51
|
Kouduka M, Suko T, Morono Y, Inagaki F, Ito K, Suzuki Y. A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiol Lett 2011; 326:47-54. [PMID: 22092362 DOI: 10.1111/j.1574-6968.2011.02437.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/15/2011] [Accepted: 10/04/2011] [Indexed: 11/29/2022] Open
Abstract
Microbial communities that thrive in subterranean consolidated sediments are largely unknown owing to the difficulty of extracting DNA. As this difficulty is often attributed to DNA binding onto the silica-bearing sediment matrix, we developed a DNA extraction method for consolidated sediment from the deep subsurface in which silica minerals were dissolved by being heated under alkaline conditions. NaOH concentrations (0.07 and 0.33 N), incubation temperatures (65 and 94 °C) and incubation times (30-90 min) before neutralization were evaluated based on the copy number of extracted prokaryotic DNA. Prokaryotic DNA was detected by quantitative PCR analysis after heating the sediment sample at 94 °C in 0.33 N NaOH solution for 50-80 min. Results of 16S rRNA gene sequence analysis of the extracted DNA were all consistent with regard to the dominant occurrence of the metallophilic bacterium, Cupriavidus metallidurans, and Pseudomonas spp. Mineralogical analysis revealed that the dissolution of a silica mineral (opal-CT) during alkaline treatment was maximized at 94 °C in 0.33 N NaOH solution for 50 min, which may have resulted in the release of DNA into solution. Because the optimized protocol for DNA extraction is applicable to subterranean consolidated sediments from a different locality, the method developed here has the potential to expand our understanding of the microbial community structure of the deep biosphere.
Collapse
Affiliation(s)
- Mariko Kouduka
- Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Freese HM, Schink B. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. MICROBIAL ECOLOGY 2011; 62:882-94. [PMID: 21667195 DOI: 10.1007/s00248-011-9886-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/29/2011] [Indexed: 05/03/2023]
Abstract
Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest that the Daphnia microbiota consists mainly of an aerobic resident bacterial community which is indigenous to this habitat.
Collapse
Affiliation(s)
- Heike M Freese
- Department of Biology, Microbial Ecology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany.
| | | |
Collapse
|
53
|
Li X, Penttinen P, Gu Y, Zhang X. Diversity of nifH gene in rhizosphere and non-rhizosphere soil of tobacco in Panzhihua, China. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0339-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
54
|
Govender A, Shaik R, Abbai NS, Pillay B. Dehalogenase gene detection and microbial diversity of a chlorinated hydrocarbon contaminated site. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0713-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Yashiro E, Spear R, McManus P. Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 2011; 110:1284-96. [DOI: 10.1111/j.1365-2672.2011.04975.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Yu S, Li S, Tang Y, Wu X. Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. J Environ Sci (China) 2011; 23:1533-1543. [PMID: 22432291 DOI: 10.1016/s1001-0742(10)60585-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multiple biostimulation treatments were applied to enhance the removal of heavy crude oil pollutants in the saline soil of Yellow River Delta. Changes of the soil bacterial community were monitored using the terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The 140-day microcosm experiments showed that low C:N:P ratio, high availability of surfactant and addition of bulking agent significantly enhanced the performance, leading to the highest total petroleum hydrocarbon removal. Meanwhile, the bacterial community was remarkably changed by the multiple biostimulation treatments, with the Deltaproteobacteria, Firmicutes, Actinobacteria, Acidobacteria and Planctomycetes being inhibited and the Alpha- and Beta-proteobacteria and some unknown Gammaproteobacteria bacteria being enriched. In addition, different hydrocarbon-degraders came to power in the following turn. At the first stage, the Alcanivorax-related Gammaproteobacteria bacteria dominated in the biostimulated soil and contributed mainly to the biodegradation of easily degradable portion of the heavy crude oil. Then the bacteria belonging to Alphaproteobacteria, followed by bacteria belonging to Candidate division OD1, became the dominant oil-degraders to degrade the remaining recalcitrant constituents of the heavy crude oil.
Collapse
Affiliation(s)
- Sulin Yu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
57
|
PCR inhibitor levels in concentrates of biosolid samples predicted by a new method based on excitation-emission matrix spectroscopy. Appl Environ Microbiol 2010; 76:8102-9. [PMID: 20971866 DOI: 10.1128/aem.02339-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosolids contain a wide variety of organic contaminants that are known for their ability to inhibit PCR. During sample processing, these contaminants are coconcentrated with microorganisms. Elevated concentrations of these compounds in concentrates render samples unsuitable for molecular applications. Glycine-based elution and recovery methods have been shown to generate samples with fewer PCR inhibitory compounds than the current U.S. EPA-recommended method for pathogen recovery from biosolids. Even with glycine-based methods, PCR inhibitors still persist in concentrations that may interfere with nucleic acid amplification. This results in considerable loss of time and resources and increases the probability of false negatives. A method to estimate the degree of inhibition prior to application of molecular methods is desirable. Here we report fluorescence excitation-emission matrix (EEM) profiling as a tool for predicting levels of molecular inhibition in sample concentrates of biosolids.
