51
|
Park JS, Oh Y, Park YJ, Park O, Yang H, Slania S, Hummers LK, Shah AA, An HT, Jang J, Horton MR, Shin J, Dietz HC, Song E, Na DH, Park EJ, Kim K, Lee KC, Roschke VV, Hanes J, Pomper MG, Lee S. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat Commun 2019; 10:1128. [PMID: 30850660 PMCID: PMC6408468 DOI: 10.1038/s41467-019-09101-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
Scleroderma is an autoimmune rheumatic disorder accompanied by severe fibrosis in skin and other internal organs. During scleroderma progression, resident fibroblasts undergo activation and convert to α-smooth muscle actin (α-SMA) expressing myofibroblasts (MFBs) with increased capacity to synthesize collagens and fibrogenic components. Accordingly, MFBs are a major therapeutic target for fibrosis in scleroderma and treatment with blocking MFBs could produce anti-fibrotic effects. TLY012 is an engineered human TNF-related apoptosis-inducing ligand (TRAIL) which induces selective apoptosis in transformed cells expressing its cognate death receptors (DRs). Here we report that TLY012 selectively blocks activation of dermal fibroblasts and induces DR-mediated apoptosis in α-SMA+ MFBs through upregulated DR5 during its activation. In vivo, TLY012 reverses established skin fibrosis to near-normal skin architecture in mouse models of scleroderma. Thus, the TRAIL pathway plays a critical role in tissue remodeling and targeting upregulated DR5 in α-SMA+ MFBs is a viable therapy for fibrosis in scleroderma.
Collapse
Affiliation(s)
- Jong-Sung Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Yumin Oh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Yong Joo Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Ogyi Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Theraly Fibrosis Inc., Germantown, 20876, MD, USA
| | - Hoseong Yang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Stephanie Slania
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Laura K Hummers
- Scleroderma Center, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA
| | - Ami A Shah
- Scleroderma Center, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, 21224, MD, USA
| | - Hyoung-Tae An
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Jiyeon Jang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Maureen R Horton
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Joseph Shin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06520, CT, USA
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun Ji Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kwangmeyung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kang Choon Lee
- School of Pharmacy, SungKyunKwan University, Jangangu, 16419, Suwon, Republic of Korea
| | | | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
- Department of Materials and Science, Johns Hopkins University, Baltimore, 21218, MD, USA
| | - Seulki Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
- Department of Materials and Science, Johns Hopkins University, Baltimore, 21218, MD, USA.
| |
Collapse
|
52
|
New Evidence Supporting the Role of FBN1 in the Development of Adolescent Idiopathic Scoliosis. Spine (Phila Pa 1976) 2019; 44:E225-E232. [PMID: 30044367 DOI: 10.1097/brs.0000000000002809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A genetic association study. OBJECTIVE To determine whether common variants of fibrillin-1 (FBN1) and fibrillin-2 (FBN2) are associated with adolescent idiopathic scoliosis (AIS), and to further investigate to further investigate the functional role of FBN1 in the onset and progression of AIS. SUMMARY OF BACKGROUND DATA Previous studies have identified several rare variants in FBN1 and FBN2 that were associated with AIS. There is, however, a lack of knowledge concerning the association between common variants of FBN1 and FBN2 and AIS. METHODS Common variants covering FBN1 and FBN2 were genotyped in 952 patients with AIS and 1499 controls. Paraspinal muscles were collected from 66 patients with AIS and 18 patients with lumbar disc herniation (LDH) during surgical interventions. The differences of genotype and allele distributions between patients and controls were calculated using Chi-square test. The Student t test was used to compare the expression of FBN1 and FBN2 between patients with AIS and LDH. One-way analysis of variance test was used to compare the gene expression among different genotypes of the significantly associated variant. The Pearson correlation analysis was used to determine the relationship between FBN1 expression and the curve severity. RESULTS The common variant rs12916536 of FBN1 was significantly associated with AIS. Patients were found to have significantly lower frequency of allele A than the controls (0.397 vs. 0.450, P = 1.10 × 10) with an odds ratio of 0.81. Moreover, patients with AIS were found to have significantly lower FBN1 expression than patients with LDH (0.00033 ± 0.00015 vs. 0.00054 ± 0.00031, P = 1.70 × 10). The expression level of FBN1 was remarkably correlated with the curve severity (r = -0.352, P = 0.02). There was no significant difference of FBN1 expression among different genotypes of rs12916536. CONCLUSION Common variant of FBN1 is significantly associated with the susceptibility of AIS. Moreover, the decreased expression of FBN1 is significantly correlated with the curve severity of AIS. The functional role of FBN in AIS is worthy of further investigation. LEVEL OF EVIDENCE 3.
Collapse
|
53
|
The Fibrillin-1 RGD Integrin Binding Site Regulates Gene Expression and Cell Function through microRNAs. J Mol Biol 2019; 431:401-421. [DOI: 10.1016/j.jmb.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022]
|
54
|
Khadzhieva MB, Kamoeva SV, Ivanova AV, Salnikova LE. Genetic Factors of Comorbidity of Pelvic Organ Prolapse, Stress Urinary Incontinence, and Chronic Venous Insufficiency of the Lower Limbs in Women. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
55
|
Marsh E, Gonzalez DG, Lathrop EA, Boucher J, Greco V. Positional Stability and Membrane Occupancy Define Skin Fibroblast Homeostasis In Vivo. Cell 2018; 175:1620-1633.e13. [PMID: 30415836 DOI: 10.1016/j.cell.2018.10.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.
