51
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5:7. [PMID: 25713785 PMCID: PMC4322838 DOI: 10.3389/fcimb.2015.00007] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
52
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
53
|
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 2015. [PMID: 25713785 DOI: 10.3389/fcimb.2015.00007/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy
| | - Stefano Ravaioli
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute Bologna, Italy ; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna Bologna, Italy
| |
Collapse
|
54
|
Little DJ, Bamford NC, Pokrovskaya V, Robinson H, Nitz M, Howell PL. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria. J Biol Chem 2014; 289:35907-17. [PMID: 25359777 DOI: 10.1074/jbc.m114.611400] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.
Collapse
Affiliation(s)
- Dustin J Little
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Natalie C Bamford
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Varvara Pokrovskaya
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, and
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada, and
| | - P Lynne Howell
- From the Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada,
| |
Collapse
|
55
|
Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MTC, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JDC, Klassen JS, Clarke AJ, Howell PL. P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 2014; 10:e1004334. [PMID: 25165982 PMCID: PMC4148444 DOI: 10.1371/journal.ppat.1004334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. Bacteria utilize many defense strategies to protect themselves against external forces. One mechanism used by the bacterium Pseudomonas aeruginosa is the production of the long sugar polymer alginate. The bacteria use this polymer to form a biofilm – a barrier to protect against antibiotics and the host immune response. During its biosynthesis alginate undergoes a chemical modification whereby acetate is added to the polymer. Acetylation of alginate is important as this modification makes the bacterial biofilm less susceptible to recognition and clearance by the host immune system. In this paper we present the atomic structure of AlgJ; one of four proteins required for O-acetylation of the polymer. AlgJ is structurally similar to AlgX, which we have shown previously is also required for alginate acetylation. To understand why both enzymes are required for O-acetylation we functionally characterized the proteins and found that although AlgJ exhibits acetylesterase activity – catalyzing the removal of acetyl groups from a surrogate substrate – it does not bind to short mannuornic acid polymers. In contrast, AlgX bound alginate in a length-dependent manner and was capable of transfering acetate from a surrogate substrate onto alginate. This has allowed us to not only understand how acetate is added to alginate, but increases our understanding of how acetate is added to other bacterial sugar polymers.
Collapse
Affiliation(s)
- Perrin Baker
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tyler Ricer
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Moynihan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Dustin J. Little
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C. Whitney
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Dawson
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel T. Weadge
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
56
|
Effect of crude extracts of selected actinomycetes on biofilm formation ofA. schindleri,M. aci, andB. cereus. J Basic Microbiol 2014; 55:645-51. [DOI: 10.1002/jobm.201400358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/28/2014] [Indexed: 11/07/2022]
|
57
|
Zaidi T, Zaidi T, Cywes-Bentley C, Lu R, Priebe GP, Pier GB. Microbiota-driven immune cellular maturation is essential for antibody-mediated adaptive immunity to Staphylococcus aureus infection in the eye. Infect Immun 2014; 82:3483-91. [PMID: 24914214 PMCID: PMC4136232 DOI: 10.1128/iai.01951-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/29/2014] [Indexed: 11/20/2022] Open
Abstract
As an immune-privileged site, the eye, and particularly the outer corneal surface, lacks resident mature immune effector cells. Physical barriers and innate mediators are the best-described effectors of immunity in the cornea. When the barriers are breached, infection can result in rapid tissue destruction, leading to loss of visual acuity and frank blindness. To determine the cellular and molecular components needed for effective adaptive immunity on the corneal surface, we investigated which immune system effectors were required for protection against Staphylococcus aureus corneal infections in mice, which are a serious cause of human eye infections. Both systemically injected and topically applied antibodies to the conserved cell surface polysaccharide poly-N-acetylglucosamine (PNAG) were effective at mediating reductions in corneal pathology and bacterial levels. Additional host factors impacting protection included intercellular adhesion molecule 1 (ICAM-1)-dependent polymorphonuclear leukocyte (PMN) recruitment, functional CD4(+) T cells, signaling via the interleukin-17 (IL-17) receptor, and IL-22 production. In germfree mice, there was no protective efficacy of antibody to PNAG due to the lack of LY6G(+) inflammatory cell coeffector recruitment to the cornea. Protection was manifest after 3 weeks of exposure to conventional mice and acquisition of a resident microbiota. We conclude that in the anterior eye, ICAM-1-mediated PMN recruitment to the infected cornea along with endogenous microbiota-matured CD4(+) T cells producing both IL-17 and IL-22 is required for antibody to PNAG to protect against S. aureus infection.
Collapse
Affiliation(s)
- Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roger Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory P Priebe
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Divisions of Critical Care Medicine (Department of Anesthesiology, Perioperative and Pain Medicine) and Infectious Diseases (Department of Medicine), Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
58
|
Brooks JL, Jefferson KK. Phase variation of poly-N-acetylglucosamine expression in Staphylococcus aureus. PLoS Pathog 2014; 10:e1004292. [PMID: 25077798 PMCID: PMC4117637 DOI: 10.1371/journal.ppat.1004292] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Polysaccharide intercellular adhesin (PIA), also known as poly-N-acetyl-β-(1–6)-glucosamine (PIA/PNAG) is an important component of Staphylococcus aureus biofilms and also contributes to resistance to phagocytosis. The proteins IcaA, IcaD, IcaB, and IcaC are encoded within the intercellular adhesin (ica) operon and synthesize PIA/PNAG. We discovered a mechanism of phase variation in PIA/PNAG expression that appears to involve slipped-strand mispairing. The process is reversible and RecA-independent, and involves the expansion and contraction of a simple tetranucleotide tandem repeat within icaC. Inactivation of IcaC results in a PIA/PNAG-negative phenotype. A PIA/PNAG-hyperproducing strain gained a fitness advantage in vitro following the icaC mutation and loss of PIA/PNAG production. The mutation was also detected in two clinical isolates, suggesting that under certain conditions, loss of PIA/PNAG production may be advantageous during infection. There was also a survival advantage for an icaC-negative strain harboring intact icaADB genes relative to an isogenic icaADBC deletion mutant. Together, these results suggest that inactivation of icaC is a mode of phase variation for PIA/PNAG expression, that high-level production of PIA/PNAG carries a fitness cost, and that icaADB may contribute to bacterial fitness, by an unknown mechanism, in the absence of an intact icaC gene and PIA/PNAG production. Staphylococcal polysaccharide intercellular adhesin (PIA), also known as β-1-6-linked N-acetylglucosamine (PNAG) plays a role in immune evasion and biofilm formation. Evidence suggests that under certain circumstances PIA/PNAG production is beneficial, whereas at times, it may be advantageous for the bacteria to turn production off. In S. epidermidis, PIA/PNAG can be switched off when an insertion sequence recombines into the intercellular adhesin locus (ica). In this study, we have found a short tandem repeat sequence in the ica locus of S. aureus that can undergo expansion and contraction. The addition or subtraction of non-multiples of three of this repeat shifts the reading frame of the icaC gene, resulting in the complete loss of PIA/PNAG production. We hypothesize that certain conditions that make the PIA/PNAG-negative phenotype advantageous during infection, such as the development of an effective immune response to PIA/PNAG on the bacterial surface, would select for repeat mutants. In support of this hypothesis, we found clinical isolates with expansion and deletion of the repeat. These findings reveal a new on-off switch for the expression of PIA/PNAG.
