51
|
Wang X, Zhu X, Tooley P, Zhang X. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. PLANT MOLECULAR BIOLOGY 2013; 81:379-400. [PMID: 23334855 DOI: 10.1007/s11103-013-0007-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/01/2013] [Indexed: 05/10/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant cell wall glycoproteins that can inhibit fungal endopolygalacturonases (PGs). The PGIPs directly reduce the aggressive potential of PGs. Here, we isolated and functionally characterized three members of the pepper (Capsicum annuum) PGIP gene family. Each was up-regulated at a different time following stimulation of the pepper leaves by Phytophthora capcisi and abiotic stresses including salicylic acid, methyl jasmonate, abscisic acid, wounding and cold treatment. Purified recombinant proteins individually inhibited activity of PGs produced by Alternaria alternata and Colletotrichum nicotianae, respectively, and virus-induced gene silencing in pepper conferred enhanced susceptibility to P. capsici. Because three PGIP genes acted similarily in conferring resistance to infection by P. capsici, and because individually purified proteins showed consistent inhibition against PG activity of both pathogens, CaPGIP1 was selected for manipulating transgenic tobacco. The crude proteins from transgenic tobacco exhibited distinct enhanced resistance to PG activity of both fungi. Moreover, the transgenic tobacco showed effective resistance to infection and a significant reduction in the number of infection sites, number of lesions and average size of lesions in the leaves. All results suggest that CaPGIPs may be involved in plant defense response and play an important role in a plant's resistance to disease.
Collapse
Affiliation(s)
- Xiuju Wang
- Department of Plant Pathology, Shandong Agricultural University, No. 61, Daizong street, Tai'an, 271018, Shandong, China
| | | | | | | |
Collapse
|
52
|
Mehl HL, Jaime R, Callicott KA, Probst C, Garber NP, Ortega-Beltran A, Grubisha LC, Cotty PJ. Aspergillus flavusdiversity on crops and in the environment can be exploited to reduce aflatoxin exposure and improve health. Ann N Y Acad Sci 2012; 1273:7-17. [DOI: 10.1111/j.1749-6632.2012.06800.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
53
|
Ben-Daniel BH, Bar-Zvi D, Tsror Lahkim L. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. MOLECULAR PLANT PATHOLOGY 2012; 13:187-97. [PMID: 21848609 PMCID: PMC6638648 DOI: 10.1111/j.1364-3703.2011.00740.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colletotrichum coccodes (Wallr.) S. Hughes, the causal agent of black dot on potato and anthracnose on tomato, reduces yield and crop quality. We explored the role of secreted pectate lyase (PL), a cell wall-degrading enzyme, in the aggressiveness of C. coccodes. In vitro-cultivated highly aggressive isolates secreted immunologically detectable PL levels 6 h after transfer to secondary medium versus 12 h for mildly aggressive isolates, suggesting that secreted PL is a virulence factor. The gene encoding PL, CcpelA, was cloned and used for the genetic manipulation of highly (US-41 and Si-72) and mildly (Si-60) aggressive isolates. CcpelA gene-disrupted mutants showed reduced aggressiveness towards tomato fruits and impaired PL secretion and extracellular activity. Conversely, overexpression of CcpelA in the Si-60 isolate increased its aggressiveness and PL secretion. Comparison of CcpelA cloned from isolates US-41 and Si-60 revealed that both encode identical proteins, but differ in their promoters. Bioinformatics analysis for cis-acting elements suggested that the promoters of the US-41 and Si-60 isolates contain one and no AreA-binding site (GATA box), respectively. AreA has been suggested to be involved in fungal aggressiveness; therefore, CcpelA may be a key virulence factor in C. coccodes pathogenicity, and the differences in isolate aggressiveness might result from promoter activity. Quantitative reverse transcriptase-polymerase chain reaction analyses confirmed the higher level of CcpelA transcript in isolate US-41 versus Si-60.
Collapse
Affiliation(s)
- Bat-Hen Ben-Daniel
- Department of Plant Pathology, Agricultural Research Organization, Gilat Research Center, MP Negev 85280, Israel
| | | | | |
Collapse
|
54
|
Alexandersson E, Becker JV, Jacobson D, Nguema-Ona E, Steyn C, Denby KJ, Vivier MA. Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res Notes 2011; 4:493. [PMID: 22078230 PMCID: PMC3339426 DOI: 10.1186/1756-0500-4-493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs.
Collapse
Affiliation(s)
- Erik Alexandersson
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa.
| | | | | | | | | | | | | |
Collapse
|
55
|
Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D'Ovidio R. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1012-9. [PMID: 21585271 DOI: 10.1094/mpmi-01-11-0021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.
Collapse
Affiliation(s)
- Chiara Volpi
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
56
|
Pereira de Souza CC, Moreira Prado G, da Conceição Freitas RC, Silva Santos Guimarães P, Calegário de Oliveira L, Eustáquio Alvim Brito-Melo G, de Figueiredo Conte Vanzela AP. Analysis of Aspergillus nidulans germination, initial growth and carbon source response by flow cytometry. J Basic Microbiol 2011; 51:459-66. [PMID: 21656795 DOI: 10.1002/jobm.201000242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 01/19/2011] [Indexed: 11/09/2022]
Abstract
In this work, flow cytometry was utilized to analyze the initial vegetative growth of the model fungus Aspergillus nidulans as measured by the number of events increasing size and internal complexity. It was established the ideal parameters for the analysis of conidial populations, whose growth was followed after germination in glucose or sucrose. While glucose in culture increased growth several magnitudes in comparison to control cultures in saline, growth was less intense in cultures amended with sucrose. Results indicated that flow cytometry could be a useful tool to study fungal germination and initial growth since it allowed rapid identification of different populations by means of their increasing in size and granularity with good reproducibility and without the need for direct observation and count of individual cells.
Collapse
|
57
|
Sprockett DD, Piontkivska H, Blackwood CB. Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens. Gene 2011; 479:29-36. [DOI: 10.1016/j.gene.2011.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/06/2011] [Accepted: 02/13/2011] [Indexed: 12/21/2022]
|
58
|
Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Cervone F, Bellincampi D. Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:432-40. [PMID: 21171891 DOI: 10.1094/mpmi-07-10-0157] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability of bacterial or fungal necrotrophs to produce enzymes capable of degrading pectin is often related to a successful initiation of the infective process. Pectin is synthesized in a highly methylesterified form and is subsequently de-esterified in muro by pectin methylesterase. De-esterification makes pectin more susceptible to the degradation by pectic enzymes such as endopolygalacturonases (endoPG) and pectate lyases secreted by necrotrophic pathogens during the first stages of infection. We show that, upon infection, Pectobacterium carotovorum and Botrytis cinerea induce in Arabidopsis a rapid expression of AtPME3 that acts as a susceptibility factor and is required for the initial colonization of the host tissue.