Collapse
Affiliation(s)
- Edward Marsh
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jonathan Boucher
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Dermatology & Cell Biology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
56
|
Fibrillin protein pleiotropy: Acromelic dysplasias. Matrix Biol 2018; 80:6-13. [PMID: 30219651 DOI: 10.1016/j.matbio.2018.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 01/30/2023]
Abstract
The fibrillins are large extracellular matrix molecules that polymerize to form microfibrils. Fibrillin microfibrils are distinctive architectural elements that are both ubiquitous in the connective tissue space and also unique, displaying tissue-specific patterns. Mutations in the genes for fibrillin-1 (FBN1) result in multiple distinct pleiotropic disorders. Most of the more than 3000 mutations known today in FBN1 cause the Marfan syndrome. Marfan mutations can occur in any of the 56 domains that compose fibrillin-1. In contrast, rare mutations in FBN1 that are confined to only certain domains cause several different types of acromelic dysplasia. These genetic disorders demonstrate that specific domains of fibrillin-1 perform roles important to musculoskeletal growth. Many of the phenotypes of acromelic dysplasias are the opposite of those found in Marfan syndrome. Knowledge of the functions and structural organization of fibrillin molecules within microfibrils is required to understand how one protein and one gene can be the basis for multiple genetic disorders.
Collapse
|
57
|
Cao Z, Ye T, Sun Y, Ji G, Shido K, Chen Y, Luo L, Na F, Li X, Huang Z, Ko JL, Mittal V, Qiao L, Chen C, Martinez FJ, Rafii S, Ding BS. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Sci Transl Med 2018; 9:9/405/eaai8710. [PMID: 28855398 DOI: 10.1126/scitranslmed.aai8710] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/30/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023]
Abstract
The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration.
Collapse
Affiliation(s)
- Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China. .,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tinghong Ye
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yue Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gaili Ji
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Koji Shido
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yutian Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Feifei Na
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Xiaoyan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhen Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jane L Ko
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chong Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China Hospital, Sichuan University, China
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China. .,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
58
|
Dolmatov IY, Afanasyev SV, Boyko AV. Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS One 2018; 13:e0195836. [PMID: 29649336 PMCID: PMC5897022 DOI: 10.1371/journal.pone.0195836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
Echinoderms are capable of asexual reproduction by fission. An individual divides into parts due to changes in the strength of connective tissue of the body wall. The structure of connective tissue and the mechanisms of variations in its strength in echinoderms remain poorly studied. An analysis of transcriptomes of individuals during the process of fission provides a new opportunity to understand the mechanisms of connective tissue mutability. In the holothurian Cladolabes schmeltzii, we have found a rather complex organization of connective tissue. Transcripts of genes encoding a wide range of structural proteins of extracellular matrix, as well as various proteases and their inhibitors, have been discovered. All these molecules may constitute a part of the mechanism of connective tissue mutability. According to our data, the extracellular matrix of echinoderms is substantially distinguished from that of vertebrates by the lack of elastin, fibronectins, and tenascins. In case of fission, a large number of genes of transcription factors and components of different signaling pathways are expressed. Products of these genes are probably involved in regulation of asexual reproduction, connective tissue mutability, and preparation of tissues for subsequent regeneration. It has been shown that holothurian tensilins are a special group of tissue inhibitors of metalloproteinases, which has formed within the class Holothuroidea and is absent from other echinoderms. Our data can serve a basis for the further study of the mechanisms of extracellular matrix mutability, as well as the mechanisms responsible for asexual reproduction in echinoderms.
Collapse
Affiliation(s)
- Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
- * E-mail:
| | - Sergey V. Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey V. Boyko
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
59
|
Guo C, Wu N, Niu X, Wu Y, Chen D, Guo W. Comparison of T Helper Cell Patterns in Primary Open-Angle Glaucoma and Normal-Pressure Glaucoma. Med Sci Monit 2018; 24:1988-1996. [PMID: 29616680 PMCID: PMC5900463 DOI: 10.12659/msm.904923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HSP60-related immunological activities are found in normal-pressure glaucoma (NPG) patients, in whom an elevated intraocular pressure (IOP) found in primary open-angle glaucoma (POAG) is not observed. HSP60 was found in POAG and NPG patients, while anti-HSP60 level was mainly found to be higher in NPG patients. The purpose of this study was to compare the percentages of Th cells and levels of related cytokines, attempting to provide evidence to explain this discrepancy. MATERIAL AND METHODS Blood samples from POAG, NPG, and normal control (NC) groups were collected and peripheral blood monocytes were isolated and cultured with or without the stimulation of HSP60. Flow cytometry and enzyme-linked immunosorbent assay were used to assess the percentages of Th1, Th2, Th17, and Treg cells, as well as HSP60 antibody levels and related cytokine levels, before and after culture. RESULTS Significantly higher titers of anti-HSP60 were observed only in NPG patients. Comparable Th1 and Th2 cell frequencies, IL-4 level, and IFN-γ level were found in POAG and NPG patients, while higher Treg cell frequency was only found in POAG patients. After culturing with HSP60, increased Th2 frequencies and decreased Th1 frequencies were observed in the POAG, NPG, and NC groups, while increased Treg frequency was only identified in the POAG and NC groups. CONCLUSIONS Different Th cell patterns were observed among POAG, NPG, and NC groups. Lack of induction of Treg cells and imbalance of the pro-inflammatory and anti-inflammatory response patterns of Th cells exist in some NPG patients.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China (mainland)
| | - Ningbo Wu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China (mainland)
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China (mainland)
| | - Yue Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China (mainland)
| | - Dongfeng Chen
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| | - Wenyi Guo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
60
|
Jiménez-Altayó F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, López-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barberà L, García C, Condom E, Sitges M, Rodríguez-Pascual F, Laurindo F, Schröder K, Ros J, Fabregat I, Egea G. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 2018; 118:44-58. [PMID: 29471108 DOI: 10.1016/j.freeradbiomed.2018.02.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Thayna Meirelles
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Eva Crosas-Molist
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Alba Sorolla
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Darya Gorbenko Del Blanco
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Judit López-Luque
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana-Maria Siegert
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Fabio Bonorino
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Laura Barberà
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain
| | - Carolina García
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Enric Condom
- Department of Pathology, Hospital de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, and Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clinic, IDIBAPS-University of Barcelona, Barcelona, Spain
| | | | - Francisco Laurindo
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Katrin Schröder
- German Center of Cardiovascular Research (DZHK), Partner site Rhein Main, Frankfurt am Main, Germany
| | - Joaquim Ros
- Institut de Recerca Biomèdica de Lleida (IRB Lleida), Lleida, Spain; Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Gustavo Egea
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and IDIBAPS, Barcelona, Spain.
