991215 DOI: 10.1007/s00128-022-03665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are ubiquitous in the environment and enter the terrestrial food chain via plant uptake. However, plant uptake behaviors of TiO2 NPs remain elusive. Here, the uptake kinetics of TiO2 NPs by wheat (Triticum aestivum L.) seedlings and the effects on cation flux in roots were examined in a hydroponic system. Uptake rate of TiO2 NPs ranged from 119.0 to 604.2 mg kg- 1 h- 1 within 8 h exposure. NP uptake decreased by 83% and 47%, respectively, in the presence of sodium azide (NaN3) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating an energy-dependent uptake of TiO2 NPs. Moreover, accompanied with TiO2 NP uptake, net influx of Cd2+ decreased by 81%, while Na+ flux shifted from inflow to outflow at the meristematic zone of root. These findings provide valuable information for understanding plant uptake of TiO2 NPs.
Collapse
Affiliation(s)
- Huijun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanying Zhang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai, 200233, China
| | - Chengcheng Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- National Innovation Institute of Defense Technology, AMS, Beijing, 100071, China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
87
|
Zhang X, Hou X, Ma L, Shi Y, Zhang D, Qu K. Analytical methods for assessing antimicrobial activity of nanomaterials in complex media: advances, challenges, and perspectives. J Nanobiotechnology 2023; 21:97. [PMID: 36941596 PMCID: PMC10026445 DOI: 10.1186/s12951-023-01851-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.
Collapse
Affiliation(s)
- Xuzhi Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiangyi Hou
- School of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liangyu Ma
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
88
|
Nie X, Xing X, Xie R, Wang J, Yang S, Wan Q, Zeng EY. Impact of iron/aluminum (hydr)oxide and clay minerals on heteroaggregation and transport of nanoplastics in aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130649. [PMID: 36587598 DOI: 10.1016/j.jhazmat.2022.130649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are emerging contaminants in the environment, where the transport and fate of NPs would be greatly affected by interactions between NPs and minerals. In the present study, the interactions of two types of polystyrene nanoplastics (PSNPs), i.e., bare-PSNPs and carboxylated PSNPs-COOH, with iron (hydr)oxides (hematite, goethite, magnetite, and ferrihydrite), aluminum (hydr)oxides (boehmite and gibbsite), and clay minerals (kaolinite, montmorillonite, and illite) were investigated. The positively charged iron/aluminum (hydr)oxide minerals could form heteroaggregates with negatively charged PSNPs. Electrostatic and hydrophobic interaction dominate for the heteroaggregation of bare-PSNPs with iron/aluminum (hydr)oxide minerals, while ligand exchange and electrostatic interaction are involved in the heteroaggregation of PSNPs-COOH with iron/aluminum (hydr)oxides minerals. However, heteroaggregation between PSNPs and negatively charged clay minerals was negligible. Humic acid markedly suppressed such heteroaggregation between PSNPs and minerals due to enhanced electrostatic repulsion, steric hindrance, and competition of surface attachment sites. The heteroaggregation rates of both bare-PSNPs and PSNPs-COOH with hematite decreased with increasing solution pH. Increased ionic strength enhanced the heteroaggregation of PSNPs-COOH but inhibited that of bare-PSNPs. The results of the present study suggested that the heteroaggregation of PSNPs in environments could be strongly affected by minerals, solution pH, humic acid, and ionic strength.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaohui Xing
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Ruiyin Xie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Shuguang Yang
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
89
|
Corsi I, Venditti I, Trotta F, Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161181. [PMID: 36581299 DOI: 10.1016/j.scitotenv.2022.161181] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
90
|
Wu J, Yang Y, Tou F, Yan X, Dai S, Hower JC, Saikia BK, Kersten M, Hochella MF. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130482. [PMID: 36473256 DOI: 10.1016/j.jhazmat.2022.130482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Quantitative characteristics and sizes of nanoparticles (NPs) in coal fly ash (CFA) produced in coal-fired power plants as a function of coal type and plant design will help reveal the NP emission likelihood and their environmental implications. However, little is known about how combustion conditions and types of coal regulate the NP abundance in CFAs. In this study, based on single particle (SP)-ICP-MS technology, particle number concentrations (PNCs) and sizes of Fe- and Ti-containing NPs in CFAs were determined for samples collected from power plants of different designs and burning different types of coal. The PNCs of Fe- and Ti-containing NPs in all CFAs measured were in the range of 1.3 × 107 - 3.4 × 108 and 6.8 × 106 - 2.2 × 108 particles/mg, with the average particle sizes of 111 nm and 87 nm, respectively. The highest Fe-NP PNCs likely relate to the highest contents of Fe and pyrite in the feed coal. In addition, high TOC in CFAs are associated with metal-containing NPs, resulting in elevated abundances of these NPs with relatively large sizes. Moreover, elevated PNCs of NPs were found in CFAs produced by coal-fired power plants burning low-rank coals and with small installed capacity (especially those under 100-MW units). Compared to cyclone filters, ESPs and FFs with higher removal efficiency typically retain more Fe-/Ti- containing NPs with smaller sizes. Based on a structural equation (SE) model, raw coal properties (coal rank and Fe/Ti content), boiler types, and efficiency of particulate emission control devices likely indirectly affect PNCs of Fe- and Ti-containing NPs by influencing TOC contents and their corresponding metal concentrations of CFAs. This study provides the first analytic and comprehensive information concerning the direct and indirect regulating factors on NPs in various CFAs.
