51
|
Tseten T, Sanjorjo RA, Kwon M, Kim SW. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J Microbiol Biotechnol 2022; 32:269-277. [PMID: 35283433 PMCID: PMC9628856 DOI: 10.4014/jmb.2202.02019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.
Collapse
Affiliation(s)
- Tenzin Tseten
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Rey Anthony Sanjorjo
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,
M. Kwon Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors S.W. Kim Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| |
Collapse
|
52
|
Effects of Pistacia atlantica gum essential oil on ruminal methanogen, protozoa, selected bacteria species and fermentation characteristics in sheep. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
53
|
Effect of Oregano Oil and Cobalt Lactate on Sheep In Vitro Digestibility, Fermentation Characteristics and Rumen Microbial Community. Animals (Basel) 2022; 12:ani12010118. [PMID: 35011223 PMCID: PMC8749554 DOI: 10.3390/ani12010118] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In the context of a shortage of feed resources and a complete ban on veterinary antibiotics, searching for green additives that can improve the production performance of ruminants has become a popular research topic. Oregano essential oil (EO) inhibits rumen gas production (GP) and regulates animal digestive metabolism, and cobalt lactate (Co) can improve feed digestibility. However, previous studies on EO of oregano and Co showed different results. Therefore, the present study aimed to investigate the effects of different EOC addition levels on rumen in vitro fermentation and rumen bacterial community composition, and the experimental data obtained showed that all five EOC (0.1425% cobalt lactate + 1.13% oregano essential oil + 98.7275% carrier) addition levels in this experiment had no significant effect on nutrient digestibility. However, the addition of 1500 mg·L−1 EOC significantly improved rumen fermentation parameters and altered the microbiota composition. All presented data provide a theoretical basis for the application of oregano essential oil and cobalt in ruminant nutrition. Abstract The objective of this experiment was to evaluate the effect of different EOC (0.1425% cobalt lactate + 1.13% oregano essential oil + 98.7275% carrier) levels on in vitro rumen fermentation and microbial changes. Six EOC levels (treatments: 0 mg·L−1, CON; 50 mg·L−1, EOC1; 100 mg·L−1, EOC2; 400 mg·L−1, EOC3; 800 mg·L−1, EOC4 and 1500 mg·L−1, EOC5) were selected to be used to in vitro incubation. The in vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro acid detergent fiber digestibility (IVNDFD), pH, ammonia-nitrogen (NH3-N) concentration, total volatile fatty acid (TVFA) concentration and microbial protein (MCP) concentration were measured after 48 h incubation, after which the groups with significant nutrient digestibility and fermentation parameters were subjected to 16S rRNA sequencing. The results showed that the total gas production (GP) of the EOC5 group was higher than that of the other groups after 12 h of in vitro incubation. TVFA, NH3-N and MCP concentrations were also shown to be higher in group EOC5 than those in other groups (p < 0.05), while NH3-N and MCP concentrations in the EOC2 group were lower than those in other groups significantly (p < 0.05). The molar ratio of acetic acid decreased while the molar ratio of propionic acid increased after the addition of EOC. 16S rRNA sequencing revealed that the rumen microbiota was altered in response to adding EOC, especially for the EOC5 treatment, with firmicutes shown to be the most abundant (43.1%). The relative abundance of Rikenellaceae_RC9_gut_group was significantly lower, while the relative abundance of uncultured_bacterium_f_Muribaculaceae and Succiniclasticum was significantly higher in the EOC5 group than those in other groups (p < 0.05). Comprehensive analysis showed that EOC (1500 mg·L−1) could significantly increase gas production, alter sheep rumen fermentation parameters and microbiota composition.
Collapse
|
54
|
Durmic Z, Black JL, Martin GB, Vercoe PE. Harnessing plant bioactivity for enteric methane mitigation in Australia. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review provides examples of the utilisation of plant bioactivity to mitigate enteric methane (CH4) emissions from the Australian ruminant production systems. Potential plant-based mitigation strategies that reduce CH4 without major impacts on forage digestibility include the following: (i) low methanogenic tropical and temperate grass, legume and shrub forage species, which offer renewable and sustainable solutions and are easy to adopt, but may have restricted geographical distribution or relatively high costs of establishment and maintenance; (ii) plant-based agricultural by-products including grape marc, olive leaves and fruit, and distiller’s grains that can mitigate CH4 and provide relatively cheap high-nutrient supplements, while offsetting the impact of agricultural waste, but their use may be limited due to unfavourable characteristics such as high protein and water content or cost of transport; (iii) plant extracts, essential oils and pure compounds that are abundant in Australian flora and offer exciting opportunities on the basis of in vitro findings, but require verification in ruminant production systems. The greatest CH4 mitigation potential based on in vitro assays come from the Australian shrubs Eremophila species, Jasminum didymium and Lotus australis (>80% CH4 reduction), tropical forages Desmanthus leptophyllus, Hetropogon contortus and Leucaena leucocephala (~40% CH4 reduction), temperate forages Biserrula pelecinus (70–90% CH4 reduction), perennial ryegrass and white clover (~20% CH4 reduction), and plant extracts or essential oils from Melaleuca ericifolia, B. pelecinus and Leptospermum petersonii (up to 80% CH4 reduction). Further research is required to confirm effectiveness of these plant-based strategies in vivo, determine optimal doses, practical modes of delivery to livestock, analyse benefit–cost ratios and develop pathways to adoption.
Collapse
|
55
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Kim H, Lee SS, Lee SS. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci Rep 2021; 11:24092. [PMID: 34916562 PMCID: PMC8677731 DOI: 10.1038/s41598-021-03356-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL-1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
56
|
Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of the present study was to investigate dose-response effects of the essential oil (EO) and dry extract (EX) of Satureja khuzistanica (SK) on in vitro gas production kinetics, rumen fermentation, ruminal methanogenesis and microbial protein synthesis. So, EO and EX were tested at 0 (as control); 150 (low dose); 300, 450 (intermediate doses) and 600 mg/L (high dose). The gas produced over 24 h of incubation (GP24) decreased linearly with both EO and EX dosages (P<0.01). In vitro methane production was reduced by both EO (14–69%, depending on the included dose) and EX (7–58%). Microbial protein (MP) as well as the efficiency of microbial protein synthesis (EMPS) were improved by EO (18.8–49.8% and 20.4–61.5% for MP and EMPS, respectively) and to a lesser extent by EX (8.3–25.7% and 4.6–24.2% for MP and EMPS, respectively). Ammonia concentration was dropped in linear and quadratic manners with EO (P<0.05), and linearly with EX dosages (P<0.01). EO and EX exhibited depressive effects (in linear and quadratic (P<0.05), and linear manners (P<0.01), respectively) on total protozoa count. A mixed linear and quadratic effect was observed from both EO and EX on total VFA concentration (P<0.01). Total VFA concentration increased at 300 mg/L of EX, but decreased at high dose of both EO and EX. The acetate proportion increased with EO intermediate and high dosages, but it decreased at the expense of propionate at low and intermediate doses of EX. In total, these findings confirmed previous research on the great capacity of plant-based feed additives in positively modulating rumen fermentation that their effects may vary depending on the used doses. Specifically, these results suggest that EO and EX have high potentials to improve rumen functions at intermediate doses, which needs to be confirmed by in vivo experiments.
Collapse
|
57
|
Sadarman, Febrina D, Yendraliza, Shirothul Haq M, Amalia Nurfitriani R, Nurmilati Barkah N, Miftakhus Sholikin M, Yunilas, Qomariyah N, Jayanegara A, Solfaine R, Irawan A. Effect of dietary black cumin seed (Nigella sativa) on performance, immune status, and serum metabolites of small ruminants: A meta-analysis. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
58
|
Brede J, Peukert M, Egert B, Breves G, Brede M. Long-Term Mootral Application Impacts Methane Production and the Microbial Community in the Rumen Simulation Technique System. Front Microbiol 2021; 12:691502. [PMID: 34690944 PMCID: PMC8531547 DOI: 10.3389/fmicb.2021.691502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methane emissions by ruminants contribute to global warming and result in a loss of dietary energy for the animals. One possibility of reducing methane emissions is by dietary strategies. In the present trial, we investigated the long-term effects of Mootral, a feed additive consisting of garlic powder (Allium sativum) and bitter orange extracts (Citrus aurantium), on fermentation parameters and the microbial community in the rumen simulation technique (RUSITEC) system. The experiment lasted 38 days and was divided into three phases: an equilibration period of 7 days, a baseline period (BL) of 3 days, and experimental period (EP) of 28 days. Twelve fermentation vessels were divided into three groups (n = 4): control (CON), short-term (ST), and long-term (LT) application. From day 11 to day 27, 1.7 g of Mootral was added to the ST vessels; LT vessels received 1.7 g of Mootral daily for the entire EP. With the onset of Mootral application, methane production was significantly reduced in both groups until day 18. Thereafter, the production rate returned to the initial quantity. Furthermore, the short chain fatty acid fermentation profile was significantly altered by Mootral application; the molar proportion of acetate decreased, while the proportions of propionate and butyrate increased. Metabolomic analysis revealed further changes in metabolite concentrations associated with the Mootral supplementation period. The methyl coenzyme-M reductase gene copy number was reduced in the liquid and solid phase, whereas the treatment did not affect the abundance of bacteria. At the end of the BL, Methanomicrobia was the most abundant archaeal class. Mootral supplementation induced an increase in the relative abundance of Methanomassiliicoccales and a reduction in the relative abundance of Methanomicrobia, however, this effect was transient. Abundances of bacterial families were only marginally altered by the treatment. In conclusion, Mootral has the transient ability to reduce methane production significantly due to a selective effect on archaea numbers and archaeal community composition with little effect on the bacterial community.
Collapse
Affiliation(s)
- Johanna Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manuela Peukert
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Melanie Brede
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
59
|
Growth performance, nutrient digestibility, blood parameters, and carcass characteristics by lambs fed an oregano and cobalt blend. Animal 2021; 15:100365. [PMID: 34543994 DOI: 10.1016/j.animal.2021.100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022] Open
Abstract
Shifting ruminal fermentation via feeding a blend of oregano (Organum vulgare L.) essential oils and Co-lactate (EOC; Rum-A-Fresh, Ralco, Inc. Marshall, MN) could improve lamb growth and carcass performance. Eighteen Suffolk × Little Han Tail F1 male lambs (20.3 ± 0.23 kg BW and approximately 3 months old) were randomly assigned using a completely random design to one of three treatments. Treatments were (1) EOC0: basal ration without EOC, (2) EOC4: basal ration plus 4 g/d EOC, and (3) EOC7: basal ration plus 7 g/d EOC. Initial and 24 d BW was similar (P > 0.10), but at 48 and 72 d, lambs fed EOC7 demonstrated greater (P = 0.01) BW compared with EOC0 fed lambs, while lambs fed EOC4 were intermediate and similar (P > 0.05). Average daily gains (ADGs) for 0-24 and 0-72 d were greater (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0, while DM intake was similar (P > 0.10). Feed conversions for 0-24 d were improved (P < 0.02) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. However, 0-72-d feed conversions were greater (P < 0.01) for lambs fed EOC7 compared to lambs fed EOC0, with lambs fed EOC4 being intermediate and similar (P > 0.05). DM, NDF, and ADF digestibilities were similar (P > 0.10) among treatments, while CP digestibility was greater (P < 0.01) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Carcass weight and dressing percentages were improved (P < 0.01) for lambs fed EOC7 compared with lambs fed EOC0 and EOC4. Head width was greater (P > 0.01) for lambs fed EOC7 compared with lambs fed EOC0 and EOC4, while rump width was greater (P > 0.01) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Plasma triglyceride and cholesterol concentrations were lower (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0, while albumin, total serum protein, and glucose concentrations were greater (P < 0.05) for lambs fed EOC4 and EOC7 compared with lambs fed EOC0. Feeding an EOC blend as an alternative antibiotic growth promoter at 4 and 7 g/d linearly improved lamb growth performance, feed conversions, frame growth, carcass weights, dressing percentages, and immunity.