Collapse
|
58
|
Guidi V, De Respinis S, Benagli C, Lüthy P, Tonolla M. A real-time PCR method to quantify spores carrying the Bacillus thuringiensis var. israelensis cry4Aa and cry4Ba genes in soil. J Appl Microbiol 2010; 109:1209-17. [DOI: 10.1111/j.1365-2672.2010.04741.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Yu SL, Tang YQ, Li Y, Zhang H, Wu XL. Gradient decrement of annealing time can improve PCR with fluorescent-labeled primers. J Biosci Bioeng 2010; 110:500-4. [PMID: 20646958 DOI: 10.1016/j.jbiosc.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 05/08/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
The influences of fluorescence labeling on PCR amplification and T-RFLP analysis were examined by the analyses of a soil bacterial and archaeal community using both clone library and T-RFLP methods. The PCR amplification and microbial community structure patterns were compared among the primers labeled with and without fluorescent groups. PCR amplification was negatively affected by the labeling groups of the primers, which may be caused by the increment of primer molecular weight. It is known that thermodynamic movement of molecules will be slowed as molecular weight increased. Therefore it is understandable that the reaction of primer-DNA template hybridization will be inhibited with the fluorescent groups added to the primer(s). An effective "Gradient-Decreasing Annealing Time Program," in which the annealing time was initially set long and reduced cycle by cycle, can improve PCR efficiency under comparable amplification specificity with the fluorescent-labeled primers. No significant negative impact was observed in the altered conditions.
Collapse
Affiliation(s)
- Su-Lin Yu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
60
|
Reed SC, Townsend AR, Cleveland CC, Nemergut DR. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia 2010; 164:521-31. [PMID: 20454976 DOI: 10.1007/s00442-010-1649-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.
Collapse
Affiliation(s)
- Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT 84532, USA.
| | | | | | | |
Collapse
|
61
|
Taok M, Mundo J, Sarde CO, Schoefs O, Cochet N. Monitoring the impact of hydrocarbon contamination and nutrient addition on microbial density, activity, and diversity in soil. Can J Microbiol 2010; 56:145-55. [PMID: 20237576 DOI: 10.1139/w09-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of optimal in situ bioremediation strategies requires a better knowledge of their impact on the soil microbial communities. We have evaluated the impact of hexadecane contamination and different nutrient amendments on soil microbial density and activity. Microbial density was measured via total DNA quantification, and microbial activity via respiration and RNA variation. The RNA/DNA ratio was also determined, as it is a potential indicator of microbial activity. PCR-amplified 16S rRNA genes were cloned and sequenced to analyze the diversity of bacterial communities. Nutrient addition significantly increased respiration and DNA and RNA concentrations in contaminated soil, indicating a limitation of degradation and growth by the availability of nitrogen and phosphorus in unamended microcosms. Hexadecane treatment slightly affected the diversity of the bacterial community, while it was dramatically reduced by nutrient treatments, particularly the addition of nitrogen and phosphorus. Microbial community composition was also altered with the enrichment of populations related to Nocardia in bioremediated soils, while uncultured Proteobacteria were mostly detected in uncontaminated soil.
Collapse
Affiliation(s)
- Mira Taok
- Université de Technologie de Compiègne, France
| | | | | | | | | |
Collapse
|
62
|
Assessing the bias linked to DNA recovery from biofiltration woodchips for microbial community investigation by fingerprinting. Appl Microbiol Biotechnol 2010; 85:779-790. [PMID: 19826809 DOI: 10.1007/s00253-009-2253-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.
Collapse
|
63
|
Extracting nucleic acids from activated sludge which reflect community population diversity. Antonie van Leeuwenhoek 2009; 96:593-605. [PMID: 19768568 DOI: 10.1007/s10482-009-9374-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
Critical to most studies in molecular microbial ecology is the application of DNA/RNA extraction methods which can reveal the true level of population biodiversity present in samples from the community under investigation. Activated sludge communities have been studied extensively using molecular methods, but rarely have the nucleic acid isolation methods applied been assessed for their ability to achieve this. This study compares eight published RNA and DNA extraction protocols and one commercially available DNA isolation kit for their capacity to provide high quality nucleic acids that reflect the community composition. Each method was assessed on the basis of nucleic acid yield, purity and integrity, and the ability to provide PCR amplifiable RNA and DNA from known marker populations that varied in their resistance to nucleic acid extraction. Only three consistently provided DNA from each of the marker populations known to be present in the samples from fluorescence in situ hybridisation analysis. The failure of the other methods emphasises the need to validate all DNA/RNA extraction protocols. It is recommended that several validated extraction methods be used and the extracts pooled to further minimise any risk of bias.
Collapse
|
64
|
Norris TB, McDermott TR, Castenholz RW. The long-term effects of UV exclusion on the microbial composition and photosynthetic competence of bacteria in hot-spring microbial mats. FEMS Microbiol Ecol 2009; 39:193-209. [PMID: 19709199 DOI: 10.1111/j.1574-6941.2002.tb00922.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary objective of this study was to determine whether the long-term exclusion of ultraviolet (UV) radiation (UVR) from hot-spring microbial mats resulted in an alteration of microbial composition, such as a shift to more UV-sensitive species. Over a 1-3-month period, microbial mats in two alkaline geothermal streams in Yellowstone National Park were covered with filters that excluded or transmitted UVR. Over some, 25% transmission neutral density screens were also used. In the 40-47 degrees C range, there were no apparent changes in community composition during the summer with or without high or low UVR, as assessed by denaturing gradient gel electrophoresis (DGGE) profiles after polymerase chain reaction amplification of 16S-rRNA genes with general Bacteria and Cyanobacteria primers. Major bands were purified from the DGGE gels and sequenced. Only one of the cyanobacterial sequences matched known strains in the database; the others appear to be unique. Although the bacterial composition of these communities was apparently stable, surface layers of cyanobacteria protected from UVR were not as competent photosynthetically as those that had been maintained under UVR. This decrease in competence was expressed as a loss of the ability to perform at a maximum rate under full UVR plus visible irradiance. However, even +UV-maintained cyanobacteria performed better when UVR was excluded during the photosynthesis tests. It is probable that the large differences in photosynthetic competence observed reflect changes at the level of gene expression in the dominant species rather than changes in species composition.