Collapse
Affiliation(s)
- Jiayuan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Feiyun Tou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyun Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Shifeng Dai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - James C Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, United States; Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY 40506, United States
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, Jorhat 785006, India
| | - Michael Kersten
- Geosciences Institute, Johannes Gutenberg-University, J.J. Becherweg 21, Mainz D-55099, Germany
| | - Michael F Hochella
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, United States; Earth Systems Science Division, Energy andEnvironment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
91
|
Ye P, Chen K, Liu X, Zhu Z, Li C, Cheng Y, Yin Y, Xiao K. In situ fabrication of recyclable CuO@MoS2 nanosheet arrays-coated copper mesh for enhanced visible light photocatalytic degradation of tetracycline and microbial inactivation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
92
|
Pang R, Shao B, Chen Q, Shi H, Xie B, Soliman M, Tai J, Su Y. The co-occurrent microplastics and nano-CuO showed antagonistic inhibitory effects on bacterial denitrification: Interaction of pollutants and regulations on functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160892. [PMID: 36521594 DOI: 10.1016/j.scitotenv.2022.160892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mostafa Soliman
- Ministry of Agriculture and Land Reclamation, Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), Giza 12311, Egypt
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
93
|
Wang X, Zhang W, Lamichhane S, Dou F, Ma X. Effects of physicochemical properties and co-existing zinc agrochemicals on the uptake and phytotoxicity of PFOA and GenX in lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43833-43842. [PMID: 36680712 DOI: 10.1007/s11356-023-25435-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Even though the potential toxicity and treatment methods for per- and polyfluoroalkyl substances (PFAS) have attracted extensive attention, the plant uptake and accumulation of PFAS in edible plant tissues as a potential pathway for human exposure received little attention. Our study in a hydroponic system demonstrated that perfluorooctanoic acid (PFOA) and its replacing compound, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX) displayed markedly different patterns of plant uptake and accumulation. For example, the root concentration factor (RCF) of PFOA in lettuce is almost five times of that of GenX while the translocation factor (TF) of GenX is about 66.7% higher than that for PFOA. The co-presence of zinc amendments affected the phyto-effect of these two compounds and their accumulation in plant tissues, and the net effect on their plant accumulation depended on both the properties of Zn amendments and PFAS. Zinc oxide nanoparticles (ZnONPs) at 100 mg/L did not affect the uptake of PFOA in either lettuce roots or shoots; however, Zn2+ at the same concentration significantly increased PFOA accumulation in both tissues. In contrast, both Zn amendments significantly lowered the accumulation of GenX in lettuce roots, but only ZnONPs significantly hindered the GenX accumulation in lettuce shoots. The co-exposure to ZnONPs and PFOA/GenX resulted in lower oxidative stress than the plants exposed to PFOA or GenX alone. However, both zinc agrochemicals with or without PFAS led to lower root dry biomass. The results shed light on the property-dependent plant uptake of PFAS and the potential impact of co-existing nanoagrochemicals and their dissolved ions on plant uptake of PFOA and GenX.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | | | - Fugen Dou
- Texas A&M Agrilife Research Center, Beaumont, TX, 77713, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
94
|