Collapse
|
60
|
Mirzaei-Alamouti H, Namdarpour H, Abdollahi A, Amanlou H, Patra AK, Shahir MH, Aliyari D, Vazirigohar M. Nutrient digestibility, blood metabolites, and production performance of peripartal ewes fed dietary plant extract and monensin. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Astragallus mollissimus plant extract: a strategy to reduce ruminal methanogenesis. Trop Anim Health Prod 2021; 53:436. [PMID: 34401959 DOI: 10.1007/s11250-021-02882-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ruminal methanogenesis is considered an inefficient process as it can result in the loss of 4 to 12% of the total energy consumed by the ruminant. Recent studies have shown that compounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid are capable of inhibiting methane production during in vitro studies. However, all of these nitrocompounds came from a synthetic origin, which could limit their use. In contrast, some plants of the Astragallus genus produce a natural nitrocompound, although its anti-methanogenic effect has not been evaluated. To determine the anti-methanogenic effect, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with A. mollissimus extracts (MISER). Cultures supplemented with 2-nitroethanol, ethyl 2-nitroacetate, or nitroethane were used as positive controls whereas distilled water was added to the untreated control tubes. After a 24 h incubation period, the methane production was reduced by more than 98% for the samples treated with A. mollissimus extract (P < 0.05) compared to the untreated controls (10.2 ± 0.1 mmol mL-1 incubated liquid). Cultures supplemented with MISER produced a greater (P < 0.05) amount of total VFA, compared to the rest of treated and untreated cultures. Considering that there are significant differences between MISER treatment, positive controls and untreated cultures (P < 0.05) regarding the amounts of total gas, gas composition (CH4 and H2), and the amount of VFA produced, it is concluded that Astragallus mollissimus poses an alternative strategy to reduce ruminal methanogenesis. To further explore such alternative, it is necessary to determine if the metabolization byproducts are safe and/or useful for the animal.
Collapse
|
62
|
Hassan FU, Guo Y, Li M, Tang Z, Peng L, Liang X, Yang C. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate. Microorganisms 2021; 9:microorganisms9081717. [PMID: 34442796 PMCID: PMC8397988 DOI: 10.3390/microorganisms9081717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
This study evaluated the effect of methionine on in vitro methane (CH4) production, rumen fermentation, amino acid (AA) metabolism, and rumen microbiota in a low protein diet. We evaluated three levels of methionine (M0, 0%; M1, 0.28%; and M2, 1.12%) of in the presence of sodium nitrate (1%) in a diet containing elephant grass (90%) and concentrate (10%). We used an in vitro batch culture technique by using rumen fluid from cannulated buffaloes. Total gas and CH4 production were measured in each fermentation bottle at 3, 6, 9, 12, 24, 48, 72 h of incubation. Results revealed that M0 decreased (p < 0.001) the total gas and CH4 production, but methionine exhibited no effect on these parameters. M0 decreased (p < 0.05) the individual and total volatile fatty acids (VFAs), while increasing (p < 0.05) the ruminal pH, acetate to propionate ratio, and microbial protein content. Methionine did not affect ruminal AA contents except asparagine, which substantially increased (p = 0.003). M2 increased the protozoa counts, but both M0 and M1 decreased (p < 0.05) the relative abundance of Firmicutes while increasing (p < 0.05) the Campilobacterota and Proteobacteria. However, Prevotella and γ-Proteobacteria were identified as biomarkers in the nitrate group. Our findings indicate that methionine can increase ruminal asparagine content and the population of Compylobactor.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Yanxia Guo
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (F.-u.H.); (Y.G.); (M.L.); (Z.T.); (L.P.); (X.L.)
- Correspondence: ; Tel.: +86-157-7716-2502
| |
Collapse
|
63
|
Jafari F, Ramezani M, Nomani H, Amiri MS, Moghadam AT, Sahebkar A, Emami SA, Mohammadpour AH. Therapeutic Effect, Chemical Composition, Ethnobotanical Profile of Eucalyptus globulus: A Review. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807213043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The composition of essential oil (EO) of E. globulus is so different all over the world. The
main component of essential oil is 1,8-cineole (Compound 64), macrocarpal C (Compound 22), terpenes
(Compound 23-92), oleanolic acid (Compound 21), and tannins (Compound 93-99). We
searched in vitro and in vivo articles and reviewed botanical aspects, therapeutic activity, chemical
composition and mechanism of action of E. globulus. Essential oils and extracts of leaves, stump,
wood, root and fruits of E. globulus represented many various medicinal effects including antibacterial,
antifungal, antidiabetic, anticancer, anthelmintic, antiviral, antioxidant, anti-inflammatory, protection
against UV-B, wound healing effect and stimulating the immune response. Also, the leaf extract of eucalyptus
is used as a food additive in the industry. Eucalyptus has so many different therapeutic effects
and some of these effects were confirmed by pharmacological and clinical studies. More clinical studies
are recommended to confirm the useful pharmacological activity of E. globulus.
Collapse
Affiliation(s)
- Fatemeh Jafari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | | | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,Iran
| |
Collapse
|
64
|
Hassan F, Tang Z, Ebeid HM, Li M, Peng K, Liang X, Yang C. Consequences of herbal mixture supplementation on milk performance, ruminal fermentation, and bacterial diversity in water buffaloes. PeerJ 2021; 9:e11241. [PMID: 34040891 PMCID: PMC8127954 DOI: 10.7717/peerj.11241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
This study was aimed to evaluate the potential of a herbal mixture (HM) to improve production performance, rumen fermentation, and milk fatty acid profile in water buffaloes. Sixteen Murrah buffaloes (in four groups) were fed for 10 weeks with the same basal diet supplemented with 0 (control); 20 (HM20), 30 (HM30), and 40 (HM40) g/buffalo per day. The herbal mixture contained an equal quantity of black pepper (fruit), ginger (tubers), cinnamon (bark), peppermint (leaves), ajwain (seeds) and garlic (bulbs). After two weeks of adaptation, daily milk yield, and weekly milk composition were recorded. On the last day of the experiment, rumen contents were collected to determine rumen fermentation parameters and bacterial diversity through 16S rRNA sequencing. Results revealed no effect of treatment on dry matter intake (DMI), rumen fermentation parameters, and daily milk yield. However, milk fat (%) showed a tendency to increase (p = 0.07) in HM20 as compared with the control group. A significant increase in mono and polyunsaturated fatty acids (C14:1, C16:1, C18:2n6 and C18:3) whereas a decrease in saturated fatty acids (C18:0) in milk was observed in HM20 as compared with the control group. No significant change in bacterial diversity parameters (alpha and beta diversity) was observed in response to the treatment. Despite the substantial variation observed in the relative abundance of bacteria among treatment groups, no significant effect of treatment was observed when compared with the control group. Correlation analysis revealed several positive and negative correlations of rumen bacteria with rumen volatile fatty acids (VFA) and milk yield traits. Bacterial genera including Succinivibrionaceae, Butyrivibrio, Pseudobutyrivibrio, and Lachnospiraceae showed a positive correlation with VFA and milk yield traits. Overall, we observed 52 positive and 10 negative correlations of rumen bacteria with milk fatty acid contents. Our study revealed the potential of the herbal mixture at a lower supplemental level (20 g/day) to increase milk fat (%) and unsaturated fatty acid content in buffalo.
Collapse
Affiliation(s)
- Faizul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China.,Institute of Animal and Dairy Sciences, Univeresity of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China
| | - Hossam M Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, Gunagxi, China
| |
Collapse
|
65
|
Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and Poultry Manure in China, and Countermeasures. Antibiotics (Basel) 2021; 10:antibiotics10050539. [PMID: 34066587 PMCID: PMC8148549 DOI: 10.3390/antibiotics10050539] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023] Open
Abstract
The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.
Collapse
|
66
|
Fernández C, Romero T, Martí JV, Moya VJ, Hernando I, Loor JJ. Energy, nitrogen partitioning, and methane emissions in dairy goats differ when an isoenergetic and isoproteic diet contained orange leaves and rice straw crop residues. J Dairy Sci 2021; 104:7830-7844. [PMID: 33865581 DOI: 10.3168/jds.2020-19953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the effects of incorporating rice straw and orange leaves into the diets for goats. Ten Murciano-Granadina goats at mid lactation weighing 45 ± 0.3 kg were used in a crossover design. Two isoproteic and isoenergetic diets (180 g/kg DM and 17 MJ/kg DM, respectively) with alfalfa hay as forage source (33% of DM) were fed. A control diet (CON) incorporated barley as energy source and soy hulls as fiber component. The experimental diet (ORG) replaced barley and soy hulls with orange leaves (19% on DM basis), rice straw (12%, on DM basis) and soya oil (2%). Peas and horsebeans were the protein source in both diets. Each goat received the 2 treatments in 2 periods. Goats were fed the experimental diets and after 14 d on their respective treatments moved to individual metabolism cages for another 7 d. Subsequently, feed intake, total fecal and urine output and milk yield were recorded daily over the first 5 d. During the next 2 d ruminal fluid and blood samples were collected, and then individual gas-exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. No differences in dry matter intake were detected, and apparent total-tract digestibility was greater in CON than ORG. Efficiency of metabolizable energy intake for milk and maintenance also was lower in response to ORG (0.65 vs. 0.63), with energy balance being negative (-12 kJ/kg of BW0.75) due to mobilization of fat (-16 g/animal vs. 68 g/animal for ORG and CON, respectively). Although actual milk yield was lower in goats fed ORG (2.32 vs. 2.06 kg/d, respectively), energy-corrected milk did not differ (2.81 kg/d on average). In terms of milk quality, milk fat content, and concentrations of monounsaturated (18.54 vs. 11.55 g/100 g milk fat) and polyunsaturated fatty acids (5.75 vs. 3.99 g/100 g milk fat) were greater in goats fed ORG. Based on various indices, the milk produced by ORG would be less atherogenic and thrombogenic than CON milk. Compared with CON, enteric CH4 emission was lower due to feeding ORG (reduction of 38 g CH4/kg milk fat). Data suggest that greater fat mobilization in goats fed ORG might have been due to the apparent lack of synchrony between degradable protein and carbohydrate and the lipogenic nutrients associated with the lower cereal content of the ORG diet. Thus, goats fed ORG seemed to rely more on fat depots to help meet energy requirements and reach optimal performance. As such, the lower content of glucogenic nutrients in ORG did not favor body fat deposition and partitioning of ME into body tissue. Overall, responses in terms of CH4 emissions and milk quality suggest that inclusion of rice straw and orange leaves in diets for small ruminants could be a valuable alternative to reuse, recycle and revalue agricultural by-products.
