51
|
Sieradzan AK, Korneev A, Begun A, Kachlishvili K, Scheraga HA, Molochkov A, Senet P, Niemi AJ, Maisuradze GG. Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics. J Chem Theory Comput 2021; 17:3203-3220. [PMID: 33909430 DOI: 10.1021/acs.jctc.1c00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Apart from being the most common mechanism of regulating protein function and transmitting signals throughout the cell, phosphorylation has an ability to induce disorder-to-order transition in an intrinsically disordered protein. In particular, it was shown that folding of the intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can be induced by multisite phosphorylation. Here, the principles that govern the folding of phosphorylated 4E-BP2 (pT37pT46 4E-BP218-62) are investigated by analyzing canonical and replica exchange molecular dynamics trajectories, generated with the coarse-grained united-residue force field, in terms of local and global motions and the time dependence of formation of contacts between Cαs of selected pairs of residues. The key residues involved in the folding of the pT37pT46 4E-BP218-62 are elucidated by this analysis. The correlations between local and global motions are identified. Moreover, for a better understanding of the physics of the formation of the folded state, the experimental structure of the pT37pT46 4E-BP218-62 is analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. It is shown that without molecular dynamics simulations the kinks are able to identify not only the phosphorylated sites of protein, the key players in folding, but also the reasons for the weak stability of the pT37pT46 4E-BP218-62.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anatolii Korneev
- Pacific Quantum Center, Far Eastern Federal University, 10 Ajax Bay, 690922 Russky Island, Vladivostok, Russia
| | - Alexander Begun
- Pacific Quantum Center, Far Eastern Federal University, 10 Ajax Bay, 690922 Russky Island, Vladivostok, Russia
| | - Khatuna Kachlishvili
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Alexander Molochkov
- Pacific Quantum Center, Far Eastern Federal University, 10 Ajax Bay, 690922 Russky Island, Vladivostok, Russia
| | - Patrick Senet
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | - Antti J Niemi
- Pacific Quantum Center, Far Eastern Federal University, 10 Ajax Bay, 690922 Russky Island, Vladivostok, Russia.,Laboratoire de Mathematiques et Physique Theorique, CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours, France.,Nordita, Stockholm University and Uppsala University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden.,School of Physics, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Gia G Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
52
|
Bryan L, Clynes M, Meleady P. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells. Biotechnol Adv 2021; 49:107757. [PMID: 33895332 DOI: 10.1016/j.biotechadv.2021.107757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used host cell lines used for the production human therapeutic proteins. Much research over the past two decades has focussed on improving the growth, titre and cell specific productivity of CHO cells and in turn lowering the costs associated with production of recombinant proteins. CHO cell engineering has become of particular interest in recent years following the publication of the CHO cell genome and the availability of data relating to the proteome, transcriptome and metabolome of CHO cells. However, data relating to the cellular post-translational modification (PTMs) which can affect the functionality of CHO cellular proteins has only begun to be presented in recent years. PTMs are important to many cellular processes and can further alter proteins by increasing the complexity of proteins and their interactions. In this review, we describe the research presented from CHO cells to date related on three of the most important PTMs; glycosylation, phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Laura Bryan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
53
|
Role of protein S-Glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch Biochem Biophys 2021; 704:108890. [PMID: 33894196 DOI: 10.1016/j.abb.2021.108890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
The survival, functioning and proliferation of mammalian cells are highly dependent on the cellular response and adaptation to changes in their redox environment. Cancer cells often live in an altered redox environment due to aberrant neo-vasculature, metabolic reprogramming and dysregulated proliferation. Thus, redox adaptations are critical for their survival. Glutathione plays an essential role in maintaining redox homeostasis inside the cells by binding to redox-sensitive cysteine residues in proteins by a process called S-glutathionylation. S-Glutathionylation not only protects the labile cysteine residues from oxidation, but also serves as a sensor of redox status, and acts as a signal for stimulation of downstream processes and adaptive responses to ensure redox equilibrium. The present review aims to provide an updated overview of the role of the unique redox adaptations during carcinogenesis and cancer progression, focusing on their dependence on S-glutathionylation of specific redox-sensitive proteins involved in a wide range of processes including signalling, transcription, structural maintenance, mitochondrial functions, apoptosis and protein recycling. We also provide insights into the role of S-glutathionylation in the development of resistance to chemotherapy. Finally, we provide a strong rationale for the development of redox targeting drugs for treatment of refractory/resistant cancers.
Collapse
|
54
|
Gondkar K, Sathe G, Joshi N, Nair B, Pandey A, Kumar P. Integrated Proteomic and Phosphoproteomics Analysis of DKK3 Signaling Reveals Activated Kinase in the Most Aggressive Gallbladder Cancer. Cells 2021; 10:cells10030511. [PMID: 33670899 PMCID: PMC7997438 DOI: 10.3390/cells10030511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
DKK3 is a secreted protein, which belongs to a family of Wnt antagonists and acts as a potential tumor suppressor in gallbladder cancer. To further understand its tumor suppressor functions, we overexpressed DKK3 in 3 GBC cell lines. We have employed high-resolution mass spectrometry and tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography to enrich phosphopeptides to check the downstream regulators. In this study, we reported for the first time the alteration in the phosphorylation of 14 kinases upon DKK3 overexpression. In addition, we observed DKK3 induced hyper phosphorylation of 2 phosphatases: PPP1R12A and PTPRA, which have not been reported previously. Canonical pathway analysis of altered molecules indicated differential enrichment of signaling cascades upon DKK3 overexpression in all the 3 cell lines. Protein kinase A signaling, Sirtuin signaling pathway, and Cell Cycle Control of Chromosomal Replication were observed to be differentially activated in the GBC cell lines. Our study revealed, DKK3 overexpression has differential effect based on the aggressive behavior of the cell lines. This study expands the understanding of DKK3-mediated signaling events and can be used as a primary factor for understanding the complex nature of this molecule.
Collapse
Affiliation(s)
- Kirti Gondkar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Neha Joshi
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; (K.G.); (G.S.); (N.J.)
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
55
|
A Computational Method to Predict Effects of Residue Mutations on the Catalytic Efficiency of Hydrolases. Catalysts 2021. [DOI: 10.3390/catal11020286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With scientific and technological advances, growing research has focused on engineering enzymes that acquire enhanced efficiency and activity. Thereinto, computer-based enzyme modification makes up for the time-consuming and labor-intensive experimental methods and plays a significant role. In this study, for the first time, we collected and manually curated a data set for hydrolases mutation, including structural information of enzyme-substrate complexes, mutated sites and Kcat/Km obtained from vitro assay. We further constructed a classification model using the random forest algorithm to predict the effects of residue mutations on catalytic efficiency (increase or decrease) of hydrolases. This method has achieved impressive performance on a blind test set with the area under the receiver operating characteristic curve of 0.86 and the Matthews Correlation Coefficient of 0.659. Our results demonstrate that computational mutagenesis has an instructive effect on enzyme modification, which may expedite the design of engineering hydrolases.