Collapse
Affiliation(s)
- Alessandro Raiola
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro (PD) Italy
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Romão A, Spósito M, Andreote F, Azevedo J, Araújo W. Enzymatic differences between the endophyte Guignardia mangiferae (Botryosphaeriaceae) and the citrus pathogen G. citricarpa. GENETICS AND MOLECULAR RESEARCH 2011; 10:243-52. [DOI: 10.4238/vol10-1gmr952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
60
|
Jurick WM, Vico I, Gaskins VL, Garrett WM, Whitaker BD, Janisiewicz WJ, Conway WS. Purification and biochemical characterization of polygalacturonase produced by penicillium expansum during postharvest decay of 'Anjou' pear. PHYTOPATHOLOGY 2010; 100:42-48. [PMID: 19968548 DOI: 10.1094/phyto-100-1-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A polygalacturonase (PG) was extracted and purified from decayed tissue of 'Anjou' pear fruit inoculated with Penicillium expansum. Ammonium sulfate precipitation, gel filtration, and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak corresponding to PG activity. PG enzyme activity from healthy and wounded pear tissue was undetectable, which supports the claim that the purified PG is of fungal origin. The purified enzyme had a molecular mass of 41 kDa and a pI of 7.8. Activity of the PG was not associated with a glycosylated protein. The enzyme was active over a broad pH range from 3 to 6, with optimal activity at 4.5 in sodium citrate and sodium acetate buffers. The optimal temperature for activity was 37 degrees C but the enzyme was also active at 0, 5, 10, 20, and 50 degrees C. Thin-layer chromatographic analysis of PG hydrolysis products showed that the enzyme exhibits endo- and exo-activity. The purified enzyme macerated tissue in vitro causing approximately 30% reduction in mass of pear plugs compared with approximately 17% reduction for apple. Additionally, it produced 1.5-fold more soluble polyuronides on pear than apple tissue. This work shows for the first time the production of a PG by P. expansum during postharvest decay of pear fruit is different from the previously described PG produced in decayed apple fruit by the same pathogen.
Collapse
Affiliation(s)
- Wayne M Jurick
- Food Quality Laboratory, US Department of Agriculture-Agricultural Research Service, BARC-West, Beltsville, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Moore GG, Singh R, Horn BW, Carbone I. Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus. Mol Ecol 2009; 18:4870-87. [PMID: 19895419 DOI: 10.1111/j.1365-294x.2009.04414.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aflatoxins produced by Aspergillus flavus are potent carcinogens that contaminate agricultural crops. Recent efforts to reduce aflatoxin concentrations in crops have focused on biological control using nonaflatoxigenic A. flavus strains AF36 (=NRRL 18543) and NRRL 21882 (the active component of afla-guard. However, the evolutionary potential of these strains to remain nonaflatoxigenic in nature is unknown. To elucidate the underlying population processes that influence aflatoxigenicity, we examined patterns of linkage disequilibrium (LD) spanning 21 regions in the aflatoxin gene cluster of A. flavus. We show that recombination events are unevenly distributed across the cluster in A. flavus. Six distinct LD blocks separate late pathway genes aflE, aflM, aflN, aflG, aflL, aflI and aflO, and there is no discernable evidence of recombination among early pathway genes aflA, aflB, aflC, aflD, aflR and aflS. The discordance in phylogenies inferred for the aflW/aflX intergenic region and two noncluster regions, tryptophan synthase and acetamidase, is indicative of trans-species evolution in the cluster. Additionally, polymorphisms in aflW/aflX divide A. flavus strains into two distinct clades, each harbouring only one of the two approved biocontrol strains. The clade with AF36 includes both aflatoxigenic and nonaflatoxigenic strains, whereas the clade with NRRL 21882 comprises only nonaflatoxigenic strains and includes all strains of A. flavus missing the entire gene cluster or with partial gene clusters. Our detection of LD blocks in partial clusters indicates that recombination may have played an important role in cluster disassembly, and multilocus coalescent analyses of cluster and noncluster regions indicate lineage-specific gene loss in A. flavus. These results have important implications in assessing the stability of biocontrol strains in nature.
Collapse
Affiliation(s)
- Geromy G Moore
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
62
|
Sun WX, Jia YJ, Feng BZ, O'Neill NR, Zhu XP, Xie BY, Zhang XG. Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 2009; 47:535-44. [PMID: 19422018 DOI: 10.1002/dvg.20530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phytophthora capsici causes serious diseases in numerous crop plants. Polygalacturonases (PGs) are cell wall-degrading enzymes that play an important role in pathogenesis in straminopilous pathogens. To understand PGs as they relate to the virulence of P. capsici, Pcipg2 was identified from a genomic library of a highly virulent P. capsici strain. Pcipg2 was strongly expressed during symptom development after the inoculation of pepper leaves with P. capsici. The wild protein (PCIPGII) was obtained from the expression of pcipg2 and found that increasing activity of PGs in PCIPGII-treated pepper leaves was consistent with increasing symptom development. Asp residues in active sites within pcipg2 affected PCIPGII activity or its virulence on pepper leaves. Results show that pcipg2 is an important gene among pcipg genes, and illustrate the benefit of analyzing mechanisms of pathogenicity during the period of host/parasite interaction.
Collapse
Affiliation(s)
- Wen Xiu Sun
- Department of Plant Pathology, Shandong Agricultural University, Tai'an 271018, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Chen ZY, Brown RL, Cary JW, Damann KE, Cleveland TE. Characterization of anAspergillus flavusalkaline protease and its role in the infection of maize kernels. TOXIN REV 2009. [DOI: 10.1080/15569540903089221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
64
|
Probst C, Schulthess F, Cotty PJ. Impact of Aspergillus section Flavi community structure on the development of lethal levels of aflatoxins in Kenyan maize (Zea mays). J Appl Microbiol 2009; 108:600-10. [PMID: 19674186 DOI: 10.1111/j.1365-2672.2009.04458.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the potential role of fungal community structure in predisposing Kenyan maize to severe aflatoxin contamination by contrasting aflatoxin-producing fungi resident in the region with repeated outbreaks of lethal aflatoxicosis to those in regions without a history of aflatoxicosis. METHODS AND RESULTS Fungi belonging to Aspergillus section Flavi were isolated from maize samples from three Kenyan provinces between 2004 and 2006. Frequencies of identified strains and aflatoxin-producing abilities were assessed, and the data were analysed by statistical means. Most aflatoxin-producing fungi belonged to Aspergillus flavus. The two major morphotypes of A. flavus varied greatly between provinces, with the S strain dominant in both soil and maize within aflatoxicosis outbreak regions and the L strain dominant in nonoutbreak regions. CONCLUSIONS Aspergillus community structure is an important factor in the development of aflatoxins in maize in Kenya and, as such, is a major contributor to the development of aflatoxicosis in the Eastern Province. SIGNIFICANCE AND IMPACT OF THE STUDY Since 1982, deaths caused by aflatoxin-contaminated maize have repeatedly occurred in the Eastern Province of Kenya. The current study characterized an unusual fungal community structure associated with the lethal contamination events. The results will be helpful in developing aflatoxin management practices to prevent future outbreaks in Kenya.