Collapse
Affiliation(s)
- C Fernández
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain.
| | - T Romero
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - J V Martí
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - V J Moya
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - I Hernando
- Facultad de Magisterio y Ciencias de la Educación, Universidad Católica de Valencia, 46110 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
67
|
Palhares Campolina J, Gesteira Coelho S, Belli AL, Samarini Machado F, R. Pereira LG, R. Tomich T, A. Carvalho W, S. Silva RO, L. Voorsluys A, V. Jacob D, Magalhães Campos M. Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS One 2021; 16:e0231068. [PMID: 33705410 PMCID: PMC7951862 DOI: 10.1371/journal.pone.0231068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to evaluate how the inclusion of a blend of essential oils in milk replacer (MR) affects different outcomes of dairy heifers. The outcomes evaluated: feed intake, performance, body development, blood cells and metabolites, insulin-like growth factor-1 (IGF-1), rumen fermentation, fecal scores, and respiratory scores. All outcomes were evaluated during pre-weaning (4–60 d of age), and carry-over effects during post-weaning (61–90 d of age) periods. The experimental units utilized were 29 newborn Holstein × Gyr crossbred dairy heifers, with genetic composition of 5/8 or more Holstein and 3/8 or less Gyr and body weight (BW) at birth of 32.2 ± 5.2 kg. Experimental units were assigned to either a control (CON, n = 15) or a blend of essential oil supplementation (BEO, n = 14) treatment, maintaining a balance of genetic composition. The BEO was supplemented in the MR with 1 g/d/calf of a blend of essential oils (Apex Calf, Adisseo, China) composed by plant extracts derived from anise, cinnamon, garlic, rosemary, and thyme. During the pre-weaning phase, all heifers were fed 5 L of MR/d reconstituted to 15% (dry matter basis), divided into two equal meals. Water and starter were provided ad libitum. During the post-weaning, animals received a maximum of 3 kg of starter/d, and ad libitum corn silage, divided into two meals. Feed intake, fecal and respiratory scores were evaluated daily. The BW was measured every three days, while body development was recorded weekly. Blood samples were collected on 0, 30, and 60 d of age for total blood cell count, weekly and on the weaning day to determinate ß-hydroxybutyrate, urea and glucose, and biweekly for IGF-1. Ruminal parameters (pH, volatile fatty acids, ammonia-N, and acetate:propionate proportion—C2:C3) were measured on days 14, 28, 42, 60, 74 and 90. A randomized complete block design with an interaction between treatment and week was the experimental method of choice to test the hypothesis of the BEO’s effect on all outcomes. An ANOVA procedure was used for continuous outcomes, and a non-parametric test was used for the ordered categorical outcomes, both adopting a CI = 95%. Results indicated that there was not enough evidence to accept the alternative hypothesis of the effect of BEO in MR on feed intake, performance, body development, and blood metabolites during both pre-weaning and post-weaning periods. However, results indicated that the inclusion of BEO in MR significantly affects the proportion of C2:C3 during pre- and post-weaning (P = 0.05). Similarly, the effect was significant for basophil (P ≤ 0.001), and platelet (P = 0.04) counts pre-weaning. The interaction between week and treatment was also significant for lymphocytes (P ≤ 0.001), revealing a cumulative effect. Lastly, fecal scores were also significant (P = 0.04) during pre-weaning, with lower values for BEO. The BEO contributed to ruminal manipulation in pre-weaning and carry-over effects in post-weaning, immunity improvement, and decreased morbidity of neonatal diarrhea in the pre-weaning phase.
Collapse
Affiliation(s)
- Joana Palhares Campolina
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Gesteira Coelho
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Belli
- Department of Animal Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Samarini Machado
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Gustavo R. Pereira
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Thierry R. Tomich
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Wanessa A. Carvalho
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo Otávio S. Silva
- Department of Veterinary Science, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation—EMBRAPA, National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
68
|
Saeed M, Khan MS, Alagawany M, Farag MR, Alqaisi O, Aqib AI, Qumar M, Siddique F, Ramadan MF. Clove (Syzygium aromaticum) and its phytochemicals in ruminant feed: an updated review. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00985-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
69
|
Colombini S, Rota Graziosi A, Parma P, Iriti M, Vitalini S, Sarnataro C, Spanghero M. Evaluation of dietary addition of 2 essential oils from Achillea moschata, or their components (bornyl acetate, camphor, and eucalyptol) on in vitro ruminal fermentation and microbial community composition. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:224-231. [PMID: 33997351 PMCID: PMC8110856 DOI: 10.1016/j.aninu.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of 2 Achillea moschata essential oils extracted from plants collected in 2 different valleys of the Italian Alps and 3 pure compounds of oils - bornyl acetate (BOR), camphor (CAM), and eucalyptol (EUCA) - on in vitro ruminal fermentation and microbiota. An in vitro batch fermentation experiment (Exp. 1) tested the addition of all of the substances (2 essential oils and 3 compounds) in fermentation bottles (120 mL) at 48 h of incubation, whereas a subsequent in vitro continuous culture experiment (Exp. 2) evaluated the pure compounds added to the fermenters (2 L) for a longer incubation period (9 d). In both experiments, total mixed rations were incubated with the additives, and samples without additives were included as the control (CTR). Each treatment was tested in duplicate and was repeated in 3 and 2 fermentation runs in Exp. 1 and 2, respectively. Gas production (GP) in Exp. 1 was similar for all of the treatments, and short chain volatile fatty acid (SCFA) production was similar in both experiments except for a decrease of SCFA produced (P = 0.029) due to EUCA addition in Exp. 2. Compared to CTR, BOR and CAM reduced the valerate proportion (P = 0.04) in Exp. 1, and increased (P < 0.01) the acetate proportion in Exp. 2. All treatments increased (P < 0.01) total protozoa counts (+36.7% and +48.4% compared to CTR on average for Exp. 1 and 2, respectively). In Exp. 1, all of the treatments lowered the Bacteroidetes and Firmicutes and increased the Proteobacteria relative abundances (P < 0.05), whereas in Exp. 2, the EUCA addition increased (P = 0.012) the Ruminococcus. In Exp. 1, methane (CH4) as a proportion of the GP was lowered (P = 0.004) by the addition of CAM and EUCA compared to CTR, whereas in Exp. 2, EUCA reduced the amount of stoichiometrically calculated CH4 compared to CTR. Overall, essential oils extracted from A. moschata and the pure compounds did not depress in vitro rumen fermentation, except for EUCA in Exp. 2. In both experiments, an increase of the protozoal population occurred for all the additives.
Collapse
Affiliation(s)
- Stefania Colombini
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Andrea Rota Graziosi
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Pietro Parma
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Marcello Iriti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Sara Vitalini
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Chiara Sarnataro
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, 33100 Udine, Italy
| | - Mauro Spanghero
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, 33100 Udine, Italy
| |
Collapse
|
70
|
Castillo-Lopez E, Rivera-Chacon R, Ricci S, Petri RM, Reisinger N, Zebeli Q. Short-term screening of multiple phytogenic compounds for their potential to modulate chewing behavior, ruminal fermentation profile, and pH in cattle fed grain-rich diets. J Dairy Sci 2021; 104:4271-4289. [PMID: 33612222 DOI: 10.3168/jds.2020-19521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
In cattle, proper rumen functioning and digestion are intimately linked to chewing behavior. Yet, high grain feeding impairs chewing activity, increasing the risk of subacute ruminal acidosis and dysfermentation. This study aimed to screen 9 different phytogenic compounds for their potential to modulate chewing activity, meal size, rumino-reticular short-chain fatty acids (SCFA), and pH during consumption in a first daily meal and shortly thereafter in cattle fed a grain-rich diet. Treatments were control (total mixed ration without phytogenic) or addition of a phytogenic compound at a low or high dose. Phytogenic compounds and doses (all in mg/kg) were angelica root (6.6 and 66), capsaicin (10 and 100), gentian root (6.6 and 66), garlic oil (0.3 and 3), ginger extract (40 and 400), L-menthol (6.7 and 67), mint oil (15.3 and 153), thyme oil (9.4 and 94), and thymol (5 and 50), for the low and high groups, respectively. Before the start of the screening experiment, cows were fed to reach subacute ruminal acidosis conditions, confirmed with the time of ruminal pH <5.8 being 655 ± 148.2 min/d. During the screening experiment, the treatments were offered in a controlled meal (2.5 kg of DM for 4 h) as part of the daily diet with 65% concentrate. Each treatment was tested in 4 of the 9 cannulated Holstein cows using an incomplete Latin square design. Ruminal and reticular fluids were sampled before and after each treatment, and data collected before the meal were used as covariates. Chewing and ruminal pH were monitored during the treatment, followed by 2 h of complete feed restriction, and then 4 h of ad libitum feed intake without phytogenic. Data showed that supplementation of angelica root tended to linearly increase rumination time immediately after the first meal when feed was restricted (27.3, 41.9, and 42.6 ± 5.99 min for control, low and high groups, respectively). Capsaicin increased eating time (43.6, 49.4, and 66.4 ± 4.93 min) during consumption but did not affect ruminal total SCFA or mean ruminal pH. Garlic oil reduced the concentration of reticular total SCFA (75.7, 71.3, and 60.1 mM) and tended to decrease ruminal acetate-to-propionate ratio (2.50, 1.78, and 1.87 ± 0.177) with no effect on ruminal pH. The L-menthol affected reticular total SCFA quadratically (76.1, 64.9, and 81.0 ± 4.22%), and ruminal pH responded quadratically when feed was reintroduced ad libitum (6.0, 6.3, and 6.1 ± 0.07). Mint oil did not affect chewing or total SCFA during consumption, but the low dose increased ruminal pH (6.5, 6.7, and 6.5 ± 0.08). Thyme oil tended to lower the severity of ruminal acidosis. Overall, phytogenic compounds demonstrated distinct dose-dependent effects to beneficially influence chewing behavior, modulate fermentation, and mitigate ruminal acidosis in dairy cows under a high-grain challenge diet.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Raul Rivera-Chacon
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sara Ricci
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - Renee M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria
| | - N Reisinger
- BIOMIN Research Center, BIOMIN Holding GmbH, 3430 Tulln, Austria
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
71
|
Dey A, Paul SS, Lailer PC, Dahiya SS. Reducing enteric methane production from buffalo (Bubalus bubalis) by garlic oil supplementation in in vitro rumen fermentation system. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.