Collapse
Affiliation(s)
- Tracy B Norris
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
65
|
Horz HP, Raghubanshi AS, Heyer J, Kammann C, Conrad R, Dunfield PF. Activity and community structure of methane-oxidising bacteria in a wet meadow soil. FEMS Microbiol Ecol 2009; 41:247-57. [PMID: 19709259 DOI: 10.1111/j.1574-6941.2002.tb00986.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The structure and activity of the methane-oxidising microbial community in a wet meadow soil in Germany were investigated using biogeochemical, cultivation, and molecular fingerprinting techniques. Both methane from the atmosphere and methane produced in anaerobic subsurface soil were oxidised. The specific affinity (first-order rate constant) for methane consumption was highest in the top 20 cm of soil and the apparent half-saturation constant was 137-300 nM CH(4), a value intermediate to measured values in wetland soils versus well-aerated upland soils. Most-probable-number (MPN) counting of methane-oxidising bacteria followed by isolation and characterisation of strains from the highest positive dilution steps suggested that the most abundant member of the methane-oxidising community was a Methylocystis strain (10(5)-10(7) cells g(-1) d.w. soil). Calculations based on kinetic data suggested that this cell density was sufficient to account for the observed methane oxidation activity in the soil. DNA extraction directly from the same soil samples, followed by PCR amplification and comparative sequence analyses of the pmoA gene, also detected Methylocystis. However, molecular community fingerprinting analyses revealed a more diverse and dynamic picture of the methane-oxidising community. Retrieved pmoA sequences included, besides those closely related to Methylocystis spp., others related to the genera Methylomicrobium and Methylocapsa, and there were differences across samples which were not evident in MPN analyses.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Warner CL, Bruckner-Lea CJ, Grate JW, Straub T, Posakony GJ, Valentine N, Ozanich R, Bond LJ, Matzke MM, Dockendorff B, Valdez C, Valdez P, Owsley S. A Flow-Through Ultrasonic Lysis Module for the Disruption of Bacterial Spores. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.jala.2009.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An automated, flow-through ultrasonic lysis module that is capable of disrupting bacterial spores to increase the DNA available for biodetection is described. The system uses a flow-through chamber that allows for direct injection of the sample without the need for a chemical or enzymatic pretreatment step to disrupt the spore coat before lysis. Lysis of Bacillus subtilis spores, a benign simulant of Bacillus anthracis, is achieved by flowing the sample through a tube whose axis is parallel to the faces of two transducers that deliver 10 W cm−2 to the surface of the tube at 1.4-MHz frequency. Increases in amplifiable DNA were assessed by real-time PCR analysis that showed at least a 25-fold increase in amplifiable DNA after ultrasonic treatment with glass beads, compared with controls with no ultrasonic power applied. The ultrasonic system and integrated fluidics are designed as a module that could be incorporated into multistep, automated sample treatment and detection systems for pathogens.
Collapse
|
67
|
Bussmann I, Pester M, Brune A, Schink B. Preferential cultivation of type II methanotrophic bacteria from littoral sediments (Lake Constance). FEMS Microbiol Ecol 2009; 47:179-89. [PMID: 19712333 DOI: 10.1016/s0168-6496(03)00260-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Most widely used medium for cultivation of methanotrophic bacteria from various environments is that proposed in 1970 by Whittenbury. In order to adapt and optimize medium for culturing of methanotrophs from freshwater sediment, media with varying concentrations of substrates, phosphate, nitrate, and other mineral salts were used to enumerate methanotrophs by the most probable number method. High concentrations (>1 mM) of magnesium and sulfate, and high concentrations of nitrate (>500 microM) significantly reduced the number of cultured methanotrophs, whereas phosphate in the range of 15-1500 microM had no influence. Also oxygen and carbon dioxide influenced the culturing efficiency, with an optimal mixing ratio of 17% O(2) and 3% CO(2); the mixing ratio of methane (6-32%) had no effect. A clone library of pmoA genes amplified by PCR from DNA extracted from sediment revealed the presence of both type I and type II methanotrophs. Nonetheless, the cultivation of methanotrophs, also with the improved medium, clearly favored growth of type II methanotrophs of the Methylosinus/Methylocystis group. Although significantly more methanotrophs could be cultured with the modified medium, their diversity did not mirror the diversity of methanotrophs in the sediment sample detected by molecular biology method.
Collapse
Affiliation(s)
- Ingeborg Bussmann
- LS Mikrobielle Okologie, Fachbereich Biologie, Universität Konstanz, Germany.
| | | | | | | |
Collapse
|
68
|
Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A. Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 2009. [PMID: 19597697 DOI: 10.1007/s00792–009–0268-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze-thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO(3) (-) and NH(4) (+)) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from -12 to 27 degrees C and when sub-zero, soil cooling rates reached 1.8 degrees C h(-1) (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.