Collapse
Affiliation(s)
- C Probst
- Department of Plant Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
65
|
Jurick WM, Vico I, McEvoy JL, Whitaker BD, Janisiewicz W, Conway WS. Isolation, purification, and characterization of a polygalacturonase produced in Penicillium solitum-decayed 'Golden Delicious' apple fruit. PHYTOPATHOLOGY 2009; 99:636-641. [PMID: 19453221 DOI: 10.1094/phyto-99-6-0636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polygalacturonase (PG) was extracted and purified from decayed 'Golden Delicious' apple fruit inoculated with Penicillium solitum. Ammonium sulfate, gel filtration, and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak corresponding to PG activity. The purified PG most likely originates from the fungus because PG activity from healthy and wounded apple tissue was undetectable. Analysis of cation exchange-purified material using sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single 50-kDa band. The enzyme was active over a broad pH range (3 to 7), with optimal activity between pH 4 and 5. PG was highly active at 20 and 37 degrees C but was also detectable at 2, 50, and 75 degrees C. Divalent cations affected PG enzyme activity; Mg and Fe increased, whereas Ca and Mn reduced activity in vitro. Thin-layer chromatographic separation of hydrolysis products and data from a PG plate activity assay based on staining with ruthenium red showed that the enzyme exhibits both exo and endo activity. Purified PG incubated with intact apple fruit tissue in vitro caused a 30% reduction in mass after 48 h, suggesting a role in P. solitum-mediated decay of apple fruit.
Collapse
Affiliation(s)
- Wayne M Jurick
- Food Quality Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), BARC-West, Beltsville, MD, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Liu Q, Peever TL, Xiao CL. Population structure of Potebniamyces pyri in the U.S. Pacific Northwest and evidence of outcrossing inferred with sequence-characterized amplified region markers. PHYTOPATHOLOGY 2009; 99:532-539. [PMID: 19351249 DOI: 10.1094/phyto-99-5-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Potebniamyces pyri is the cause of Phacidiopycnis rot of d'Anjou pear, which is grown primarily in Washington and Oregon. To estimate the population structure of P. pyri, 146 single-spore isolates were sampled from five major pear-production areas and scored for variation at eight sequence-characterized amplified region (SCAR) loci. Significant genetic differentiation was detected among five subpopulations and a total of 54 multilocus genotypes were identified, with significant genotypic diversity in each subpopulation. No genotype was shared among more than three subpopulations. To estimate the relationship between phenotype and multilocus SCAR genotype, four to five representative isolates of each dominant SCAR genotype in each subpopulation were assayed for growth rate on oatmeal agar and virulence on d'Anjou pear fruit. Significant differences in daily growth rates and virulence were detected among genotypes; however, genotype was not predictive of virulence. To assess the mating system of the pathogen, 10 ascospores were sampled from each of 20 apothecia from a commercial orchard and scored for five SCAR markers. Segregation of alleles at one or more SCAR loci was detected among 18 of 20 ascospore progeny sets, indicating that P. pyri is likely a heterothallic fungus with a predominantly outcrossing mating system.
Collapse
Affiliation(s)
- Q Liu
- Department of Plant Pathology, Washington State University, Tree Fruit Research and Extension Center, Wenatchee, WA 98801, USA
| | | | | |
Collapse
|
67
|
Wang X, Li Q, Niu X, Chen H, Xu L, Qi C. Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2613-20. [PMID: 19436047 PMCID: PMC2692008 DOI: 10.1093/jxb/erp104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1-GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca(2+) ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- The State Key Laboratory of Crop Genetics & Germplasm enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Academy of Jiangsu Agricultural Sciences, Nanjing 210014, China
- To whom correspondence should be addressed. E-mail: ,
| | - Qian Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Niu
- The State Key Laboratory of Crop Genetics & Germplasm enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Langlai Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cunkou Qi
- Academy of Jiangsu Agricultural Sciences, Nanjing 210014, China
- To whom correspondence should be addressed. E-mail: ,
| |
Collapse
|
68
|
Kikot GE, Hours RA, Alconada TM. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum
: a review. J Basic Microbiol 2008; 49:231-41. [DOI: 10.1002/jobm.200800231] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
69
|
Di C, Zhang M, Xu S, Cheng T, An L. Role of Poly-Galacturonase Inhibiting Protein in Plant Defense. Crit Rev Microbiol 2008; 32:91-100. [PMID: 16809233 DOI: 10.1080/10408410600709834] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins believed to play an important role in the defense against plant pathogen fungals. PGIPs are glycoproteins located in plant cell wall which reduce the hydrolytic activity of polygalacturonases (PGs), limit the growth of plant pathogens, and also elicit defense responses in plant. Furthermore, PGIPs belong to the super family of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. Many of the studies show the PGIP properties, molecular characteristics, and PGIP gene expression induced by some elicitors. Some of the studies review individual PGIP gene expression in different signal transduction pathways. This article summarizes the properties, different signal transduction mechanisms, detecting methods, transgenic plants, and function of PGIP. It also presents PGIP gene expression in different stages of maturity, tissues, and varieties. The review especially reports the particular PGIP gene expression induced by different biotic and abiotic stresses, offers some questions, and prospects the future study, which are needed in order to develop efficient strategies for disease-resistant plants. They may be useful for genetic engineering to obtain transgenic plants with increased tolerance to fungal infection, which decrease the use of insecticide.
Collapse
Affiliation(s)
- Cuixia Di
- State Key Laboratory of Arid Agroecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | |
Collapse
|
70
|
Cleveland TE, Yu J, Bhatnagar D, Chen Z, Brown RL, Chang P, Cary JW. Progress in Elucidating the Molecular Basis of the Host Plant—AspergillusFlavusInteraction, a Basis for Devising Strategies to Reduce Aflatoxin Contamination in Crops. ACTA ACUST UNITED AC 2008. [DOI: 10.1081/txr-200027892] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
71
|
Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. PLANTA 2008; 228:241-53. [PMID: 18431596 DOI: 10.1007/s00425-008-0733-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/31/2008] [Indexed: 05/04/2023]
Abstract
Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Hegedus DD, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer SR. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. PLANTA 2008; 228:241-253. [PMID: 18431596 DOI: 10.1007/s00425-008-0733-731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Most plants encode a limited set of polygalacturonase inhibitor (PGIP) genes that may be involved in aspects of plant development, but more importantly in the inactivation of polygalacturonases (PG) secreted by pathogens. Previously, we characterized two Brassica napus PGIP genes, BnPgip1 and BnPgip2, which were differentially expressed in response to pathogen infection and wounding. Here we report that the B. napus genome encodes a set of at least 16 PGIP genes that are similar to BnPgip1 or BnPgip2. This is the largest Pgip gene family reported to date. Comparison of the BnPGIPs revealed several sites within the xxLxLxx region of leucine rich repeats that form beta-sheets along the interacting face of the PGIP that are hypervariable and represent good candidates for generating PGIP diversity. Characterization of the regulatory regions and RT-PCR studies with gene-specific primers revealed that individual genes were differentially responsive to pathogen infection, mechanical wounding and signaling molecules. Many of the BnPgip genes responded to infection by the necrotic pathogen, Sclerotinia sclerotiorum; however, these genes were also induced either by jasmonic acid, wounding and salicylic acid or some combination thereof. The large number of PGIPs and the differential manner in which they are regulated likely ensures that B. napus can respond to attack from a broad spectrum of pathogens and pests.