Collapse
|
72
|
Sahebi Ala M, Pirmohammadi R, Khalilvandi-Behroozyar H, Anassori E. Changes in vitro rumen fermentation, methane production and microbial populations in response to green tea extract. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1938715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Sahebi Ala
- Department of Animal Science, Agriculture Faculty, Urmia University, Urmia, Iran
| | - Rasoul Pirmohammadi
- Department of Animal Science, Agriculture Faculty, Urmia University, Urmia, Iran
| | | | - Ehsan Anassori
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
73
|
El-Essawy AM, Anele U, Abdel-Wahed A, Abdou AR, Khattab I. Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
74
|
Romero T, Palomares JL, Moya VJ, Loor JJ, Fernández C. Alterations in Energy Partitioning and Methane Emissions in Murciano-Granadina Goats Fed Orange Leaves and Rice Straw as a Replacement for Beet Pulp and Barley Straw. Animals (Basel) 2020; 11:ani11010038. [PMID: 33375425 PMCID: PMC7824651 DOI: 10.3390/ani11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Considering the huge quantities of crops by-products and pruning waste such as rice straw and citrus leaves produced annually worldwide, and their potential pollution capacity, recycling as feed for livestock is an alternative. The objective was to study these by-products effect on energy balance and methane emissions in 10 Murciano-Granadina goats at maintenance. The control diet (CTR) included barley straw and beet pulp while the experimental diet (ORG) consisted of rice straw and orange leaves. Differences were found for energy intake (248 kJ/kg of BW0.75 greater for CTR than ORG). The intake of metabolizable energy was 199 kJ/kg of BW0.75 lower in ORG than CTR, and the energy efficiency was higher with CTR (0.61) than ORG (0.48). Protein retained in the body was 9 g/goat greater with CTR than ORG, and fat retention in the body was approximately 108 g/goat greater with CTR than ORG. Despite more unfavorable energy balance in response to feeding ORG than CTR, the retention of body energy was always positive. Reductions in CH4 emissions were detected when goats were fed ORG diet (from 22.3 to 20.0 g/d). Overall results suggested that feeding orange leaves and rice straw was effective in reducing CH4 emissions without adversely affecting energy balance.
Collapse
Affiliation(s)
- Tamara Romero
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (T.R.); (J.L.P.); (V.J.M.)
| | - José L. Palomares
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (T.R.); (J.L.P.); (V.J.M.)
| | - Vicente J. Moya
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (T.R.); (J.L.P.); (V.J.M.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Carlos Fernández
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain; (T.R.); (J.L.P.); (V.J.M.)
- Correspondence:
| |
Collapse
|
75
|
Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction. Front Vet Sci 2020; 7:575801. [PMID: 33263013 PMCID: PMC7688522 DOI: 10.3389/fvets.2020.575801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ruminants inhabit the consortia of gut microbes that play a critical functional role in their maintenance and nourishment by enabling them to use cellulosic and non-cellulosic feed material. These gut microbes perform major physiological activities, including digestion and metabolism of dietary components, to derive energy to meet major protein (65-85%) and energy (ca 80%) requirements of the host. Owing to their contribution to digestive physiology, rumen microbes are considered one of the crucial factors affecting feed conversion efficiency in ruminants. Any change in the rumen microbiome has an imperative effect on animal physiology. Ruminal microbes are fundamentally anaerobic and produce various compounds during rumen fermentation, which are directly used by the host or other microbes. Methane (CH4) is produced by methanogens through utilizing metabolic hydrogen during rumen fermentation. Maximizing the flow of metabolic hydrogen in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. Understanding of microbial diversity and rumen dynamics is not only crucial for the optimization of host efficiency but also required to mediate emission of greenhouse gases (GHGs) from ruminants. There are various strategies to modulate the rumen microbiome, mainly including dietary interventions and the use of different feed additives. Phytogenic feed additives, mainly plant secondary compounds, have been shown to modulate rumen microflora and change rumen fermentation dynamics leading to enhanced animal performance. Many in vitro and in vivo studies aimed to evaluate the use of plant secondary metabolites in ruminants have been conducted using different plants or their extract or essential oils. This review specifically aims to provide insights into dietary interactions of rumen microbes and their subsequent consequences on rumen fermentation. Moreover, a comprehensive overview of the modulation of rumen microbiome by using phytogenic compounds (essential oils, saponins, and tannins) for manipulating rumen dynamics to mediate CH4 emanation from livestock is presented. We have also discussed the pros and cons of each strategy along with future prospective of dietary modulation of rumen microbiome to improve the performance of ruminants while decreasing GHG emissions.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M. Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shehryaar Shahid
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
76
|
Effects of a blend of essential oils and exogenous α-amylase in diets containing different roughage sources for finishing beef cattle. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Benchaar C. Diet supplementation with thyme oil and its main component thymol failed to favorably alter rumen fermentation, improve nutrient utilization, or enhance milk production in dairy cows. J Dairy Sci 2020; 104:324-336. [PMID: 33131821 DOI: 10.3168/jds.2020-18401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/16/2020] [Indexed: 01/13/2023]
Abstract
Phenolic compounds and essential oils with high content of phenolic compounds have been reported to exert antimicrobial activities in vitro. The objective of this study was to determine the effects of dairy cow diet supplementation with thyme oil and its main component thymol on intake and total-tract apparent digestibility of nutrients, rumen fermentation characteristics, ruminal protozoa, nitrogen excretion, and milk production. For this aim, we used 8 multiparous, ruminally cannulated Holstein cows in a replicated 4 × 4 Latin square design (28 d periods), balanced for residual effects. Cows were fed 1 of the 4 following experimental treatments: total mixed ration (TMR) with no additive (control); TMR + monensin [24 mg/kg of dry matter (DM)]; TMR + thyme oil (50 mg/kg of DM); and TMR + thymol (50 mg/kg of DM). Compared with the control diet, feeding thyme oil or thymol had no effect on DM intake, nutrient total-tract apparent digestibility, total N excretion, ruminal pH, ammonia concentration, total volatile fatty acid (VFA) concentration, or acetate:propionate ratio. Ruminal protozoa density was not modified by thyme oil, but decreased with thymol supplementation. Supplementation with thyme oil or thymol did not affect milk production, milk composition, or efficiency of milk production. Neither thyme oil nor thymol affected efficiency of dietary N use for milk N secretion (N intake/milk N). Supplementation with monensin tended to decrease DM intake (-1.2 kg/d) and milk fat yield. Total-tract apparent digestibility of nutrients did not differ between cows fed monensin and cows fed the control diet. Total VFA concentration was not changed by monensin supplementation compared with control, but adding monensin shifted the VFA profile toward more propionate and less acetate, resulting in a decrease of acetate:propionate ratio. Protozoa density and ammonia concentration were lower in the ruminal content of cows fed monensin compared with that of cows fed the control diet. Total N excretion was not affected by monensin supplementation. Likewise, efficiency of use of dietary N for milk N secretion was unchanged in cows fed monensin. The results of this study contrasted with the claimed in vitro antimicrobial activity of thyme oil and thymol: we observed no positive effects on rumen metabolism (i.e., N and VFA) or milk performance in dairy cows. Under the conditions of this study, including thyme oil or thymol at 50 mg/kg of DM had no benefits for rumen fermentation, nutrient utilization and milk performance in dairy cows.
Collapse
Affiliation(s)
- C Benchaar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
78
|
Effects of Wormwood ( Artemisia montana) Essential Oils on Digestibility, Fermentation Indices, and Microbial Diversity in the Rumen. Microorganisms 2020; 8:microorganisms8101605. [PMID: 33081073 PMCID: PMC7603282 DOI: 10.3390/microorganisms8101605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of essential oil (EO) from three Korean wormwood (Artemisia Montana) plants on in vitro ruminal digestibility, fermentation, and microbial diversity. Dried (0.5 g) soybean meal (SBM) or bermudagrass hay (BGH) were incubated in buffered rumen fluid (40 mL) for 72 h with or without EO (5 mg/kg) from Ganghwa (GA), Injin (IN), or San (SA) wormwood (Experiment 1). Both SA and IN improved (p < 0.05) dry matter digestibility (DMD) of BGH, while GA reduced (p < 0.05) total short-chain fatty acid of BGH and SBM. Besides, SA increased (p < 0.05) numbers of Ruminococcus albus and Streptococcus bovis in SBM. Experiment 2 examined different doses (0, 0.1, 1, and 10 mg/kg) of SA, the most promising EO from Experiment 1. Applying SA at 10 mg/kg gave the highest DMD (L; p < 0.01) and neutral detergent fiber (Q; p < 0.05) digestibility for BGH. Applying SA at 1 mg/kg gave the highest R. albus population (Q; p < 0.05) in SBM. Therefore, SA was better than GA and IN at improving rumen fermentation, and the 0.1 to 1 and 10 mg/kg doses improved ruminal fermentation and in vitro digestibility of SBM and BGH, respectively.
Collapse
|
79
|
Chanu YM, Paul SS, Dey A, Dahiya SS. Reducing Ruminal Ammonia Production With Improvement in Feed Utilization Efficiency and Performance of Murrah Buffalo ( Bubalus bubalis) Through Dietary Supplementation of Plant-Based Feed Additive Blend. Front Vet Sci 2020; 7:464. [PMID: 33015136 PMCID: PMC7461841 DOI: 10.3389/fvets.2020.00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 11/14/2022] Open
Abstract
The study evaluated the potential of blends of eucalyptus oil and aqueous extract of mulethi (root of Glycyrrhiza glabra) to reduce rate of ruminal ammonia production without affecting feed digestion to improve nitrogen utilization efficiency and performance of Murrah buffalo (Bubalus bubalis). Based on preliminary independent studies with graded doses of eucalyptus oil and mulethi root aqueous extract in modulating in vitro rumen fermentation, four blends of feed additive comprising graded doses (5, 10, 15, and 25 μL) of eucalyptus oil and a fixed quantity (15 μL) of aqueous extract of mulethi roots were prepared and examined for their effects on in vitro rumen fermentation and on methane and gas production in 100-mL calibrated glass syringes by standard IVGP protocol. Rumen liquor was collected from four rumen fistulated Murrah buffaloes fed a total mixed ration. Out of four blends, blend-1 comprising 5 μL of eucalyptus oil and 15 μL of aqueous extract (233.6 g/L DW) of mulethi per 40 mL of in vitro medium was found to reduce ammonia production significantly (p < 0.001) without affecting feed digestibility. An equivalent dose of blend-1 (10.5 mL of eucalyptus oil and 7.35 g of mulethi root powder/h/day) fed to four rumen fistulated buffaloes for 24 days resulted in 50% reduction (p < 0.05) in rumen ammonia level with no inhibition in feed fermentation or short-chain fatty acid production. The total bacterial population including Ruminococcus albus, Fibrobacter succinogenes, Butyrivibrio fibrisolvens, and Megasphaera elsdenii as well as anaerobic fungi and methanogenic archaea remained unaffected (p > 0.05). Twelve buffalo calves (avg. BW 137.5 ± 9.2 kg, 8–12 months old) divided into two groups of six each and fed a total mixed ration (concentrate: roughage; 60:40) with or without supplementation of blend-1 for about 3 months demonstrated 14% increase (p < 0.05) in average daily gain in BW with a trend (p < 0.10) in improvement of feed or protein utilization efficiency (1.4 vs. 1.1 g crude protein/g average daily gain; 21.4% increase). Thus, supplementation of eucalyptus oil–mulethi root blend could reduce ruminal ammonia production and improve feed utilization efficiency in ruminants.
