51
|
Šustr V, Stingl U, Brune A. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 67:64-69. [PMID: 24971929 DOI: 10.1016/j.jinsphys.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments.
Collapse
Affiliation(s)
- Vladimír Šustr
- Institute of Soil Biology, Biology Centre, Academy of Sciences of the Czech Republic, Na Sádkách 7, 37005 České Budějovice, Czech Republic.
| | - Ulrich Stingl
- Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, 78434 Konstanz, Germany
| | - Andreas Brune
- Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, 78434 Konstanz, Germany; Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| |
Collapse
|
52
|
Shan Y, Shu C, Crickmore N, Liu C, Xiang W, Song F, Zhang J. Cultivable gut bacteria of scarabs (Coleoptera: Scarabaeidae) inhibit Bacillus thuringiensis multiplication. ENVIRONMENTAL ENTOMOLOGY 2014; 43:612-616. [PMID: 24780240 DOI: 10.1603/en14028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The entomopathogen Bacillus thuringiensis is used to control various pest species of scarab beetle but is not particularly effective. Gut bacteria have diverse ecological and evolutionary effects on their hosts, but whether gut bacteria can protect scarabs from B. thuringiensis infection remains poorly understood. To investigate this, we isolated 32 cultivable gut bacteria from Holotrichia oblita Faldermann, Holotrichia parallela Motschulsky, and Anomala corpulenta Motschulsky, and analyzed their effect on B. thuringiensis multiplication and Cry toxin stability. 16S rDNA analysis indicated that these gut bacteria belong to the Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phyla. A confrontation culture analyses of the 32 isolates against three scarab-specific B. thuringiensis strains showed that the majority of the scarab gut bacteria had antibacterial activity against the B. thuringiensis strains. The Cry toxin stability analysis results showed that while several strains produced proteases capable of processing the scarab-specific toxin Cry8Ea, none were able to completely degrade it. These results suggest that gut bacteria can potentially affect the susceptibility of scarabs to B. thuringiensis and that this should be considered when considering future control measures.
Collapse
Affiliation(s)
- Yueming Shan
- School of Life Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | | | | | | | | | | |
Collapse
|
53
|
Wada N, Sunairi M, Anzai H, Iwata R, Yamane A, Nakajima M. Glycolytic Activities in the Larval Digestive Tract of Trypoxylus dichotomus (Coleoptera: Scarabaeidae). INSECTS 2014; 5:351-63. [PMID: 26462688 PMCID: PMC4592593 DOI: 10.3390/insects5020351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
Abstract
The larvae of the Japanese horned beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae), are an example of a saprophage insect. Generally, Scarabaeid larvae, such as T. dichotomus, eat dead plant matter that has been broken down by fungi, such as Basidiomycota. It is thought that β-1,3-glucan, a constituent polysaccharide in microbes, is abundant in decayed plant matter. Studies of the degradation mechanism of β-1,3-glucan under these circumstances are lacking. In the current study, we sought to clarify the relationship between the capacity to degrade polysaccharides and the food habits of the larvae. The total activities and optimum pH levels of several polysaccharide-degrading enzymes from the larvae were investigated. The foregut, midgut and hindgut of final instar larvae were used. Enzymatic activities were detected against five polysaccharides (soluble starch, β-1,4-xylan, β-1,3-glucan, pectin and carboxymethyl cellulose) and four glycosides (p-nitrophenyl (PNP)-β-N-acetylglucosaminide, PNP-β-mannoside, PNP-β-glucoside and PNP-β-xyloside). Our results indicate that the digestive tract of the larvae is equipped with a full enzymatic system for degrading β-1,3-glucan and β-1,4-xylan to monomers. This finding elucidates the role of the polysaccharide-digesting enzymes in the larvae, and it is suggested that the larvae use these enzymes to enact their decomposition ability in the forest environment.
Collapse
Affiliation(s)
- Noriko Wada
- Laboratory of Forest Zoology, Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
- Laboratory of Molecular Microbiology, Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Michio Sunairi
- Laboratory of Molecular Microbiology, Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Hirosi Anzai
- Laboratory of Applied Biochemistry, Department of Bioresource Science, Junior College, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Ryûtarô Iwata
- Laboratory of Forest Zoology, Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Akiomi Yamane
- Laboratory of Forest Zoology, Department of Forest Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Mutsuyasu Nakajima
- Laboratory of Molecular Microbiology, Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
54
|
Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 2013; 8:e73827. [PMID: 24023907 PMCID: PMC3762729 DOI: 10.1371/journal.pone.0073827] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/25/2013] [Indexed: 11/23/2022] Open
Abstract
The Asian longhorned beetle (Anoplophoraglabripennis) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A. glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an assemblage of microbes hypothesized to make significant contributions to these processes. While lignin degrading mechanisms have been well characterized in pure cultures of white rot basidiomycetes, little is known about such processes in microbial communities associated with wood-feeding insects. The goals of this study were to develop a taxonomic and functional profile of a gut community derived from an invasive population of larval A. glabripennis collected from infested host trees and to identify genes that could be relevant for the digestion of woody tissue and nutrient acquisition. To accomplish this goal, we taxonomically and functionally characterized the A. glabripennis midgut microbiota through amplicon and shotgun metagenome sequencing and conducted a large-scale comparison with the metagenomes from a variety of other herbivore-associated communities. This analysis distinguished the A. glabripennis larval gut metagenome from the gut communities of other herbivores, including previously sequenced termite hindgut metagenomes. Genes encoding enzymes were identified in the A. glabripennis gut metagenome that could have key roles in woody tissue digestion including candidate lignin degrading genes (laccases, dye-decolorizing peroxidases, novel peroxidases and β-etherases), 36 families of glycoside hydrolases (such as cellulases and xylanases), and genes that could facilitate nutrient recovery, essential nutrient synthesis, and detoxification. This community could serve as a reservoir of novel enzymes to enhance industrial cellulosic biofuels production or targets for novel control methods for this invasive and highly destructive insect.