Collapse
Affiliation(s)
- S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 2009; 13:807-16. [PMID: 19597697 DOI: 10.1007/s00792-009-0268-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/23/2009] [Indexed: 02/01/2023]
Abstract
High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze-thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO(3) (-) and NH(4) (+)) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from -12 to 27 degrees C and when sub-zero, soil cooling rates reached 1.8 degrees C h(-1) (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.
Collapse
|
70
|
Wu L, Li F, Deng C, Xu D, Jiang S, Xiong Y. A method for obtaining DNA from compost. Appl Microbiol Biotechnol 2009; 84:389-95. [PMID: 19590869 DOI: 10.1007/s00253-009-2103-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
An effective cell lysis method for extraction of bacterial genomic DNA from compost was developed in this study. Enzymatic disruption method, physical-chemical combination method, and commercial kit method were used to extract DNA from compost samples and were compared by analyzing DNA yield and efficient cell lysis. The results showed that all the three methods can be used to extract high-quality DNA from compost, but the enzymatic method had better cell lysis efficiency and DNA yields than others without the use of special equipment and expensive spending. Comparison of different methods for lysing gram-positive bacteria Bacillus subtilis indicated that the enzymatic cell lysis is superior for destroying the gram-positive cell wall. Spin-bind DNA column was used for DNA purification, and the purity of the purified sample was checked by polymerase chain reaction to amplify a region of the 16S rRNA. Results indicated that the part of 16S rRNA were amplified from all the purified DNA samples, and all the amplification products could be digested by the restriction enzyme HhaI.
Collapse
Affiliation(s)
- Liang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
71
|
An unusual cyanobacterium from saline thermal waters with relatives from unexpected habitats. Extremophiles 2009; 13:707-16. [DOI: 10.1007/s00792-009-0258-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
72
|
Gupta AK, Rangrez AY, Verma P, Chatterji A, Shouche YS. Phylogenetic profiling of bacterial community from two intimately located sites in Balramgari, North-East coast of India. Indian J Microbiol 2009; 49:169-87. [PMID: 23100766 DOI: 10.1007/s12088-009-0034-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/09/2009] [Indexed: 11/26/2022] Open
Abstract
Microbial communities in coastal subsurface sediments play an important role in biogeochemical cycles. In this study microbial communities in tidal subsurface sediments of Balramgari in the state of Orissa, India were investigated using a culture independent approach. Two 16S rDNA cloned libraries were prepared from the closely located (100 m along the coast) subsurface sediment samples. Library I sediment samples had higher organic carbon content but lower sand percentage in comparison to Library II. A total of 310 clone sequences were used for DOTUR analysis which revealed 51 unique phylotypes or operational taxonomic units (OTUs) for both libraries. The OTUs were affiliated with 13 major lineages of domain bacteria including Proteobacteria (α, β, δ and λ), Acidobacteria, Actinobacteria, Cyanobacteria, Chloroflexi, Firmicutes, Verrucomicrobia, Bacteroidetes, Gemmatimonadetes and TM7. We encountered few pathogenic bacteria such as Aeromonas hydrophila and Ochrobactrum intermedium, in sediment from Library I. ∫-LIBSHUFF comparison depicts that the two libraries were significantly different communities. Most of the OTUs from both libraries possessed ≥85% to <97% similarity to RDP database sequences depicting the putative presence of new species, genera and phylum. This work revealed the complex and unique bacterial diversity from coastal habitat of Balramgari and shows that, in coastal habitat a variability of physical and chemical parameter has a prominent impact on the microbial community structure.
Collapse
Affiliation(s)
- Arvind Kumar Gupta
- Molecular Biology Unit, National Centre for Cell Science, Pune, 411 007 Maharashtra India
| | | | | | | | | |
Collapse
|
73
|
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J 2009; 4:480-94. [PMID: 19288513 DOI: 10.1002/biot.200800201] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
Collapse
Affiliation(s)
- Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Characterization of mucosa-associated bacterial communities of the mouse intestine by terminal restriction fragment length polymorphism: Utility of sampling strategies and methods to reduce single-stranded DNA artifacts. J Microbiol Methods 2009; 78:175-80. [PMID: 19463863 DOI: 10.1016/j.mimet.2009.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 11/22/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) is a molecular technique used for comparative analysis of microbial community structure and dynamics. We evaluated three sampling methods for recovering bacterial community DNA associated with intestinal mucosa of mice (i.e. mechanical agitation with PBS, hand washing with PBS containing Tween 80, and direct DNA extraction from mucosal plugs). In addition, the utility of two methods (i.e. Klenow fragment and mung-bean nuclease) to reduce single-stranded DNA artifacts was tested. T-RFLP analysis indicated that diverse communities of bacteria are associated with mucosa of the ileum, cecum, and descending colon of mice. Although there was no significant difference in bacterial community structure between the mechanical agitation and direct DNA extraction methods regardless of intestinal location, community diversity was reduced for the hand wash method in the colon. The use of Klenow fragment and mung-bean nuclease have been reported to eliminate single-stranded DNA artifacts (i.e. pseudo-T-restriction fragments), but neither method was beneficial for characterizing mucosa-associated bacterial communities of the mouse cecum. Our study showed that the mechanical agitation and direct plug extraction methods yielded equivalent bacterial community DNA from the mucosa of the small and large intestines of mice, but the latter method was superior for logistical reasons. We also applied a combination of different statistical approaches to analyze T-RFLP data, including statistical detection of true peaks, analysis of variance for peak number, and group significance test, which provided a quantitative improvement for the interpretation of the T-RFLP data.