Collapse
Affiliation(s)
- Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0018-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Appl Microbiol Biotechnol 2007; 77:497-504. [DOI: 10.1007/s00253-007-1201-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
|
75
|
Katoh H, Nalumpang S, Yamamoto H, Akimitsu K. Overexpression of citrus polygalacturonase-inhibiting protein in citrus black rot pathogen Alternaria citri. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:527-35. [PMID: 17223223 DOI: 10.1016/j.jplph.2006.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 05/13/2023]
Abstract
The rough lemon (Citrus jambhiri) gene encoding polygalacturonase-inhibiting protein (RlemPGIPA) was overexpressed in the pathogenic fungus Alternaria citri. The overexpression mutant AcOPI6 retained the ability to utilize pectin as a sole carbon source, and the overexpression of polygalacturonase-inhibiting protein did not have any effect on the growth of AcOPI6 in potato dextrose and pectin medium. The pathogenicity of AcOPI6 to cause a black rot symptom in citrus fruits was also unchanged. Polygalacturonase-inhibiting protein was secreted together with endopolygalacturonase into culture filtrates of AcOPI6, and oligogalacturonides were digested from polygalacturonic acid by both proteins in the culture filtrates. The reaction mixture containing oligogalacturonides possessed activity for induction of defense-related gene, RlemLOX, in rough lemon leaves.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Laboratory of Plant Pathology, United Graduate School and Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795 Japan
| | | | | | | |
Collapse
|
76
|
van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BPHJ. Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 2007; 31:239-77. [PMID: 17326816 DOI: 10.1111/j.1574-6976.2007.00065.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is common knowledge that pathogenic viruses can change hosts, with avian influenza, the HIV, and the causal agent of variant Creutzfeldt-Jacob encephalitis as well-known examples. Less well known, however, is that host jumps also occur with more complex pathogenic microorganisms such as bacteria and fungi. In extreme cases, these host jumps even cross kingdom of life barriers. A number of requirements need to be met to enable a microorganism to cross such kingdom barriers. Potential cross-kingdom pathogenic microorganisms must be able to come into close and frequent contact with potential hosts, and must be able to overcome or evade host defences. Reproduction on, in, or near the new host will ensure the transmission or release of successful genotypes. An unexpectedly high number of cross-kingdom host shifts of bacterial and fungal pathogens are described in the literature. Interestingly, the molecular mechanisms underlying these shifts show commonalities. The evolution of pathogenicity towards novel hosts may be based on traits that were originally developed to ensure survival in the microorganism's original habitat, including former hosts.
Collapse
Affiliation(s)
- Peter van Baarlen
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
77
|
Qin G, Tian S, Chan Z, Li B. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Mol Cell Proteomics 2006; 6:425-38. [PMID: 17194899 DOI: 10.1074/mcp.m600179-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
78
|
Joubert DA, Slaughter AR, Kemp G, Becker JVW, Krooshof GH, Bergmann C, Benen J, Pretorius IS, Vivier MA. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases. Transgenic Res 2006; 15:687-702. [PMID: 17072564 DOI: 10.1007/s11248-006-9019-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGIP-encoding gene from Vitis vinifera (Vvpgip1) was isolated and characterised. PGIP purified from grapevine was shown to inhibit crude polygalacturonase extracts from Botrytis cinerea, but this inhibitory activity has not yet been linked conclusively to the activity of the Vvpgip1 gene product. Here we use a transgenic over-expression approach to show that the PGIP encoded by the Vvpgip1 gene is active against PGs of B. cinerea and that over-expression of this gene in transgenic tobacco confers a reduced susceptibility to infection by this pathogen. A calculated reduction in disease susceptibility of 47-69% was observed for a homogeneous group of transgenic lines that was statistically clearly separated from untransformed control plants following infection with Botrytis over a 15-day-period. VvPGIP1 was subsequently purified from transgenic tobacco and used to study the specific inhibition profile of individual PGs from Botrytis and Aspergillus. The heterologously expressed and purified VvPGIP1 selectively inhibited PGs from both A. niger and B. cinerea, including BcPG1, a PG from B. cinerea that has previously been shown to be essential for virulence and symptom development. Altogether our data confirm the antifungal nature of the VvPGIP1, and the in vitro inhibition data suggest at least in part, that the VvPGIP1 contributed to the observed reduction in disease symptoms by inhibiting the macerating action of certain Botrytis PGs in planta. The ability to correlate inhibition profiles to individual PGs provides a more comprehensive analysis of PGIPs as antifungal genes with biotechnological potential, and adds to our understanding of the importance of PGIP:PG interactions during disease and symptom development in plants.
Collapse
Affiliation(s)
- Dirk A Joubert
- Department of Viticulture & Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:931-6. [PMID: 16903359 DOI: 10.1094/mpmi-19-0931] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis thaliana, PGIPs with comparable activity against BcPG1, an important pathogenicity factor of the necrotrophic fungus Botrytis cinerea, are encoded by two genes, AtPGIP1 and AtPGIP2. Both genes are induced by fungal infection through different signaling pathways. We show here that transgenic Arabidopsis plants expressing an antisense AtPGIP1 gene have reduced AtPGIP1 inhibitory activity and are more susceptible to B. cinerea infection. These results indicate that PGIP contributes to basal resistance to this pathogen and strongly support the vision that this protein plays a role in Arabidopsis innate immunity.
Collapse
Affiliation(s)
- Simone Ferrari
- Università degli Studi "La Sapienza", Dipartimento di Biologia Vegetale, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
80
|
Brodhagen M, Keller NP. Signalling pathways connecting mycotoxin production and sporulation. MOLECULAR PLANT PATHOLOGY 2006; 7:285-301. [PMID: 20507448 DOI: 10.1111/j.1364-3703.2006.00338.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SUMMARY Mycotoxin contamination of food and feed presents a serious food safety issue on a global scale, causing tremendous yield and economic losses. These toxins, produced largely by members of the genera Aspergillus and Fusarium, represent a subset of the impressive array of secondary metabolites produced by filamentous fungi. Some secondary metabolites are associated temporally and functionally with sporulation. In Aspergillus and Fusarium, sporulation and mycotoxin production are both regulated by G protein signalling pathways. G protein signalling pathways commonly regulate fungal development, stress response and expression of virulence traits. In addition, fungal development is influenced by external factors. Among these are lipids, and in particular, oxylipin signals, which may be derived from either the fungus or infected seeds. Regardless of origin, oxylipins have the potential to elicit profound changes in both sporulation and mycotoxin production in the fungus. Signal transduction via G protein signalling pathways represents one mechanism by which oxylipin signals might elicit these changes. Therefore, in this review we integrate discussion of oxylipin signals and of G protein signalling cascades as regulators of fungal development.