Collapse
Affiliation(s)
- Jamie L. Brooks
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kimberly K. Jefferson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
59
|
A Poly-N-acetylglucosamine-Shiga toxin broad-spectrum conjugate vaccine for Shiga toxin-producing Escherichia coli. mBio 2014; 5:e00974-14. [PMID: 24667709 PMCID: PMC3977355 DOI: 10.1128/mbio.00974-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many pathogens produce the β-(1-6)-linked poly-N-acetylglucosamine (PNAG) surface polysaccharide that is being developed as a broadly protective antimicrobial vaccine. However, it is unknown whether systemically injected PNAG vaccines or antibodies would provide protective immunity against pathogens confined to the gastrointestinal tract such as Shiga toxin (Stx)-producing Escherichia coli (STEC), an important group of gastrointestinal (GI) pathogens for which effective immunotherapeutics are lacking. To ascertain whether systemic IgG antibody to PNAG impacts this infectious situation, a vaccine consisting of a synthetic nonamer of nonacetylated PNAG, 9GlcNH2, conjugated to the Shiga toxin 1b subunit (9GlcNH2-Stx1b) was produced. Rabbit antibodies raised to the conjugate vaccine were tested for bacterial killing and toxin neutralization in vitro and protection against infection in infant mice. Cell surface PNAG was detected on all 9 STEC isolates tested, representing 6 STEC serogroups, including E. coli O157:H7. Antibody to the 9GlcNH2-Stx1b conjugate neutralized Stx1 potently and Stx2 modestly. For O157:H7 and O104:H4 STEC strains, antibodies elicited by the 9GlcNH2-Stx1b conjugate possessed opsonic killing and bactericidal activity. Following intraperitoneal injection, antibodies to both PNAG and Stx were needed for infant mouse protection against O157 STEC. These antibodies also mediated protection against the Stx2-producing O104:H4 strain that was the cause of a recent outbreak in Germany, although sufficient doses of antibody to PNAG alone were protective against this strain in infant mice. Our observations suggest that vaccination against both PNAG and Stx, using a construct such as the 9GlcNH2-Stx1b conjugate vaccine, would be protective against a broad range of STEC serogroups. IMPORTANCE The presence of poly-N-acetylglucosamine (PNAG) on many pathogens presents an opportunity to target this one structure with a multispecies vaccine. Whether antibodies to PNAG can protect against pathogens confined to the gastrointestinal tract is not known. As Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are serious causes of infection whose virulence is dependent on elaboration of Stx, we prepared a vaccine containing a synthetic nonamer of PNAG (9GlcNH2) conjugated to Shiga toxin 1b subunit (9GlcNH2-Stx1b) to evaluate bacterial killing, toxin neutralization, and protective efficacy in infant mice. All nine (100%) clinical strains of STEC from different serogroups expressed PNAG. Vaccine-induced antibody mediated in vitro killing of STEC and neutralization of both Stx1 and Stx2. Passive administration of antibody to the conjugate showed protection requiring immunity to both PNAG and Stx for O157 strains, although for an O104 strain, antibody to PNAG alone was protective. Immunity to PNAG may contribute to protection against STEC infections.
Collapse
|
60
|
Pokrovskaya V, Poloczek J, Little DJ, Griffiths H, Howell PL, Nitz M. Functional characterization of Staphylococcus epidermidis IcaB, a de-N-acetylase important for biofilm formation. Biochemistry 2013; 52:5463-71. [PMID: 23866051 DOI: 10.1021/bi400836g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A polymer of partially de-N-acetylated β-1,6-linked N-acetylglucosamine (dPNAG), also known as the polysaccharide intercellular adhesin (PIA), is an important component of many bacterial biofilm matrices. In Staphyloccocus epidermidis, the poly-N-acetylglucosamine polymer is partially de-N-acetylated by the extracellular protein IcaB. To understand the mechanism of action of IcaB, the enzyme was overexpressed and purified. IcaB demonstrates metal-dependent de-N-acetylase activity on β-1,6-linked N-acetylglucosamine oligomers with a broad preference for divalent metals. Steady-state kinetic analysis reveals the low catalytic efficiency (pentasaccharide kcat/KM 0.03 M(-1) s(-1)) of the enzyme toward the oligomeric substrates. While IcaB displays similar rates of de-N-acetylation with tri- through hexasaccharide PNAG oligomers, position specific de-N-acetylation was only observed with penta- and hexasaccharides. The enzyme preferentially de-N-acetylates the second residue from the reducing terminus in the pentasaccharide and second and third residues from the reducing terminus in the hexasaccharide. The data described here represent an important step toward a detailed understanding of dPNAG biosynthesis in S. epidermidis, an important nosocomial pathogen, as well as in other Gram-positive bacteria. The low catalytic activity of IcaB is consistent with reports of other enzymes which act on biofilm-related polysaccharides, and this emerging trend may indicate a common feature among this group of polysaccharide processing enzymes.