Collapse
|
75
|
Hansen AA, Jensen LL, Kristoffersen T, Mikkelsen K, Merrison J, Finster KW, Lomstein BA. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community. ASTROBIOLOGY 2009; 9:229-240. [PMID: 19371163 DOI: 10.1089/ast.2008.0244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.
Collapse
Affiliation(s)
- Aviaja A Hansen
- Department of Biological Sciences, Section for Microbiology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
76
|
Nucleic Acid–Based Methods of Analysis. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
77
|
|
78
|
Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 2008; 75:735-47. [PMID: 19074608 DOI: 10.1128/aem.01469-08] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fumarolic activity supports the growth of mat-like photoautotrophic communities near the summit (at 6,051 m) of Socompa Volcano in the arid core of the Andes mountains. These communities are isolated within a barren, high-elevation landscape where sparse vascular plants extend to only 4,600 m. Here, we combine biogeochemical and molecular-phylogenetic approaches to characterize the bacterial and eucaryotic assemblages associated with fumarolic and nonfumarolic grounds on Socompa. Small-subunit rRNA genes were PCR amplified, cloned, and sequenced from two fumarolic soil samples and two reference soil samples, including the volcanic debris that covers most of the mountain. The nonfumarolic, dry, volcanic soil was similar in nutrient status to the most extreme Antarctic Dry Valley or Atacama Desert soils, hosted relatively limited microbial communities dominated by Actinobacteria and Fungi, and contained no photoautotrophs. In contrast, modest fumarolic inputs were associated with elevated soil moisture and nutrient levels, the presence of chlorophyll a, and (13)C-rich soil organic carbon. Moreover, this soil hosted diverse photoautotroph-dominated assemblages that contained novel lineages and exhibited structure and composition comparable to those of a wetland near the base of Socompa (3,661-m elevation). Fumarole-associated eucaryotes were particularly diverse, with an abundance of green algal lineages and a novel clade of microarthropods. Our data suggest that volcanic degassing of water and (13)C-rich CO(2) sustains fumarole-associated primary producers, leading to a complex microbial ecosystem within this otherwise barren landscape. Finally, we found that human activities have likely impacted the fumarolic soils and that fumarole-supported photoautotrophic communities may be exceptionally sensitive to anthropogenic disturbance.
Collapse
|
79
|
Knowles EJ, Castenholz RW. Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiol Ecol 2008; 66:261-70. [DOI: 10.1111/j.1574-6941.2008.00568.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
80
|
Nemergut DR, Townsend AR, Sattin SR, Freeman KR, Fierer N, Neff JC, Bowman WD, Schadt CW, Weintraub MN, Schmidt SK. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environ Microbiol 2008; 10:3093-105. [PMID: 18764871 DOI: 10.1111/j.1462-2920.2008.01735.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diana R Nemergut
- Institute of Arctic and Alpine Research, Environmental Studies Program, University of Colorado, Boulder, Colorado, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Mitchell KR, Takacs-Vesbach CD. A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind Microbiol Biotechnol 2008; 35:1139-47. [DOI: 10.1007/s10295-008-0393-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022]
|
82
|
Hu JE, Erickson JS, Taitt CR, Lin B, Ligler AG, Blaney KM, Malanoski AP, Ligler FS. A Parametric Study of Sample Lysis and DNA Purification Techniques for Use in Automated Devices. ANAL LETT 2008. [DOI: 10.1080/00032710802162186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. MICROBIAL ECOLOGY 2008; 55:415-24. [PMID: 17690836 DOI: 10.1007/s00248-007-9287-1] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/25/2007] [Accepted: 06/09/2007] [Indexed: 05/02/2023]
Abstract
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f-1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacterial Physiological Phenomena
- Biodiversity
- China
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Gene Library
- Molecular Sequence Data
- Oryza/microbiology
- Phylogeny
- Plant Roots/microbiology
- Plant Roots/physiology
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- Sequence Analysis, DNA/methods
- Soil Microbiology
- Symbiosis
Collapse
Affiliation(s)
- Lei Sun
- College of Life Sciences, Capital Normal University, Beijing 100037, People's Republic of China
| | | | | | | | | | | |
Collapse
|
84
|
Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol 2008; 74:2822-33. [PMID: 18344337 DOI: 10.1128/aem.02741-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extreme environments that combine low pH levels ( approximately 0.2 to 4.0) and moderately high temperatures of 40 to 56 degrees C. These unicellular algae occur in far-flung volcanic areas throughout the earth. Three genera (Cyanidium, Galdieria, and Cyanidioschyzon) are recognized. The phylogenetic diversity of culture isolates of the Cyanidiales from habitats throughout Yellowstone National Park (YNP), three areas in Japan, and seven regions in New Zealand was examined by using the chloroplast RuBisCO large subunit gene (rbcL) and the 18S rRNA gene. Based on the nucleotide sequences of both genes, the YNP isolates fall into two groups, one with high identity to Galdieria sulphuraria (type II) and another that is by far the most common and extensively distributed Yellowstone type (type IA). The latter is a spherical, walled cell that reproduces by internal divisions, with a subsequent release of smaller daughter cells. This type, nevertheless, shows a 99 to 100% identity to Cyanidioschyzon merolae (type IB), which lacks a wall, divides by "fission"-like cytokinesis into two daughter cells, and has less than 5% of the cell volume of type IA. The evolutionary and taxonomic ramifications of this disparity are discussed. Although the 18S rRNA and rbcL genes did not reveal diversity among the numerous isolates of type IA, chloroplast short sequence repeats did show some variation by location within YNP. In contrast, Japanese and New Zealand strains showed considerable diversity when we examined only the sequences of 18S and rbcL genes. Most exhibited identities closer to Galdieria maxima than to other strains, but these identities were commonly as low as 91 to 93%. Some of these Japanese and New Zealand strains probably represent undescribed species that diverged after long-term geographic isolation.