Collapse
|
56
|
Dotter H, Boll M, Eder M, Eder AC. Library and post-translational modifications of peptide-based display systems. Biotechnol Adv 2021; 47:107699. [PMID: 33513435 DOI: 10.1016/j.biotechadv.2021.107699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Innovative biotechnological methods empower the successful identification of new drug candidates. Phage, ribosome and mRNA display represent high throughput screenings, allowing fast and efficient progress in the field of targeted drug discovery. The identification range comprises low molecular weight peptides up to whole antibodies. However, a major challenge poses the stability and affinity in particular of peptides. Chemical modifications e.g. the introduction of unnatural amino acids or cyclization, have been proven to be essential tools to overcome these limitations. This review article particularly focuses on available methods for the targeted chemical modification of peptides and peptide libraries in selected display approaches.
Collapse
Affiliation(s)
- Hanna Dotter
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie Boll
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium, partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
57
|
Bryan L, Henry M, Kelly RM, Lloyd M, Frye CC, Osborne MD, Clynes M, Meleady P. Global phosphoproteomic study of high/low specific productivity industrially relevant mAb producing recombinant CHO cell lines. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
58
|
Higher-order phosphatase-substrate contacts terminate the integrated stress response. Nat Struct Mol Biol 2021; 28:835-846. [PMID: 34625748 PMCID: PMC8500838 DOI: 10.1038/s41594-021-00666-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.
Collapse
|
59
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
60
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
61
|
Katsipis G, Tsalouxidou V, Halevas E, Geromichalou E, Geromichalos G, Pantazaki AA. In vitro and in silico evaluation of the inhibitory effect of a curcumin-based oxovanadium (IV) complex on alkaline phosphatase activity and bacterial biofilm formation. Appl Microbiol Biotechnol 2020; 105:147-168. [PMID: 33191462 DOI: 10.1007/s00253-020-11004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
The scientific interest in the development of novel metal-based compounds as inhibitors of bacterial biofilm-related infections and alkaline phosphatase (ALP) deregulating effects is continuous and rising. In the current study, a novel crystallographically defined heteroleptic V(IV)-curcumin-bipyridine (V-Cur) complex with proven bio-activity was studied as a potential inhibitor of ALP activity and bacterial biofilm. The inhibitory effect of V-Cur was evaluated on bovine ALP, with two different substrates: para-nitrophenyl phosphate (pNPP) and adenosine triphosphate (ATP). The obtained results suggested that V-Cur inhibited the ALP activity in a dose-dependent manner (IC50 = 26.91 ± 1.61 μM for ATP, IC50 = 2.42 ± 0.12 μM for pNPP) exhibiting a mixed/competitive type of inhibition with both substrates tested. The evaluation of the potential V-Cur inhibitory effect on bacterial biofilm formation was performed on Gram (+) bacteria Staphylococcus aureus (S. aureus) and Gram (-) Escherichia coli (E. coli) cultures, and it positively correlated with inhibition of bacterial ALP activity. In silico study proved the binding of V-Cur at eukaryotic and bacterial ALP, and its interaction with crucial amino acids of the active sites, verifying complex's inhibitory potential. The findings suggested a specific anti-biofilm activity of V-Cur, offering a further dimension in the importance of metal complexes, with naturally derived products as biological ligands, as therapeutic agents against bacterial infections and ALP-associated diseases. KEY POINTS: • V-Cur inhibits bovine and bacterial alkaline phosphatases and bacterial biofilm formation. • Alkaline phosphatase activity correlates with biofilm formation. • In silico studies prove binding of the complex on alkaline phosphatase.
Collapse
Affiliation(s)
- G Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - V Tsalouxidou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - E Halevas
- Institute of Biosciences & Applications, National Centre for Scientific Research "Democritus", 15310, Athens, Greece
| | - E Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - G Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - A A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
62
|
Dissecting the sequence determinants for dephosphorylation by the catalytic subunits of phosphatases PP1 and PP2A. Nat Commun 2020; 11:3583. [PMID: 32681005 PMCID: PMC7367873 DOI: 10.1038/s41467-020-17334-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
The phosphatases PP1 and PP2A are responsible for the majority of dephosphorylation reactions on phosphoserine (pSer) and phosphothreonine (pThr), and are involved in virtually all cellular processes and numerous diseases. The catalytic subunits exist in cells in form of holoenzymes, which impart substrate specificity. The contribution of the catalytic subunits to the recognition of substrates is unclear. By developing a phosphopeptide library approach and a phosphoproteomic assay, we demonstrate that the specificity of PP1 and PP2A holoenzymes towards pThr and of PP1 for basic motifs adjacent to the phosphorylation site are due to intrinsic properties of the catalytic subunits. Thus, we dissect this amino acid specificity of the catalytic subunits from the contribution of regulatory proteins. Furthermore, our approach enables discovering a role for PP1 as regulator of the GRB-associated-binding protein 2 (GAB2)/14-3-3 complex. Beyond this, we expect that this approach is broadly applicable to detect enzyme-substrate recognition preferences. The substrate specificity of phosphoprotein phosphatases PP1 and PP2A depends on their catalytic and regulatory subunits. Using proteomics approaches, the authors here provide insights into the sequence specificity of the catalytic subunits and their distinct contributions to PP1 and PP2A selectivity.