Collapse
Affiliation(s)
- Erin D. Scully
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research Unit, United States Department of Agriculture Agriculture Research Service Pacific Basin Agricultural Research Center, Hilo, Hawaii, United States of America
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Susannah G. Tringe
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Kerrie W. Barry
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Tijana Glavina del Rio
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Mansi Chovatia
- Department of Energy (DOE) Joint Genome Institute, Walnut Creek, California, United States of America
| | - Joshua R. Herr
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John E. Carlson
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
55
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
56
|
Holter P, Scholtz CH. Elongated hindguts in desert-living dung beetles (Scarabaeidae: Scarabaeinae) feeding on dry dung pellets or plant litter. J Morphol 2013; 274:657-62. [PMID: 23450631 DOI: 10.1002/jmor.20123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/31/2012] [Accepted: 12/09/2012] [Indexed: 11/10/2022]
Abstract
Most adult dung beetles (Scarabaeidae: Scarabaeinae) feed on fresh, wet dung of larger herbivorous or omnivorous mammals. As refractory plant fragments are selected out before ingestion, the food is presumed easily digestible. However, members of the desert-living scarabaeine genus Pachysoma (probably evolved from an ancestor closely related to the wet-dung feeding genus Scarabaeus) select dry dung pellets and/or plant litter. Thus, they ingest a much higher proportion of structural plant material, which nevertheless appears to be digested rather efficiently. This study investigates morphological modifications of the gut for this digestion in adults of eight Pachysoma species, both pellet and litter feeders. To ascertain hypothesized ancestral conditions, four fresh-dung feeding Scarabaeus species were also examined. The latter have the usual dung beetle gut consisting of a long, simple midgut, followed by an equally simple, much shorter hindgut of the same width. Lengths of midguts (M) and hindguts (H) divided by body length (B) for comparison between species of different size are: 4.9-6.3 (M/B) and 0.7-0.8 (H/B), which is normal for dung feeders. In Pachysoma, lengths are 6.3-6.5 (M/B) and 1.0-1.4 (H/B) in pellet feeders, and 4.4-5.0 (M/B) and 2.0-2.5 (H/B) for litter feeders. Hindguts are still morphologically undifferentiated and of midgut width, but clearly longer, particularly in litter feeders. Presumably, plant fragments in the food are digested, at least partly, in the hindgut. If so, the morphological adaptation is unusual: simple elongation rather than the expansion of part of the hindgut, as found in several other plant- or detritus-feeding scarabaeids.
Collapse
Affiliation(s)
- Peter Holter
- Section of Terrestrial Ecology, Institute of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark.
| | | |
Collapse
|
57
|
Huang S, Zhang H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One 2013; 8:e57169. [PMID: 23437336 PMCID: PMC3578786 DOI: 10.1371/journal.pone.0057169] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota has diverse ecological and evolutionary effects on its hosts. However, the ways in which it responds to environmental heterogeneity and host physiology remain poorly understood. To this end, we surveyed intestinal microbiota of Holotrichia parallela larvae at different instars and from different geographic regions. Bacterial 16S rRNA gene clone libraries were constructed and clones were subsequently screened by DGGE and sequenced. Firmicutes and Proteobacteria were the major phyla, and bacteria belonging to Ruminococcaceae, Lachnospiraceae, Enterobacteriaceae, Desulfovibrionaceae and Rhodocyclaceae families were commonly found in all natural populations. However, bacterial diversity (Chao1 and Shannon indices) and community structure varied across host populations, and the observed variation can be explained by soil pH, organic carbon and total nitrogen, and the climate factors (e.g., mean annual temperature) of the locations where the populations were sampled. Furthermore, increases in the species richness and diversity of gut microbiota were observed during larval growth. Bacteroidetes comprised the dominant group in the first instar; however, Firmicutes composed the majority of the hindgut microbiota during the second and third instars. Our results suggest that the gut's bacterial community changes in response to environmental heterogeneity and host's physiology, possibly to meet the host's ecological needs or physiological demands.
Collapse
Affiliation(s)
- Shengwei Huang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Pests, and Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Pests, and Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
58
|
Saengkerdsub S, Ricke SC. Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol 2013; 40:97-116. [PMID: 23425063 DOI: 10.3109/1040841x.2013.763220] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, the molecular techniques used in animal-based-methanogen studies will be discussed along with how methanogens interact not only with other microorganisms but with their animal hosts as well. These methods not only indicate the diversity and levels of methanogens, but also provide insight on their ecological functions. Most molecular techniques have been based on either 16S rRNA genes or methyl-coenzyme M reductase, a ubiquitous enzyme in methanogens. The most predominant methanogens in animals belong to the genus Methanobrevibacter. Besides methanogens contributing to overall H2 balance, methanogens also have mutual interactions with other bacteria. In addition to shared metabolic synergism, the host animal retrieves additional energy from the diet when methanogens are co-colonized with other normal flora. By comparing genes in methanogens with other bacteria, possible gene transfer between methanogens and other bacteria in the same environments appears to occur. Finally, diets in conjunction with the genetics of methanogens and hosts may represent the biological framework that dictate the extent of methanogen prevalence in these ecosystems. In addition, host evolution including the immune system could serve as an additional selective pressure for methanogen colonization.