Collapse
Affiliation(s)
- Varvara Pokrovskaya
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Developing a universal vaccine for S. aureus is a top priority but to date we have only had failures in human clinical trials. Given the plethora of bacterial virulence factors, broad range of the health of humans at-risk for infections, lack of any information regarding immune effectors mediating protection for any manifestation of S. aureus infection and overall competence of this organism as a colonizer, commensal and pathogen, we may just simply have to accept the fact that we will not get a universal vaccine. Antigenic variation is a major challenge for some vaccine targets and for many conserved targets the organism can easily decrease or even eliminate expression to avoid immune effectors without compromise to infectivity and ability to cause disease. Studies of human immune responses similarly have been unable to identify any clear mediators of immunity and data from such studies can only eliminate those found not to be associated with protection or that might serve as a marker for individuals with a higher level of resistance to infection. Animal studies are not predictive of success in humans and unlikely will be except in hindsight if and when we develop an efficacious vaccine. Successful vaccines for other bacteria based on capsular polysaccharides have not worked to date for S. aureus, and laboratory studies combining antibody to the major capsular serotypes and the other S. aureus surface polysaccharide, poly-N-acetyl glucosamine, unexpectedly showed interference not augmentation of immunity. Potential pathways toward vaccine development do exist but for the foreseeable future will be based on empiric approaches derived from laboratory-based in vitro and animal tests and not on inducing a known immune effector that predicts human resistance to infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Division of Infectious Diseases; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
62
|
Riley LM, Weadge JT, Baker P, Robinson H, Codée JDC, Tipton PA, Ohman DE, Howell PL. Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem 2013; 288:22299-314. [PMID: 23779107 DOI: 10.1074/jbc.m113.484931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The exopolysaccharide alginate, produced by mucoid Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, undergoes two different chemical modifications as it is synthesized that alter the properties of the polymer and hence the biofilm. One modification, acetylation, causes the cells in the biofilm to adhere better to lung epithelium, form microcolonies, and resist the effects of the host immune system and/or antibiotics. Alginate biosynthesis requires 12 proteins encoded by the algD operon, including AlgX, and although this protein is essential for polymer production, its exact role is unknown. In this study, we present the X-ray crystal structure of AlgX at 2.15 Å resolution. The structure reveals that AlgX is a two-domain protein, with an N-terminal domain with structural homology to members of the SGNH hydrolase superfamily and a C-terminal carbohydrate-binding module. A number of residues in the carbohydrate-binding module form a substrate recognition "pinch point" that we propose aids in alginate binding and orientation. Although the topology of the N-terminal domain deviates from canonical SGNH hydrolases, the residues that constitute the Ser-His-Asp catalytic triad characteristic of this family are structurally conserved. In vivo studies reveal that site-specific mutation of these residues results in non-acetylated alginate. This catalytic triad is also required for acetylesterase activity in vitro. Our data suggest that not only does AlgX protect the polymer as it passages through the periplasm but that it also plays a role in alginate acetylation. Our results provide the first structural insight for a wide group of closely related bacterial polysaccharide acetyltransferases.
Collapse
Affiliation(s)
- Laura M Riley
- Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AKK, Maira-Litràn T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 2013; 110:E2209-18. [PMID: 23716675 PMCID: PMC3683766 DOI: 10.1073/pnas.1303573110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Rosane B. DeOliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy S. Garrett
- Departments of Immunology and Infectious Diseases, Genetics and Complex Diseases, Dana–Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Jennifer O’Malley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Kathryn Kinzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Astrid Rey
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Christophe Perrin
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Alexander K. K. Kayatani
- Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Tomas Maira-Litràn
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Lauren O. Bakaletz
- The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Stephen I. Pelton
- Department of Pediatric Infectious Diseases, Boston University Medical Center, Boston, MA 02118
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
64
|
Novel synthetic (poly)glycerolphosphate-based antistaphylococcal conjugate vaccine. Infect Immun 2013; 81:2554-61. [PMID: 23649092 DOI: 10.1128/iai.00271-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal infections are a major source of global morbidity and mortality. Currently there exists no antistaphylococcal vaccine in clinical use. Previous animal studies suggested a possible role for purified lipoteichoic acid as a vaccine target for eliciting protective IgG to several Gram-positive pathogens. Since the highly conserved (poly)glycerolphosphate backbone of lipoteichoic acid is a major antigenic target of the humoral immune system during staphylococcal infections, we developed a synthetic method for producing glycerol phosphoramidites to create a covalent 10-mer of (poly)glycerolphosphate for potential use in a conjugate vaccine. We initially demonstrated that intact Staphylococcus aureus elicits murine CD4(+) T cell-dependent (poly)glycerolphosphate-specific IgM and IgG responses in vivo. Naive mice immunized with a covalent conjugate of (poly)glycerolphosphate and tetanus toxoid in alum plus CpG-oligodeoxynucleotides produced high secondary titers of serum (poly)glycerolphosphate-specific IgG. Sera from immunized mice enhanced opsonophagocytic killing of live Staphylococcus aureus in vitro. Mice actively immunized with the (poly)glycerolphosphate conjugate vaccine showed rapid clearance of staphylococcal bacteremia in vivo relative to mice similarly immunized with an irrelevant conjugate vaccine. In contrast to purified, natural lipoteichoic acid, the (poly)glycerolphosphate conjugate vaccine itself exhibited no detectable inflammatory activity. These data suggest that a synthetic (poly)glycerolphosphate-based conjugate vaccine will contribute to active protection against extracellular Gram-positive pathogens expressing this highly conserved backbone structure in their membrane-associated lipoteichoic acid.