Collapse
Affiliation(s)
- Yendrembam Mery Chanu
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Shyam Sundar Paul
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Avijit Dey
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Satbir Singh Dahiya
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
80
|
Top-dressing of chelated phytogenic feed additives in the diet of lactating Friesian cows to enhance feed utilization and lactational performance. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
The present experiment evaluated the inclusion of chelated phytogenic feed additives mixture in the diet of lactating cows for the first 3 months of lactation. A week before calving, thirty multiparous Friesian cows were divided into three treatments in a complete randomized design and fed a basal diet without supplementation (Control treatment), or the control diet supplemented with chelated phytogenic additives at 3 g (PHY3 treatment), or at 6 g/cow/d (PHY6 treatment). Menthol, levomenthol, β-linaloolm, anethole, hexadecanoic acid and pmenthane were the principal compounds identified in the additives mixture. Milk production, total solid, protein, fat, and lactose were increased with PHY3, but decreased by PHY6 (P<0.01). Whereas the PHY3 treatment increased (P<0.05) milk contents of Ca and Zn, PHY3 and PHY6 treatments increased (P<0.05) milk Fe and Mn concentrations. Though the PHY3 treatment increased (P<0.05) nutrient digestibility, the PHY6 treatment decreased (P<0.05) the digestibility of organic matter, crude protein and neutral detergent fiber. The PHY3 treatment increased (P<0.05) ruminal volatile fatty acids (VFA) concentration and proportional acetate and propionate and decreased butyrate, while the PHY6 treatment decreased ruminal VFA concentration and proportional acetate. The PHY3 treatment increased (P<0.05) serum total protein, glucose, total antioxidant capacity, and the concentrations of Ca and Zn. Both PHY3 and PHY6 treatment decreased (P<0.05) the concentrations of serum triglycerides, and cholesterol. Daily inclusion of 3 g/cow of chelated feed additives mixture in diet of lactating cows improved milk production and ruminal fermentation, but additives dose of 6 g/cow/d had negative impact on cows’ performance.
Collapse
|
81
|
Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci 2020; 7:584. [PMID: 33195495 PMCID: PMC7481446 DOI: 10.3389/fvets.2020.00584] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 01/28/2023] Open
Abstract
The rumen microbiome plays a fundamental role in all ruminant species, it is involved in health, nutrient utilization, detoxification, and methane emissions. Methane is a greenhouse gas which is eructated in large volumes by ruminants grazing extensive grasslands in the tropical regions of the world. Enteric methane is the largest contributor to the emissions of greenhouse gases originating from animal agriculture. A large variety of plants containing secondary metabolites [essential oils (terpenoids), tannins, saponins, and flavonoids] have been evaluated as cattle feedstuffs and changes in volatile fatty acid proportions and methane synthesis in the rumen have been assessed. Alterations to the rumen microbiome may lead to changes in diversity, composition, and structure of the methanogen community. Legumes containing condensed tannins such as Leucaena leucocephala have shown a good methane mitigating effect when fed at levels of up to 30–35% of ration dry matter in cattle as a result of the effect of condensed tannins on rumen bacteria and methanogens. It has been shown that saponins disrupt the membrane of rumen protozoa, thus decreasing the numbers of both protozoa and methanogenic archaea. Trials carried out with cattle housed in respiration chambers have demonstrated the enteric methane mitigation effect in cattle and sheep of tropical legumes such as Enterolobium cyclocarpum and Samanea saman which contain saponins. Essential oils are volatile constituents of terpenoid or non-terpenoid origin which impair energy metabolism of archaea and have shown reductions of up to 26% in enteric methane emissions in ruminants. There is emerging evidence showing the potential of flavonoids as methane mitigating compounds, but more work is required in vivo to confirm preliminary findings. From the information hereby presented, it is clear that plant secondary metabolites can be a rational approach to modulate the rumen microbiome and modify its function, some species of rumen microbes improve protein and fiber degradation and reduce feed energy loss as methane in ruminants fed tropical plant species.
Collapse
Affiliation(s)
- Juan Carlos Ku-Vera
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Rafael Jiménez-Ocampo
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.,National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico
| | | | - María Denisse Montoya-Flores
- National Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Ajuchitlan, Queretaro, Mexico
| | | | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Carlos Fernando Aguilar-Pérez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Francisco Javier Solorio-Sánchez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| |
Collapse
|
82
|
Ebeid HM, Hassan FU, Li M, Peng L, Peng K, Liang X, Yang C. Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes. Front Vet Sci 2020; 7:550. [PMID: 33005640 PMCID: PMC7479821 DOI: 10.3389/fvets.2020.00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to evaluate the effects of Camelina sativa oil (CO) on fermentation kinetics and methane (CH4) production in rations with different roughage (R) to concentrate (C) ratios. Three total mixed rations (TMRs) were used as substrates (R70:C30, R50:C50, and R30:C70) supplemented with different levels of CO (0, 2, 4, 6, and 8% on dry matter basis) in an in vitro batch culture system. The enteric CH4 production was determined at different times of incubation while fermentation parameters were measured at the end of incubation. Results revealed that CO significantly decreased (P < 0.05) CH4 production at 48 h in medium (R50:C50) and low- (R30:C70) roughage diets than control. Camelina oil at all levels significantly (P < 0.05) affected ammonia nitrogen (NH3-N) and microbial protein (MCP) in all rations. Propionate concentration was increased by supplementing 8% CO to R70:C30 TMR, but it decreased with increasing levels of CO for low- and medium-roughage diets. Acetate concentration was significantly (P < 0.05) higher at 4% CO supplementation, but it decreased with 8% CO level in R30:C70 TMR. For all rations, CO decreased (P < 0.001) total bacteria, protozoa, and methanogens. Total fungi counts were affected by CO in all rations, especially with a 6% level in two rations (R30:C70 and R50:C50) and 8% level with high-roughage ration (R70:C30). Supplementation of CO in medium-roughage ration (R50:C50) showed a linear (P < 0.05) decrease in bacterial richness and evenness indices along with Shannon diversity as compared to the control. Moreover, CO also increased Firmicutes to Bacteroidetes ratio in all TMRs more effectively at higher levels. Camelina oil also affected the relative abundance of Prevotella in both low- and medium-roughage diets while increasing the abundance of Ruminobacter and Pseudobutyrivibrio. The present study concluded that CO enhanced fermentation kinetics while decreasing enteric in vitro CH4 production from fibrous diets. Thus, it may be considered as a potentially effective and environmentally friendly way of mitigating CH4 emission from livestock.
Collapse
Affiliation(s)
- Hossam M Ebeid
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Dairy Science Department, National Research Centre, Giza, Egypt
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
83
|
Hassan FU, Ebeid HM, Tang Z, Li M, Peng L, Peng K, Liang X, Yang C. A Mixed Phytogenic Modulates the Rumen Bacteria Composition and Milk Fatty Acid Profile of Water Buffaloes. Front Vet Sci 2020; 7:569. [PMID: 33005643 PMCID: PMC7479126 DOI: 10.3389/fvets.2020.00569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
This study was aimed to evaluate the effect of a mixed phytogenic (MP) on rumen bacteria and their potential association with rumen fermentation and milk yield parameters in water buffaloes. Twenty Murrah buffaloes were fed a basal diet (consisting of maize silage, brewers' grains, and concentrate mixture) for 6 weeks supplemented with 0 (control), 15 (MP15), 25 (MP25), and 35 (MP35) g of mixed phytogenic/buffalo per d. The mixed phytogenic contained fennel (seeds), ajwain (seeds), ginger (tubers), Swertia chirata (leaves), Citrullus colocynthis (fruit), turmeric, fenugreek (seeds), Terminalia chebula (fruit), licorice (roots), and Phyllanthus emblica (fruit) in equal quantities. After 2 weeks of adaptation, daily milk yield, and weekly milk composition were recorded. On the last day of the experiment (d 42), rumen contents were collected to determine rumen fermentation parameters and bacterial diversity through 16S rRNA sequencing. Results revealed no change in dry matter intake, milk yield and rumen fermentation parameters except pH, which increased (P = 0.029) in response to MP supplementation. The mixed phytogenic increased (P < 0.01) milk fatty acids (C4 to C14:0) in MP15 only. The milk C16:1 content and its unsaturation index were higher (P < 0.05) in MP35 as compared to the control and other treatments. Furthermore, C18:3n3 was higher (P < 0.05) in the control, MP15, and MP25, as compared to MP35. Supplementation of MP tended to increase (P = 0.095) the Shannon index of bacterial alpha diversity and a difference (P < 0.05) among treatment groups was observed in beta diversity. Feeding MP increased the Firmicutes, Proteobacteria, and Spirochaetes but decreased Bacteroidetes numerically. In addition, the dominant genus Prevotella decreased in all treatment groups while Pseudobutyrivibrio, Butyrivibrio, and Succinivibrioanceae increased numerically in MP25 and MP35. The mixed phytogenic promoted groups of rumen bacteria positively associated with milk and fat yield. Overall, our study revealed 14 positive correlations of rumen bacteria with milk yield and eight with rumen fermentation parameters. Our findings reveal substantial changes in the rumen bacteriome composition and milk fatty acid content in response to MP but these results should be interpreted carefully, as the sample size of our study was relatively small.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
84
|
Abd El Tawab AM, Khattab MSA, Hadhoud FI, Shaaban MM. Effect of mixture of herbal plants on ruminal fermentation, degradability and gas production. ACTA SCIENTIARUM: ANIMAL SCIENCES 2020; 43:e48549. [DOI: 10.4025/actascianimsci.v43i1.48549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Reducing livestock negative environmental impacts get great interest in last years. So, present study was carried out to determine the effect of adding different levels of mixture of thyme and celery versus salinomycin on ruminal fermentation, gas production, dry, organic matter and fiber degradation. Four experimental treatments were used by in-vitro batch culture technique, as follow: 60% CFM, 40% clover hay (control), control diet + 2.5 gm thyme + 2.5 gm celery kg-1 DM (T1), control diet + 5 gm thyme + 5 gm celery kg-1 DM (T2), control diet + 10 gm thyme + 10 gm celery kg-1 DM (T3), control diet + 0.4 gm Salinomycin kg-1 DM (T4). Ruminal pH value was significantly increased (p < 0.05) with T4 compared with other treatments. While, the T4 recorded the lowest value (p < 0.05) for microbial protein, short chain fatty acids concentrations (SCFA), total gas production, dry matter and organic matter degradability (DMd and OMd) compared with other treatments. Fiber fraction degradability (NDFd and ADFd) appeared no significant variance (p > 0.05) between control and other treatments except for T1 that recorded the lowest value (p < 0.05). It is concluded that mixture of thyme plus celery could be alternate for ionophores in the ruminant diets to enhance ruminal fermentation, reducing gas production without any negative effect on nutrients degradability.
Collapse
|
85
|
Yu J, Cai L, Zhang J, Yang A, Wang Y, Zhang L, Guan LL, Qi D. Effects of Thymol Supplementation on Goat Rumen Fermentation and Rumen Microbiota In Vitro. Microorganisms 2020; 8:microorganisms8081160. [PMID: 32751619 PMCID: PMC7463607 DOI: 10.3390/microorganisms8081160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.