Collapse
Affiliation(s)
- Suwat Saengkerdsub
- Department of Food Science, Center for Food Safety, University of Arkansas , Fayetteville, AR , USA , and
| | | |
Collapse
|
59
|
Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS One 2012; 7:e51557. [PMID: 23251574 PMCID: PMC3519724 DOI: 10.1371/journal.pone.0051557] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 11/05/2012] [Indexed: 12/31/2022] Open
Abstract
A comparison of the diversity of bacterial communities in the larval midgut and adult gut of the European forest cockchafer (Melolontha hippocastani) was carried out using approaches that were both dependent on and independent of cultivation. Clone libraries of the 16S rRNA gene revealed 150 operational taxonomic units (OTUs) that belong to 11 taxonomical classes and two other groups that could be classified only to the phylum level. The most abundant classes were β, δ and γ-proteobacteria, Clostridia, Bacilli, Erysipelotrichi and Sphingobacteria. Although the insect’s gut is emptied in the prepupal stage and the beetle undergoes a long diapause period, a subset of eight taxonomic classes from the aforementioned eleven were found to be common in the guts of diapausing adults and the larval midguts (L2, L3). Moreover, several bacterial phylotypes belonging to these common bacterial classes were found to be shared by the larval midgut and the adult gut. Despite this, the adult gut bacterial community represented a subset of that found in the larvae midgut. Consequently, the midgut of the larval instars contains a more diverse bacterial community compared to the adult gut. On the other hand, after the bacteria present in the larvae were cultivated, eight bacterial species were isolated. Moreover, we found evidence of the active role of some of the bacterial species isolated in food digestion, namely, the presence of amylase and xylanolytic properties. Finally, fluorescence in situ hybridization allowed us to confirm the presence of selected species in the insect gut and through this, their ecological niche as well as the metagenomic results. The results presented here elucidated the heterogeneity of aerobic and facultative bacteria in the gut of a holometabolous insect species having two different feeding habits.
Collapse
|
60
|
Kim H, Park DS, Oh HW, Lee KH, Chung DH, Park HY, Park HM, Bae KS. Gryllotalpicola gen. nov., with descriptions of Gryllotalpicola koreensis sp. nov., Gryllotalpicola daejeonensis sp. nov. and Gryllotalpicola kribbensis sp. nov. from the gut of the African mole cricket, Gryllotalpa africana, and reclassification of
Curtobacterium ginsengisoli
as Gryllotalpicola ginsengisoli comb. nov. Int J Syst Evol Microbiol 2012; 62:2363-2370. [DOI: 10.1099/ijs.0.034678-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains RU-16T, RU-28, RU-04T and PU-02T were isolated from the gut of the African mole cricket, Gryllotalpa africana. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belonged to the family
Microbacteriaceae
. All four strains were most closely related to
Curtobacterium ginsengisoli
DCY26T (below 97 % 16S rRNA gene sequence similarity). These isolates were Gram-stain-positive, motile (by gliding), rod-shaped and exhibited ivory-coloured colonies. Their chemotaxonomic properties included MK-11 as the major respiratory quinone, ornithine as the cell-wall diamino acid, acetyl as the acyl type of the peptidoglycan, cyclohexyl-C17 : 0 as the major fatty acid and phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. On the basis of phenotypic, chemotaxonomic and phylogenetic analyses, we propose a new genus in the family
Microbacteriaceae
, Gryllotalpicola gen. nov., with three novel species, Gryllotalpicola daejeonensis sp. nov. (type strain RU-04T = KCTC 13809T = JCM 17590T), Gryllotalpicola koreensis sp. nov. (type strain RU-16T = KCTC 13810T = JCM 17591T) and Gryllotalpicola kribbensis sp. nov. (type strain PU-02T = KCTC 13808T = JCM 17593T). Gryllotalpicola koreensis is the type species of the genus. Additionally, we propose that
Curtobacterium ginsengisoli
should be reclassified in the genus as Gryllotalpicola ginsengisoli comb. nov. (type strain DCY26T = KCTC 13163T = JCM 14773T).
Collapse
Affiliation(s)
- Hyangmi Kim
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
- Biological Resource Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyun-Woo Oh
- Industrial Bio-materials Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kang Hyun Lee
- Biological Resource Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Dong-Ho Chung
- Industrial Bio-materials Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hee-Moon Park
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Kyung Sook Bae
- Biological Resource Center, KRIBB, Daejeon 305-806, Republic of Korea
| |
Collapse
|
61
|
Li H, Sun J, Zhao J, Deng T, Lu J, Dong Y, Deng W, Mo J. Physicochemical conditions and metal ion profiles in the gut of the fungus-growing termite Odontotermes formosanus. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1368-1375. [PMID: 22858833 DOI: 10.1016/j.jinsphys.2012.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
The physicochemical conditions in an insect's gut microenvironment have been reported to play an important role in food processing and metabolisms. In this study, the profiles of oxygen, pH, redox potentials, and hydrogen in the isolated guts of the fungus-growing termite, Odontotermes formosanus Shiraki, were investigated with a microeletrode system. Compared with those in other termites, O. formosanus exhibited a relatively lower oxygen partial pressures in its gut system ranging from 0 to 8.6 kPa. The pH profile in the different gut compartments was neutral (pH 6.1-7.4) except in the rectum region. The average redox potentials at the center of each gut region (except rectum) were high and ranged from approximately +70 to +310 mV. Especially, as the central intermediate during lignocellulose degradation, hydrogen partial pressures in the hindgut paunch lumen were recorded as high as 10.4 kPa. Furthermore, thirteen metal ion concentrations in the termite's gut system, nest symbiotic fungal combs, as well as the nest soil samples were evaluated with Inductively Coupled Plasma Mass Spectrometry (ICP-MS), which indicated that six metal ions (K, Mg, Mn, Ba, Se, and Mo) out of 13 ions recorded in the major digestive tract regions show some significant differences in their spatial distributions. A significant enrichment of some metal ions was also observed in the rectum, fungal combs, and the nest soil samples. The lower oxygen profiles, neutral pH, higher redox potentials, and higher hydrogen accumulation with the characterized spatial distributions for metal ions in the digestive tract of O. formosanus, highlighted the most important distinctiveness of the fungus-growing termites in its gut microenvironments, suggesting that the unique structure and functions of the intestinal ecosystem may present within its gut.