| |
Collapse
|
61
|
Nüchel J, Ghatak S, Zuk AV, Illerhaus A, Mörgelin M, Schönborn K, Blumbach K, Wickström SA, Krieg T, Sengle G, Plomann M, Eckes B. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy 2018; 14:465-486. [PMID: 29297744 DOI: 10.1080/15548627.2017.1422850] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TGFB1 (transforming growth factor beta 1) is a potent cytokine playing a driving role in development, fibrosis and cancer. It is synthesized as prodomain-growth factor complex that requires tethering to LTBP (latent transforming growth factor beta binding protein) for efficient secretion into the extracellular space. Upon release, this large latent complex is sequestered by anchorage to extracellular matrix (ECM) networks, from which the mature growth factor needs to be activated in order to reach its receptors and initiate signaling. Here, we uncovered a novel intracellular secretion pathway by which the latent TGFB1 complex reaches the plasma membrane and is released from fibroblasts, the key effector cells during tissue repair, fibrosis and in the tumor stroma. We show that secretion of latent TGFB1, but not of other selected cytokines or of bulk cargo, is regulated by fibroblast-ECM communication through ILK (integrin linked kinase) that restricts RHOA activity by interacting with ARHGAP26/GRAF1. Latent TGFB1 interacts with GORASP2/GRASP55 and is detected inside MAP1LC3-positive autophagosomal intermediates that are secreted by a RAB8A-dependent pathway. Interestingly, TGFB1 secretion is fully abrogated in human and murine fibroblasts and macrophages that lack key components of the autophagic machinery. Our data demonstrate an unconventional secretion mode of TGFB1 adding another level of control of its bioavailability and activity in order to effectively orchestrate cellular programs prone to dysregulation as seen in fibrosis and cancer.
Collapse
Affiliation(s)
- Julian Nüchel
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Sushmita Ghatak
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Alexandra V Zuk
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Anja Illerhaus
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Matthias Mörgelin
- c Department of Infection Medicine , Biomedical Center, University of Lund , Lund , Sweden
| | - Katrin Schönborn
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Katrin Blumbach
- b Department of Dermatology, University of Cologne , Cologne , Germany
| | - Sara A Wickström
- d Max Planck Institute for Biology of Ageing , Cologne , Germany.,e Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
| | - Thomas Krieg
- b Department of Dermatology, University of Cologne , Cologne , Germany.,e Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany.,f Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| | - Gerhard Sengle
- a Center for Biochemistry , University of Cologne , Cologne , Germany.,f Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany
| | - Markus Plomann
- a Center for Biochemistry , University of Cologne , Cologne , Germany
| | - Beate Eckes
- b Department of Dermatology, University of Cologne , Cologne , Germany
| |
Collapse
|
62
|
Abstract
Stiff skin syndrome is a rare disease causing stony hard induration of skin usually in early childhood. We report a case of 12 years old boy who presented to our clinic with biopsy showing adipocyte entrapment which we believe is an unrecognized key pathological finding in diagnosis of this entity.
Collapse
|
63
|
Artlett CM. The IL-1 family of cytokines. Do they have a role in scleroderma fibrosis? Immunol Lett 2018; 195:30-37. [DOI: 10.1016/j.imlet.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
|
64
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
65
|
Injury- and inflammation-driven skin fibrosis: The paradigm of epidermolysis bullosa. Matrix Biol 2018; 68-69:547-560. [PMID: 29391280 DOI: 10.1016/j.matbio.2018.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Genetic or acquired destabilization of the dermal extracellular matrix evokes injury- and inflammation-driven progressive soft tissue fibrosis. Dystrophic epidermolysis bullosa (DEB), a heritable human skin fragility disorder, is a paradigmatic disease to investigate these processes. Studies of DEB have generated abundant new information on cellular and molecular mechanisms at play in skin fibrosis which are not only limited to intractable diseases, but also applicable to some of the most common acquired conditions. Here, we discuss recent advances in understanding the biological and mechanical mechanisms driving the dermal fibrosis in DEB. Much of this progress is owed to the implementation of cell and tissue omics studies, which we pay special attention to. Based on the novel findings and increased understanding of the disease mechanisms in DEB, translational aspects and future therapeutic perspectives are emerging.
Collapse
|
66
|
Dual αvβ3 and αvβ5 blockade attenuates fibrotic and vascular alterations in a murine model of systemic sclerosis. Clin Sci (Lond) 2018; 132:231-242. [PMID: 29237724 DOI: 10.1042/cs20171426] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023]
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by fibroblast activation and fibrosis of the skin and internal organs. Alterations in cell-integrin interaction are sufficient to initiate profibrotic processes. SSc fibroblasts express both αvβ3 and αvβ5 integrins and their activation induces myofibroblasts differentiation. The aim of the present study was to evaluate the effect of the anb3 and anb5 inhibitor, cilengitide, on the development of vascular and fibrotic changes in the chronic oxidant stress murine model of systemic sclerosis. SSc was induced in BALB/c mice by daily s.c. injections of HOCl for 6 weeks. Mice were randomized in three arms: HOCl alone (n=8), HOCl + Cilengitide (n=8), or Vehicle alone (n=8). Treatment with cilengitide 20 (mg/kg/i.p./day) was started 4 weeks after the first administration of HOCl and maintained throughout the remaining experimental period (2 weeks). Lung, skin, and heart fibrosis were evaluated by histology while kidney morphology by PAS staining. Collagen type I, focal adhesion kinase (FAK), and a-SMA were evaluated by immunostaining and p-FAK and TGF-β1 by Western blot and gene expression. Both cutaneous and pulmonary fibrosis induced by HOCl were attenuated by cilengitide treatment. Cilengitide administration reduced a-SMA, TGF-β1, and p-FAK expression and the increased deposition of fibrillar collagen in the heart and prevented glomeruli collapse in the kidneys. The inhibition of aνβ3 and aνβ5 integrin signaling prevented systemic fibrosis and renal vascular abnormalities in the reactive oxygen species model of SSc. Integrins aνβ3 and aνβ5 could prove useful as a therapeutic target in SSc.