Collapse
|
63
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
64
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
65
|
Adeyemi JA, Olise CC, Bamidele OS, Akinola BK. Effects of ultraviolet photooxidation of cypermethrin on the activities of phosphatases and digestive enzymes, and intestinal histopathology in African catfish, Clarias gariepinus (Burchell, 1822). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:543-549. [PMID: 32543117 DOI: 10.1002/jez.2392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/10/2022]
Abstract
The possibility of ultraviolet (UV) photooxidation of cypermethrin generating more toxic intermediates or isomers demands that studies that look at the effects of cypermethrin and UV irradiation under a coexposure scenario be carried out. In this study, juvenile African catfish (Clarias gariepinus) were exposed to 50 µg/L cypermethrin, 100 µg/L cypermethrin, UV, 50 µg/L cypermethrin + UV or 100 µg/L cypermethrin + UV, in a static renewal for 3 weeks. The control fish were maintained in uncontaminated water, and not exposed to UV radiation. After the exposure duration, the fish were killed, and the activities of acid phosphatase, alkaline phosphatase, amylase, protease, and lipase were determined in the liver or intestinal homogenates. Also, the histopathology of some sections of the intestine was performed. The results showed that the activities of the enzymes decreased significantly following exposure to cypermethrin while there was no change in the activities of the enzymes due to UV irradiation alone. The histopathological analyses indicated that exposure to cypermethrin caused alterations in the histoarchitecture of the fish such as severe erosion of the mucosa layer, faded lamina propria, and disintegration of the muscle layer. The exposure of fish to both cypermethrin and UV irradiation caused significant decrease in the activities of the enzymes. This could be an indication that UV irradiation has the tendency to potentiate cypermethrin-induced toxicity in fish.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Christian C Olise
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Olufemi Samuel Bamidele
- Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Busuyi K Akinola
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
66
|
Chen J, Zhao X, Yuan Y, Jing JJ. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers. Cancer Cell Int 2020; 20:238. [PMID: 32536826 PMCID: PMC7291430 DOI: 10.1186/s12935-020-01315-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members, and diagnosis as well as the prognosis of digestive tract cancers. Methods Oncomine and Ualcan were used to analyze PTPN expressions. Data from The Cancer Genome Atlas (TCGA) were downloaded through UCSC Xena for validation and to explore the relationship of the PTPN expression with diagnosis, clinicopathological parameters and survival of digestive tract cancers. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal coupled with Cytoscape. The expression of differentially expressed PTPNs in cancer cell lines were explored using CCLE. Moreover, by histological verification, the expression of four PTPNs in digestive tract cancers were further analyzed. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. Several PTPN members were differentially expressed in digestive tract cancers. For esophageal carcinoma (ESCA), PTPN1 and PTPN12 levels were correlated with incidence; PTPN20 was associated with poor prognosis. For stomach adenocarcinoma (STAD), PTPN2 and PTPN12 levels were correlated with incidence; PTPN3, PTPN5, PTPN7, PTPN11, PTPN13, PTPN14, PTPN18 and PTPN23 were correlated with pathological grade; PTPN20 expression was related with both TNM stage and N stage; PTPN22 was associated with T stage and pathological grade; decreased expression of PTPN5 and PTPN13 implied worse overall survival of STAD, while elevated PTPN6 expression indicated better prognosis. For colorectal cancer (CRC), PTPN2, PTPN21 and PTPN22 levels were correlated with incidence; expression of PTPN5, PTPN12, and PTPN14 was correlated with TNM stage and N stage; high PTPN5 or PTPN7 expression was associated with increased hazards of death. CCLE analyses showed that in esophagus cancer cell lines, PTPN1, PTPN4 and PTPN12 were highly expressed; in gastric cancer cell lines, PTPN2 and PTPN12 were highly expressed; in colorectal cancer cell lines, PTPN12 was highly expressed while PTPN22 was downregulated. Results of histological verification experiment showed differential expressions of PTPN22 in CRC, and PTPN12 in GC and CRC. Conclusions Members of PTPN family were differentially expressed in digestive tract cancers. Correlations were found between PTPN genes and clinicopathological parameters of patients. Expression of PTPN12 was upregulated in both STAD and CRC, and thus could be used as a diagnostic biomarker. Differential expression of PTPN12 in GC and CRC, and PTPN22 in CRC were presented in our histological verification experiment.
Collapse
Affiliation(s)
- Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, 110101 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
67
|
Guo Y, Peng D, Zhou J, Lin S, Wang C, Ning W, Xu H, Deng W, Xue Y. iEKPD 2.0: an update with rich annotations for eukaryotic protein kinases, protein phosphatases and proteins containing phosphoprotein-binding domains. Nucleic Acids Res 2020; 47:D344-D350. [PMID: 30380109 PMCID: PMC6324023 DOI: 10.1093/nar/gky1063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Here, we described the updated database iEKPD 2.0 (http://iekpd.biocuckoo.org) for eukaryotic protein kinases (PKs), protein phosphatases (PPs) and proteins containing phosphoprotein-binding domains (PPBDs), which are key molecules responsible for phosphorylation-dependent signalling networks and participate in the regulation of almost all biological processes and pathways. In total, iEKPD 2.0 contained 197 348 phosphorylation regulators, including 109 912 PKs, 23 294 PPs and 68 748 PPBD-containing proteins in 164 eukaryotic species. In particular, we provided rich annotations for the regulators of eight model organisms, especially humans, by compiling and integrating the knowledge from 100 widely used public databases that cover 13 aspects, including cancer mutations, genetic variations, disease-associated information, mRNA expression, DNA & RNA elements, DNA methylation, molecular interactions, drug-target relations, protein 3D structures, post-translational modifications, protein expressions/proteomics, subcellular localizations and protein functional annotations. Compared with our previously developed EKPD 1.0 (∼0.5 GB), iEKPD 2.0 contains ∼99.8 GB of data with an ∼200-fold increase in data volume. We anticipate that iEKPD 2.0 represents a more useful resource for further study of phosphorylation regulators.
Collapse
Affiliation(s)
- Yaping Guo
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Peng
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zhou
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofeng Lin
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenwei Wang
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanshan Ning
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haodong Xu
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wankun Deng
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Xue
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
68
|
Xu X, Lemmens LJM, den Hamer A, Merkx M, Ottmann C, Brunsveld L. Modular bioengineered kinase sensors via scaffold protein-mediated split-luciferase complementation. Chem Sci 2020; 11:5532-5536. [PMID: 32874496 PMCID: PMC7446724 DOI: 10.1039/d0sc00074d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation is a key regulation event in cellular signaling. To sense the underlying kinase activity, we engineered modular and easy adaptable serine kinase sensors for the exemplary kinases PKA, PKB and CHK1.
Phosphorylation is a key regulation event in cellular signaling. Sensing the underlying kinase activity is of crucial importance for its fundamental understanding and for drug development. For this, modular kinase activity sensing concepts are urgently needed. We engineered modular serine kinase sensors based on complementation of split NanoBiT luciferase on protein assembly platforms generated from the scaffold protein 14-3-3. The bioengineered platforms are modular and easy adaptable as exemplary shown using novel sensors for the kinases PKA, PKB, and CHK1. Two designs were conceptualized, both relying on binding of defined mono- or bivalent kinase recognition motifs to the 14-3-3 platform upon phosphorylation, resulting in reconstitution of active split-luciferase. Especially the design based on double phosphorylation and bivalent 14-3-3 binding exhibits high efficiency for signal amplification (>1000-fold) and sensitivity to specific kinases, including in cellular lysates.