Collapse
|
65
|
Wan Z, Brown PJB, Elliott EN, Brun YV. The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 2013; 88:486-500. [PMID: 23517529 DOI: 10.1111/mmi.12199] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Bacterial exopolysaccharide synthesis is a prevalent and indispensible activity in many biological processes, including surface adhesion and biofilm formation. In Caulobacter crescentus, surface attachment and subsequent biofilm growth depend on the ability to synthesize an adhesive polar polysaccharide known as the holdfast. In this work, we show that polar polysaccharide synthesis is a conserved phenomenon among Alphaproteobacterial species closely related to C. crescentus. Among them, mutagenesis of Asticcacaulis biprosthecum showed that disruption of the hfsH gene, which encodes a putative polysaccharide deacetylase, leads to accumulation of holdfast in the culture supernatant. Examination of the hfsH deletion mutant in C. crescentus revealed that this strain synthesizes holdfast; however, like the A. biprosthecum hfsH mutant, the holdfasts are shed into the medium and have decreased adhesiveness and cohesiveness. Site-directed mutagenesis at the predicted catalytic site of C. crescentus HfsH phenocopied the ΔhfsH mutant and abolished the esterase activity of HfsH. In contrast, overexpression of HfsH increased cell adherence without increasing holdfast synthesis. We conclude that the polysaccharide deacetylase activity of HfsH is required for the adhesive and cohesive properties of the holdfast, as well as for the anchoring of the holdfast to the cell envelope.
Collapse
Affiliation(s)
- Zhe Wan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
66
|
Marques VF, Souza MMD, Mendonça ECD, Alencar TAD, Pribul BR, Coelho SDMDO, Lasagno M, Reinoso EB. Análise fenotípica e genotípica da virulência de Staphylococcus spp. e de sua dispersão clonal como contribuição ao estudo da mastite bovina. PESQUISA VETERINARIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mastite é uma inflamação da glândula mamária causada principalmente por bactérias, dentre as quais o gênero Staphylococcus ocupa um papel importante. Bactérias pertencentes a este gênero são caracterizadas por expressar fatores de virulência que permitem sua persistência e disseminação no hospedeiro. O presente trabalho teve por objetivo avaliar fenogenotipicamente os fatores de virulência de isolados de Staphylococcus spp. a partir de casos de mastite bovina. Foram analisadas 272 amostras de leite provenientes de oito propriedades da região Sul-Fluminense do Estado do Rio de Janeiro. Após identificação, obteve-se um total de 250 isolados de Staphylococcus spp. Estes foram submetidos às provas fenotípicas de detecção da produção de "slime" em microplaca e em ágar vermelho congo; produção de hemolisinas e sinergismo hemolítico; produção de caseinase e DNase. Posteriormente foram submetidos à técnica de PCR para detecção dos genes de produção de cápsula (cap5 e cap8), fibronectina (fnbA,e fnbB), "slime" (icaA e icaD) e hemolisinas (hla e hlb). Do total avaliado, 58% (145/250) foi identificado como Staphylococcus spp. coagulase-negativos e 42% (105/250) como Staphylococcus spp. coagulase-positivos, destes 36,2% (38/105) foram identificados como S. aureus, 11,4% (12/105) como S. intermedius e 3,8% (4/105) como pertencentes ao grupo SIG. Apenas 6,4% (16/250) dos isolados foram produtores de α-hemólise, 4,8% (12/250) de β-hemólise e, 1,6% (4/250) de α e β-hemólise. A produção de caseinase foi observada em 66,4% (166/250), e a produção de "slime" avaliada pela técnica da microplaca em 76,8% (192/250) dos isolados, respectivamente. A DNase foi detectada em ECNs (38/145) e S. aureus (14/38). Os marcadores genéticos avaliados para a produção de slime, icaA e icaD apresentaram nenhuma ou leve concordância com a produção fenotípica, respectivamente, utilizando o coeficiente Kappa. Tal dado parece indicar que outros marcadores genéticos podem estar envolvidos com a expressão desta característica. Os demais genes detectados com frequência de 4% (10/250) para cap5 e para cap8, 32,8% (82/250) para fnbA, 4,4% (11/250) para fnbB, 19,2% (48/250) para hla e 18% (45/250) para hlb. O perfil circulante nas propriedades foi o 1: isolado produtor de "slime" e caseinase. O gene spaA foi positivo em todos os S. aureus, apresentando amplicons de tamanhos variados, sendo o tamanho prevalente o de 300pb. A amplificação do gene coa apresentou nove tipos polimórficos distintos, sendo prevalente o amplicon de 600pb. O gene agr foi detectado em todos os S. aureus, com amplicon de 200pb. Foi observado que os genes de virulência estudados estavam distribuídos de modo aleatório entreos 6 distintos perfis eletroforéticos obtidos através da Eletroforese em Gel de Campo Pulsado (PFGE).
Collapse
|
67
|
Foreman A, Jervis-Bardy J, Boase SJ, Tan L, Wormald PJ. Noninvasive Staphylococcus aureus biofilm determination in chronic rhinosinusitis by detecting the exopolysaccharide matrix component poly-N-acetylglucosamine. Int Forum Allergy Rhinol 2012; 3:83-8. [PMID: 23136110 DOI: 10.1002/alr.21115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND The role that bacterial biofilms might play in recalcitrant forms of chronic rhinosinusitis (CRS) is increasingly being recognized. However, the detection of bacteria existing in this form, using standard culture, is limited by their unique metabolically inactive properties. All current biofilm diagnostic modalities require invasive mucosal biopsies, which limit their use to the operating theatre. METHODS Twenty CRS patients and 5 controls were enrolled in a prospective study to assess the feasibility of noninvasively diagnosing S. aureus biofilms by detecting the biofilm matrix polysaccharide poly-N-acetylglucosamine (PNAG). An immunofluorescence protocol was developed for PNAG detection and compared with both standard microbiological cultures and fluorescence in situ hybridization (FISH). RESULTS Thirteen of 20 CRS patients had evidence of S. aureus biofilm formation using FISH. Of these, 12 had detectable PNAG. Interestingly none of the S. aureus FISH-negative patients were PNAG-positive despite the presence of coagulase-negative Staphylococci biofilms, some of which may exhibit PNAG in their pathogenic forms. The development of a noninvasive S. aureus biofilm diagnostic test provides a reliable means to identify a high-risk group of CRS patients who harbor S. aureus biofilms. The ability to be used outside of the perioperative period to assess surgical efficacy, guide management, and evaluate new treatment modalities provides a significant advance in this field of research and clinical practice. CONCLUSION This study has confirmed the feasibility of noninvasive detection of S. aureus biofilms with a simple test that produces results comparable to the more invasive methods that are currently relied upon.