Collapse
|
85
|
Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 2008; 74:2902-7. [PMID: 18344341 DOI: 10.1128/aem.02161-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven methods of soil DNA extraction and purification were tested in a set of 14 soils differing in bedrock, texture, pH, salinity, moisture, organic matter content, and vegetation cover. The methods introduced in this study included pretreatment of soil with CaCO(3) or purification of extracted DNA by CaCl(2). The performance of innovated methods was compared to that of the commercial kit Mo Bio PowerSoil and the phenol-chloroform-based method of D. N. Miller, J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (Appl. Environ. Microbiol. 65:4715-4724, 1999). This study demonstrated significant differences between the tested methods in terms of DNA yield, PCR performance, and recovered bacterial diversity. The differences in DNA yields were correlated to vegetation cover, soil pH, and clay content. The differences in PCR performances were correlated to vegetation cover and soil pH. The innovative methods improved PCR performance in our set of soils, in particular for forest acidic soils. PCR was successful in 95% of cases by the method using CaCl(2) purification and in 93% of cases by the method based on CaCO(3) pretreatment, but only in 79% by Mo Bio PowerSoil, for our range of soils. Also, the innovative methods recovered a higher percentage of actinomycete diversity from a subset of three soils. Recommendations include the assessment of soil characteristics prior to selecting the optimal protocol for soil DNA extraction and purification.
Collapse
|
86
|
Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 2007; 74:188-99. [PMID: 18024682 DOI: 10.1128/aem.00327-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.
Collapse
|
87
|
DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 2007; 77:955-64. [DOI: 10.1007/s00253-007-1219-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
|
88
|
Sharma PK, Capalash N, Kaur J. An improved method for single step purification of metagenomic DNA. Mol Biotechnol 2007; 36:61-3. [PMID: 17827539 DOI: 10.1007/s12033-007-0015-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
An improved method for purification of intact metagenomic DNA from soil has been developed using Q-Sepharose, which purified the DNA from phenolic and humic acid contaminants in a single step. The entire procedure for purification took only 45 min. A total of 81% of DNA was recovered after purification and there was 84% reduction in humic acid contents. The purified DNA was readily digested with restriction enzymes and can be further used for molecular applications.
Collapse
|
89
|
Saikaly PE, Barlaz MA, de Los Reyes FL. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Appl Environ Microbiol 2007; 73:6557-65. [PMID: 17720820 PMCID: PMC2075066 DOI: 10.1128/aem.00779-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R(2) > 0.98) over a 7-log-unit dynamic range down to 10(1) B. atrophaeus cells or spores. Quantification of S. marcescens (R(2) > 0.98) was linear over a 6-log-unit dynamic range down to 10(2) S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can be used for monitoring the fate and transport of the BW surrogates B. atrophaeus and S. marcescens in building debris and leachate.
Collapse
Affiliation(s)
- Pascal E Saikaly
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
90
|
Gorra R, Coci M, Ambrosoli R, Laanbroek H. Effects of substratum on the diversity and stability of ammonia-oxidizing communities in a constructed wetland used for wastewater treatment. J Appl Microbiol 2007; 103:1442-52. [DOI: 10.1111/j.1365-2672.2007.03357.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS. Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 2007; 74:918-25. [PMID: 17115207 DOI: 10.1007/s00253-006-0704-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 09/27/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
The differences on DNA yield and purity of three different DNA extraction protocols were compared with regard to the use for PCR and other molecular analyses. Total DNA was extracted from compost by the three protocols, and then was purified by spin-bind cartridges after being precipitated by PEG8000. The detection performed on a nucleic acid and protein analyzer showed that all three methods produced high DNA yields. The agarose gel electrophoresis showed that the fragments of crude and purified DNA had a length of about 23 kb. A eubacterial 16S rRNA gene-targeted primer pair was used for PCR amplification, and full length 16S rDNAs were amplified from all the purified DNA samples. After being digested by restriction endonucleases, the restriction map of amplified rDNA showed identical genetic diversity. The products of PCR using primer pair GC341F and 907R were also used for denaturing gradient gel electrophoresis analysis. The results indicated that high-quality DNA was extracted from compost by the three protocols, and each of the protocols is adapted to extract microbial genome DNA from compost expediently and cheaply.
Collapse
Affiliation(s)
- Zh H Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, China.
| | | | | | | | | |
Collapse
|
92
|
Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F, Asano K. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 2007; 73:2360-3. [PMID: 17293514 PMCID: PMC1855676 DOI: 10.1128/aem.01715-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic analysis of bacteria preserved within an ice wedge from the Fox permafrost tunnel was undertaken by cultivation and molecular techniques. The radiocarbon age of the ice wedge was determined. Our results suggest that the bacteria in the ice wedge adapted to the frozen conditions have survived for 25,000 years.