Collapse
Affiliation(s)
- Xiaolu Xu
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Lenne J M Lemmens
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Anniek den Hamer
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Maarten Merkx
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Christian Ottmann
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Luc Brunsveld
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| |
Collapse
|
69
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
70
|
Roy J, Cyert MS. Identifying New Substrates and Functions for an Old Enzyme: Calcineurin. Cold Spring Harb Perspect Biol 2020; 12:a035436. [PMID: 31308145 PMCID: PMC7050593 DOI: 10.1101/cshperspect.a035436] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.
Collapse
Affiliation(s)
- Jagoree Roy
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
71
|
Valdés A, Zhao H, Pettersson U, Lind SB. Phosphorylation Time-Course Study of the Response during Adenovirus Type 2 Infection. Proteomics 2020; 20:e1900327. [PMID: 32032466 DOI: 10.1002/pmic.201900327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Indexed: 12/31/2022]
Abstract
PTMs such as phosphorylations are usually involved in signal transduction pathways. To investigate the temporal dynamics of phosphoproteome changes upon viral infection, a model system of IMR-90 cells infected with human adenovirus type 2 (Ad2) is used in a time-course quantitative analysis combining titanium dioxide (TiO2 ) particle enrichment and SILAC-MS. Quantitative data from 1552 phosphorylated sites clustered the highly altered phosphorylated sites to the signaling by rho family GTPases, the actin cytoskeleton signaling, and the cAMP-dependent protein kinase A signaling pathways. Their activation is especially pronounced at early time post-infection. Changes of several phosphorylated sites involved in the glycolysis pathway, related to the activation of the Warburg effect, point at virus-induced energy production. For Ad2 proteins, 32 novel phosphorylation sites are identified and as many as 52 phosphorylated sites on 17 different Ad2 proteins are quantified, most of them at late time post-infection. Kinase predictions highlighted activation of PKA, CDK1/2, MAPK, and CKII. Overlaps of kinase motif sequences for viral and human proteins are observed, stressing the importance of phosphorylation during Ad2 infection.
Collapse
Affiliation(s)
- Alberto Valdés
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden.,Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Sara Bergström Lind
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden
| |
Collapse
|
72
|
Pal A, Pal A, Mallick AI, Biswas P, Chatterjee PN. Molecular characterization of Bu-1 and TLR2 gene in Haringhata Black chicken. Genomics 2020; 112:472-483. [PMID: 30902756 DOI: 10.1016/j.ygeno.2019.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
Haringhata Black is the only registered indigenous poultry genetic resource of West Bengal till date. Molecular characterization of HB revealed that Bu-1 to be highly glycoylated transmembrane protein unlike mammalian Bu-1, whereas TLR2 of HB chicken was observed to be rich in Leucine rich repeat. HB chicken was observed to be genetically close to chicken of Japan, while distant to chicken breed of UK and Chicago. Avian species wise evolution study indicates genetic closeness of HB chicken with turkey. Differential mRNA expression profile for the immune response genes (TLR2, TLR4 and Bu1 gene) were studied for HB chicken with respect to other chicken breed and poultry birds, which reveals that HB chicken were better in terms of B cell mediated immunity and hence better response to vaccination. Hence HB chicken is one of the best poultry genetic resources to be reared under backyard system where biosecurity measures are almost lacking.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India.
| | - Abantika Pal
- Indian Institute of technology, Kharagpur, West Bengal, India
| | | | - P Biswas
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B. Sarani, Kolkata 37, India
| |
Collapse
|
73
|
Trebacz M, Wang Y, Makotta L, Henschke L, Köhn M. Development of a Photoactivatable Protein Phosphatase-1-Disrupting Peptide. J Org Chem 2019; 85:1712-1717. [PMID: 31841001 PMCID: PMC7011174 DOI: 10.1021/acs.joc.9b02548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
We describe here the development of a photoreleasable
version of
a protein phosphatase-1 (PP1)-disrupting peptide (PDP-Nal) that triggers protein phosphatase-1 activity. PDP-Nal is a 23 mer that binds to PP1 through several interactions. It was
photocaged on a tyrosine residue, which required the exchange of phenylalanine
in PDP-Nal to tyrosine in order to disrupt the most
important binding interface. This PDP-caged can
be light-controlled in live cells.
Collapse
Affiliation(s)
- Malgorzata Trebacz
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Yansong Wang
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Leslie Makotta
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Lars Henschke
- European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III , University of Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany.,Signalling Research Centres BIOSS and CIBSS , University of Freiburg , 79104 Freiburg , Germany.,European Molecular Biology Laboratory , Genome Biology Unit, Meyerhofstraße 1 , 69117 Heidelberg , Germany
| |
Collapse
|
74
|
Li H, Guan Y. Machine learning empowers phosphoproteome prediction in cancers. Bioinformatics 2019; 36:859-864. [PMID: 31410451 PMCID: PMC7868059 DOI: 10.1093/bioinformatics/btz639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Reversible protein phosphorylation is an essential post-translational modification regulating protein functions and signaling pathways in many cellular processes. Aberrant activation of signaling pathways often contributes to cancer development and progression. The mass spectrometry-based phosphoproteomics technique is a powerful tool to investigate the site-level phosphorylation of the proteome in a global fashion, paving the way for understanding the regulatory mechanisms underlying cancers. However, this approach is time-consuming and requires expensive instruments, specialized expertise and a large amount of starting material. An alternative in silico approach is predicting the phosphoproteomic profiles of cancer patients from the available proteomic, transcriptomic and genomic data. RESULTS Here, we present a winning algorithm in the 2017 NCI-CPTAC DREAM Proteogenomics Challenge for predicting phosphorylation levels of the proteome across cancer patients. We integrate four components into our algorithm, including (i) baseline correlations between protein and phosphoprotein abundances, (ii) universal protein-protein interactions, (iii) shareable regulatory information across cancer tissues and (iv) associations among multi-phosphorylation sites of the same protein. When tested on a large held-out testing dataset of 108 breast and 62 ovarian cancer samples, our method ranked first in both cancer tissues, demonstrating its robustness and generalization ability. AVAILABILITY AND IMPLEMENTATION Our code and reproducible results are freely available on GitHub: https://github.com/GuanLab/phosphoproteome_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongyang Li
- To whom correspondence should be addressed. or
| | | |
Collapse
|
75
|
Molecular basis for the binding and selective dephosphorylation of Na +/H + exchanger 1 by calcineurin. Nat Commun 2019; 10:3489. [PMID: 31375679 PMCID: PMC6677818 DOI: 10.1038/s41467-019-11391-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/08/2019] [Indexed: 01/26/2023] Open
Abstract
Very little is known about how Ser/Thr protein phosphatases specifically recruit and dephosphorylate substrates. Here, we identify how the Na+/H+-exchanger 1 (NHE1), a key regulator of cellular pH homeostasis, is regulated by the Ser/Thr phosphatase calcineurin (CN). NHE1 activity is increased by phosphorylation of NHE1 residue T779, which is specifically dephosphorylated by CN. While it is known that Ser/Thr protein phosphatases prefer pThr over pSer, we show that this preference is not key to this exquisite CN selectivity. Rather a combination of molecular mechanisms, including recognition motifs, dynamic charge-charge interactions and a substrate interaction pocket lead to selective dephosphorylation of pT779. Our data identify T779 as a site regulating NHE1-mediated cellular acid extrusion and provides a molecular understanding of NHE1 substrate selection by CN, specifically, and how phosphatases recruit specific substrates, generally.