Collapse
Affiliation(s)
- Andrew Foreman
- Department of Otorhinolaryngology-Head and Neck Surgery, Discipline of Surgery, University of Adelaide and Flinders University, Adelaide, Australia
| | | | | | | | | |
Collapse
|
68
|
Maira-Litrán T, Bentancor LV, Bozkurt-Guzel C, O'Malley JM, Cywes-Bentley C, Pier GB. Synthesis and evaluation of a conjugate vaccine composed of Staphylococcus aureus poly-N-acetyl-glucosamine and clumping factor A. PLoS One 2012; 7:e43813. [PMID: 22970144 PMCID: PMC3435376 DOI: 10.1371/journal.pone.0043813] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
The increasing frequency, severity and antimicrobial resistance of Staphylococcus aureus infections has made the development of immunotherapies against this pathogen more urgent than ever. Previous immunization attempts using monovalent antigens resulted in at best partial levels of protection against S. aureus infection. We therefore reasoned that synthesizing a bivalent conjugate vaccine composed of two widely expressed antigens of S. aureus would result in additive/synergetic activities by antibodies to each vaccine component and/or in increased strain coverage. For this we used reductive amination, to covalently link the S. aureus antigens clumping factor A (ClfA) and deacetylated poly-N-β-(1-6)-acetyl-glucosamine (dPNAG). Mice immunized with 1, 5 or 10 µg of the dPNAG-ClfA conjugate responded in a dose-dependent manner with IgG to dPNAG and ClfA, whereas mice immunized with a mixture of ClfA and dPNAG developed significantly lower antibody titers to ClfA and no antibodies to PNAG. The dPNAG-ClfA vaccine was also highly immunogenic in rabbits, rhesus monkeys and a goat. Moreover, affinity-purified, antibodies to ClfA from dPNAG-ClfA immune serum blocked the binding of three S. aureus strains to immobilized fibrinogen. In an opsonophagocytic assay (OPKA) goat antibodies to dPNAG-ClfA vaccine, in the presence of complement and polymorphonuclear cells, killed S. aureus Newman and, to a lower extent, S. aureus Newman ΔclfA. A PNAG-negative isogenic mutant was not killed. Moreover, PNAG antigen fully inhibited the killing of S. aureus Newman by antisera to dPNAG-ClfA vaccine. Finally, mice passively vaccinated with goat antisera to dPNAG-ClfA or dPNAG-diphtheria toxoid conjugate had comparable levels of reductions of bacteria in the blood 2 h after infection with three different S. aureus strains as compared to mice given normal goat serum. In conclusion, ClfA is an immunogenic carrier protein that elicited anti-adhesive antibodies that fail to augment the OPK and protective activities of antibodies to the PNAG cell surface polysaccharide.
Collapse
Affiliation(s)
- Tomás Maira-Litrán
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
69
|
Hofmann CM, Anderson JM, Marchant RE. Targeted delivery of vancomycin to Staphylococcus epidermidis biofilms using a fibrinogen-derived peptide. J Biomed Mater Res A 2012; 100:2517-25. [PMID: 22623343 PMCID: PMC3461832 DOI: 10.1002/jbm.a.34166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/08/2022]
Abstract
This study reports on the use of a fibrinogen-derived peptide for the specific targeting and delivery of vancomycin to Staphylococcus epidermidis biofilms. One method by which S. epidermidis initially adheres to biomaterials uses the plasma protein fibrinogen as an intermediary, where the S. epidermidis surface protein SdrG binds to a short amino acid sequence near the amino terminus of the Bβ chain of fibrinogen. We mimicked this binding interaction and demonstrated the use of a synthetic fibrinogen-based β6-20 peptide to target and deliver vancomycin to S. epidermidis in vitro. The β6-20 peptide was synthesized and labeled with a Nanogold probe, and its targeting capabilities were examined through the use of scanning electron microscopy. The Nanogold component was then replaced by vancomycin, utilizing a flexible, variable length poly(ethylene glycol) linker between the peptide and antibiotic to create the targeted vancomycin products, β6-20-PEG(x) -VAN. Initial binding to surface adherent S. epidermidis was increased in a concentration-dependent manner relative to vancomycin for all equivalent concentrations ≥4 μg/mL, with targeted vancomycin content up to 22.9 times that of vancomycin alone. Retention of the targeted antibiotics was measured after an additional 24-h incubation period, revealing levels 1.3 times that of vancomycin. The results demonstrate the improved targeting and retention of vancomycin within a biofilm due to the incorporation of a specific targeting motif.