Collapse
Affiliation(s)
- Hongjie Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Hobbie SN, Li X, Basen M, Stingl U, Brune A. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva. Syst Appl Microbiol 2012; 35:226-32. [PMID: 22525666 DOI: 10.1016/j.syapm.2012.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.
Collapse
Affiliation(s)
- Sven N Hobbie
- Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
63
|
Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 2012; 13:2563-2577. [PMID: 22489111 PMCID: PMC3317674 DOI: 10.3390/ijms13032563] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/21/2022] Open
Abstract
In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%), followed by the Actinobacteria (24.15%), the Firmicutes (4.35%), and the Bacteroidetes (1.45%). At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation.
Collapse
|
64
|
Andert J, Marten A, Brandl R, Brune A. Inter- and intraspecific comparison of the bacterial assemblages in the hindgut of humivorous scarab beetle larvae (Pachnoda spp.). FEMS Microbiol Ecol 2010; 74:439-49. [PMID: 20738398 DOI: 10.1111/j.1574-6941.2010.00950.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The larvae of scarab beetles are model organisms for studying the role of physicochemical gut conditions and intestinal microbiota in symbiotic digestion, particularly of humus. Here, we address the question of whether the enlarged hindgut paunch of Pachnoda ephippiata and Pachnoda marginata, two closely related, but allopatric species, harbors a specific bacterial microbiota. Terminal restriction length fragment polymorphism (T-RFLP) analysis revealed that in both species, the bacterial hindgut community differs strongly from that in the midgut, food soil, and fecal pellets. High intra- and interspecific similarities between the T-RFLP profiles of different larvae indicate the presence of a hindgut-specific microbiota. Nevertheless, we found a clear separation of the two species. A 16S rRNA gene clone library from the hindgut of P. ephippiata identified the major phylogenetic groups as members of the Clostridia, Betaproteobacteria, and Bacteroidetes, followed by Bacillales and Deltaproteobacteria. A comparison with a previously obtained clone library of the same species corroborates both the similarities and the intraspecific variance of the hindgut microbiota.
Collapse
Affiliation(s)
- Janet Andert
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
66
|
Brune A. Methanogens in the Digestive Tract of Termites. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Beneficial interactions between insects and gut bacteria. Indian J Microbiol 2009; 49:114-9. [PMID: 23100759 DOI: 10.1007/s12088-009-0023-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/09/2009] [Indexed: 10/20/2022] Open
Abstract
Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populations and distorting their sex ratio. Attempts have been made to culture these bacteria in insect cell lines, as they are recalcitrant to culture under normal microbiological conditions. The diversity of bacteria associated with insects and the functional role played by them in the insect is discussed below.
Collapse
|
68
|
The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 2009; 75:2831-40. [PMID: 19270135 DOI: 10.1128/aem.02697-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insect intestinal tracts harbor several novel, deep-rooting clades of as-yet-uncultivated bacteria whose biology is typically completely unknown. Here, we report the isolation of the first representative of the termite group 1 (TG1) phylum from sterile-filtered gut homogenates of a humivorous scarab beetle larva. Strain Pei191(T) is a mesophilic, obligately anaerobic ultramicrobacterium with a gram-negative cell envelope. Cells are typically rod shaped, but cultures are pleomorphic in all growth phases (0.3 to 2.5 microm long and 0.17 to 0.3 microm wide). The isolate grows heterotrophically on sugars and ferments D-galactose, D-glucose, D-fructose, D-glucosamine, and N-acetyl-D-glucosamine to acetate, ethanol, hydrogen, and alanine as major products but only if amino acids are present in the medium. PCR-based screening and comparative 16S rRNA gene sequence analysis revealed that strain Pei191(T) belongs to the "intestinal cluster," a lineage of hitherto uncultivated bacteria present in arthropod and mammalian gut systems. It is only distantly related to the previously described so-called "endomicrobia" lineage, which comprises mainly uncultivated endosymbionts of termite gut flagellates. We propose the name "Elusimicrobium minutum" gen. nov., sp. nov. (type strain, Pei191(T) = ATCC BAA-1559(T) = JCM 14958(T)) for the first isolate of this deep-branching lineage and the name "Elusimicrobia" phyl. nov. for the former TG1 phylum.
Collapse
|
69
|
Genomic analysis of "Elusimicrobium minutum," the first cultivated representative of the phylum "Elusimicrobia" (formerly termite group 1). Appl Environ Microbiol 2009; 75:2841-9. [PMID: 19270133 DOI: 10.1128/aem.02698-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organisms of the candidate phylum termite group 1 (TG1) are regularly encountered in termite hindguts but are present also in many other habitats. Here, we report the complete genome sequence (1.64 Mbp) of "Elusimicrobium minutum" strain Pei191(T), the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut, and we discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, nonribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of "Elusimicrobia" (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.