Collapse
|
76
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
77
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
78
|
Calcineurin dephosphorylates Kelch-like 3, reversing phosphorylation by angiotensin II and regulating renal electrolyte handling. Proc Natl Acad Sci U S A 2019; 116:3155-3160. [PMID: 30718414 PMCID: PMC6386661 DOI: 10.1073/pnas.1817281116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Calcineurin inhibitors (CNIs) are potent immunosuppressants; hypertension and hyperkalemia are common adverse effects. Activation of the renal Na-Cl cotransporter (NCC) is implicated in this toxicity; however, the mechanism is unknown. CNIs’ renal effects mimic the hypertension and hyperkalemia resulting from mutations in WNK kinases or in KLHL3-CUL3 ubiquitin ligase. WNKs activate NCC and are degraded by ubiquitylation upon their binding to KLHL3. The binding of WNKs to KLHL3 is prevented by KLHL3 mutations or by PKC-mediated KLHL3 phosphorylation at serine 433. This work shows that calcineurin dephosphorylates KLHL3S433, promoting WNK4 degradation. Conversely, CNIs inhibit KLHL3S433 dephosphorylation, preventing WNK degradation. These findings implicate calcineurin in the normal regulation of KLHL3’s binding of WNK4 and identify a direct target causing CNI-induced pathology. Calcineurin is a calcium/calmodulin-regulated phosphatase known for its role in activation of T cells following engagement of the T cell receptor. Calcineurin inhibitors (CNIs) are widely used as immunosuppressive agents; common adverse effects of CNIs are hypertension and hyperkalemia. While previous studies have implicated activation of the Na-Cl cotransporter (NCC) in the renal distal convoluted tubule (DCT) in this toxicity, the molecular mechanism of this effect is unknown. The renal effects of CNIs mimic the hypertension and hyperkalemia that result from germ-line mutations in with-no-lysine (WNK) kinases and the Kelch-like 3 (KLHL3)–CUL3 ubiquitin ligase complex. WNK4 is an activator of NCC and is degraded by binding to KLHL3 followed by WNK4’s ubiquitylation and proteasomal degradation. This binding is prevented by phosphorylation of KLHL3 at serine 433 (KLHL3S433-P) via protein kinase C, resulting in increased WNK4 levels and increased NCC activity. Mechanisms mediating KLHL3S433-P dephosphorylation have heretofore been unknown. We now demonstrate that calcineurin expressed in DCT is a potent KLHL3S433-P phosphatase. In mammalian cells, the calcium ionophore ionomycin, a calcineurin activator, reduces KLHL3S433-P levels, and this effect is reversed by the calcineurin inhibitor tacrolimus and by siRNA-mediated knockdown of calcineurin. In vivo, tacrolimus increases levels of KLHL3S433-P, resulting in increased levels of WNK4, phosphorylated SPAK, and NCC. Moreover, tacrolimus attenuates KLHL3-mediated WNK4 ubiquitylation and degradation, while this effect is absent in KLHL3 with S433A substitution. Additionally, increased extracellular K+ induced calcineurin-dependent dephosphorylation of KLHL3S433-P. These findings demonstrate that KLHL3S433-P is a calcineurin substrate and implicate increased KLHL3 phosphorylation in tacrolimus-induced pathologies.
Collapse
|
79
|
Kim G, Bhattarai PY, Choi HS. Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 as a molecular target in breast cancer: a therapeutic perspective of gynecological cancer. Arch Pharm Res 2019; 42:128-139. [PMID: 30684192 DOI: 10.1007/s12272-019-01122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) induces conformational and functional changes to numerous key signaling molecules following proline-directed phosphorylation and its deregulation contributes to disease, particularly cancer. PIN1 is overexpressed in breast cancer, promoting cell proliferation and transformation in collaboration with several oncogenic signaling pathways, and is correlated with a poor clinical outcome. PIN1 level is also increased in certain gynecological cancers such as cervical, ovarian, and endometrial cancers. Although women with breast cancer are at risk of developing a second primary gynecological malignancy, particularly of the endometrium and ovary, the common oncogenic signaling pathway mediated by PIN1 has not been noted to date. This review discusses the roles of PIN1 in breast tumorigenesis and gynecological cancer progression, as well as the clinical effect of targeting this enzyme in breast and gynecological cancers.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Poshan Yugal Bhattarai
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, 309 Philmundaero, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
80
|
Damle NP, Köhn M. The human DEPhOsphorylation Database DEPOD: 2019 update. Database (Oxford) 2019; 2019:baz133. [PMID: 31836896 PMCID: PMC6911163 DOI: 10.1093/database/baz133] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
The human Dephosphorylation Database (DEPOD) is a manually curated resource that harbors human phosphatases, their protein and non-protein substrates, dephosphorylation sites and the associated signaling pathways. We report here an update to DEPOD by integrating and/or linking to annotations from 69 other open access databases including disease associations, phosphorylating kinases, protein interactions, and also genome browsers. We also provide tools to visualize protein interactions, protein structures, phosphorylation networks, evolutionary conservation of proteins, dephosphorylation sites, and short linear motifs within various proteins. The updated version of DEPOD contains 254 human phosphatases, 336 protein and 83 non-protein substrates, and 1215 manually curated phosphatase-substrate relationships. In addition, we have improved the data access as all the data in DEPOD can now be easily downloaded in a user-friendly format. With multiple significant improvements, DEPOD continues serving as a key resource for research on phosphatase-kinase networks. Database URL: www.depod.org.