Collapse
Affiliation(s)
- Christopher M Hofmann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
70
|
Poly-N-acetylglucosamine expression by wild-type Yersinia pestis is maximal at mammalian, not flea, temperatures. mBio 2012; 3:e00217-12. [PMID: 22893384 PMCID: PMC3419525 DOI: 10.1128/mbio.00217-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous bacteria, including Yersinia pestis, express the poly-N-acetylglucosamine (PNAG) surface carbohydrate, a major component of biofilms often associated with a specific appearance of colonies on Congo red agar. Biofilm formation and PNAG synthesis by Y. pestis have been reported to be maximal at 21 to 28°C or “flea temperatures,” facilitating the regurgitation of Y. pestis into a mammalian host during feeding, but production is diminished at 37°C and thus presumed to be decreased during mammalian infection. Most studies of PNAG expression and biofilm formation by Y. pestis have used a low-virulence derivative of strain KIM, designated KIM6+, that lacks the pCD1 virulence plasmid, and an isogenic mutant without the pigmentation locus, which contains the hemin storage genes that encode PNAG biosynthetic proteins. Using confocal microscopy, fluorescence-activated cell sorter analysis and growth on Congo red agar, we confirmed prior findings regarding PNAG production with the KIM6+ strain. However, we found that fully virulent wild-type (WT) strains KIM and CO92 had maximal PNAG expression at 37°C, with lower PNAG production at 28°C both in broth medium and on Congo red agar plates. Notably, the typical dark colony morphology appearing on Congo red agar was maintained at 28°C, indicating that this phenotype is not associated with PNAG expression in WT Y. pestis. Extracts of WT sylvatic Y. pestis strains from the Russian Federation confirmed the maximal expression of PNAG at 37°C. PNAG production by WT Y. pestis is maximal at mammalian and not insect vector temperatures, suggesting that this factor may have a role during mammalian infection. Yersinia pestis transitions from low-temperature residence and replication in insect vectors to higher-temperature replication in mammalian hosts. Prior findings based primarily on an avirulent derivative of WT (wild-type) KIM, named KIM6+, showed that biofilm formation associated with synthesis of poly-N-acetylglucosamine (PNAG) is maximal at 21 to 28°C and decreased at 37°C. Biofilm formation was purported to facilitate the transmission of Y. pestis from fleas to mammals while having little importance in mammalian infection. Here we found that for WT strains KIM and CO92, maximal PNAG production occurs at 37°C, indicating that temperature regulation of PNAG production in WT Y. pestis is not mimicked by strain KIM6+. Additionally, we found that Congo red binding does not always correlate with PNAG production, despite its widespread use as an indicator of biofilm production. Taken together, the findings show that a role for PNAG in WT Y. pestis infection should not be disregarded and warrants further study.
Collapse
|
71
|
Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes 2012; 5:244. [PMID: 22591918 PMCID: PMC3481475 DOI: 10.1186/1756-0500-5-244] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM). Findings 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU) plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. Conclusions While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.
Collapse
Affiliation(s)
- Nuno Cerca
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | | | | | | | | |
Collapse
|
72
|
Hofmann CM, Bednar KJ, Anderson JM, Marchant RE. Disruption of Staphylococcus epidermidis biofilm formation using a targeted cationic peptide. J Biomed Mater Res A 2012; 100:1061-7. [DOI: 10.1002/jbm.a.33273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/18/2011] [Indexed: 11/11/2022]
|
73
|
Abstract
High attack rates and the ability of Staphylococcus aureus to develop resistance to all antibiotics in medical practice heightens the urgency for vaccine development. S. aureus causes many disease syndromes, including invasive disease, pneumonia, and skin and soft tissue infections. It remains unclear whether a single vaccine could protect against all of these. Vaccine composition is also challenging. Active immunization with conjugated types 5 and 8 capsular polysaccharides, an iron scavenging protein, isdB, and passive immunization against clumping factor A and lipoteichoic acid have all proven unsuccessful in clinical trials. Many experts advocate an approach using multiple antigens and have suggested that the right combination of antigens has not yet been identified. Others advocate that a successful vaccine will require antigens that work by multiple immunologic mechanisms. Targeting staphylococcal protein A and stimulating the T-helper 17 lymphocyte pathway have each received recent attention as alternative approaches to vaccination in addition to the more traditional identification of opsonophagocytic antibodies. Many questions remain as to how to successfully formulate a successful vaccine and to whom it should be deployed.
Collapse
Affiliation(s)
- Robert S Daum
- Department of Pediatrics, Section of Infectious Diseases, The University of Chicago Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
74
|
Grachev AA, Gerbst AG, Gening ML, Titov DV, Yudina ON, Tsvetkov YE, Shashkov AS, Pier GB, Nifantiev NE. NMR and conformational studies of linear and cyclic oligo-(1→6)-β-D-glucosamines. Carbohydr Res 2011; 346:2499-510. [PMID: 21945383 PMCID: PMC3201778 DOI: 10.1016/j.carres.2011.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022]
Abstract
The conformational behavior of a series of linear and cyclic oligo-(1→6)-β-D-glucosamines and their N-acetylated derivatives, which are related to fragments of natural poly-N-acetylglucosamine, was studied by theoretical molecular modeling and experimental determination of transglycosidic vicinal coupling constants (3)J(C,H) and (3)J(H,H). Molecular dynamics simulations were performed under several types of conditions varying in the consideration of ionization of amino groups, solvent effect, and temperature. Neural network clustering and asphericity calculations were performed on the basis of molecular dynamics data. It was shown that disaccharide fragments in the studied linear oligosaccharides were not rigid, and tended to have several conformers, thus determining the overall twisted shape with helical elements. In addition, it was found that the behavior of C5-C6 bond depended significantly upon the simulation conditions. The cyclic di-, tri-, and tetrasaccharides mostly had symmetrical ring-shaped conformations. The larger cycles tended to adopt more complicated shapes, and the conformational behavior of their disaccharide fragments was close to that in the linear oligosaccharides.
Collapse
Affiliation(s)
- Alexey A. Grachev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Alexey G. Gerbst
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Denis V. Titov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Olga N. Yudina
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Alexander S. Shashkov
- NMR spectroscopy, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| | - Gerald B. Pier
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA (USA)
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow (Russia)
| |
Collapse
|
75
|
BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol 2011; 194:233-42. [PMID: 22056934 DOI: 10.1128/jb.06020-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In order to gain a better understanding of regulation of biofilm formation, we sought to study the mechanism by which Bps expression is controlled in Bordetella. Expression of bpsABCD (bpsA-D) is elevated in biofilms compared with levels in planktonically grown cells. We found that bpsA-D is expressed independently of BvgAS. Subsequently, we identified an open reading frame (ORF), BB1771 (designated here bpsR), that is located upstream of and in the opposite orientation to the bpsA-D locus. BpsR is homologous to the MarR family of transcriptional regulators. Measurement of bpsA and bpsD transcripts and the Bps polysaccharide levels from the wild-type and the ΔbpsR strains suggested that BpsR functions as a repressor. Consistent with enhanced production of Bps, the bpsR mutant displayed considerably more structured biofilms. We mapped the bpsA-D promoter region and showed that purified BpsR protein specifically bound to the bpsA-D promoter. Our results provide mechanistic insights into the regulatory strategy employed by Bordetella for control of the production of the Bps polysaccharide and biofilm formation.