Collapse
|
67
|
Abstract
Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.
Collapse
|
68
|
Schrenk S, Cenzi C, Bertalot T, Conconi MT, Di Liddo R. Structural and functional failure of fibrillin‑1 in human diseases (Review). Int J Mol Med 2017; 41:1213-1223. [PMID: 29286095 DOI: 10.3892/ijmm.2017.3343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Fibrillins (FBNs) are key relay molecules that form the backbone of microfibrils in elastic and non‑elastic tissues. Interacting with other components of the extracellular matrix (ECM), these ubiquitous glycoproteins exert pivotal roles in tissue development, homeostasis and repair. In addition to mechanical support, FBN networks also exhibit regulatory activities on growth factor signalling, ECM formation, cell behaviour and the immune response. Consequently, mutations affecting the structure, assembly and stability of FBN microfibrils have been associated with impaired biomechanical tissue properties, altered cell‑matrix interactions, uncontrolled growth factor or cytokine activation, and the development of fibrillinopathies and associated severe complications in multiple organs. Beyond a panoramic overview of structural cues of the FBN network, the present review will also describe the pathological implications of FBN disorders in the development of inflammatory and fibrotic conditions.
Collapse
Affiliation(s)
- Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| |
Collapse
|
69
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|
70
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
71
|
Eckes B, Wang F, Moinzadeh P, Hunzelmann N, Krieg T. Pathophysiological Mechanisms in Sclerosing Skin Diseases. Front Med (Lausanne) 2017; 4:120. [PMID: 28868289 PMCID: PMC5563304 DOI: 10.3389/fmed.2017.00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Sclerosing skin diseases represent a large number of distinct disease entities, which include systemic sclerosis, localized scleroderma, and scleredema adultorum. These pathologies have a common clinical appearance and share histological features. However, the specific interplay between cytokines and growth factors, which activate different mesenchymal cell populations and production of different extracellular matrix components, determines the biomechanical properties of the skin and the clinical features of each disease. A better understanding of the mechanisms underlying these events is prerequisite for developing novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Fang Wang
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Pia Moinzadeh
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Thomas Krieg
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), Cologne, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
72
|
Noakes R. Dissecting the enigma of scleroderma: possible involvement of the kynurenine pathway. Pteridines 2017. [DOI: 10.1515/pterid-2016-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The kynurenine pathway (KP) is the metabolic pathway via which L-tryptophan is converted to nicotinamide. It serves important immune-regulatory roles. This article will review the evidence for involvement of the KP in scleroderma and present a possible model of kynurenine regulation of the cytokine cascade.
Collapse
Affiliation(s)
- Rowland Noakes
- Queensland Institute of Dermatology, Greenslopes Private Hospital , Greenslopes , QLD 4120, Australia
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW We discuss recent advances in evaluating and optimizing animal models of systemic sclerosis (SSc). Such models could be of value for illuminating etiopathogenesis using hypothesis-testing experimental approaches, for developing effective disease-modifying therapies, and for uncovering clinically relevant biomarkers. RECENT FINDINGS We describe recent advances in previously reported and novel animal models of SSc. The limitations of each animal model and their ability to recapitulate the pathophysiology of recognized molecular subsets of SSc are discussed. We highlight attrition of dermal white adipose tissue as a consistent pathological feature of dermal fibrosis in mouse models, and its relevance to SSc-associated cutaneous fibrosis. SUMMARY Several animal models potentially useful for studying SSc pathogenesis have been described. Recent studies highlight particular strengths and weaknesses of selected models in recapitulating distinct features of the human disease. When used in the appropriate experimental setting, and in combination, these models singly and together provide a powerful set of in-vivo tools to define underlying mechanisms of disease and to develop and evaluate effective antifibrotic therapies.
Collapse
|
74
|
Saracino AM, Denton CP, Orteu CH. The molecular pathogenesis of morphoea: from genetics to future treatment targets. Br J Dermatol 2017; 177:34-46. [PMID: 27553363 DOI: 10.1111/bjd.15001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/11/2022]
Abstract
A number of immunoinflammatory and profibrotic mechanisms are recognized in the pathogenesis of broad sclerotic skin processes and, more specifically, morphoea. However, the precise aetiopathogenesis is complex and remains unclear. Morphoea is clinically heterogeneous, with variable anatomical patterning, depth of tissue involvement and sclerotic, inflammatory, atrophic and dyspigmented morphology. Underlying mechanisms determining these reproducible clinical subsets are poorly understood but of great clinical and therapeutic relevance. Regional susceptibility mechanisms (e.g. environmental triggers, mosaicism and positional identity) together with distinct pathogenic determinants (including innate, adaptive and imbalanced pro- and antifibrotic signalling pathways) are likely implicated. In the age of genetic profiling and personalized medicine, improved characterization of the environmental, systemic, local, genetic and immunopathological factors underpinning morphoea pathogenesis may open the door to novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- A M Saracino
- The Royal Free London NHS Foundation Trust, Department of Dermatology, London, U.K.,University College London, Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, London, U.K
| | - C P Denton
- University College London, Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, London, U.K.,The Royal Free London NHS Foundation Trust, Department of Rheumatology, London, U.K
| | - C H Orteu
- The Royal Free London NHS Foundation Trust, Department of Dermatology, London, U.K
| |
Collapse
|
75
|
Kurtzman DJ, Wright NA, Patel M, Vleugels RA. Segmental stiff skin syndrome (SSS): Two additional cases with a positive response to mycophenolate mofetil and physical therapy. J Am Acad Dermatol 2016; 75:e237-e239. [DOI: 10.1016/j.jaad.2016.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 10/20/2022]
|
76
|
Cain SA, Mularczyk EJ, Singh M, Massam-Wu T, Kielty CM. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep 2016; 6:35956. [PMID: 27779234 PMCID: PMC5078793 DOI: 10.1038/srep35956] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.