Collapse
Affiliation(s)
- Nikhil P Damle
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
81
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
82
|
Casey GR, Stains CI. Interrogating Protein Phosphatases with Chemical Activity Probes. Chemistry 2018; 24:7810-7824. [PMID: 29338103 PMCID: PMC5986605 DOI: 10.1002/chem.201705194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/30/2022]
Abstract
Protein phosphatases, while long overlooked, have recently become appreciated as drivers of both normal- and disease-associated signaling events. As a result, the spotlight is now turning torwards this enzyme family and efforts geared towards the development of modern chemical tools for studying these enzymes are well underway. This Minireview focuses on the evolution of chemical activity probes, both optical and covalent, for the study of protein phosphatases. Small-molecule probes, global monitoring of phosphatase activity through the use of covalent modifiers, and targeted fluorescence-based activity probes are discussed. We conclude with an overview of open questions in the field and highlight the potential impact of chemical tools for studying protein phosphatases.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
83
|
PRP4 kinase induces actin rearrangement and epithelial-mesenchymal transition through modulation of the actin-binding protein cofilin. Exp Cell Res 2018; 369:158-165. [PMID: 29787735 DOI: 10.1016/j.yexcr.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/26/2023]
Abstract
Cell actin cytoskeleton is primarily modulated by Rho family proteins. RhoA regulates several downstream targets, including Rho-associated protein kinase (ROCK), LIM-Kinase (LIMK), and cofilin. Pre-mRNA processing factor 4B (PRP4) modulates the actin cytoskeleton of cancer cells via RhoA activity inhibition. In this study, we discovered that PRP4 over-expression in HCT116 colon cancer cells induces cofilin dephosphorylation by inhibiting the Rho-ROCK-LIMK-cofilin pathway. Two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) analysis indicated increased expression of protein phosphatase 1A (PP1A) in PRP4-transfected HCT116 cells. The presence of PRP4 increased the expression of PP1A both at the mRNA and protein levels, which possibly activated cofilin through dephosphorylation and subsequently modulated the cell actin cytoskeleton. Furthermore, we found that PRP4 over-expression did not induce cofilin dephosphorylation in the presence of okadaic acid, a potent phosphatase inhibitor. Moreover, we discovered that PRP4 over-expression in HCT116 cells induced dephosphorylation of migration and invasion inhibitory protein (MIIP), and down-regulation of E-cadherin protein levels, which were further restored by the presence of okadaic acid. These findings indicate a possible molecular mechanism of PRP4-induced actin cytoskeleton remodeling and epithelial-mesenchymal transition, and make PRP4 an important target in colon cancer.
Collapse
|
84
|
Köhn M. Miklós Bodanszky Award Lecture: Advances in the selective targeting of protein phosphatase-1 and phosphatase-2A with peptides. J Pept Sci 2018; 23:749-756. [PMID: 28876538 PMCID: PMC5639349 DOI: 10.1002/psc.3033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022]
Abstract
Protein phosphatase-1 and phosphatase-2A are two ubiquitously expressed enzymes known to catalyze the majority of dephosphorylation reactions on serine and threonine inside cells. They play roles in most cellular processes and are tightly regulated by regulatory subunits in holoenzymes. Their misregulation and malfunction contribute to disease development and progression, such as in cancer, diabetes, viral infections, and neurological as well as heart diseases. Therefore, targeting these phosphatases for therapeutic use would be highly desirable; however, their complex regulation and high conservation of the active site have been major hurdles for selectively targeting them in the past. In the last decade, new approaches have been developed to overcome these hurdles and have strongly revived the field. I will focus here on peptide-based approaches, which contributed to showing that these phosphatases can be targeted selectively and aided in rethinking the design of selective phosphatase modulators. Finally, I will give a perspective on www.depod.org, the human dephosphorylation database, and how it can aid phosphatase modulator design. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Maja Köhn
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
85
|
Behera S, Kapadia B, Kain V, Alamuru-Yellapragada NP, Murunikkara V, Kumar ST, Babu PP, Seshadri S, Shivarudraiah P, Hiriyan J, Gangula NR, Maddika S, Misra P, Parsa KV. ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1702-1716. [DOI: 10.1016/j.bbadis.2018.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
|
86
|
Wilson JL, Kefaloyianni E, Stopfer L, Harrison C, Sabbisetti VS, Fraenkel E, Lauffenburger DA, Herrlich A. Functional Genomics Approach Identifies Novel Signaling Regulators of TGFα Ectodomain Shedding. Mol Cancer Res 2018; 16:147-161. [PMID: 29018056 PMCID: PMC5859574 DOI: 10.1158/1541-7786.mcr-17-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/16/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Ectodomain shedding of cell-surface precursor proteins by metalloproteases generates important cellular signaling molecules. Of importance for disease is the release of ligands that activate the EGFR, such as TGFα, which is mostly carried out by ADAM17 [a member of the A-disintegrin and metalloprotease (ADAM) domain family]. EGFR ligand shedding has been linked to many diseases, in particular cancer development, growth and metastasis, as well as resistance to cancer therapeutics. Excessive EGFR ligand release can outcompete therapeutic EGFR inhibition or the inhibition of other growth factor pathways by providing bypass signaling via EGFR activation. Drugging metalloproteases directly have failed clinically because it indiscriminately affected shedding of numerous substrates. It is therefore essential to identify regulators for EGFR ligand cleavage. Here, integration of a functional shRNA genomic screen, computational network analysis, and dedicated validation tests succeeded in identifying several key signaling pathways as novel regulators of TGFα shedding in cancer cells. Most notably, a cluster of genes with NFκB pathway regulatory functions was found to strongly influence TGFα release, albeit independent of their NFκB regulatory functions. Inflammatory regulators thus also govern cancer cell growth-promoting ectodomain cleavage, lending mechanistic understanding to the well-known connection between inflammation and cancer.Implications: Using genomic screens and network analysis, this study defines targets that regulate ectodomain shedding and suggests new treatment opportunities for EGFR-driven cancers. Mol Cancer Res; 16(1); 147-61. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eirini Kefaloyianni
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Harrison
- Department of Biology, University of Massachusetts, Boston, Massachusetts
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Andreas Herrlich
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
87
|