Collapse
|
76
|
Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 2011; 6:e16861. [PMID: 21347299 PMCID: PMC3037945 DOI: 10.1371/journal.pone.0016861] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/17/2011] [Indexed: 01/02/2023] Open
Abstract
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.
Collapse
|
77
|
Chen C, Liao X, Jiang H, Zhu H, Yue L, Li S, Fang B, Liu Y. Characteristics of Escherichia coli biofilm production, genetic typing, drug resistance pattern and gene expression under aminoglycoside pressures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:5-10. [PMID: 21787622 DOI: 10.1016/j.etap.2010.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 02/28/2010] [Accepted: 03/02/2010] [Indexed: 05/31/2023]
Abstract
In our studies, qualitative (scanning electron microscope) and semi-quantitative (modified crystal violet staining method) methods had been used to evaluate Escherichia coli biofilm-forming ability. Broth microdilution method and enterobacterial repetitive intergenic consensus-based PCR (ERIC-PCR) were performed to study E. coli drug resistance pattern and genetic typing. Based on the results above, we studied the correlation between biofilm-forming ability phenotype, drug resistance pattern and genetic typing in E. coli. Real-time qPCR (qRT-PCR) was used to reveal mRNA expression level of E. coli biofilm related multiple antibiotics resistance genes (acrA, agn43, csgA, csgD, ompF and pgaA) under different concentrations of four aminoglycoside pressures. Our results showed that: (i) forty-nine out of 64 strains of E. coli (76.56%) showed significant production of biofilm and most of them performed weak biofilm-forming ability; (ii) ERIC-PCR showed that there was significant correlation between biofilm-forming ability and genotype; while there was weak correlation between biofilm-forming ability and drug resistance patterns based upon the results of semi-quantitative method and antibiotics susceptibility test; (iii) qRT-PCR revealed mRNA expression of acrA, agn43, csgA, csgD, ompF and pgaA genes changed accordingly by stimulation of different concentrations of four aminoglycosides.
Collapse
Affiliation(s)
- Chaoxi Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Harro JM, Peters BM, O'May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. ACTA ACUST UNITED AC 2010; 59:306-23. [PMID: 20602638 PMCID: PMC2936112 DOI: 10.1111/j.1574-695x.2010.00708.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Gening ML, Titov DV, Grachev AA, Gerbst AG, Yudina ON, Shashkov AS, Chizhov AO, Tsvetkov YE, Nifantiev NE. Synthesis, NMR, and Conformational Studies of Cyclic Oligo-(1→6)-β-D-Glucosamines. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Rohde H, Frankenberger S, Zähringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 2009; 89:103-11. [PMID: 19913940 DOI: 10.1016/j.ejcb.2009.10.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus epidermidis is of major importance in infections associated with indwelling medical devices. The tight pathogenic association is essentially linked to the species ability to form adherent biofilms on artificial surfaces. Aiming at identifying novel targets for vaccination or therapy much effort has been made to unravel the molecular mechanisms leading to S. epidermidis biofilm formation. At present, polysaccharide intercellular adhesin (PIA) is the best studied factor involved in S. epidermidis biofilm accumulation. PIA is a glycan of beta-1,6-linked 2-acetamido-2-deoxy-D-glucopyranosyl residues of which 15 % are non-N-acetylated. PIA-producing S. epidermidis are widespread in clinical strain collections and PIA synthesis has been shown to be essential for S. epidermidis virulence. Moreover, PIA homologues have been identified in many other staphylococcal species, including the major human pathogen Staphylococcus aureus, and also Gram-negative human pathogens, suggesting that it might represent a more general pathogenicity principle in biofilm-related infections. In this review the current knowledge about the structure and biosynthesis of PIA is summarized. Additionally, information on its role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is discussed.
Collapse
Affiliation(s)
- Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
81
|
Broekhuizen CAN, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Vandenbroucke-Grauls CMJE, Zaat SAJ. The influence of antibodies on Staphylococcus epidermidis adherence to polyvinylpyrrolidone-coated silicone elastomer in experimental biomaterial-associated infection in mice. Biomaterials 2009; 30:6444-50. [PMID: 19716173 DOI: 10.1016/j.biomaterials.2009.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 08/09/2009] [Indexed: 11/30/2022]
Abstract
Biomaterial-associated infection (BAI) is a major problem in modern medicine, and is often caused by Staphylococcus epidermidis. We aimed to raise monoclonal antibodies (mAbs) against major surface protein antigens of S. epidermidis, and to assess their possible protective activity in experimental BAI. Mice were vaccinated with a cell wall protein preparation of S. epidermidis. A highly immunodominant antigen was identified as Accumulation-associated protein (Aap). mAbs against Aap and against surface-exposed lipoteichoic acid (LTA) were used for passive immunization of mice in experimental biomaterial-associated infection. Neither anti-Aap nor anti-LTA mAbs showed protection. Either with or without antibodies, tissue surrounding the implants was more often culture positive than the implants themselves, but bacterial adherence to the implants was significantly increased in mice injected with anti-LTA. In vitro, anti-Aap and anti-LTA did show binding to S. epidermidis, but no opsonic activity was observed. We conclude that antibodies against S. epidermidis LTA or Aap showed no opsonic activity and did not protect mice against BAI. Moreover, the increase in binding to implanted biomaterial suggests that passive immunization may increase the risk for BAI.