Collapse
Affiliation(s)
- Stuart A. Cain
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ewa J. Mularczyk
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mukti Singh
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Massam-Wu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cay M. Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
77
|
FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016; 591:279-291. [PMID: 27437668 DOI: 10.1016/j.gene.2016.07.033] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
Abstract
FBN1 encodes the gene for fibrillin-1, a structural macromolecule that polymerizes into microfibrils. Fibrillin microfibrils are morphologically distinctive fibrils, present in all connective tissues and assembled into tissue-specific architectural frameworks. FBN1 is the causative gene for Marfan syndrome, an inherited disorder of connective tissue whose major features include tall stature and arachnodactyly, ectopia lentis, and thoracic aortic aneurysm and dissection. More than one thousand individual mutations in FBN1 are associated with Marfan syndrome, making genotype-phenotype correlations difficult. Moreover, mutations in specific regions of FBN1 can result in the opposite features of short stature and brachydactyly characteristic of Weill-Marchesani syndrome and other acromelic dysplasias. How can mutations in one molecule result in disparate clinical syndromes? Current concepts of the fibrillinopathies require an appreciation of tissue-specific fibrillin microfibril microenvironments and the collaborative relationship between the structures of fibrillin microfibril networks and biological functions such as regulation of growth factor signaling.
Collapse
|
78
|
Myers KL, Mir A, Schaffer JV, Meehan SA, Orlow SJ, Brinster NK. Segmental stiff skin syndrome (SSS): A distinct clinical entity. J Am Acad Dermatol 2016; 75:163-8. [DOI: 10.1016/j.jaad.2016.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
|
79
|
New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem J 2016; 473:827-38. [DOI: 10.1042/bj20151108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022]
Abstract
The 10–12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10–12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10–12 nm diameter microfibril and perform such diverse roles.
Collapse
|
80
|
Tsujino K, Sheppard D. Critical Appraisal of the Utility and Limitations of Animal Models of Scleroderma. Curr Rheumatol Rep 2015; 18:4. [DOI: 10.1007/s11926-015-0553-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
81
|
Abstract
Significant advances have been made in understanding the genetic basis of systemic sclerosis (SSc) in recent years. Genomewide association and other large-scale genetic studies have identified 30 largely immunity-related genes which are significantly associated with SSc. We review these studies, along with genomewide expression studies, proteomic studies, genetic mouse models, and insights from rare sclerodermatous diseases. Collectively, these studies have begun to identify pathways that are relevant to SSc pathogenesis. The findings presented in this review illustrate how both genetic and genomic aberrations play important roles in the development of SSc. However, despite these recent discoveries, there remain major gaps between current knowledge of SSc, a unified understanding of pathogenesis, and effective treatment. To this aim, we address the important issue of SSc heterogeneity and discuss how future research needs to address this in order to develop a clearer understanding of this devastating and complex disease.
Collapse
|
82
|
Iwasaki A, Sakai K, Moriya K, Sasaki T, Keene DR, Akhtar R, Miyazono T, Yasumura S, Watanabe M, Morishita S, Sakai T. Molecular Mechanism Responsible for Fibronectin-controlled Alterations in Matrix Stiffness in Advanced Chronic Liver Fibrogenesis. J Biol Chem 2015; 291:72-88. [PMID: 26553870 DOI: 10.1074/jbc.m115.691519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is characterized by extracellular matrix (ECM) remodeling and stiffening. However, the functional contribution of tissue stiffening to noncancer pathogenesis remains largely unknown. Fibronectin (Fn) is an ECM glycoprotein substantially expressed during tissue repair. Here we show in advanced chronic liver fibrogenesis using a mouse model lacking Fn that, unexpectedly, Fn-null livers lead to more extensive liver cirrhosis, which is accompanied by increased liver matrix stiffness and deteriorated hepatic functions. Furthermore, Fn-null livers exhibit more myofibroblast phenotypes and accumulate highly disorganized/diffuse collagenous ECM networks composed of thinner and significantly increased number of collagen fibrils during advanced chronic liver damage. Mechanistically, mutant livers show elevated local TGF-β activity and lysyl oxidase expressions. A significant amount of active lysyl oxidase is released in Fn-null hepatic stellate cells in response to TGF-β1 through canonical and noncanonical Smad such as PI3 kinase-mediated pathways. TGF-β1-induced collagen fibril stiffness in Fn-null hepatic stellate cells is significantly higher compared with wild-type cells. Inhibition of lysyl oxidase significantly reduces collagen fibril stiffness, and treatment of Fn recovers collagen fibril stiffness to wild-type levels. Thus, our findings indicate an indispensable role for Fn in chronic liver fibrosis/cirrhosis in negatively regulating TGF-β bioavailability, which in turn modulates ECM remodeling and stiffening and consequently preserves adult organ functions. Furthermore, this regulatory mechanism by Fn could be translated for a potential therapeutic target in a broader variety of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Ayumi Iwasaki
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Graduate School of Biomedical Engineering and
| | - Keiko Sakai
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kei Moriya
- the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Takako Sasaki
- the Department of Biochemistry, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Douglas R Keene
- the Micro-Imaging Center, Shriners Hospital for Children, Portland, Oregon 97231
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Takayoshi Miyazono
- Department of Gastroenterology and Hepatology, and Transfusion Medicine and Cell Therapy, Toyama University, Toyama 930-0194, Japan, and
| | - Satoshi Yasumura
- Department of Gastroenterology and Hepatology, and Transfusion Medicine and Cell Therapy, Toyama University, Toyama 930-0194, Japan, and
| | | | - Shin Morishita
- Environmental and Information Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Takao Sakai
- From the MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom, the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
83
|
Andelfinger G, Loeys B, Dietz H. A Decade of Discovery in the Genetic Understanding of Thoracic Aortic Disease. Can J Cardiol 2015; 32:13-25. [PMID: 26724507 DOI: 10.1016/j.cjca.2015.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/23/2022] Open
Abstract
Aortic aneurysms are responsible for a significant number of all deaths in Western countries. In this review we provide a perspective on the important progress made over the past decade in the understanding of the genetics of this condition, with an emphasis on the more frequent forms of vascular smooth muscle and transforming growth factor β (TGF-β) signalling alterations. For several nonsyndromic and syndromic forms of thoracic aortic disease, a genetic basis has now been identified, with 3 main pathomechanisms that have emerged: perturbation of the TGF-β signalling pathway, disruption of the vascular smooth muscle cell (VSMC) contractile apparatus, and impairment of extracellular matrix synthesis. Because smooth muscle cells and proteins of the extracellular matrix directly regulate TGF-β signalling, this latter pathway emerges as a key component of thoracic aortic disease initiation and progression. These discoveries have revolutionized our understanding of thoracic aortic disease and provided inroads toward gene-specific stratification of treatment. Last, we outline how these genetic findings are translated into novel pharmaceutical approaches for thoracic aortic disease.