Hon J, Hwang MS, Charnetzki MA, Rashed IJ, Brady PB, Quillin S, Makinen MW. Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO 2+) chelates. J Biol Inorg Chem 2017; 22:1267-1279. [PMID: 29071441 PMCID: PMC5671894 DOI: 10.1007/s00775-017-1500-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Protein tyrosine phosphatases (PTPases) are a prominent focus of drug design studies because of their roles in homeostasis and disorders of metabolism. These studies have met with little success because (1) virtually all inhibitors hitherto exhibit only competitive behavior and (2) a consensus sequence H/V-C-X5-R-S/T characterizes the active sites of PTPases, leading to low specificity of active site directed inhibitors. With protein tyrosine phosphatase-1B (PTP1B) identifed as the target enzyme of the vanadyl (VO2+) chelate bis(acetylacetonato)oxidovanadium(IV) [VO(acac)2] in 3T3-L1 adipocytes [Ou et al. J Biol Inorg Chem 10: 874-886, 2005], we compared the inhibition of PTP1B by VO(acac)2 with other VO2+-chelates, namely, bis(2-ethyl-maltolato)oxidovanadium(IV) [VO(Et-malto)2] and bis(3-hydroxy-2-methyl-4(1H)pyridinonato)oxidovanadium(IV) [VO(mpp)2] under steady-state conditions, using the soluble portion of the recombinant human enzyme (residues 1-321). Our results differed from those of previous investigations because we compared inhibition in the presence of the nonspecific substrate p-nitrophenylphosphate and the phosphotyrosine-containing undecapeptide DADEpYLIPQQG mimicking residues 988-998 of the epidermal growth factor receptor, a relevant, natural substrate. While VO(Et-malto)2 acts only as a noncompetitive inhibitor in the presence of either subtrate, VO(acac)2 exhibits classical uncompetitive inhibition in the presence of DADEpYLIPQQG but only apparent competitive inhibition with p-nitrophenylphosphate as substrate. Because uncompetitive inhibitors are more potent pharmacologically than competitive inhibitors, structural characterization of the site of uncompetitive binding of VO(acac)2 may provide a new direction for design of inhibitors for therapeutic purposes. Our results suggest also that the true behavior of other inhibitors may have been masked when assayed with only p-nitrophenylphosphate as substrate.
Collapse
Affiliation(s)
- Jason Hon
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Michelle S Hwang
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Meara A Charnetzki
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Issra J Rashed
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Patrick B Brady
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Sarah Quillin
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Marvin W Makinen
- Department of Biochemistry and Molecular Biology Center for Integrative Science, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
88
|
Technological advances for interrogating the human kinome. Biochem Soc Trans 2017; 45:65-77. [PMID: 28202660 DOI: 10.1042/bst20160163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022]
Abstract
There is increasing appreciation among researchers and clinicians of the value of investigating biology and pathobiology at the level of cellular kinase (kinome) activity. Kinome analysis provides valuable opportunity to gain insights into complex biology (including disease pathology), identify biomarkers of critical phenotypes (including disease prognosis and evaluation of therapeutic efficacy), and identify targets for therapeutic intervention through kinase inhibitors. The growing interest in kinome analysis has fueled efforts to develop and optimize technologies that enable characterization of phosphorylation-mediated signaling events in a cost-effective, high-throughput manner. In this review, we highlight recent advances to the central technologies currently available for kinome profiling and offer our perspectives on the key challenges remaining to be addressed.
Collapse
|
89
|
Bujko M, Kober P, Statkiewicz M, Mikula M, Grecka E, Rusetska N, Ligaj M, Ostrowski J, Siedlecki JA. Downregulation of PTPRH (Sap-1) in colorectal tumors. Int J Oncol 2017; 51:841-850. [PMID: 28713969 DOI: 10.3892/ijo.2017.4068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
Tyrosine phosphorylation is one of the basic mechanisms for signal transduction in the cell. Receptors exhibiting tyrosine kinase activity are widely involved in carcinogenesis and are negatively regulated by receptor protein tyrosine phosphatases (RPTP). Genes encoding different RPTPs are affected by aberrant epigenetic regulation in cancer. PTPRH (SAP-1) has been previously described to be overexpressed in colorectal cancer (CRC) and classified as an oncogenic factor. Previous microarray-based mRNA expression comparison of colorectal adenomas (AD), CRC and normal mucosa samples (NM) demonstrated that PTPRH tumor expression is the most reduced of all RPTP genes. qRT-PCR validation revealed gene downregulation for CRC (7.6-fold-change; P<0.0001) and AD (3.4-fold-change; P<0.0001) compared to NM. This was confirmed by immunohistochemical staining of tumor and NM sections as pronounced decrease of protein expression was observed in CRCs compared to the corresponding normal tissue. DNA methylation of two PTPRH promoter fragments was analyzed by pyrosequencing in a group of CRC, and AD patients as well as NM samples and CRC cell lines. The mean DNA methylation levels of these two regions were significantly higher in CRC than in NM. Both regions were highly methylated in SW480 and HCT116 cell lines contrary to unmethylated HT29 and COLO205. Cell lines with highly methylated promoters notably showed lower PTPRH expression levels, lower RNA II polymerase concentrations and higher levels of H3K27 trimethylation in the promoter and gene body, measured by chromatin immunoprecipitation. Cells were cultured with 5-aza-deoxycitidine and an increase in PTPRH expression was observed in SW480 and HCT116, whereas this was unchanged in the unmethylated cell lines. The results indicate that PTPRH is downregulated in colorectal tumors and its expression is epigenetically regulated via DNA methylation and chromatin modifications.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Emilia Grecka
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Nataliia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Marcin Ligaj
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
90
|
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40:271-280. [PMID: 28656226 PMCID: PMC5500920 DOI: 10.3892/ijmm.2017.3036] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation is an important cellular regulatory mechanism as many enzymes and receptors are activated/deactivated by phosphorylation and dephosphorylation events, by means of kinases and phosphatases. In particular, the protein kinases are responsible for cellular transduction signaling and their hyperactivity, malfunction or overexpression can be found in several diseases, mostly tumors. Therefore, it is evident that the use of kinase inhibitors can be valuable for the treatment of cancer. In this review, we discuss the mechanism of action of phosphorylation, with particular attention to the importance of phosphorylation under physiological and pathological conditions. We also discuss the possibility of using kinase inhibitors in the treatment of tumors.