Collapse
Affiliation(s)
- Jiangkun Yu
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Liyuan Cai
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Jiacai Zhang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Ao Yang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Yanan Wang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, Huazhong Agricultural University, Wuhan 430070, China; (J.Y.); (L.C.); (J.Z.); (A.Y.); (Y.W.); (L.Z.)
- Correspondence: ; Tel.: +86-27-87281793
| |
Collapse
|
86
|
Dietary supplementation of plant bioactive-enriched aniseed straw and eucalyptus leaves modulates tissue fatty acid profile and nuggets quality of lambs. Animal 2020; 14:2642-2651. [PMID: 32618544 DOI: 10.1017/s175173112000141x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Utilization of low-input feed resources rich in plant bioactive compounds is a promising strategy for modulating the fatty acid profile in ruminant products. They manipulate microbes involved in rumen biohydrogenation and increase the accumulation of desirable fatty acids at the tissue level. Therefore, the present study was undertaken to assess the effect of dietary supplementation of aniseed straw and eucalyptus leaves on growth performance, carcass traits and fatty acid profile of finisher lambs. Thirty-six Malpura hogget were divided into three treatment groups of 12 each, reared individually in pen (1.6 m × 1.1 m) and fed ad libitum complete feed blocks made up of 55 parts concentrate, 5 parts molasses and 40 parts roughage. Roughage in control (Con) was 20 parts each of ardu (Ailanthus excelsa) leaves and oat (Avena sativa) straw. In test diets, that is, Con-as and Con-el, 10% aniseed (Pimpinella anisum) straw and Eucalyptus rudis leaves, respectively, were added by replacing 5% each of oat straw and eucalyptus leaves. The lambs were weighed weekly; and at the end of 3 months of feeding trial, the lambs were slaughtered to study the carcass traits, composition and product evaluation. Average daily gain (ADG) and DM intake (DMI) was higher (P < 0.05) in Con-as compared to Con and Con-el, while ADG and feed conversion ratio decreased (P < 0.05) by 29.4% and 36.4%, respectively, in Con-el compared to Con. Carcass traits showed lower (P < 0.05) loin eye area and chilling loss in the Con-el group compared to the Con-as and Con, and the total carcass fat compared to Con-as. However, the keeping quality of meat improved in both Con-as and Con-el which was reflected by lower (P < 0.05) thiobarbituric acid-reactive substances values. Nuggets prepared from Con and Con-as meat had superior (P < 0.05) sensory attributes with an overall palatability. Fatty acid profile of longissimus thoracis muscle showed lower (P < 0.05) atherogenic and thrombogenic indices in Con-as and higher (P < 0.05) in Con-el group. Moreover, in Con-as group, the proportion of C16:0 was lower (P < 0.05) and C18:3n-3 was higher (P < 0.05), but no effect was observed on the amount of conjugated linoleic acid (CLA; C18:2 c9t11). In case of adipose tissue, the content of CLA was higher (P < 0.05), and the ratio of n-6:n-3 was more nearer to desirable levels in Con-as group. Therefore, it can be concluded that aniseed straw is a promising feed supplement compared to eucalyptus leaves for improving meat quality and fatty acid profile in lambs.
Collapse
|
87
|
Ramos-Morales E, Lyons L, de la Fuente G, Braganca R, Newbold CJ. Not all saponins have a greater antiprotozoal activity than their related sapogenins. FEMS Microbiol Lett 2020; 366:5528311. [PMID: 31271417 PMCID: PMC6666788 DOI: 10.1093/femsle/fnz144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
The antiprotozoal effect of saponins varies according to both the structure of the sapogenin and the composition and linkage of the sugar moieties to the sapogenin. The effect of saponins on protozoa has been considered to be transient as it was thought that when saponins were deglycosilated to sapogenins in the rumen they became inactive; however, no studies have yet evaluated the antiprotozoal effect of sapogenins compared to their related saponins. The aims of this study were to evaluate the antiprotozoal effect of eighteen commercially available triterpenoid and steroid saponins and sapogenins in vitro, to investigate the effect of variations in the sugar moiety of related saponins and to compare different sapogenins bearing identical sugar moieties. Our results show that antiprotozoal activity is not an inherent feature of all saponins and that small variations in the structure of a compound can have a significant influence on their biological activity. Some sapogenins (20(S)-protopanaxatriol, asiatic acid and madecassic acid) inhibited protozoa activity to a greater extent than their corresponding saponins (Re and Rh1 and asiaticoside and madecassoside), thus the original hypothesis that the transient nature of the antiprotozoal action of saponins is due to the deglycosilation of saponins needs to be revisited.
Collapse
Affiliation(s)
| | - L Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - G de la Fuente
- Dept. Ciència Animal, Universitat de Lleida, Lleida, 25198, Spain
| | - R Braganca
- BioComposites Centre, Bangor University, Bangor, LL57 2UW, UK
| | - C J Newbold
- Scotland's Rural College, Edinburgh, EH9 3JG, UK
| |
Collapse
|
88
|
Andri F, Huda AN, Marjuki M. The use of essential oils as a growth promoter for small ruminants: a systematic review and meta-analysis. F1000Res 2020; 9:486. [PMID: 32676185 PMCID: PMC7331101 DOI: 10.12688/f1000research.24123.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 01/10/2024] Open
Abstract
Background: Due to their antimicrobial properties and safety, essential oils are currently proposed as a sustainable option for antibiotic alternatives in the livestock sector. This current systematic review and meta-analysis investigated the effects of dietary essential oil supplements on dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) of small ruminants. Methods: A total of 12 studies (338 small ruminants) were included in this meta-analysis. The overall effect size was quantified using Hedges' g with 95% confidence interval (CI) using a fixed-effect model. Publication bias was inspected using Begg's and Egger's tests, followed by trim and fill method to detect the number of potential missing studies. Results: Insignificant heterogeneity among studies was detected both on DMI ( P of Q = 0.810; I-square = 0.00%), ADG ( P of Q = 0.286; I-square = 17.61%), and FCR ( P of Q = 0.650; I-square = 0.00%). The overall effect size showed that essential oils supplementation had no significant impact on DMI (Hedges' g = -0.12; 95% CI = -0.50 to 0.26; P = 0.429) and FCR (Hedges' g = -0.17; 95% CI = -0.55 to 0.22; P = 0.284), but had a significant positive impact on ADG (Hedges' g = 0.44; 95% CI = 0.12 to 0.76; P = 0.002). The result of publication bias analysis showed that DMI, ADG, and FCR did not present any significant biases ( P > 0.10), and no potential missing studies detected. Conclusions: Dietary essential oil could improve ADG of small ruminants, without any alteration on DMI and FCR. Further research in this topic is still required to provide stronger evidence of the potency of essential oil as a growth promoter for small ruminants.
Collapse
Affiliation(s)
- Faizal Andri
- Doctoral Program of Animal Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Asri Nurul Huda
- Department of Animal Nutrition and Feed Sciences, Faculty of Animal Science, Brawijaya University, Malang, 65145, Indonesia
| | - Marjuki Marjuki
- Department of Animal Nutrition and Feed Sciences, Faculty of Animal Science, Brawijaya University, Malang, 65145, Indonesia
| |
Collapse
|
89
|
Andri F, Huda AN, Marjuki M. The use of essential oils as a growth promoter for small ruminants: a systematic review and meta-analysis. F1000Res 2020; 9:486. [PMID: 32676185 PMCID: PMC7331101 DOI: 10.12688/f1000research.24123.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Due to their antimicrobial properties and safety, essential oils are currently proposed as a sustainable option for antibiotic alternatives in the livestock sector. This current systematic review and meta-analysis investigated the effects of dietary essential oil supplements on dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) of small ruminants. Methods: A total of 12 studies (338 small ruminants) were included in this meta-analysis. The overall effect size was quantified using Hedges’
g with 95% confidence interval (CI) using a fixed-effect model. Publication bias was inspected using Begg’s and Egger’s tests, followed by trim and fill method to detect the number of potential missing studies. Results: Insignificant heterogeneity among studies was detected both on DMI (
P of Q = 0.810; I-square = 0.00%), ADG (
P of Q = 0.286; I-square = 17.61%), and FCR (
P of Q = 0.650; I-square = 0.00%). The overall effect size showed that essential oils supplementation had no significant impact on DMI (Hedges’
g = -0.12; 95% CI = -0.50 to 0.26;
P = 0.429) and FCR (Hedges’
g = -0.17; 95% CI = -0.55 to 0.22;
P = 0.284), but had a significant positive impact on ADG (Hedges’
g = 0.44; 95% CI = 0.12 to 0.76;
P = 0.002). The result of publication bias analysis showed that DMI, ADG, and FCR did not present any significant biases (
P > 0.10), and no potential missing studies detected. Conclusions: Dietary essential oil could improve ADG of small ruminants, without any alteration on DMI and FCR. Further research in this topic is still required to provide stronger evidence of the potency of essential oil as a growth promoter for small ruminants.
Collapse
Affiliation(s)
- Faizal Andri
- Doctoral Program of Animal Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Asri Nurul Huda
- Department of Animal Nutrition and Feed Sciences, Faculty of Animal Science, Brawijaya University, Malang, 65145, Indonesia
| | - Marjuki Marjuki
- Department of Animal Nutrition and Feed Sciences, Faculty of Animal Science, Brawijaya University, Malang, 65145, Indonesia
| |
Collapse
|
90
|
Xue F, Wang Y, Zhao Y, Nan X, Hua D, Sun F, Yang L, Jiang L, Xiong B. Ruminal Methanogenic Responses to the Thiamine Supplementation in High-Concentrate Diets. Animals (Basel) 2020; 10:E935. [PMID: 32481707 PMCID: PMC7341502 DOI: 10.3390/ani10060935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Thiamine supplementation in high-concentrate diets (HC) was confirmed to attenuate ruminal subacute acidosis through promoting carbohydrate metabolism, however, whether thiamine supplementation in HC impacts methane metabolism is still unclear. Therefore, in the present study, thiamine was supplemented in the high-concentrate diets to investigate its effects on ruminal methanogens and methanogenesis process. METHODS an in vitro fermentation experiment which included three treatments: control diet (CON, concentrate/forage = 4:6; DM basis), high-concentrate diet (HC, concentrate/forage = 6:4; DM basis) and high-concentrate diet supplemented with thiamine (HCT, concentrate/forage = 6:4, DM basis; thiamine supplementation content = 180 mg/kg DM) was conducted. Each treatment concluded with four repeats, with three bottles in each repeat. The in vitro fermentation was sustained for 48h each time and repeated three times. At the end of fermentation, fermentable parameters, ruminal bacteria and methanogens community were measured. RESULTS HC significantly decreased ruminal pH, thiamine and acetate content, while significantly increasing propionate content compared with CON (p < 0.05). Conversely, thiamine supplementation significantly increased ruminal pH, acetate while significantly decreasing propionate content compared with HC treatment (p < 0.05). No significant difference of ruminal methanogens abundances among three treatments was observed. Thiamine supplementation significantly decreased methane production compared with CON, while no significant change was found in HCT compared with HC. CONCLUSION thiamine supplementation in the high-concentrate diet (HC) could efficiently reduce CH4 emissions compared with high-forage diets while without causing ruminal metabolic disorders compared with HC treatment. This study demonstrated that supplementation of proper thiamine in concentrate diets could be an effective nutritional strategy to decrease CH4 production in dairy cows.