Collapse
|
70
|
Jang C, Lee G, Chung J. LKB1 induces apical trafficking of Silnoon, a monocarboxylate transporter, in Drosophila melanogaster. ACTA ACUST UNITED AC 2008; 183:11-7. [PMID: 18838551 PMCID: PMC2557035 DOI: 10.1083/jcb.200807052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Silnoon (Sln) is a monocarboxylate transporter (MCT) that mediates active transport of metabolic monocarboxylates such as butyrate and lactate. Here, we identify Sln as a novel LKB1-interacting protein using Drosophila melanogaster genetic modifier screening. Sln expression does not affect cell cycle progression or cell size but specifically enhances LKB1-dependent apoptosis and tissue size reduction. Conversely, down-regulation of Sln suppresses LKB1-dependent apoptosis, implicating Sln as a downstream mediator of LKB1. The kinase activity of LKB1 induces apical trafficking of Sln in polarized cells, and LKB1-dependent Sln trafficking is crucial for triggering apoptosis induced by extracellular butyrate. Given that LKB1 functions to control both epithelial polarity and cell death, we propose Sln is an important downstream target of LKB1.
Collapse
Affiliation(s)
- Cholsoon Jang
- National Creative Research Initiatives Center for Cell Growth Regulation, Korea Advanced Institute of Science and Technology, Yusong-gu, Taejon 305-701, Korea
| | | | | |
Collapse
|
71
|
Vasanthakumar A, Handelsman J, Schloss PD, Bauer LS, Raffa KF. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. ENVIRONMENTAL ENTOMOLOGY 2008; 37:1344-1353. [PMID: 19036215 DOI: 10.1603/0046-225x(2008)37[1344:gmoais]2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We characterized gut microbial communities in the emerald ash borer, Agrilus planipennis Fairmaire, an invasive phloem-feeding and wood-boring beetle that has caused extensive mortality to urban and forest ash trees. Analyses included both 16S rRNA gene-based and culture-based approaches. We estimated that the emerald ash borer gut harbors 44, 71, and 49 operational taxonomic units (OTUs(0.03)) in the larval, prepupal, and adult stages, respectively, and a total of 132 OTUs(0.03) when data from the three stages are pooled. The larval gut community shared all its OTUs(0.03) with either the adult or the prepupal gut community, and the adult and prepupal gut communities shared 27 OTUs(0.03). Twenty-two OTUs(0.03) were shared among the three life stages. Rarefaction analyses suggest that these gut microbial communities are close to being completely sampled at the phylum level. Culture-independent techniques yielded a higher diversity of bacteria than did culturing. Three species of bacteria inhabiting guts of emerald ash borer showed cellulolytic activity. The diverse, dynamic, and presumably multifunctional microbial community associated with emerald ash borer guts suggests that invasive insects should be viewed as multispecies complexes and that such an interpretation can improve our ability to develop more effective management approaches.
Collapse
Affiliation(s)
- Archana Vasanthakumar
- Department of Entomology, 1630 Linden Dr., 345 Russell Labs, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
72
|
Vasanthakumar A, Handelsman J, Schloss PD, Bauer LS, Raffa KF. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. ENVIRONMENTAL ENTOMOLOGY 2008. [PMID: 19036215 DOI: 10.1093/ee/37.5.1344] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We characterized gut microbial communities in the emerald ash borer, Agrilus planipennis Fairmaire, an invasive phloem-feeding and wood-boring beetle that has caused extensive mortality to urban and forest ash trees. Analyses included both 16S rRNA gene-based and culture-based approaches. We estimated that the emerald ash borer gut harbors 44, 71, and 49 operational taxonomic units (OTUs(0.03)) in the larval, prepupal, and adult stages, respectively, and a total of 132 OTUs(0.03) when data from the three stages are pooled. The larval gut community shared all its OTUs(0.03) with either the adult or the prepupal gut community, and the adult and prepupal gut communities shared 27 OTUs(0.03). Twenty-two OTUs(0.03) were shared among the three life stages. Rarefaction analyses suggest that these gut microbial communities are close to being completely sampled at the phylum level. Culture-independent techniques yielded a higher diversity of bacteria than did culturing. Three species of bacteria inhabiting guts of emerald ash borer showed cellulolytic activity. The diverse, dynamic, and presumably multifunctional microbial community associated with emerald ash borer guts suggests that invasive insects should be viewed as multispecies complexes and that such an interpretation can improve our ability to develop more effective management approaches.
Collapse
Affiliation(s)
- Archana Vasanthakumar
- Department of Entomology, 1630 Linden Dr., 345 Russell Labs, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
73
|
Zhang H, Jackson TA. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). J Appl Microbiol 2008; 105:1277-85. [PMID: 18713286 DOI: 10.1111/j.1365-2672.2008.03867.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To locate and identify putative autochthonous bacteria within the grass grub gut that may have a role in symbiosis. METHODS AND RESULTS Polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) fingerprinting was used to investigate bacterial diversity in the grass grub larval gut. The microbial community profiles from five geographically distinct populations were compared and the influence of feeding was analysed. Bacterial community in the midgut was highly variable between locations and was affected by feeding. The hindgut contained a more diverse but stable bacterial community that was less affected by external conditions. Forty-seven distinct DGGE bands, representing different bacterial genotypes, could be distinguished from all samples, with 34 different bands occurring in the hindgut. The 22 most common bands were isolated and DNA was sequenced. Sequence analysis revealed that most bacteria (16/22) were affiliated to the Clostridiales with the predominant bacteria affiliated to the genus Clostridium. The remaining bacteria were aligned to the Betaproteobacteria, Deltaproteobacteria and Bacteroidetes. CONCLUSIONS The grass grub larva has an autochthonous microflora with predominance of Clostridium spp. in the hindgut. SIGNIFICANCE AND IMPACT OF THE STUDY Occurrence of an autocthonous microflora in the grass grub hindgut suggests a symbiotic relationship which could help explain the ability of larval scarabs to feed on recalcitrant organic matter.