Niu B, Zhang G. Effects of Different Nanoparticles on Microbes. Microorganisms 2023; 11:542. [PMID: 36985116 PMCID: PMC10054709 DOI: 10.3390/microorganisms11030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Nanoparticles widely exist in nature and may be formed through inorganic or organic pathways, exhibiting unique physical and chemical properties different from those of bulk materials. However, little is known about the potential consequences of nanomaterials on microbes in natural environments. Herein, we investigated the interactions between microbes and nanoparticles by performing experiments on the inhibition effects of gold, ludox and laponite nanoparticles on Escherichia coli in liquid Luria-Bertani (LB) medium at different nanoparticle concentrations. These nanoparticles were shown to be effective bactericides. Scanning electron microscopy (SEM) images revealed the distinct aggregation of cells and nanoparticles. Transmission electron microscopy (TEM) images showed considerable cell membrane disruption due to nanoparticle accumulation on the cell surfaces, resulting in cell death. We hypothesized that this nanoparticle accumulation on the cell surfaces not only disrupted the cell membranes but also physically blocked the microbes from accessing nutrients. An iron-reducing bacterium, Shewanella putrefaciens, was tested for its ability to reduce the Fe (III) in solid ferrihydrite (HFO) or aqueous ferric citrate in the presence of laponite nanoparticles. It was found that the laponite nanoparticles inhibited the reduction of the Fe (III) in solid ferrihydrite. Moreover, direct contact between the cells and solid Fe (III) coated with the laponite nanoparticles was physically blocked, as confirmed by SEM images and particle size measurements. However, the laponite particles had an insignificant effect on the extent of aqueous Fe (III) bioreduction but slightly enhanced the rate of bioreduction of the Fe (III) in aqueous ferric citrate. The slightly increased rate of bioreduction by laponite nanoparticles may be due to the removal of inhibitory Fe (II) from the cell surface by its sorption onto the laponite nanoparticle surface. This result indicates that the scavenging of toxic heavy metals, such as Fe (II), by nanoparticles may be beneficial for microbes in the environment. On the other hand, microbial cells are also capable of detoxifying nanoparticles by coagulating nanoparticles with extracellular polymeric substances or by changing nanoparticle morphologies. Hence, the interactions between microbes and nanoparticles in natural environments should receive more attention.
Collapse
Affiliation(s)
- Bin Niu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
95
|
Zhang Y, Guo P, Wu Y, Wang M, Deng J, Su H, Sun Y. Effects of natural nanoparticles on the acute toxicity, chronic effect, and oxidative stress response of phenicol antibiotics in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21535-21547. [PMID: 36272006 DOI: 10.1007/s11356-022-23695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Natural nanoparticles (NNP) are ubiquitous in natural water and can interact with other contaminants, causing ecotoxic effects on aquatic nontarget organisms. However, the impact of NNPs on the ecotoxicity of antibiotics remains largely unknown. This work investigated the acute toxicity, chronic effect, and oxidative response and damage in Daphnia magna co-exposed to phenicol antibiotics (chloramphenicol, thiamphenicol) and different concentrations of NNPs (10 mg/L: environmentally relevant concentration; 100 mg/L: a high concentration that caused no apparent immobilization in D. magna). The results showed that the acute toxicity of chloramphenicol was increased by 10 mg/L NNPs but decreased by 100 mg/L NNPs; both concentrations of NNPs increased and decreased acute toxicities of thiamphenicol and chloramphenicol + thiamphenicol treatments, respectively. After long-term exposure, phenicol antibiotics (1 μg/L) and NNP (10 mg/L) mixtures in environmentally relevant concentrations significantly affected the reproduction of D. magna but did not influence their growth. The catalase activity, reduced glutathione level, and malonaldehyde content in D. magna also varied with the NNPs concentrations. Notably, the lowest concentration of thiamphenicol and chloramphenicol + thiamphenicol combined with NNPs significantly increased the malondialdehyde content in D. magna compared with the control, indicating membrane lipid peroxidation occurred in daphnids. This study suggests that the toxic effects of contaminants and NNPs on aquatic organisms should be considered thoroughly to avoid underestimating the hazard of these pollutants in the actual aquatic environment.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China.