Collapse
Affiliation(s)
- Fatima Ardito
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Donatella Perrone
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, I-71122 Foggia, Italy
| |
Collapse
|
91
|
Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci Rep 2017; 7:2119. [PMID: 28522851 PMCID: PMC5437018 DOI: 10.1038/s41598-017-01910-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Rif1 is a conserved protein that plays essential roles in orchestrating DNA replication timing, controlling nuclear architecture, telomere length and DNA repair. However, the relationship between these different roles, as well as the molecular basis of Rif1 function is still unclear. The association of Rif1 with insoluble nuclear lamina has thus far hampered exhaustive characterization of the associated protein complexes. We devised a protocol that overcomes this problem, and were thus able to discover a number of novel Rif1 interactors, involved in chromatin metabolism and phosphorylation. Among them, we focus here on PP1. Data from different systems have suggested that Rif1-PP1 interaction is conserved and has important biological roles. Using mutagenesis, NMR, isothermal calorimetry and surface plasmon resonance we demonstrate that Rif1 is a high-affinity PP1 adaptor, able to out-compete the well-established PP1-inhibitor I2 in vitro. Our conclusions have important implications for understanding Rif1 diverse roles and the relationship between the biological processes controlled by Rif1.
Collapse
|
92
|
Chen MJ, Dixon JE, Manning G. Genomics and evolution of protein phosphatases. Sci Signal 2017; 10:10/474/eaag1796. [DOI: 10.1126/scisignal.aag1796] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, Amin S, Malty R, Aoki H, Guo H, Xu Y, Iorio C, Kotlyar M, Emili A, Jurisica I, Neel BG, Babu M, Gingras AC, Stagljar I. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell 2017; 65:347-360. [PMID: 28065597 DOI: 10.1016/j.molcel.2016.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Katelyn Darowski
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Caterina Iorio
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
94
|
Corti F, Simons M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol Res 2017; 115:107-123. [PMID: 27888154 PMCID: PMC5205541 DOI: 10.1016/j.phrs.2016.11.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Phosphorylation of serines, threonines, and tyrosines is a central event in signal transduction cascades in eukaryotic cells. The phosphorylation state of any particular protein reflects a balance of activity between kinases and phosphatases. Kinase biology has been exhaustively studied and is reasonably well understood, however, much less is known about phosphatases. A large body of evidence now shows that protein phosphatases do not behave as indiscriminate signal terminators, but can function both as negative or positive regulators of specific signaling pathways. Genetic models have also shown that different protein phosphatases play precise biological roles in health and disease. Finally, genome sequencing has unveiled the existence of many protein phosphatases and associated regulatory subunits comparable in number to kinases. A wide variety of roles for protein phosphatase roles have been recently described in the context of cancer, diabetes, hereditary disorders and other diseases. In particular, there have been several recent advances in our understanding of phosphatases involved in regulation of vascular endothelial growth factor receptor 2 (VEGFR2) signaling. The receptor is the principal signaling molecule mediating a wide spectrum of VEGF signal and, thus, is of paramount significance in a wide variety of diseases ranging from cancer to cardiovascular to ophthalmic. This review focuses on the current knowledge about protein phosphatases' regulation of VEGFR2 signaling and how these enzymes can modulate its biological effects.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
95
|
Sheftic SR, Page R, Peti W. Investigating the human Calcineurin Interaction Network using the πɸLxVP SLiM. Sci Rep 2016; 6:38920. [PMID: 27974827 PMCID: PMC5156906 DOI: 10.1038/srep38920] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Ser/thr phosphorylation is the primary reversible covalent modification of proteins in eukaryotes. As a consequence, it is the reciprocal actions of kinases and phosphatases that act as key molecular switches to fine tune cellular events. It has been well documented that ~400 human ser/thr kinases engage substrates via consensus phosphosite sequences. Strikingly, we know comparatively little about the mechanism by which ~40 human protein ser/thr phosphatases (PSPs) dephosphorylate ~15000 different substrates with high specificity. The identification of substrates of the essential PSP calcineurin (CN) has been exceptionally challenging and only a small fraction has been biochemically confirmed. It is now emerging that CN binds regulators and substrates via two short linear motifs (SLiMs), the well-studied PxIxIT SLiM and the LxVP SLiM, which remains controversial at the molecular level. Here we describe the crystal structure of CN in complex with its substrate NFATc1 and show that the LxVP SLiM is correctly defined as πɸLxVP. Bioinformatics studies using the πɸLxVP SLiM resulted in the identification of 567 potential CN substrates; a small subset was experimentally confirmed. This combined structural-bioinformatics approach provides a powerful method for dissecting the CN interaction network and for elucidating the role of CN in human health and disease.
Collapse
Affiliation(s)
- Sarah R Sheftic
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA.,Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
96
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
97
|
Hatano A, Matsumoto M, Nakayama KI. Phosphoproteomics analyses show subnetwork systems in T-cell receptor signaling. Genes Cells 2016; 21:1095-1112. [DOI: 10.1111/gtc.12406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Atsushi Hatano
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
98
|
Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3062765. [PMID: 27340655 PMCID: PMC4909930 DOI: 10.1155/2016/3062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation.
Collapse
|
99
|
Li X, Köhn M. Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorg Med Chem 2016; 24:3255-8. [PMID: 27025565 PMCID: PMC4957924 DOI: 10.1016/j.bmc.2016.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
Abstract
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.
Collapse
Affiliation(s)
- Xun Li
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
100
|
Beck JR, Lawrence A, Tung AS, Harris EN, Stains CI. Interrogating Endogenous Protein Phosphatase Activity with Rationally Designed Chemosensors. ACS Chem Biol 2016; 11:284-90. [PMID: 26580981 DOI: 10.1021/acschembio.5b00506] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We introduce a versatile approach for repurposing protein kinase chemosensors, containing the phosphorylation-sensitive sulfonamido-oxine fluorophore termed Sox, for the specific determination of endogenous protein phosphatase activity from whole cell lysates and tissue homogenates. As a demonstration of this approach, we design and evaluate a direct chemosensor for protein tyrosine phosphatase-1B (PTP1B), an established signaling node in human disease. The optimal sensor design is capable of detecting as little as 6 pM (12 pg) full-length recombinant PTP1B and is remarkably selective for PTP1B among a panel of highly homologous tyrosine phosphatases. Coupling this robust activity probe with the specificity of antibodies allowed for the temporal analysis of endogenous PTP1B activity dynamics in lysates generated from HepG2 cells after stimulation with insulin. Lastly, we leveraged this assay format to profile PTP1B activity perturbations in a rat model of nonalcoholic fatty liver disease (NAFLD), providing direct evidence for elevated PTP1B catalytic activity in this disease state. Given the modular nature of this assay, we anticipate that this approach will have broad utility in monitoring phosphatase activity dynamics in human disease states.
Collapse
Affiliation(s)
- Jon R. Beck
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Antoneal Lawrence
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Amar S. Tung
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Edward N. Harris
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|