Collapse
Affiliation(s)
- Taiki Katayama
- Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK. Microbial community succession in an unvegetated, recently deglaciated soil. MICROBIAL ECOLOGY 2007; 53:110-22. [PMID: 17186150 DOI: 10.1007/s00248-006-9144-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 05/04/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
Primary succession is a fundamental process in macroecosystems; however, if and how soil development influences microbial community structure is poorly understood. Thus, we investigated changes in the bacterial community along a chronosequence of three unvegetated, early successional soils ( approximately 20-year age gradient) from a receding glacier in southeastern Peru using molecular phylogenetic techniques. We found that evenness, phylogenetic diversity, and the number of phylotypes were lowest in the youngest soils, increased in the intermediate aged soils, and plateaued in the oldest soils. This increase in diversity was commensurate with an increase in the number of sequences related to common soil bacteria in the older soils, including members of the divisions Acidobacteria, Bacteroidetes, and Verrucomicrobia. Sequences related to the Comamonadaceae clade of the Betaproteobacteria were dominant in the youngest soil, decreased in abundance in the intermediate age soil, and were not detected in the oldest soil. These sequences are closely related to culturable heterotrophs from rock and ice environments, suggesting that they originated from organisms living within or below the glacier. Sequences related to a variety of nitrogen (N)-fixing clades within the Cyanobacteria were abundant along the chronosequence, comprising 6-40% of phylotypes along the age gradient. Although there was no obvious change in the overall abundance of cyanobacterial sequences along the chronosequence, there was a dramatic shift in the abundance of specific cyanobacterial phylotypes, with the intermediate aged soils containing the greatest diversity of these sequences. Most soil biogeochemical characteristics showed little change along this approximately 20-year soil age gradient; however, soil N pools significantly increased with soil age, perhaps as a result of the activity of the N-fixing Cyanobacteria. Our results suggest that, like macrobial communities, soil microbial communities are structured by substrate age, and that they, too, undergo predictable changes through time.
Collapse
Affiliation(s)
- Diana R Nemergut
- INSTAAR, An Earth and Environmental Systems Institute, University of Colorado, Boulder, CO 80309, USA. nemergut@colorado
| | | | | | | | | | | | | |
Collapse
|
94
|
Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 2007; 9:26-38. [PMID: 17227409 DOI: 10.1111/j.1462-2920.2006.01103.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.
Collapse
Affiliation(s)
- Guus Roeselers
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
95
|
Su ZC, Zhang HW, Li XY, Zhang Q, Zhang CG. Toxic effects of acetochlor, methamidophos and their combination on nifH gene in soil. J Environ Sci (China) 2007; 19:864-873. [PMID: 17966876 DOI: 10.1016/s1001-0742(07)60144-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.
Collapse
Affiliation(s)
- Zhen-Cheng Su
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | | | | | | | | |
Collapse
|
96
|
Lämmle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 2007; 127:575-92. [PMID: 16963141 DOI: 10.1016/j.jbiotec.2006.07.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/05/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
Metagenome cloning has become a powerful tool to exploit the biocatalytic potential of microbial communities for the discovery of novel biocatalysts. In a novel variant of direct expression cloning, metagenomic DNA was isolated from compost by a modified direct lysis method, purified by size exclusion chromatography and cloned into an expression vector allowing bidirectional transcription. Transformation of Escherichia coli DH5alpha resulted in a metagenomic expression library with an average insert size of 3.2 kb. To estimate the functional diversity of the constructed library, it was screened by different approaches based on functional heterologous expression. A large number of active clones were identified, including lipolytic enzymes, amylases, phosphatases and dioxygenases. Molecular analysis of one important class of industrial biocatalysts, the lipolytic enzymes, confirmed the novelty and dissimilarity of all recovered genes, which exhibited only limited similarity to known enzymes. Equally, the novelty of another three genes encoding phosphatase or dioxygenase activity, respectively, was shown. These results demonstrate the suitability of this direct cloning approach, which comprised a dual-orientation expression vector and a simple one-step DNA purification method, for the efficient discovery of numerous active novel clones. By this means it provides an efficient way for the rapid generation of large libraries of hitherto unknown enzyme candidates which could be screened for different specific target reactions.
Collapse
Affiliation(s)
- Katrin Lämmle
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Institute for Interfacial Engineering, University of Stuttgart, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Norris TB, Castenholz RW. Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol 2006; 57:470-83. [PMID: 16907760 DOI: 10.1111/j.1574-6941.2006.00134.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Molecular and culture based methods were used to survey endolithic, photosynthetic communities from hot spring-formed travertine rocks of various ages, ranging from<10 to greater than 300,000 years. Much of this travertine contained a 1-3-mm-thick greenish band composed mainly of cyanobacteria 1-5 mm below the rock surface. The travertine rocks experienced desiccation in summer and freezing in winter. A total of 83 environmental 16S rRNA gene sequences were obtained from clone libraries and denaturing gradient gel electrophoresis. Small subunit rRNA gene sequences and cell morphology were determined for 36 cyanobacterial culture isolates from these samples. Phylogenetic analysis showed that the 16S rRNA gene sequences fell into 15 distinct clusters, including several novel lineages of cyanobacteria.