Collapse
Affiliation(s)
- Marion Brodhagen
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53706-1598, USA
| | | |
Collapse
|
81
|
Yu J, Cleveland TE, Nierman WC, Bennett JW. Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 2006; 22:194-202. [PMID: 16499411 DOI: 10.1016/s1130-1406(05)70043-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aspergillus flavus is an imperfect filamentous fungus that is an opportunistic pathogen causing invasive and non-invasive aspergillosis in humans, animals, and insects. It also causes allergic reactions in humans. A. flavus infects agricultural crops and stored grains and produces the most toxic and potent carcinogic metabolites such as aflatoxins and other mycotoxins. Breakthroughs in A. flavus genomics may lead to improvement in human health, food safety, and agricultural economy. The availability of A. flavus genomic data marks a new era in research for fungal biology, medical mycology, agricultural ecology, pathogenicity, mycotoxin biosynthesis, and evolution. The availability of whole genome microarrays has equipped scientists with a new powerful tool for studying gene expression under specific conditions. They can be used to identify genes responsible for mycotoxin biosynthesis and for fungal infection in humans, animals and plants. A. flavus genomics is expected to advance the development of therapeutic drugs and to provide information for devising strategies in controlling diseases of humans and other animals. Further, it will provide vital clues for engineering commercial crops resistant to fungal infection by incorporating antifungal genes that may prevent aflatoxin contamination of agricultural harvest.
Collapse
Affiliation(s)
- Jiujiang Yu
- USDA/ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA.
| | | | | | | |
Collapse
|
82
|
Di Matteo A, Bonivento D, Tsernoglou D, Federici L, Cervone F. Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view. PHYTOCHEMISTRY 2006; 67:528-33. [PMID: 16458942 DOI: 10.1016/j.phytochem.2005.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/16/2005] [Indexed: 05/06/2023]
Abstract
Polygalacturonase-inhibiting proteins are plant extracellular leucine-rich repeat proteins that specifically bind and inhibit fungal polygalacturonases. The interaction with PGIP limits the destructive potential of polygalacturonases and might trigger the plant defence responses induced by oligogalacturonides. A high degree of polymorphism is found both in PGs and PGIPs, accounting for the specificity of different plant inhibitors for PGs from different fungi. Here, we review the structural features and our current understanding of the PG-PGIP interaction.
Collapse
Affiliation(s)
- Adele Di Matteo
- Dipartimento di Biologia Vegetale, Universita' di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
83
|
Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F. Polygalacturonase inhibiting proteins: players in plant innate immunity? TRENDS IN PLANT SCIENCE 2006; 11:65-70. [PMID: 16406303 DOI: 10.1016/j.tplants.2005.12.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/16/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular leucine-rich repeat (LRR) proteins that recognize and inhibit fungal polygalacturonases (PGs). The PG-PGIP interaction favours the accumulation of elicitor-active oligogalacturonides and causes the activation of defence responses. Small gene families encode PGIP isoforms that differ in affinity and specificity for PGs secreted by different pathogens. The consensus motif within the LRR structure of PGIPs is the same as that of the extracellular receptors of the plant innate immune system. Structural and functional evidence suggest that PGIPs are versatile proteins involved in innate immunity and that they are capable of recognizing different surface motifs of functionally related but structurally variable PGs.
Collapse
Affiliation(s)
- Luca Federici
- Ce.S.I. Centro Studi sull'Invecchiamento and Dipartimento di Scienze Biomediche. Universita' di Chieti "G. D'Annunzio". Via dei Vestini 31, 66013 Chieti, Italy.
| | | | | | | | | |
Collapse
|
84
|
Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. MOLECULAR PLANT PATHOLOGY 2006; 7:1-16. [PMID: 20507424 DOI: 10.1111/j.1364-3703.2005.00316.x] [Citation(s) in RCA: 513] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED SUMMARY Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In addition, current tools for research and strategies to combat S. sclerotiorum are discussed. TAXONOMY Sclerotinia sclerotiorum (Lib.) de Bary: kingdom Fungi, phylum Ascomycota, class Discomycetes, order Helotiales, family Sclerotiniaceae, genus Sclerotinia. IDENTIFICATION Hyphae are hyaline, septate, branched and multinucleate. Mycelium may appear white to tan in culture and in planta. No asexual conidia are produced. Long-term survival is mediated through the sclerotium; a pigmented, multi-hyphal structure that can remain viable over long periods of time under unfavourable conditions for growth. Sclerotia can germinate to produce mycelia or apothecia depending on environmental conditions. Apothecia produce ascospores, which are the primary means of infection in most host plants. HOST RANGE S. sclerotiorum is capable of colonizing over 400 plant species found worldwide. The majority of these species are dicotyledonous, although a number of agriculturally significant monocotyledonous plants are also hosts. Disease symptoms: Leaves usually have water-soaked lesions that expand rapidly and move down the petiole into the stem. Infected stems of some species will first develop dark lesions whereas the initial indication in other hosts is the appearance of water-soaked stem lesions. Lesions usually develop into necrotic tissues that subsequently develop patches of fluffy white mycelium, often with sclerotia, which is the most obvious sign of plants infected with S. sclerotiorum. USEFUL WEBSITES http://www.whitemoldresearch.com; http://www.broad.mit.edu/annotation/fungi/sclerotinia_sclerotiorum.
Collapse
Affiliation(s)
- Melvin D Bolton
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
85
|
Morita K, Kimura S, Saito M, Shinoyama H, Usami T, Amemiya Y, Shishido M. Generation and characterization of reduced virulence Fusarium oxysporum f. sp. lycopersici mutants through plasmid-vector insertion. Mycopathologia 2005; 160:67-73. [PMID: 16160771 DOI: 10.1007/s11046-005-1155-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 01/06/2005] [Indexed: 11/26/2022]
Abstract
Pathogenicity-impaired mutants, B02 and H15, of Fusarium oxysporum f. sp. lycorpersici (FOL) were obtained using restriction enzyme-mediated integration. Disease severities of Fusarium wilt caused by these mutants were significantly reduced, and their disease development rates were correlated with their colonization rates in tomato vessels. Both B02 and H15 produced significantly smaller amounts of extracellular proteins as well as fusaric acid than the wild-type. Southern blot analyses suggested that B02 and H15 likely contain a single and three copies of transformation vector, respectively. These mutants may thus be useful in isolating genes involved in pathogenicity of FOL.