Collapse
Affiliation(s)
- H Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, The People's Republic of China.
| | | |
Collapse
|
74
|
Funke M, Büchler R, Mahobia V, Schneeberg A, Ramm M, Boland W. Rapid Hydrolysis of Quorum-Sensing Molecules in the Gut of Lepidopteran Larvae. Chembiochem 2008; 9:1953-9. [DOI: 10.1002/cbic.200700781] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
75
|
Assessment of gut bacteria for a paratransgenic approach to control Dermolepida albohirtum larvae. Appl Environ Microbiol 2008; 74:4036-43. [PMID: 18456847 DOI: 10.1128/aem.02609-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria from the hindguts of Dermolepida albohirtum larvae were assessed for their potential to be used in paratransgenic strategies that target scarab pests of sugarcane. Bacteria isolated in pure culture from the hindguts of D. albohirtum larvae were from the Proteobacteria, Firmicutes, and Actinobacteria phyla and matched closely with taxa from intestinal and rhizosphere environments. However, these isolates were not the most common gut-associated bacteria identified in denaturing gradient gel electrophoresis (DGGE) hindgut profiles. Subsequently, eight species of gut bacteria were fed to larvae, and RNA-based DGGE analysis of 16S rRNA was used to detect the persistence of these isolates in the hindgut environment. One of these isolates (Da-11) remained metabolically active in the hindgut for 19 days postconsumption. Da-11 most likely forms a new genus within the Burkholderiales order, along with taxa independently identified from larvae of the European scarab pest, Melolontha melolontha. Using the EZ::Tn5 transposon system, a kanamycin resistance gene was inserted into the chromosome of Da-11, thus establishing a stable transformation technique for this species. A second feeding trial that included inoculating approximately 400 transgenic Da-11 cells onto a food source resulted in a density of 1 x 10(6) transgenic Da-11 cells/ml in the hindguts of larvae at 9 days postconsumption. These populations were maintained in the hindgut for at least another 12 days. The successful isolation, genetic transformation, and establishment of transgenic Da-11 cells in the hindguts of D. albohirtum larvae fulfill fundamental requirements for the future development of a paratransgenic approach to control scarab pests of sugarcane.
Collapse
|
76
|
RIVERA FLORN, CISNEROS RAMÓN, HERNÁNDEZ-RODRÍGUEZ CÉSAR, ZÚÑIGA GERARDO. Genetic diversity and population structure of Pichia guilliermondii over 400 generations of experimental microevolution. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2007.00891.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
77
|
Andert J, Geissinger O, Brune A. Peptidic soil components are a major dietary resource for the humivorous larvae of Pachnoda spp. (Coleoptera: Scarabaeidae). JOURNAL OF INSECT PHYSIOLOGY 2008; 54:105-13. [PMID: 17880994 DOI: 10.1016/j.jinsphys.2007.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/06/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
Abstract
Humivorous scarab beetle larvae can thrive exclusively on soil organic matter. Feeding experiments have revealed that the larva of Pachnoda ephippiata mineralizes all major humus components except the polyphenolic fraction. High proteolytic activity in the alkaline midgut fluid and an enormous ammonia production during gut passage suggested that peptidic soil components are an important dietary resource for the larva. By comparing acid-hydrolyzable amino acids in food soil and feces, we showed that a significant fraction of the peptides in soil are removed during gut passage. This agrees well with the high concentrations of free amino acids found the midgut section. Incubation experiments revealed the presence of substantial particle-associated proteolytic activity also in the hindgut, most probably due to microbial activity. High rates of ammonia formation in hindgut homogenates and the conversion of radiolabeled amino acids to acetate and propionate indicated that microbial fermentations of soil peptides play an important role in the hindgut. This was corroborated by viable counts of amino-acid-fermenting bacteria, which formed a substantial fraction of the hindgut microbiota. A complete inventory of organic and inorganic nitrogen species before, during, and after gut passage revealed the formation of nitrite and nitrate in midgut and hindgut, and a substantial nitrogen deficit in the feces, suggesting that part of the ammonia formed by mineralization is subjected to oxidation and subsequent denitrification to N2. Together, the results strongly support the hypothesis that peptidic soil components form a major energy and nutrient source for humivorous insects, supplying the animal with microbial fermentation products and essential amino acids.
Collapse
Affiliation(s)
- Janet Andert
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | | |
Collapse
|
78
|
"Endomicrobia" and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl Environ Microbiol 2007; 74:762-7. [PMID: 18083861 DOI: 10.1128/aem.01831-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiotic bacteria residing in the hindgut chambers of scarab beetle larvae may be useful in paratransgenic approaches to reduce larval root-feeding activities on agricultural crops. We compared the bacterial community profiles associated with the hindgut walls of individual Dermolepida albohirtum third-instar larvae over 2 years and those associated with their plant root food source among different geographic regions. Denaturing gradient gel electrophoresis analysis was used with universal and Actinobacteria-specific 16S rRNA primers to reveal a number of taxa that were found consistently in all D. albohirtum larvae but not in samples from their food source, sugarcane roots. These taxa included representatives from the "Endomicrobia," Firmicutes, Proteobacteria, and Actinobacteria and were related to previously described bacteria from the intestines of other scarab larvae and termites. These universally distributed taxa have the potential to form vertically transmitted symbiotic associations with these insects.