Collapse
Affiliation(s)
- Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | - Bart Loeys
- Centre for Medical Genetics, University Hospital of Antwerp/University of Antwerp, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hal Dietz
- Howard Hughes Medical Institute and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
84
|
Chamney S, Cartmill B, Earley O, McConnell V, Willoughby CE. The ocular phenotype of stiff-skin syndrome. Eye (Lond) 2015; 30:156-9. [PMID: 26471116 DOI: 10.1038/eye.2015.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Stiff skin syndrome (SSS; MIM#184900) is a rare autosomal dominantly inherited Mendelian disorder characterised by thickened and stone-hard indurations of the skin, mild hypertrichosis, and limitation of joint mobility with flexion contractures. It is autosomal dominant with high penetrance and results from mutations in the fibrillin 1 (FBN1; MIM*134797) gene. Here we present the associated ocular phenotype in a two generation nonconsanguineous Northern Irish family.METHODS The affected patients underwent complete ophthalmic and orthoptic assessment and genetic testing.RESULTS All three patients had ophthalmoplegia of varying degrees. Direct sequencing of the FBN1 gene detected a heterozygous pathogenic mutation (c.4710G>C; p.Trp1570Cys) in all affected patients.CONCLUSIONS This is the first report of ophthalmoplegia in association with SSS.
Collapse
Affiliation(s)
- S Chamney
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, UK
| | - B Cartmill
- Department of Ophthalmology, Royal Victoria Hospital, Belfast, UK
| | - O Earley
- Department of Ophthalmology, Mater Hospital, Belfast, UK
| | - V McConnell
- Northern Ireland Regional Genetics Department, Belfast City Hospital, Belfast Health & Social Care Trust, Belfast, UK
| | - C E Willoughby
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
85
|
Banka S, Newman WG. Response to: 'Mutation in MMP2 gene may result in scleroderma-like skin thickening' by Bader-Meunier et al. Ann Rheum Dis 2015; 75:e2. [PMID: 26462727 DOI: 10.1136/annrheumdis-2015-208538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Siddharth Banka
- Manchester Centre for Genomic Medicine, Institute of Human Development, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
86
|
The matrix protein Fibulin-5 is at the interface of tissue stiffness and inflammation in fibrosis. Nat Commun 2015; 6:8574. [PMID: 26469761 PMCID: PMC4634219 DOI: 10.1038/ncomms9574] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/04/2015] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a pervasive disease in which the excessive deposition of extracellular matrix (ECM) compromises tissue function. Although the underlying mechanisms are mostly unknown, matrix stiffness is increasingly appreciated as a contributor to fibrosis rather than merely a manifestation of the disease. Here we show that the loss of Fibulin-5, an elastic fibre component, not only decreases tissue stiffness, but also diminishes the inflammatory response and abrogates the fibrotic phenotype in a mouse model of cutaneous fibrosis. Increasing matrix stiffness raises the inflammatory response above a threshold level, independent of TGF-β, to stimulate further ECM secretion from fibroblasts and advance the progression of fibrosis. These results suggest that Fibulin-5 may be a therapeutic target to short-circuit this profibrotic feedback loop.
Collapse
|
87
|
Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal 2015; 9:309-25. [PMID: 26449569 DOI: 10.1007/s12079-015-0307-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 12/26/2022] Open
Abstract
Fibrillins constitute the backbone of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Mutations in fibrillins are associated with a wide range of connective tissue disorders, the most common is Marfan syndrome. Microfibrils are on one hand important for structural stability in some tissues. On the other hand, microfibrils are increasingly recognized as critical mediators and drivers of cellular signaling. This review focuses on the signaling mechanisms initiated by fibrillins and microfibrils, which are often dysregulated in fibrillin-associated disorders. Fibrillins regulate the storage and bioavailability of growth factors of the TGF-β superfamily. Cells sense microfibrils through integrins and other receptors. Fibrillins potently regulate pathways of the immune response, inflammation and tissue homeostasis. Emerging evidence show the involvement of microRNAs in disorders caused by fibrillin deficiency. A thorough understanding of fibrillin-mediated cell signaling pathways will provide important new leads for therapeutic approaches of the underlying disorders.