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Meixian Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Yinshi Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
96
|
Liu B, Han Z, Han Q, Shu Y, Li L, Chen B, Wang Z, Pedersen JA. Redispersion Behavior of 2D MoS 2 Nanosheets: Unique Dependence on the Intervention Timing of Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:939-950. [PMID: 36516400 DOI: 10.1021/acs.est.2c05282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The aggregation-redispersion behavior of nanomaterials determines their transport, transformation, and toxicity, which could be largely influenced by the ubiquitous natural organic matter (NOM). Nonetheless, the interaction mechanisms of two-dimensional (2D) MoS2 and NOM and the subsequent influences on the redispersion behavior are not well understood. Herein, we investigated the redispersion of single-layer MoS2 (SL-MoS2) nanosheets as influenced by Suwannee River NOM (SRNOM). It was found that SRNOM played a decisive role on the redispersion of MoS2 2D nanosheets that varied distinctly from the 3D nanoparticles. Compared to the poor redispersion of MoS2 aggregates in the absence or post-addition of SRNOM to the aggregates, co-occurrence of SRNOM in the dispersion could largely enhance the redispersion and mobility of MoS2 by intercalating into the nanosheets. Upon adsorption to SL-MoS2, SRNOM enhanced the hydration force and weakened the van der Waals forces between nanosheets, leading to the redispersion of the aggregates. The SRNOM fractions with higher molecular mass imparted better dispersity due to the preferable sorption of the large molecules onto SL-MoS2 surfaces. This comprehensive study advances current understanding on the transport and fate of nanomaterials in the water system and provides fresh insights into the interaction mechanisms between NOM and 2D nanomaterials.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Zixin Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Li Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland21218, United States
| |
Collapse
|
97
|
Yu Y, Dai W, Luan Y. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120784. [PMID: 36462678 DOI: 10.1016/j.envpol.2022.120784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The thriving nano-enabled agriculture facilitates the interaction of nanomaterials with plants. Recently, these interactions and their biological effects are receiving increasing attention. Upon entering plants via leaves, roots, stems, and other organs, nanoparticles adsorb numerous biomolecules inside plants and form bio-corona. In addition, nanoparticles that enter plants through roots may have formed eco-corona with root exudates in the rhizosphere environment before contacting with plant exogenous proteins. The most significant biological effects of plant protein corona include changes in protein structure and function, as well as changes in nanoparticle toxicity and targeting ability. However, the mechanisms, particularly how protein corona affects plant protein function, plant development and growth, and rhizosphere environment properties, require further investigation. Our review summarizes the current understanding of the formation and biological effects of nanoparticle-plant protein corona and provides an outlook on future research.
Collapse
Affiliation(s)
- Yanni Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
98
|
Pavlicek A, Neubauer S, Zafiu C, Huber-Humer M, Ehmoser EK, Part F. The use and detection of quantum dots as nanotracers in environmental fate studies of engineered nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120461. [PMID: 36272608 DOI: 10.1016/j.envpol.2022.120461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Investigations of the behavior and effects of engineered nanoparticles (ENPs) on human health and the environment need detailed knowledge of their fate and transport in environmental compartments. Such studies are highly challenging due to low environmental concentrations, varying size distribution of the particles and the interference with the natural background. A strategy to overcome these limits is to use mimics of ENPs with unique detectable properties that match the properties of the ENPs as nanotracers. A special class of ENPs that can be tracked are quantum dots (QDs). QDs are composed of different metals, metalloids, or more recently also carbon (e.g., graphene), that result in unique optical properties. This allows the tracking of such particles by fluorescence microscopic and photometric techniques. Many types of QDs consist of heavy elements, allowing to track and visualize these particles also by electron microscopy and to quantitate the particles indirectly based on these elements. QDs can also be surface modified in various ways which enable them to be used as a label or as traceable mimics for ENPs. This review reflects a broad range of methods to synthesize and modify QDs based on metals, metalloids, and graphene for studying the environmental fate of nanoparticles and discusses and compares analytical methods that can be used for tracking and quantifying QDs. In addition, we review applications of QDs as ENP mimics in environmental studies of surface waters, soils, microorganisms, and plants with respect to the applied analytical techniques.