Collapse
Affiliation(s)
- Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Fuyu Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.X.); (Y.W.); (Y.Z.); (X.N.); (D.H.); (F.S.); (L.Y.)
| |
Collapse
|
91
|
Romero T, Pérez-Baena I, Larsen T, Gomis-Tena J, Loor JJ, Fernández C. Inclusion of lemon leaves and rice straw into compound feed and its effect on nutrient balance, milk yield, and methane emissions in dairy goats. J Dairy Sci 2020; 103:6178-6189. [PMID: 32418694 DOI: 10.3168/jds.2020-18168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/26/2020] [Indexed: 11/19/2022]
Abstract
The objective of this experiment was to study the effects of incorporating lemon leaves and rice straw into the compound feed of diets for dairy goats. Ten Murciano-Granadina dairy goats (n = 5 per group) in mid-lactation were used in a crossover design experiment (2 treatments across 2 periods). Goats were fed a mixed ration with barley grain (control, CON) or CON plus lemon leaves [189 g/kg of dry matter (DM)] and rice straw (120 g/kg of DM) in place of barley grain (LRS). Soybean oil (19 g/kg of DM) was added to the LRS diet to make it isoenergetic (17 MJ of gross energy/kg of DM) relative to CON. After 14 d on their respective treatments, goats were allocated to individual metabolism cages for another 7 d. Subsequently, feed intake, total fecal and urine output, and milk yield were recorded daily over the first 5 d. During the last 2 d, ruminal fluid and blood samples were collected, along with individual gas exchange measurements recorded by a mobile open-circuit indirect calorimetry system using a head box. No differences in DM intake were detected, and ME intake in LRS was lower than in CON (1,095 vs. 1,180 kJ/kg of metabolic body weight). No differences were observed in milk production, but milk fat content was greater in LRS (6.4%) than in CON (5.6%). Greater concentrations of monounsaturated (14.94 vs. 11.96 g/100 g of milk fat) and polyunsaturated fatty acids (4.53 vs. 4.03 g/100 g of milk fat) were detected in the milk of goats fed LRS compared with CON. Atherogenicity (2.68 vs.1.91) and thrombogenic (4.58 vs. 2.81) indices were lower with LRS compared with CON. Enteric CH4 emission was lower in LRS (24.3 g/d) compared with CON (31.1 g/d), probably due to the greater lipid content and unsaturated fatty acid profile of lemon leaves and the soybean oil added in the LRS diet. Overall, data suggest that incorporating lemon leaves and rice straw into lactating goat diets is effective in reducing CH4 emissions while allowing improvements in milk fat production and milk thrombogenic index without affecting production performance. Thus, their inclusion in compound feeds fed to small ruminants appears warranted and would have multiple positive effects, as on efficiency of nutrient use, human health, and the environment.
Collapse
Affiliation(s)
- T Romero
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - I Pérez-Baena
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - T Larsen
- Animal Science Department, Aarhus University, 8830 Tjele, Denmark
| | - J Gomis-Tena
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Fernández
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
92
|
Garcia F, Colombatto D, Brunetti MA, Martínez MJ, Moreno MV, Scorcione Turcato MC, Lucini E, Frossasco G, Martínez Ferrer J. The Reduction of Methane Production in the In Vitro Ruminal Fermentation of Different Substrates is Linked with the Chemical Composition of the Essential Oil. Animals (Basel) 2020; 10:ani10050786. [PMID: 32370008 PMCID: PMC7277337 DOI: 10.3390/ani10050786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 01/21/2023] Open
Abstract
Simple Summary There is growing concern about how animal-derived foods are produced. Methane production in ruminants has received much attention in relation to its contribution to greenhouse gases and its effect on global warming. Another aspect of livestock production that is questioned by consumers is related to in-feed antibiotics added to improve feed efficiency, and due to health safety issues, their use has been banned or under revision in some parts of the world. Hence, there is the need to find new solutions to mitigate methane production in the rumen in a way that is considered safe and environmental-friendly by consumers and feasible, and without a negative impact on the farmers. Among the alternatives, the use of essential oils to modify rumen fermentation has attracted attention. This paper explores the effectiveness of essential oils obtained from two plants, Lippia turbinata and Tagetes minuta, to reduce methane production during the in vitro fermentation of substrates that are representative of different livestock production systems. The main conclusion to which we arrived is that the extent of the reduction in methane production depends on the interaction between the fermentation conditions that are generated by different substrates and the chemical profile of the essential oil, especially regarding its proportion of oxygenated compounds. Abstract There is interest in identifying natural products capable of manipulating rumen microbial activity to develop new feed additives for ruminant nutrition as a strategy to reduce methane. Two trials were performed using the in vitro gas production technique to evaluate the interaction of substrate (n = 5) and additive (n = 6, increasing doses: 0, 0.3, 3, 30, and 300 µL/L of essential oils—EO—of Lippia turbinata or Tagetes minuta, and monensin at 1.87 mg/L). The two EO utilized were selected because they differ markedly in their chemical composition, especially in the proportion of oxygenated compounds. For both EO, the interaction between the substrate and additive was significant for all variables; however, the interaction behaved differently for the two EO. Within each substrate, the response was dose-dependent, without effects at a low level of EO and a negative outcome at the highest dose. The intermediate dose (30 µL/L) inhibited methane with a slight reduction on substrate digestibility, with L. turbinata being more effective than T. minuta. It is concluded that the effectiveness of the EO to reduce methane production depends on interactions between the substrate that is fermented and the additive dose that generates different characteristics within the incubation medium (e.g., pH); and thus, the chemical nature of the compounds of the EO modulates the magnitude of this response.
Collapse
Affiliation(s)
- Florencia Garcia
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba X 5000, Argentina;
- Correspondence:
| | - Darío Colombatto
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina; (D.C.); (M.C.S.T.)
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires C1417DSQ, Argentina
| | - M. Alejandra Brunetti
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria, Córdoba 5988, Argentina; (M.A.B.); (M.J.M.); (M.V.M.); (G.F.); (J.M.F.)
| | - M. José Martínez
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria, Córdoba 5988, Argentina; (M.A.B.); (M.J.M.); (M.V.M.); (G.F.); (J.M.F.)
| | - M. Valeria Moreno
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria, Córdoba 5988, Argentina; (M.A.B.); (M.J.M.); (M.V.M.); (G.F.); (J.M.F.)
| | | | - Enrique Lucini
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba X 5000, Argentina;
| | - Georgina Frossasco
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria, Córdoba 5988, Argentina; (M.A.B.); (M.J.M.); (M.V.M.); (G.F.); (J.M.F.)
| | - Jorge Martínez Ferrer
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria, Córdoba 5988, Argentina; (M.A.B.); (M.J.M.); (M.V.M.); (G.F.); (J.M.F.)
| |
Collapse
|
93
|
Kholif AE, Hassan AA, El Ashry GM, Bakr MH, El-Zaiat HM, Olafadehan OA, Matloup OH, Sallam SMA. Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim Biotechnol 2020; 32:708-718. [PMID: 32248772 DOI: 10.1080/10495398.2020.1746322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The assay aimed to evaluate the effect of feeding a recently developed phytogenic feed additives mixture in diets of lactating Friesian cows (n = 30; 514 ± 10.1 kg body weight) for 3 months. Cows were stratified into three groups of 10 cows each and fed a control diet alone or the control diet supplemented with the additives mixture at 3 g (PHY3) or 6 g (PHY6)/cow daily. Menthol, levomenthol, β-linaloolm, anethole, hexadecanoic acid and p-menthane were the principle compounds identified in the additives mixture. The PHY3 increased (p < 0.01) intake and nutrient digestibility. PHY3 and PHY6 increased (p < 0.01) ruminal pH, total volatile fatty acids, propionate and acetate. PHY3 and PHY6 improved serum total protein and antioxidant capacity and decreased the concentrations of serum urea-N, triglycerides, total lipids, cholesterol and malondialdehyde (p < 0.05). PHY3 increased milk production and milk content of total solids, protein, lactose and fat. Both PHY3 and PHY6 did not affect mineral concentrations in blood or milk. It is concluded that the inclusion of 3 g/cow/d of feed additives mixture in the lactating Friesian cows diet enhanced milk production and feed utilization, with negative effects observed with increasing the dose of additives mixture to 6 g/cow daily.
Collapse
Affiliation(s)
- A E Kholif
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - A A Hassan
- Agriculture Research Centre, Animal Production Research Institute, Dokki, Giza, Egypt
| | - Ghada M El Ashry
- Regional Centre for Food and Feed, Agriculture Research Centre, Dokki, Giza, Egypt
| | - M H Bakr
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - H M El-Zaiat
- Department of Animal Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.,Sultan Qaboos University, College of Agricultural and Marine Sciences, Department of Animal and Veterinary Sciences, Al-Khod, Oman
| | - O A Olafadehan
- Department of Animal Science, University of Abuja, Abuja, Nigeria
| | - O H Matloup
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - S M A Sallam
- Department of Animal Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
94
|
The Potential Effect of Dietary Tannins on Enteric Methane Emission and Ruminant Production, as an Alternative to Antibiotic Feed Additives – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Antibiotic growth promoters in livestock nutrition cause microbial resistance which produces threats to human health. Therefore, tannins have been considered as natural alternative antibiotic feed additives which possess various biological properties including antimicrobial, anti-inflammatory, antioxidant and immunomodulatory. Additionally, these plants also have antiparasitic and anti-bloat characteristics which contribute to inhibit the enteric methane emission in order to improve nutrient digestibility, milk and meat quality, fatty acids composition and ruminant production. Antibiotic growth promoters have been practiced in animals feeding to increase feed intake, growth rate, weight gain as well as reduce metabolic disorders and energy losses in the rumen. In 2006, the European Union banned the usage of antibiotic growth promoters in the feeding of livestock. This antibiotic resistance issue has increased demand to explore the natural feed additives that might be useful for animal production system. Consequently, natural forages have been categorized as potential feed additives in animal production since it improves nutritive value, protein digestibility, increase amino acid absorption and growth rate. But, some plant materials are usually rich in tannins known as anti-nutritional factors. Therefore, the application of tannin-rich plants in ruminant nutrition needs great precaution due to its possible injurious effects (dose dependent) on animal health such as metabolic disorders. Hence, there is need to give attention to the usage of tannins in ruminant nutrition as an alternative to antibiotics feed additives to investigate its effects on enteric methane emissions and ruminants production. In addition, safety and risk associated with tannins feeding have also been briefly discussed.
Collapse
|
95
|
Kumari S, Fagodiya RK, Hiloidhari M, Dahiya RP, Kumar A. Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136135. [PMID: 31927428 DOI: 10.1016/j.scitotenv.2019.136135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Globally, livestock is an important contributor to methane (CH4) emissions. This paper reviewed the various CH4 measurement and estimation techniques and mitigation approaches for the livestock sector. Two approaches for enteric livestock CH4 emission estimation are the top-down and bottom-up. The combination of both could further improve our understanding of enteric CH4 emission and possible mitigation measures. We discuss three mitigation approaches: reducing emissions, avoiding emissions, and enhancing the removal of emissions from livestock. Dietary management, livestock management, and breeding management are viable reducing emissions pathways. Dietary manipulation is easily applicable and can bring an immediate response. Economic incentive policies can help the livestock farmers to opt for diet, breeding, and livestock management mitigation approaches. Carbon pricing creates a better option to achieve reduction targets in a given period. A combination of carbon pricing, feeding management, breeding management, and livestock management is more feasible and sustainable CH4 emissions mitigation strategy rather than a single approach.