Collapse
|
79
|
de Graaf AA, Venema K. Gaining insight into microbial physiology in the large intestine: a special role for stable isotopes. Adv Microb Physiol 2007; 53:73-168. [PMID: 17707144 DOI: 10.1016/s0065-2911(07)53002-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of the human large intestine for nutrition, health, and disease, is becoming increasingly realized. There are numerous indications of a distinct role for the gut in such important issues as immune disorders and obesity-linked diseases. Research on this long-neglected organ, which is colonized by a myriad of bacteria, is a rapidly growing field that is currently providing fascinating new insights into the processes going on in the colon, and their relevance for the human host. This review aims to give an overview of studies dealing with the physiology of the intestinal microbiota as it functions within and in interaction with the host, with a special focus on approaches involving stable isotopes. We have included general aspects of gut microbial life as well as aspects specifically relating to genomic, proteomic, and metabolomic studies. A special emphasis is further laid on reviewing relevant methods and applications of stable isotope-aided metabolic flux analysis (MFA). We argue that linking MFA with the '-omics' technologies using innovative modeling approaches is the way to go to establish a truly integrative and interdisciplinary approach. Systems biology thus actualized will provide key insights into the metabolic regulations involved in microbe-host mutualism and their relevance for health and disease.
Collapse
Affiliation(s)
- Albert A de Graaf
- Wageningen Center for Food Sciences, PO Box 557, 6700 AN Wageningen, The Netherlands
| | | |
Collapse
|
80
|
Herlemann DPR, Geissinger O, Brune A. The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 2007; 73:6682-5. [PMID: 17704269 PMCID: PMC2075069 DOI: 10.1128/aem.00712-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of "Endomicrobia," which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to "Endomicrobia." Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.
Collapse
Affiliation(s)
- Daniel P R Herlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | |
Collapse
|
81
|
Stief P, Eller G. The gut microenvironment of sediment-dwelling Chironomus plumosus larvae as characterised with O2, pH, and redox microsensors. J Comp Physiol B 2006; 176:673-83. [PMID: 16721623 DOI: 10.1007/s00360-006-0090-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We devised a set-up in which microsensors can be used for characterising the gut microenvironment of aquatic macrofauna. In a small flow cell, we measured microscale gradients through dissected guts (O(2), pH, redox potential [E ( h )]), in the haemolymph (O(2)), and towards the body surface (O(2)) of Chironomus plumosus larvae. The gut microenvironment was compared with the chemical conditions in the lake sediment in which the animals reside and feed. When the dissected guts were incubated at the same nominal O(2) concentration as in haemolymph, the gut content was completely anoxic and had pH and E ( h ) values slightly lower than in the ambient sediment. When the dissected guts were artificially oxygenated, the volumetric O(2)-consumption rates of the gut content were at least 10x higher than in the sediment. Using these potential O(2)-consumption rates in a cylindrical diffusion-reaction model, it was predicted that diffusion of O(2) from the haemolymph to the gut could not oxygenate the gut content under in vivo conditions. Additionally, the potential O(2)-consumption rates were so high that the intake of dissolved O(2) along with feeding could be ruled out to oxygenate the gut content. We conclude that microorganisms present in the gut of C. plumosus cannot exhibit an aerobic metabolism. The presented microsensor technique and the data analysis are applicable to guts of other macrofauna species with cutaneous respiration.
Collapse
Affiliation(s)
- Peter Stief
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany.
| | | |
Collapse
|
82
|
|
83
|
Hendrickx L, De Wever H, Hermans V, Mastroleo F, Morin N, Wilmotte A, Janssen P, Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regeneration system for long-haul space exploration missions. Res Microbiol 2005; 157:77-86. [PMID: 16431089 DOI: 10.1016/j.resmic.2005.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/13/2005] [Accepted: 06/20/2005] [Indexed: 11/23/2022]
Abstract
MELiSSA is a bioregenerative life support system designed by the European Space Agency (ESA) for the complete recycling of gas, liquid and solid wastes during long distance space exploration. The system uses the combined activity of different living organisms: microbial cultures in bioreactors, a plant compartment and a human crew. In this minireview, the development of a short-cut ecological system for the biotransformation of organic waste is discussed from a microorganism's perspective. The artificial ecological model--still in full development--that is inspired by Earth's own geomicrobiological ecosystem serves as an ideal study object on microbial ecology and will become an indispensable travel companion in manned space exploration.
Collapse
Affiliation(s)
- Larissa Hendrickx
- Laboratory of Radiobiology and Microbiology, Belgian Nuclear Research Center (SCK-CEN), Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Egert M, Stingl U, Bruun LD, Pommerenke B, Brune A, Friedrich MW. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 2005; 71:4556-66. [PMID: 16085849 PMCID: PMC1183286 DOI: 10.1128/aem.71.8.4556-4566.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physicochemical gut conditions and the composition and topology of the intestinal microbiota in the major gut compartments of the root-feeding larva of the European cockchafer (Melolontha melolontha) were studied. Axial and radial profiles of pH, O2, H2, and redox potential were measured with microsensors. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes in midgut samples of individual larvae revealed a simple but variable and probably nonspecific community structure. In contrast, the T-RFLP profiles of the hindgut samples were more diverse but highly similar, especially in the wall fraction, indicating the presence of a gut-specific community involved in digestion. While high acetate concentrations in the midgut and hindgut (34 and 15 mM) corroborated the presence of microbial fermentation in both compartments, methanogenesis was confined to the hindgut. Methanobrevibacter spp. were the only methanogens detected and were restricted to this compartment. Bacterial 16S rRNA gene clone libraries of the hindgut were dominated by clones related to the Clostridiales. Clones related to the Actinobacteria, Bacillales, Lactobacillales, and gamma-Proteobacteria were restricted to the lumen, whereas clones related to the beta- and delta-Proteobacteria were found only on the hindgut wall. Results of PCR-based analyses and fluorescence in situ hybridization of whole cells with group-specific oligonucleotide probes documented that Desulfovibrio-related bacteria comprise 10 to 15% of the bacterial community at the hindgut wall. The restriction of the sulfate-reducer-specific adenosine-5'-phosphosulfate reductase gene apsA to DNA extracts of the hindgut wall in larvae from four other populations in Europe suggested that sulfate reducers generally colonize this habitat.