Collapse
Affiliation(s)
- Tracy B Norris
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
98
|
Oline DK, Schmidt SK, Grant MC. Biogeography and landscape-scale diversity of the dominant Crenarchaeota of soil. MICROBIAL ECOLOGY 2006; 52:480-90. [PMID: 16909343 DOI: 10.1007/s00248-006-9101-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 04/22/2005] [Indexed: 05/11/2023]
Abstract
We surveyed the diversity of soil Archaea across a large scale elevational gradient of ecosystem types, from foothills forest to alpine tundra in the Front Range of the Rocky Mountains. We used a dilution technique to sequence the single most abundant archaeal 16S rDNA sequence in each of the 40 soil cores distributed across the gradient to compare our results to those of typical 16S clone library studies. We found a greater diversity of sequences than has typically been found in clone library studies from a single site or core, identifying sequences both from the Terrestrial Group and the FFSB Group at several sites. We did not observe any significant environmental correlates with the dominant sequence type, nor was there any relationship between the spatial distance between samples and the phylogenetic similarity of the dominant sequence types. Despite using a very different methodology, our collective results are in remarkably good agreement with other studies of soil Crenarchaeota in terms of the diversity and relative abundance of sequence types identified. We are able to identify two instances of very tightly clustered sequences which we suggest are the results of global selective sweeps-one closely related to SCA1145, an abundant globally distributed group within the Terrestrial Group of Crenarchaeota, and another nested within the more basal FFSB group of sequences. We replicated our sequence results at two levels: first, by repeating the dilution and PCR processes from the same soil core DNA extraction, and second, by performing a replicate DNA extraction from the same homogenized soil core sample. Pairs of sequences produced by the dilution replicates were significantly more similar than the pairs of sequences produced by the extraction replicates, suggesting that soil Crenarchaeota exists in highly localized and discrete clonal populations.
Collapse
Affiliation(s)
- David K Oline
- Biology Department, Southern Oregon University, 1250 Siskiyou Blvd., Ashland, OR 97520, USA.
| | | | | |
Collapse
|
99
|
Frey JC, Angert ER, Pell AN. Assessment of biases associated with profiling simple, model communities using terminal-restriction fragment length polymorphism-based analyses. J Microbiol Methods 2006; 67:9-19. [PMID: 16563536 DOI: 10.1016/j.mimet.2006.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/13/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Community profiles based on terminal-restriction fragment length polymorphism (T-RFLP) analyses of amplified ribosomal RNA genes are used to monitor changes in microbial community structure and are sometimes employed for semi-quantitative estimates of species richness and abundance in environmental samples. To assess the accuracy of T-RFLP community profiles representing the relative abundance of bacteria in a sample, five species of ruminal bacteria were used to construct simple "communities". Template DNA for PCR amplification was generated either by mixing equal quantities of genomic DNA from pure cultures or by mixing equal numbers of cells prior to DNA extraction. Pairwise mixtures of Fibrobacter succinogenes S85 with Ruminococcus albus 8, Ruminococcus flavefaciens FD-1, Butyrivibrio fibrisolvens 49 and Streptococcus bovis JB1 were created and a 5-member community was constructed. With genomic DNA mixes, relative abundance calculations based on T-RFLP patterns did not reflect input ratios. These discrepancies could not be accounted for by differences in genome size and rRNA operon copy number. In cell mixing experiments, easily lysed cells were overrepresented. To determine if a numerical correction factor could be used to compensate for observed discrepancies, we attempted to quantify biases attributed to DNA extraction and PCR amplification. Biases attributable to these factors led to deviations from expected PCR product ratios by 6% to 38%. We found that interactions were so complex that a suitable factor could not be derived. The unsystematic dependence of T-RFLP peak ratios on variability of DNA extraction and PCR amplification prevents accurate quantification of the relative abundance of microorganisms designed to represent simplified natural populations.
Collapse
Affiliation(s)
- Julie C Frey
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
100
|
Whitehouse CA, Hottel HE. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol Cell Probes 2006; 21:92-6. [PMID: 17011748 DOI: 10.1016/j.mcp.2006.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/27/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Francisella tularensis is the etiologic agent of the zoonotic disease tularemia and is thought to be maintained in the environment principally by various terrestrial and aquatic vertebrate animals. The organism is known to persist in water or mud for long periods of time and Francisella-specific DNA has been identified from water and soil. To gain a better understanding of the ecology and epidemiology of F. tularensis, it will be important to further explore its distribution in the environment. Therefore, methods must be established to efficiently extract Francisella-specific DNA from the soil and be able to eliminate potential PCR inhibitors. Thus, we evaluated five commercial DNA extraction kits for their ability to recover F. tularensis-specific DNA from soil samples and eliminate potential PCR inhibitors. The kits evaluated included the Puregene DNA purification kit, QIAamp Stool Mini kit, Epicentre Biotech SoilMaster DNA extraction kit, and the UltraClean and PowerMax soil DNA isolation kits from MoBio. Soil samples were spiked with gamma-irradiated F. tularensis SHU-4 strain (corresponding to a range from 10 to 10(5)CFU). Spiked samples were extracted with each kit and evaluated using a F. tularensis-specific real-time PCR assay and an internal positive control assay that measures the presence of potential PCR inhibitors. DNA extraction using the UltraClean and PowerMax kits resulted in the most consistently positive results at the lowest limit of detection (20 and 100CFU/g soil, respectively) for all soil types tested, suggesting that these kits can provide the most sensitive methods for extracting F. tularensis from environmental soil samples. Processing time and cost were also evaluated.
Collapse
Affiliation(s)
- Chris A Whitehouse
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | | |
Collapse
|