Collapse
Affiliation(s)
- Anna Pavlicek
- University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11/II, 1190, Vienna, Austria
| | - Simon Neubauer
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| | - Christian Zafiu
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria.
| | - Marion Huber-Humer
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- University of Natural Resources and Life Sciences, Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, Muthgasse 107, 1190, Vienna, Austria
| |
Collapse
|
99
|
Motta AGC, Guerra V, do Amaral DF, da Costa Araújo AP, Vieira LG, de Melo E Silva D, Rocha TL. Assessment of multiple biomarkers in Lithobates catesbeianus (Anura: Ranidae) tadpoles exposed to zinc oxide nanoparticles and zinc chloride: integrating morphological and behavioral approaches to ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13755-13772. [PMID: 36138291 DOI: 10.1007/s11356-022-23018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The ecotoxicological risk to vertebrates posed by zinc oxide nanoparticles (ZnO NPs) is still poorly understood, especially in animals with a biphasic life cycle, which have aquatic and terrestrial phases, such as amphibians. In the present study, we investigated whether acute exposure (7 days) to ZnO NPs and zinc chloride (ZnCl2) at three environmentally relevant concentrations (0.1, 1.0, and 10 mg L-1) induces changes in the morphology, chondrocranium, and behavior of the tadpoles of Lithobates catesbeianus (Anura: Ranidae). Tadpoles exposed to both forms of Zn did not undergo any morphological or behavioral changes at the lowest concentrations (0.1 and 1.0 mg L-1). However, the animals exposed to the highest concentration (10 mg L-1) lacked oral disc structures, were smaller in size, had a longer tail, and presented changes in the position and coiling of the intestine and malformations of the chondrocranium in comparison with the control group. This indicates that ZnO NPs and ZnCl2 altered the development of the tadpoles, causing delays in their metamorphosis and even reducing individual fitness. The tadpoles exposed to both forms of Zn at 10 mg L-1 also had reduced mobility, especially in the presence of conspecifics. Based on these findings, we emphasize the importance of studying morphological, skeletal, and behavioral biomarkers to evaluate the toxic effects of metal-based nanoparticles in amphibians.
Collapse
Affiliation(s)
- Andreya Gonçalves Costa Motta
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil
| | - Vinicius Guerra
- Graduate Program in Ecology and the Management of Natural Resources, Federal University of Acre, Rio Branco, Acre, Brazil
- Boitatá Institute of Ethnobiology and Conservation of the Fauna, Goiânia, Goiás, Brazil
| | - Diogo Ferreira do Amaral
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Graduate Program in the Conservation of Natural Resources in the Cerrado, Goiás Federal Institute - Urutaí Campus, Urutaí, Goiás, Brazil
| | - Lucélia Gonçalves Vieira
- Ontogeny and Morphology Research Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Mutagenesis Laboratory, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Goiânia, GoiâniaGoiás, Brazil.
| |
Collapse
|
100
|
Pradel A, Catrouillet C, Gigault J. The environmental fate of nanoplastics: What we know and what we need to know about aggregation. NANOIMPACT 2023; 29:100453. [PMID: 36708989 DOI: 10.1016/j.impact.2023.100453] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The presence of nanoplastics in the environment has been proven. There is now an urgent need to determine how nanoplastics behave in the environment and to assess the risks they may pose. Here, we examine nanoplastic homo- and heteroaggregation, with a focus on environmentally relevant nanoplastic particle models. We made a systematic analysis of experimental studies, and ranked the environmental relevance of 377 different solution chemistries, and 163 different nanoplastic particle models. Since polymer latex spheres are not environmentally relevant (due to their monodisperse size, spherical shape, and smooth surface), their aggregation behavior in natural conditions is not transferable to nanoplastics. A few recent studies suggest that nanoplastic particle models that more closely mimic incidentally produced nanoplastics follow different homoaggregation pathways than latex sphere particle models. However, heteroaggregation of environmentally relevant nanoplastic particle models has seldom been studied. Despite this knowledge gap, the current evidence suggests that nanoplastics may be more sensitive to heteroaggregation than previously expected. We therefore provide an updated hypothesis about the likely environmental fate of nanoplastics. Our review demonstrates that it is essential to use environmentally relevant nanoplastic particle models, such as those produced with top-down methods, to avoid biased interpretations of the fate and impact of nanoplastics. Finally, it will be necessary to determine how the heteroaggregation kinetics of nanoplastics impact their settling rate to truly understand nanoplastics' fate and effect in the environment.
Collapse
Affiliation(s)
- Alice Pradel
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, Switzerland.
| | - Charlotte Catrouillet
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Julien Gigault
- Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France; TAKUVIK CNRS/Université Laval, IRL 3376, G1V 0A6 Québec, Canada.
| |
Collapse
|