Collapse
|
88
|
Current Controversies in Diagnosis and Management of Cleft Palate and Velopharyngeal Insufficiency. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196240. [PMID: 26273595 PMCID: PMC4529889 DOI: 10.1155/2015/196240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
Background. One of the most controversial topics concerning cleft palate is the diagnosis and treatment of velopharyngeal insufficiency (VPI). Objective. This paper reviews current genetic aspects of cleft palate, imaging diagnosis of VPI, the planning of operations for restoring velopharyngeal function during speech, and strategies for speech pathology treatment of articulation disorders in patients with cleft palate. Materials and Methods. An updated review of the scientific literature concerning genetic aspects of cleft palate was carried out. Current strategies for assessing and treating articulation disorders associated with cleft palate were analyzed. Imaging procedures for assessing velopharyngeal closure during speech were reviewed, including a recent method for performing intraoperative videonasopharyngoscopy. Results. Conclusions from the analysis of genetic aspects of syndromic and nonsyndromic cleft palate and their use in its diagnosis and management are presented. Strategies for classifying and treating articulation disorders in patients with cleft palate are presented. Preliminary results of the use of multiplanar videofluoroscopy as an outpatient procedure and intraoperative endoscopy for the planning of operations which aimed to correct VPI are presented. Conclusion. This paper presents current aspects of the diagnosis and management of patients with cleft palate and VPI including 3 main aspects: genetics and genomics, speech pathology and imaging diagnosis, and surgical management.
Collapse
|
89
|
Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 765:7-18. [DOI: 10.1016/j.mrrev.2015.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/22/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
|
90
|
Bjornsson HT, Benjamin JS, Zhang L, Weissman J, Gerber EE, Chen YC, Vaurio RG, Potter MC, Hansen KD, Dietz HC. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci Transl Med 2015; 6:256ra135. [PMID: 25273096 DOI: 10.1126/scitranslmed.3009278] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d(+/βGeo) mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d(+/βGeo) mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome.
Collapse
Affiliation(s)
- Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Joel S Benjamin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jacqueline Weissman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Elizabeth E Gerber
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi-Chun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Michelle C Potter
- Brain Science Institute, Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kasper D Hansen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
91
|
Jensen SA, Iqbal S, Bulsiewicz A, Handford PA. A microfibril assembly assay identifies different mechanisms of dominance underlying Marfan syndrome, stiff skin syndrome and acromelic dysplasias. Hum Mol Genet 2015; 24:4454-63. [PMID: 25979247 PMCID: PMC4492404 DOI: 10.1093/hmg/ddv181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022] Open
Abstract
Fibrillin-1 is the major component of the 10–12 nm diameter extracellular matrix microfibrils. The majority of mutations affecting the human fibrillin-1 gene, FBN1, result in Marfan syndrome (MFS), a common connective tissue disorder characterised by tall stature, ocular and cardiovascular defects. Recently, stiff skin syndrome (SSS) and a group of syndromes known collectively as the acromelic dysplasias, which typically result in short stature, skin thickening and joint stiffness, have been linked to FBN1 mutations that affect specific domains of the fibrillin-1 protein. Despite their apparent phenotypic differences, dysregulation of transforming growth factor β (TGFβ) is a common factor in all of these disorders. Using a newly developed assay to track the secretion and incorporation of full-length, GFP-tagged fibrillin-1 into the extracellular matrix, we investigated whether or not there were differences in the secretion and microfibril assembly profiles of fibrillin-1 variants containing substitutions associated with MFS, SSS or the acromelic dysplasias. We show that substitutions in fibrillin-1 domains TB4 and TB5 that cause SSS and the acromelic dysplasias do not prevent fibrillin-1 from being secreted or assembled into microfibrils, whereas MFS-associated substitutions in these domains result in a loss of recombinant protein in the culture medium and no association with microfibrils. These results suggest fundamental differences in the dominant pathogenic mechanisms underlying MFS, SSS and the acromelic dysplasias, which give rise to TGFβ dysregulation associated with these diseases.
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Sarah Iqbal
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Alicja Bulsiewicz
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
92
|
Noakes R. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism. Int J Tryptophan Res 2015; 8:7-18. [PMID: 25733915 PMCID: PMC4327407 DOI: 10.4137/ijtr.s19985] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument.
Collapse
Affiliation(s)
- Rowland Noakes
- Queensland Institute of Dermatology, Holland Park, Queensland, Australia
| |
Collapse
|
93
|
Hanlon SD, Behzad AR, Sakai LY, Burns AR. Corneal stroma microfibrils. Exp Eye Res 2015; 132:198-207. [PMID: 25613072 DOI: 10.1016/j.exer.2015.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10 nm diameter). Immunogold evidence clearly identified these fibrils as fibrillin EFMBs and EFMBs were also observed with TEM (without immunogold) in adult mammals of several species. Evidence of the presence of EFMBs in adult corneas will hopefully pique an interest in further studies that will ultimately improve our understanding of the cornea's biomechanical properties and its capacity to repair.
Collapse
Affiliation(s)
- Samuel D Hanlon
- College of Optometry, University of Houston, Houston, TX, 97204, USA.