Collapse
Affiliation(s)
- Koji Morita
- Graduate School of Science and Technology, Chiba University, Yayoicho-1-33, Inage, Chiba-city, Chiba, 263-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Dorsselaer AV, Jeltsch JM. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 2005; 48:366-79. [PMID: 16283313 DOI: 10.1007/s00294-005-0040-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 11/30/2022]
Abstract
The exoproteome of the fungus Fusarium graminearum grown on glucose and on hop (Humulus lupulus, L.) cell wall has been investigated. The culture medium was found to contain a higher quantity of proteins and the proteins are more diverse when the fungus is grown on cell wall. Using both 1D and 2D electrophoresis followed by mass spectrometry analysis and protein identification based on similarity searches, 84 unique proteins were identified in the cell wall-grown fungal exoproteome. Many are putatively implicated in carbohydrate metabolism, mainly in cell wall polysaccharide degradation. The predicted carbohydrate-active enzymes fell into 24 different enzymes classes, and up to eight different proteins within a same class are secreted. This indicates that fungal metabolism becomes oriented towards synthesis and secretion of a whole arsenal of enzymes able to digest almost the complete plant cell wall. Cellobiohydrolase is one of the only four proteins found both after growth on glucose and on plant cell wall and we propose that this enzyme could act as a sensor of the extracellular environment. Extensive knowledge of this very diverse F. graminearum exoproteome is an important step towards the full understanding of Fusarium/plants interactions.
Collapse
Affiliation(s)
- Vincent Phalip
- UMR 7175-Laboratoire de Phytopathologie, Université Louis Pasteur, Illkirch, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management.
Collapse
Affiliation(s)
- V Shanmugam
- Hill Area Tea Science Division, Institute of Himalayan Bioresource Technology, Palampur 176 061, Himachal Pradesh, India.
| |
Collapse
|
88
|
Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, van Kan JAL. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:213-25. [PMID: 15998308 DOI: 10.1111/j.1365-313x.2005.02436.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Five Botrytis cinerea endopolygalacturonase enzymes (BcPGs) were individually expressed in Pichia pastoris, purified to homogeneity and biochemically characterized. While the pH optima of the five enzymes were similar (approximately pH 4.5) the maximum activity of individual enzymes differed significantly. For hydrolysis of polygalacturonic acid (PGA), the V(max,app) ranged from 10 to 900 U mg(-1), while the K(m,app) ranged from 0.16 to 0.6 mg ml(-1). Although all BcPGs are true endopolygalacturonases, they apparently have different modes of action. PGA hydrolysis by BcPG1, BcPG2 and BcPG4 leads to the transient accumulation of oligomers with DP < 7, whereas PGA hydrolysis by BcPG3 and BcPG6 leads to the immediate accumulation of monomers and dimers. The necrotizing activity (NA) of all BcPGs was tested separately in tomato, broad bean and Arabidopsis thaliana. They showed different NAs on these plants. BcPG1 and BcPG2 possessed the strongest NA as tissue collapse was observed within 10 min after infiltration of broad bean leaves. The amino acid (aa) D192A substitution in the active site of BcPG2 not only abolished enzyme activity but also the NA, indicating that the NA is dependent on enzyme activity. Furthermore, deletion of the Bcpg2 gene in B. cinerea resulted in a strong reduction in virulence on tomato and broad bean. Primary lesion formation was delayed by approximately 24 h and the lesion expansion rate was reduced by 50-85%. These data indicate that BcPG2 is an important virulence factor for B. cinerea.
Collapse
Affiliation(s)
- Ilona Kars
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
89
|
Peever TL, Carpenter-Boggs L, Timmer LW, Carris LM, Bhatia A. Citrus Black Rot is Caused by Phylogenetically Distinct Lineages of Alternaria alternata. PHYTOPATHOLOGY 2005; 95:512-518. [PMID: 18943316 DOI: 10.1094/phyto-95-0512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Phylogenetic analysis revealed that isolates of Alternaria alternata causing black rot of citrus were associated with six well-supported evolutionary lineages. Isolates recovered from brown spot lesions on Minneola tangelo, leaf spot lesions on rough lemon, and healthy citrus tissue and noncitrus hosts were related closely to isolates from black-rotted fruit. Phylogenies estimated independently from DNA sequence data from an endopolygalacturonase gene (endoPG) and two anonymous regions of the genome (OPA1-3 and OPA2-1) had similar topologies, and phylogenetic analysis was performed on the combined data set. In the combined phylogeny, isolates from diverse ecological niches on citrus and noncitrus hosts were distributed in eight clades. Isolates from all lineages, regardless of ecological or host association, caused black rot in fruit inoculation assays, demonstrating that small-spored Alternaria isolates associated with different ecological niches on citrus and other plant hosts are potential black rot pathogens. These data also indicated that the fungi associated with black-rotted fruit do not form a natural evolutionary group distinct from other Alternaria pathogens and saprophytes associated with citrus. The use of the name A. citri to describe fungi associated with citrus black rot is not justified and it is proposed that citrus black rot fungi be referred to as A. alternata.
Collapse
|
90
|
Voigt CA, Schäfer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:364-75. [PMID: 15842622 DOI: 10.1111/j.1365-313x.2005.02377.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is the causal agent of the Fusarium head blight (FHB) and a destructive pathogen of cereals accounting for high grain yield losses especially on wheat and maize. Like other fungal pathogens, F. graminearum secretes various extracellular enzymes, which are hypothesized to be involved in host infection. Extracellular lipolytic activity of F. graminearum was strongly induced in culture by wheat germ oil; this allowed us to isolate, clone, and characterize a gene (FGL1) encoding a secreted lipase. Expression analysis indicated that FGL1 is induced by lipid-containing substrates and repressed by glucose. In planta, FGL1 transcription was detected 1 day post-infection of wheat spikes. The function of the FGL1 gene product was verified by specifically demonstrating lipase activity after expression in a heterologous host. Ebelactone B, a known lipase inhibitor, repressed the lipolytic activity of the enzyme. Disease severity was strongly reduced when wild-type conidia were supplemented with ebelactone B. Transformation-mediated disruption of FGL1 led to reduced extracellular lipolytic activity in culture and to reduced virulence to both wheat and maize.