Collapse
Affiliation(s)
- Shilpi Kumari
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India.
| | - R K Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR - Central Soil Salinity Research Institute, Karnal - 132 001, India
| | - Moonmoon Hiloidhari
- IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai - 400 076, India
| | - R P Dahiya
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India
| | - Amit Kumar
- Department of Botany, Dayalbagh Educational Institute, Agra - 282 005, India
| |
Collapse
|
96
|
Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C, Zhang L, Wei S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci 2020; 103:2303-2314. [PMID: 31954586 DOI: 10.3168/jds.2019-16611] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Different inclusion rates of oregano essential oil (OEO) were investigated for their effects on ruminal in vitro fermentation parameters, total gas, methane production, and bacterial communities. Treatments were (1) control, 0 mg/L of OEO (CON); 13 mg/L (OEO1); 52 mg/L (OEO2); 91 mg/L (OEO3); and 130 mg/L (OEO4), each incubated with 150 mL of buffered rumen fluid and 1,200 mg of substrate for 24 h using the Ankom in vitro gas production system (Ankom Technology Corp., Fairport, NY). Treatment responses were statistically analyzed using polynomial contrasts. Digestibility of DM, NDF, and ADF increased quadratically with increasing OEO inclusion rates. Digestibility of DM and NDF were highest for OEO2, whereas ADF digestibility was highest for OEO3, compared with CON, with the remaining treatments being intermediate and similar. Ammonia nitrogen concentrations decreased from CON at a quadratic rate with increasing OEO inclusion rates, and OEO2 had the lowest concentration compared with the other groups. Total VFA, acetate, propionate, butyrate, valerate, and isovalerate concentrations linearly decreased with increasing OEO inclusion rates. Total gas production levels by CON and OEO4 were greater than those of OEO1, OEO2, and OEO3 in a quadratic response, and methane production linearly decreased from CON, compared with OEO4, at a decreasing rate with OEO inclusion rates. As determined by 16S rRNA sequencing, the α biodiversity of ruminal bacteria was similar among OEO inclusion rates. Increasing OEO inclusion rates linearly increased the relative abundance of Prevotella and Dialister bacteria. Several bacteria demonstrated different polynomial responses, whereas several bacteria were similar among increasing OEO inclusion rates. These results suggested that OEO supplementation can modify ruminal fermentation to alter VFA concentrations and reduce methane emissions by extensively altering the ruminal bacterial community, suggesting an optimal feeding rate for future animal studies of approximately 52 mg/L for mature ruminants.
Collapse
Affiliation(s)
- Rui Zhou
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070.
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - Lishan Liu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - David P Casper
- Casper's Calf Ranch, 4890 West Lily Creek Road, Freeport, IL 61032
| | - Cailian Wang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuan Village Anning, Lanzhou, Gansu, People's Republic of China, 730030
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| | - Sheng Wei
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu, People's Republic of China, 730070
| |
Collapse
|
97
|
Ala MS, Pirmohammadi R, Khalilvandi-Behroozyar H, Anassori E. Potential of walnut (Juglans regia) leave ethanolic extract to modify ruminal fermentation, microbial populations and mitigate methane emission. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Series of in vitro trials were conducted to evaluate dose–response effects of walnut leaf ethanolic extract (WLEE) on ruminal fermentation, microbial populations, mitigation of methane emission and acidosis prevention. The treatments were conducted according to a 5 × 3 factorial arrangement in a completely randomised design formulated to contain corn (corn-based diet, CBD) and barley grain (barley-based diet, BBD), or equal amounts of barley and corn (barley and corn diet, BCD), consisting of either basal diets alone (0) or basal diets with 250, 500, 750 or 1000 µL of WLEE (W0, W250, W500, W750 and W1000 respectively) per litre of buffered rumen fluid. Three fistulated cows fed diets containing alfalfa hay and concentrate mixes (same as the control diet) plus minerals and vitamins were used for collection of ruminal fluid. The asymptote of gas production and methane emission was decreased and lag time increased in a linear and quadratic manner with an increasing dose of WLEE (P < 0.001). However, gas production rate reduced linearly as WLEE dose increased (P < 0.001). Methane production was significantly reduced linearly (L) and quadratically (Q) when walnut ethanolic extract was increased from 250 to 1000 μL/L (L and Q; P < 0.001). The addition of WLEE significantly altered the volatile fatty acid profile in comparison to control, reducing the molar proportion of acetate and increasing that of propionate (P < 0.001), and also decreased the ammonia-N concentration (L, P < 0.001). Dry-matter and organic-matter in vitro digestibility coefficients were negatively affected by WLEE supplementation (L and Q; P < 0.001). Although anti-acidosis potential of WLEE was significantly lower than that of monensin, W1000 increased medium culture pH compared with uncontrolled acidosis and the lower doses of WLEE. The populations of Fibrobacter succinogenes, Ruminococcus flavefaciens and R. albus were significantly reduced by WLEE, although to different magnitudes, depending on the corn and barley grain proportions in the diet. Results of the present study indicated that increasing addition levels of WLEE have noticeable effects on rumen microbial population and fermentation characteristics. It can be concluded that WLEE can potentially be used to manipulate ruminal fermentation patterns.
Collapse
|
98
|
Villar M, Hegarty R, Nolan J, Godwin I, McPhee M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
Park T, Mao H, Yu Z. Inhibition of Rumen Protozoa by Specific Inhibitors of Lysozyme and Peptidases in vitro. Front Microbiol 2019; 10:2822. [PMID: 31866983 PMCID: PMC6908469 DOI: 10.3389/fmicb.2019.02822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
Defaunation studies have shown that rumen protozoa are one of the main causes of low nitrogen utilization efficiency due to their bacterivory and subsequent intraruminal cycling of microbial protein in ruminants. In genomic and transcriptomic studies, we found that rumen protozoa expressed lysozymes and peptidases at high levels. We hypothesized that specific inhibition of lysozyme and peptidases could reduce the activity and growth of rumen protozoa, which can decrease their predation of microbes and proteolysis and subsequent ammoniagenesis by rumen microbiota. To test the above hypothesis, we evaluated three specific inhibitors: imidazole (IMI), a lysozyme inhibitor; phenylmethylsulphonyl fluoride (PMSF), a serine protease inhibitor; and iodoacetamide (IOD), a cysteine protease inhibitor; both individually and in combinations, with sodium dodecyl sulfate (SDS) as a positive control. Rumen fluid was collected from two Jersey dairy cows fed either a concentrate-based dairy ration or only alfalfa hay. Each protozoa-enriched rumen fluid was incubated for 24 h with or without the aforementioned inhibitors and fed a mixture of ground wheat grain, alfalfa, and grass hays to support microbial growth. Live protozoa cells were morphologically identified and counted simultaneously at 3, 6, 12, and 24 h of incubation. Fermentation characteristics and prokaryotic composition were determined and compared at the end of the incubation. Except for IOD, all the inhibitors reduced all the nine protozoal genera identified, but to different extents, in a time-dependent manner. IOD was the least inhibitory to protozoa, but it lowered ammoniagenesis the most while not decreasing feed digestibility or concentration of volatile fatty acids (VFA). ANCOM analysis identified loss of Fibrobacter and overgrowth of Treponema, Streptococcus, and Succinivibrio in several inhibitor treatments. Functional prediction (from 16S rRNA gene amplicon sequences) using the CowPI database showed that the inhibitors decreased the relative abundance of the genes encoding amino acid metabolism, especially peptidases, and lysosome in the rumen microbiota. Overall, inhibition of protozoa resulted in alteration of prokaryotic microbiota and in vitro fermentation, and peptidases, especially cysteine-peptidase, may be targeted to improve nitrogen utilization in ruminants.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Huiling Mao
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- College of Veterinary Medicine, Zhejiang A&F University, Lin’an, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
100
|
Patra AK, Geiger S, Schrapers KT, Braun HS, Gehlen H, Starke A, Pieper R, Cieslak A, Szumacher-Strabel M, Aschenbach JR. Effects of dietary menthol-rich bioactive lipid compounds on zootechnical traits, blood variables and gastrointestinal function in growing sheep. J Anim Sci Biotechnol 2019; 10:86. [PMID: 31827785 PMCID: PMC6886202 DOI: 10.1186/s40104-019-0398-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background The present study aimed at investigating the influence of 90% menthol-containing plant bioactive lipid compounds (PBLC, essential oils) on growth performance, blood haematological and biochemical profile, and nutrient absorption in sheep. Twenty-four growing Suffolk sheep were allotted into three dietary treatments: Control (without PBLC), lower dose of PBLC (PBLC-L; 80 mg/d) and higher dose of PBLC (PBLC-H; 160 mg/d). Sheep in all groups were fed meadow hay ad libitum plus 600 g/d of concentrate pellets for 28 d. Results Average daily gain was not affected by treatment. Feeding of PBLC increased hay and total feed intake per kg body weight (P < 0.05). Counts of total leucocytes, lymphocytes and monocytes were not different among treatments. However, neutrophil count decreased (P < 0.05) in PBLC-H with a similar trend in PBLC-L (P < 0.10). Concentrations of glucose, bilirubin, triglycerides, cholesterol, urea and magnesium in serum were not different among sheep fed different doses of PBLC. However, serum calcium concentration tended to increase in PBLC-H (P < 0.10) and serum concentrations of aspartate & asparagine (P < 0.01) and glutamate & glutamine (P < 0.05) increased linearly with increasing PBLC dose. In ruminal epithelia isolated from the rumen after killing, baseline conductance (G t; P < 0.05) and short-circuit current (I sc; P < 0.01) increased in both PBLC groups. Ruminal uptakes of glucose and methionine in the presence of Na+ were not affected by the dietary PBLC supplementation. In the absence of Na+, however, glucose and methionine uptakes increased (P < 0.05) in PBLC-H. In the jejunum, I sc tended to increase in PBLC-H (P < 0.10), but baseline G t was not affected. Intestinal uptakes of glucose and methionine were not influenced by PBLC in the presence or absence of Na+. Conclusion The results suggest that menthol-rich PBLC increase feed intake, and passive ion and nutrient transport, the latter specifically in the rumen. They also increased serum concentrations of urea precursor amino acids and tended to increase serum calcium concentrations. Future studies will have to show whether some of these findings might be commonly linked to a stimulation of transient receptor potential (TRP) channels in the gastrointestinal tract.
Collapse
Affiliation(s)
- Amlan K Patra
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.,2Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata, 700037 India
| | - Sebastian Geiger
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | | | | | - Heidrun Gehlen
- 4Equine Clinic: Surgery and Radiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Alexander Starke
- 5Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - Robert Pieper
- 6Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Strasse 49, 14195 Berlin, Germany
| | - Adam Cieslak
- 7Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | | | - Jörg R Aschenbach
- 1Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|