| | - Ali R Behzad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lynn Y Sakai
- Shiners Hospital for Children and Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, 97204, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
94
|
Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J, Mielenz D, Tomcik M, Fürnrohr BG, Scholtysek C, Dees C, Beyer C, Krönke G, Metzger D, Distler O, Schett G, Distler JHW. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat Med 2015; 21:150-8. [DOI: 10.1038/nm.3777] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
|
95
|
Cipriani P, Di Benedetto P, Ruscitti P, Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O, Screpanti I, Giacomelli R. Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther 2014; 16:442. [PMID: 25248297 PMCID: PMC4206764 DOI: 10.1186/s13075-014-0442-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION To assess if an impaired cross-talk between endothelial cells (ECs) and perivascular/multipotent mesenchymal stem cells (MSCs) might induce a perturbation of vascular repair and leading to a phenotypic switch of MSC toward myofibroblast in Systemic Sclerosis (SSc). METHODS We investigated different angiogenic and profibrotic molecules in a tridimentional matrigel assay, performing co-cultures with endothelial cells (ECs) and bone marrow derived MSCs from patients and healthy controls (HC). After 48 hours of co-culture, cells were sorted and analyzed for mRNA and protein expression. RESULTS ECs-SSc showed a decreased tube formation ability which is not improved by co-cultures with different MSCs. After sorting, we showed: i. an increased production of vascular endothelial growth factor A (VEGF-A) in SSc-MSCs when co-cultured with SSc-ECs; ii. an increased level of transforming growth factor beta (TGF-β) and platelet growth factor BB (PDGF-BB) in SSc-ECs when co-cultured with both HC- and SSc-MSCs; iii. an increase of TGF-β, PDGF-R, alpha smooth muscle actin (α-SMA) and collagen 1 (Col1) in both HC- and SSc-MSCs when co-cultured with SSc-ECs. CONCLUSION We showed that during SSc, the ECs-MSCs crosstalk resulted in an altered expression of different molecules involved in the angiogenic processes, and mainly SSc-ECs seem to modulate the phenotypic switch of perivascular MSCs toward a myofibroblast population, thus supporting the fibrotic process.
Collapse
Affiliation(s)
- Paola Cipriani
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Paola Di Benedetto
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Piero Ruscitti
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Antonio Francesco Campese
- />Department of Molecular Medicine, School of Medicine ‘Sapienza’ University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Vasiliki Liakouli
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Francesco Carubbi
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Ilenia Pantano
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Onorina Berardicurt
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Isabella Screpanti
- />Department of Molecular Medicine, School of Medicine ‘Sapienza’ University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Roberto Giacomelli
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| |
Collapse
|
96
|
Abstract
Transforming growth factor β (TGF-β) has long been implicated in fibrotic diseases, including the multisystem fibrotic disease systemic sclerosis (SSc). Expression of TGF-β-regulated genes in fibrotic skin and lungs of patients with SSc correlates with disease activity, which points to this cytokine as the central mediator of pathogenesis. Patients with SSc often develop pulmonary arterial hypertension (PAH), a particularly lethal complication caused by vascular dysfunction. Several genetic diseases with vascular features related to SSc, such as familial PAH and hereditary haemorrhagic telangiectasia, are caused by mutations in the TGF-β-sensing ALK-1 signalling pathway. These observations suggest that increased TGF-β signalling causes both vascular and fibrotic features of SSc. The question of how latent TGF-β becomes activated in local SSc tissues is, therefore, central to the understanding of SSc. Both TGF-β1 and TGF-β3 can be activated by integrins αvβ6 and αvβ8, whose upregulation in bronchial epithelial cells can activate TGF-β in SSc lungs. Other αv integrins, thrombospondin-1 or altered TGF-β sequestration by matrix proteins might be important in other target tissues. How the immune system triggers this process remains unclear, although links between inflammation and TGF-β activation are emerging. Together, these observations provide an increasingly secure framework for understanding TGF-β in SSc pathogenesis.
Collapse
Affiliation(s)
- Robert Lafyatis
- Boston University School of Medicine, E5 Arthritis Centre, 72 E. Concord Street, Boston, MA 02118, USA
| |
Collapse
|
97
|
Franken R, Heesterbeek TJ, de Waard V, Zwinderman AH, Pals G, Mulder BJM, Groenink M. Diagnosis and genetics of Marfan syndrome. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.950223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
98
|
Kuchtey J, Kunkel J, Burgess LG, Parks MB, Brantley MA, Kuchtey RW. Elevated transforming growth factor β1 in plasma of primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci 2014; 55:5291-7. [PMID: 25061114 DOI: 10.1167/iovs.14-14578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To test the hypothesis that primary open-angle glaucoma (POAG) patients have a systemic elevation of transforming growth factor β1 (TGFβ1). METHODS Plasma was prepared from blood samples drawn from patients of the Vanderbilt Eye Institute during clinic visits. Concentrations of total TGFβ1 and thrombospondin-1 (TSP1) in plasma were determined by ELISA. Statistical significance of differences between POAG and control samples was evaluated by Mann-Whitney test. Regression analysis was used to evaluate correlations between plasma TGFβ1 and patient age and between plasma TGFβ1 and TSP1. RESULTS Plasma samples were obtained from 148 POAG patients and 150 controls. Concentration of total TGFβ1 in the plasma of POAG patients (median = 3.25 ng/mL) was significantly higher (P < 0.0001) than in controls (median = 2.46 ng/mL). Plasma TGFβ1 was not correlated with age of patient (P = 0.17). Thrombospondin-1 concentration was also significantly higher (P < 0.0001) in POAG patients (median = 0.774 μg/mL) as compared to controls (median = 0.567 μg/mL). Plasma total TGFβ1 and TSP1 concentrations were linearly correlated (P < 0.0001). CONCLUSIONS Plasma samples from POAG patients display elevated total TGFβ1 compared to controls, consistent with elevated systemic TGFβ1 in POAG patients.
Collapse
Affiliation(s)
- John Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Jessica Kunkel
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - L Goodwin Burgess
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Megan B Parks
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Milam A Brantley
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Rachel W Kuchtey
- Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
99
|
Molecular and cellular basis of scleroderma. J Mol Med (Berl) 2014; 92:913-24. [DOI: 10.1007/s00109-014-1190-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
|
100
|
Sabatier L, Djokic J, Hubmacher D, Dzafik D, Nelea V, Reinhardt DP. Heparin/heparan sulfate controls fibrillin-1, -2 and -3 self-interactions in microfibril assembly. FEBS Lett 2014; 588:2890-7. [DOI: 10.1016/j.febslet.2014.06.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/05/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|