Collapse
Affiliation(s)
- Christian A Voigt
- Department of Molecular Phytopathology and Genetics, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
91
|
Yoshida S, Suzuki F, Tsukiboshi T, Shinohara H. Cloning and characterization of a gene rpg1 encoding polygalacturonase of Rhizopus oryzae. ACTA ACUST UNITED AC 2004; 108:1407-14. [PMID: 15757176 DOI: 10.1017/s0953756204001571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The polygalacturonase (PG)-encoding gene (rpg1) of Rhizopus oryzae, the causal pathogen of rhizopus rot of mulberry, was cloned and sequenced. PGs were partially purified from incubation mixture of 2% pectin medium and their N-terminal amino acid sequences were determined by a gas-phase protein sequencer. RT-PCR was performed using degenerate primers designed from the amino acid sequences, which resulted in part of a PG-encoding gene being obtained. By 3'-RACE and TAIL-PCR analyses, the entire region of the PG-encoding gene was cloned and sequenced. The structural gene comprised 1199 bp coding for 383 amino acids with a putative signal peptide of 26 amino acids, and the open reading frame was interrupted by single intron of 47 bp. Phylogenetic analysis using the deduced amino acid sequence revealed that R. oryzae RPG1 belonged to a clade consisting of exo-PGs of ascomycete fungi.
Collapse
Affiliation(s)
- Shigenobu Yoshida
- Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences, 3-1-3, Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | |
Collapse
|
92
|
Jenczmionka NJ, Schäfer W. The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Curr Genet 2004; 47:29-36. [PMID: 15549317 DOI: 10.1007/s00294-004-0547-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
Recently, we described Gpmk1 MAP kinase-disruption mutants of Fusarium graminearum that were fully viable in vitro, but had completely lost their ability to infect wheat. As cell wall-degrading enzymes are postulated to participate in the infection process of F. graminearum, these MAP kinase-disruption mutants were analysed for their ability to produce cell wall-degrading enzymes in vitro and compared with the wild-type strain. The gpmk1 disruption had no effect on the production of pectinolytic or amylolytic enzymes. However, Gpmk1 regulates the early induction of extracellular endoglucanase, xylanolytic, and proteolytic activities. Furthermore, the MAP kinase was responsible for the overall induction of secreted lipolytic activities. Since the disruption of the Gpmk1 MAP kinase leads to an apathogenic phenotype, these results suggest that the infection process of F. graminearum depends on the secretion of cell wall-degrading enzymes, particularly during the early infection stage. Finally, this work provides the first detailed analysis of the apathogenic phenotype of the F. graminearum Gpmk1 mutants.
Collapse
Affiliation(s)
- Nicole J Jenczmionka
- Molekulare Phytopathologie und Genetik, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | |
Collapse
|
93
|
Li R, Rimmer R, Buchwaldt L, Sharpe AG, Séguin-Swartz G, Hegedus DD. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 2004; 41:754-65. [PMID: 15219560 DOI: 10.1016/j.fgb.2004.03.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 03/07/2004] [Indexed: 11/17/2022]
Abstract
Five major and several minor PG isoenzymes were identified in a Sclerotinia sclerotiorum isolate from Brassica napus by isoelectric focusing and pectin gel overlays. Using a combination of degenerate PCR and expressed sequence tags (ESTs) four endo-polygalacturonase (PG) genes, designated as sspg1d, sspg3, sspg5, and sspg6, and two exo-PG genes, ssxpg1 and ssxpg2, were identified. SSPG1d is a member of the PG gene family previously described by Fraissinet-Tachet et al. [Curr. Genet. 29 (1995) 96]. The mature SSPG1d is a neutral PG, whereas fully processed SSPG3, SSPG5, and SSPG6 are acidic enzymes. Under saprophytic growth conditions, sspg1d, sspg3, sspg5, and ssxpg1 expression was induced by pectin and galacturonic acid and subject to catabolite repression by glucose. Conditions could not be identified under which sspg6 or ssxpg2 were expressed well. Transfer of mycelia from liquid media to solid substrates induced expression of sspg1d suggesting that it may also be regulated by thigmotrophic interactions. Under pathogenic conditions, sspg1d was highly expressed during infection. sspg3 was also expressed during infection, albeit at lower levels than sspg1d, whereas sspg5, sspg6, and ssxpg1 were expressed only weakly.
Collapse
Affiliation(s)
- Rugang Li
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Sask., Canada S7N OX2
| | | | | | | | | | | |
Collapse
|
94
|
Kemp G, Stanton L, Bergmann CW, Clay RP, Albersheim P, Darvill A. Polygalacturonase-inhibiting proteins can function as activators of polygalacturonase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:888-894. [PMID: 15305610 DOI: 10.1094/mpmi.2004.17.8.888] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction between fungal endopolygalacturonases (EPGs) and polygalacturonase-inhibiting proteins (PGIPs) found in plant cell walls has been well established. The typical EPG/PGIP interaction is characterized by high affinity, reversibility, and a 1:1 stoichiometry that results in lowering the catalytic rate of a particular endopolygalacturonase by up to 99.7%. Various EPG and PGIP isoforms and glycoforms have been isolated and characterized, and combinations of EPGs and PGIPs demonstrate a range of enzyme inhibition. EPG/PGIP interactions have prompted many researchers to suspect the involvement of these proteins in the production of specific signals (oligosaccharins) during plant pathogenesis. We have recently reported on initial studies in our laboratory indicating that, for certain EPG/PGIP combinations, the specific activity of EPG is increased beyond that characteristic of the enzyme alone. In this paper, we present a detailed analysis of the product of the interaction of native Phaseolus vulgaris PGIP-2 with five EPGs from Aspergillus niger, namely PGI, PGII, PGA, PGB, and PGC in the presence of homogalacturonan. We demonstrate that for PGA and PGC, the interaction with PGIP-2 may result in either inhibition or activation in a manner that is pH dependent. This data suggests the need for a reevaluation of the conventional description applied to PGIPs; suggestions include polygalacturonase-binding protein and polygalacturonase-modulating protein.
Collapse
Affiliation(s)
- G Kemp
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | | | | | | | | | |
Collapse
|
95
|
Mellon JE, Cotty PJ. Expression of pectinase activity among Aspergillus flavus isolates from southwestern and southeastern United States. Mycopathologia 2004; 157:333-8. [PMID: 15180162 DOI: 10.1023/b:myco.0000024181.36900.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aspergillus flavus is a widely distributed filamentous fungus that contaminates crops with the potent carcinogen aflatoxin. This species can be divided into S and L strains on the basis of sclerotial morphology. During crop infection, A. flavus can secrete a large array of hydrolytic enzymes. These include pectinase, which aids fungal spread through plant tissues. A survey of pectinase expression by soil isolates derived from different regions of the United States revealed geographic polymorphisms. Strain L isolates from Arizona produced moderate to high levels of a specific pectinase P2c, while S strain isolates produced variable amounts of P2c. In contrast, L strain isolates from southeastern U.S. yielded variable P2c production, while S strain isolates consistently expressed high P2c levels. These results were corroborated by pectinase surveys of additional collections of A. flavus from soil and cottonseed. Expression patterns for P2c and pectinmethylesterase were evaluated for a select number of isolates using an isoelectric focusing technique. Clear zone reactions from the pectinase plate assay corresponded to the presence of P2c, while red ring reactions corresponded to the lack of P2c. Commercial cottonseed infected by S strain isolates frequently contained aflatoxin, even when infected by S strain isolates that did not produce pectinase P2c. Thus, although P2c-lacking isolates have reduced invasiveness, these isolates still have sufficient pathogenicity to cause aflatoxin contamination.