Collapse
Affiliation(s)
- Markus Egert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1717:67-88. [PMID: 16277975 PMCID: PMC3072713 DOI: 10.1016/j.bbamem.2005.09.010] [Citation(s) in RCA: 484] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 08/19/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g., the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologs from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na(+)/H(+) antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure of NhaA. This review highlights the approaches, major findings and unresolved problems in alkaline pH homeostasis, focusing on the small number of well-characterized alkali-tolerant and extremely alkaliphilic bacteria.
Collapse
Affiliation(s)
- Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
86
|
Krulwich TA, Lewinson O, Padan E, Bibi E. Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 2005; 3:566-72. [PMID: 15953929 DOI: 10.1038/nrmicro1181] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drug and multidrug resistance have greatly compromised the compounds that were once the mainstays of antibiotic therapy. This resistance often persists despite reductions in the use of antibiotics, indicating that the proteins encoded by antibiotic-resistance genes have alternative physiological roles that can foster such persistence in the absence of selective pressure by antibiotics. The recent observations that Tet(L), a tetracycline-efflux transporter, and MdfA, a multidrug-efflux transporter, both confer alkali tolerance offer a striking case study in support of this hypothesis.
Collapse
Affiliation(s)
- Terry A Krulwich
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
87
|
Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N, Kudo T. Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 2005; 9:229-38. [PMID: 15856134 DOI: 10.1007/s00792-005-0440-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 02/04/2005] [Indexed: 11/29/2022]
Abstract
The first proctodeal (P1) segment in the hindgut of certain higher termites shows high alkalinity. We examined the bacterial diversity of the alkaline P1 gut segments of four species of higher termites by T-RFLP and phylogenetic analyses based on PCR-amplified 16S rRNA genes. The bacterial community of the P1 segment was apparently different from that of the whole gut in each termite. Sequence analysis revealed that Firmicutes (Clostridia and Bacilli) were dominant in the P1 segments of all four termites; however, the phylogenetic compositions varied among the termites. Although some of the P1 segment-derived sequences were related to the sequences previously reported from the alkaline digestive tracts of other insects, most of them formed phylogenetic clusters unique to termites. Such "termite P1 clusters" were distantly related to known bacterial species as well as to sequences reported from alkaline environments in nature. We successfully obtained enrichment cultures of Clostridia- and Bacilli-related bacteria, including putative novel species under anaerobic alkaline conditions from the termite guts. Our results suggest that the alkaline gut region of termites harbors unique bacterial lineages and are expected to be a rich reservoir of novel alkaliphiles yet to be cultivated.
Collapse
Affiliation(s)
- Taksawan Thongaram
- Environmental Molecular Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Molecular profiling of 16S rRNA genes reveals diet-related differences of microbial communities in soil, gut, and casts of Lumbricus terrestris L. (Oligochaeta: Lumbricidae). FEMS Microbiol Ecol 2004; 48:187-97. [DOI: 10.1016/j.femsec.2004.01.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
89
|
Egert M, Wagner B, Lemke T, Brune A, Friedrich MW. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 2004; 69:6659-68. [PMID: 14602626 PMCID: PMC262301 DOI: 10.1128/aem.69.11.6659-6668.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The guts of soil-feeding macroinvertebrates contain a complex microbial community that is involved in the transformation of ingested soil organic matter. In a companion paper (T. Lemke, U. Stingl, M. Egert, M. W. Friedrich, and A. Brune, Appl. Environ. Microbiol. 69:6650-6658, 2003), we show that the gut of our model organism, the humivorous larva of the cetoniid beetle Pachnoda ephippiata, is characterized by strong midgut alkalinity, high concentrations of microbial fermentation products, and the presence of a diverse, yet unstudied microbial community. Here, we report on the community structure of bacteria and archaea in the midgut, hindgut, and food soil of P. ephippiata larvae, determined with cultivation-independent techniques. Clone libraries and terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that the intestines of P. ephippiata larvae contain a complex gut microbiota that differs markedly between midgut and hindgut and that is clearly distinct from the microbiota in the food soil. The bacterial community is dominated by phylogenetic groups with a fermentative metabolism (Lactobacillales, Clostridiales, Bacillales, and Cytophaga-Flavobacterium-Bacteroides [CFB] phylum), which is corroborated by high lactate and acetate concentrations in the midgut and hindgut and by the large numbers of lactogenic and acetogenic bacteria in both gut compartments reported in the companion paper. Based on 16S rRNA gene frequencies, Actinobacteria dominate the alkaline midgut, while the hindgut is dominated by members of the CFB phylum. The archaeal community, however, is less diverse. 16S rRNA genes affiliated with mesophilic Crenarchaeota, probably stemming from the ingested soil, were most frequent in the midgut, whereas Methanobacteriaceae-related 16S rRNA genes were most frequent in the hindgut. These findings agree with the reported restriction of methanogenesis to the hindgut of Pachnoda larvae.
Collapse
Affiliation(s)
- Markus Egert
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|