Collapse
Affiliation(s)
- Jay E Mellon
- USDA, ARS, Southern Regional Research Center, PO Box 19687, New Orleans, Louisiana 70179, USA.
| | | |
Collapse
|
96
|
D'Ovidio R, Mattei B, Roberti S, Bellincampi D. Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:237-44. [PMID: 14871664 DOI: 10.1016/j.bbapap.2003.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 08/07/2003] [Indexed: 10/26/2022]
Abstract
Polygalacturonases (PGs) are produced by fungal pathogens during early plant infection and are believed to be important pathogenicity factors. Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins which reduce the hydrolytic activity of endoPGs and favor the accumulation of long-chain oligogalacturonides (OGs) which are elicitors of a variety of defense responses. PGIPs belong to the superfamily of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. A number of evidence demonstrates that PGIPs efficiently inhibit fungal invasion.
Collapse
Affiliation(s)
- Renato D'Ovidio
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Viterbo, Italy
| | | | | | | |
Collapse
|
97
|
Prusky D, McEvoy JL, Saftner R, Conway WS, Jones R. Relationship Between Host Acidification and Virulence of Penicillium spp. on Apple and Citrus Fruit. PHYTOPATHOLOGY 2004; 94:44-51. [PMID: 18943818 DOI: 10.1094/phyto.2004.94.1.44] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACT Penicillium expansum, P. digitatum, and P. italicum acidify the ambient environments of apple and citrus fruit during decay development. They use two mechanisms for this: the production of organic acids, mainly citric and gluconic, and NH(4)(+) utilization associated with H(+) efflux. Exposure of P. expansum and P. digitatum hyphae to pH 5.0 increased their citric acid production, compared with the production of organic acids at acidic ambient pH. In decayed fruit, both pathogens produced significant amounts of citric and gluconic acids in the decayed tissue and reduced the host pH by 0.5 to 1.0 units. Ammonium depletion from the growth medium or from the fruit tissue was directly related to ambient pH reduction. Analysis of transcripts encoding the endopolygalacturonase gene, pepg1, from P. expansum accumulated under acidic culture conditions from pH 3.5 to 5.0, suggesting that the acidification process is a pathogenicity enhancing factor of Penicillium spp. This hypothesis was supported by the finding that cultivars with lower pH and citric acid treatments to reduce tissue pH increased P. expansum development, presumably by increasing local pH. However, organic acid treatment could not enhance decay development in naturally acidic apples. Conversely, local alkalinization with NaHCO(3) reduced decay development. The present results further suggest that ambient pH is a regulatory cue for processes linked to pathogenicity of postharvest pathogens, and that specific genes are expressed as a result of the modified host pH created by the pathogens.
Collapse
|
98
|
Prusky D, Yakoby N. Pathogenic fungi: leading or led by ambient pH? MOLECULAR PLANT PATHOLOGY 2003; 4:509-516. [PMID: 20569410 DOI: 10.1046/j.1364-3703.2003.00196.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Pathogenic fungi have successfully attacked a wide range of hosts, which has forced them into ambient-adaptation. pH is one of the major ambient traits affecting the activity of pathogenicity factors secreted by the pathogen, hence, a pH sensing-response system was developed to enable the pathogen to tailor its arsenal to best fit its host. The pacC palA, B, C, F, H and I apparatus was first identified in Aspergillus nidulans and later found in other fungi. Secreted pathogenicity factors, such as cell wall degrading enzymes, were recognized to be controlled by environmental pH and later shown to be regulated by the pH regulatory system, either directly or by harbouring the pacC consensus sequence. The ability of the pathogen to actively increase or decrease its surrounding pH allows it to select the specific virulence factor, out of its vast arsenal, to best fit a particular host.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science of Fresh Produce, A.R.O., Bet Dagan, 50250 Israel
| | | |
Collapse
|
99
|
Sánchez-Torres P, González-Candelas L. Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. MOLECULAR PLANT PATHOLOGY 2003; 4:447-457. [PMID: 20569404 DOI: 10.1046/j.1364-3703.2003.00190.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Differences in gene expression during the susceptible interaction between 'Golden Delicious' apple fruits and the fungus Penicillium expansum were investigated by differential display (DD) RT-PCR. Partial cDNAs from 26 clones from both the fungus and the fruit were selected for nucleotide sequence determination and homology searches, and 20 were subsequently selected for further analyses. In a preliminary series of Northern blot analyses, 18 genes were confirmed as showing a higher expression level during the apple-fungus interaction than in control tissues. Southern analyses permitted an assignation of the fruit or fungal origin of each cDNA. Thirteen clones were derived from P. expansum and five from apple. A more detailed analysis of their expression patterns was conducted in an independent infection experiment confirming the differential expression for 12 of them. Among the differentially expressed genes were one fungal gene encoding an unknown protein and two apple genes, homologous to a beta-glucosidase and a phosphatase 2C, respectively, that were exclusively expressed during the infection process. Several up-regulated P. expansum genes seem to mediate adaptive responses to the host environment.
Collapse
Affiliation(s)
- Paloma Sánchez-Torres
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Apdo. de Correos 73, Burjassot. 46100-Valencia, Spain
| | | |
Collapse
|
100
|
Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. THE NEW PHYTOLOGIST 2003; 159:73-92. [PMID: 33873682 DOI: 10.1046/j.1469-8137.2003.00795.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although Fusarium oxysporum pathogens cause severe wilts in about 80 botanical species, the mechanisms of pathogenicity and symptom induction are poorly understood. Knowledge about the genetic and biochemical pathways involved in the pathogenesis of F. oxysporum would be invaluable in getting targets for both fungicide development and search for biocontrol agents. In this respect, we described the main approaches that have been developed to identify some mechanisms underlying the pathogenesis of F. oxysporum. During the last decades, the potential functions triggering of F. oysporum pathogenicity have mainly been investigated by comparing soilborne pathogenic strains with nonpathogenic ones with regards to the analysis of the pre- and infection stages and of the resulting plant-fungus interactions. The relatively recent progress in the molecular biology of this fungus has allowed complementary approaches to be developed in order to identify key factors involved in F. oxysporum pathogenicity. Screening mutants of F. oxysporum for loss of virulence led to the successful identification of some pathogenesis-related factors, such as hydrophobicity or attachment of germlings. Taken together, the strategies described above support the idea that changes in fungal metabolism is also of importance in triggering of F. oxysporum pathogenesis.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Christian Steinberg
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Chantal Olivain
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Véronique Edel
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Sophie Trouvelot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Silvio Gianinazzi
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Claude Alabouvette
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| |
Collapse
|