Collapse
Affiliation(s)
- Corine A N Broekhuizen
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Demendi M, Creuzenet C. Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni. Biochem Cell Biol 2009; 87:469-83. [PMID: 19448740 DOI: 10.1139/o09-002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Campylobacter jejuni produces both N- and O-glycosylated proteins. Because protein glycosylation contributes to bacterial virulence, a thorough characterization of the enzymes involved in protein glycosylation is warranted to assess their potential use as therapeutic targets and as glyco-engineering tools. We performed a detailed biochemical analysis of the molecular determinants of the substrate and acyl-donor specificities of Cj1123c (also known as PglD), an acetyltransferase of the HexAT superfamily involved in N-glycosylation of proteins. We show that Cj1123c has acetyl-CoA-dependent N-acetyltransferase activity not only on the UDP-4-amino-4,6-dideoxy-GlcNAc intermediate of the N-glycosylation pathway but also on the UDP-4-amino-4,6-dideoxy-AltNAc intermediate of the O-glycosylation pathway, implying functional redundancy between both pathways. We further demonstrate that, despite its somewhat relaxed substrate specificity for N-acetylation, Cj1123c cannot acetylate aminoglycosides, indicating a preference for sugar-nucleotide substrates. In addition, we show that Cj1123c can O-acetylate UDP-GlcNAc and that Cj1123c is very versatile in terms of acyl-CoA donors as it can use propionyl- and butyryl-CoA instead of acetyl-CoA. Finally, using structural information available for Cj1123c and related enzymes, we identify three residues (H125, G143, and G173) involved in catalysis and (or) acyl-donor specificity, opening up possibilities of tailoring the specificity of Cj1123c for the synthesis of novel sugars.
Collapse
Affiliation(s)
- Melinda Demendi
- Department of Microbiology and Immunology, Infectious Diseases Research Group, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
83
|
Amini S, Goodarzi H, Tavazoie S. Genetic dissection of an exogenously induced biofilm in laboratory and clinical isolates of E. coli. PLoS Pathog 2009; 5:e1000432. [PMID: 19436718 PMCID: PMC2675270 DOI: 10.1371/journal.ppat.1000432] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/15/2009] [Indexed: 01/10/2023] Open
Abstract
Microbial biofilms are a dominant feature of many human infections. However, developing effective strategies for controlling biofilms requires an understanding of the underlying biology well beyond what currently exists. Using a novel strategy, we have induced formation of a robust biofilm in Escherichia coli by utilizing an exogenous source of poly-N-acetylglucosamine (PNAG) polymer, a major virulence factor of many pathogens. Through microarray profiling of competitive selections, carried out in both transposon insertion and over-expression libraries, we have revealed the genetic basis of PNAG-based biofilm formation. Our observations reveal the dominance of electrostatic interactions between PNAG and surface structures such as lipopolysaccharides. We show that regulatory modulation of these surface structures has significant impact on biofilm formation behavior of the cell. Furthermore, the majority of clinical isolates which produced PNAG also showed the capacity to respond to the exogenously produced version of the polymer.
Collapse
Affiliation(s)
- Sasan Amini
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Hani Goodarzi
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Saeed Tavazoie
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
84
|
Abstract
Staphylococcus aureus is an important pathogen in the hospital and in the community, and it is increasingly resistant to multiple antibiotics. A nonantimicrobial approach to controlling S aureus is needed. The most extensively tested vaccine against S aureus, which is a capsular polysaccharide-based vaccine known as StaphVAX, showed promise in an initial phase 3 trial, but was found to be ineffective in a confirmatory trial, leading to its development being halted. Likewise, a human IgG preparation known as INH-A21 (Veronate) with elevated levels of antibodies to the staphylococcal surface adhesins ClfA and SdrG made it into phase 3 testing, where it failed to show a clinical benefit. Several novel antigens are being tested for potential inclusion in a staphylococcal vaccine, including cell wall-anchored adhesin proteins and exotoxins. Given the multiple and sometimes redundant virulence factors of S aureus that enable it to be such a crafty pathogen, if a vaccine is to prove effective, it will have to be multicomponent, incorporating several surface proteins, toxoids, and surface polysaccharides.
Collapse
Affiliation(s)
- Adam C Schaffer
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, PBB-B-422, 75 Francis street, Boston, MA 02115, USA
| | | |
Collapse
|
85
|
Leung C, Chibba A, Gómez-Biagi RF, Nitz M. Efficient synthesis and protein conjugation of β-(1→6)-d-N-acetylglucosamine oligosaccharides from the polysaccharide intercellular adhesin. Carbohydr Res 2009; 344:570-5. [DOI: 10.1016/j.carres.2008.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/22/2008] [Accepted: 12/26/2008] [Indexed: 12/24/2022]
|
86
|
Pérez MM, Prenafeta A, Valle J, Penadés J, Rota C, Solano C, Marco J, Grilló MJ, Lasa I, Irache JM, Maira-Litran T, Jiménez-Barbero J, Costa L, Pier GB, de Andrés D, Amorena B. Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl beta-1,6 glucosamine specific antibody production using biofilm-embedded bacteria. Vaccine 2009; 27:2379-86. [PMID: 19428854 DOI: 10.1016/j.vaccine.2009.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofilm bacteria delivered in different vehicles. This polysaccharide reacted specifically with antibodies to poly-N-acetyl-beta-1,6-glucosamine (PNAG) and not with antibodies to other capsular antigens or bacterial components. Following intra-mammary challenge with biofilm-producing bacteria, antibody production against the polysaccharide, milk bacterial counts and mastitis lesions were determined. Bacterins from strong biofilm-producing bacteria triggered the highest production of antibodies to PNAG and conferred the highest protection against infection and mastitis, compared with weak biofilm-producing bacteria and non-cellular inocula. Thus, bacterins from strong biofilm bacteria, rather than purified polysaccharide, are proposed as a cost-efficient vaccination against S. aureus ruminant mastitis.
Collapse
Affiliation(s)
- M M Pérez
- Departamento de Sanidad Animal, SIA-CITA (DGA) Ctra. de Montañana, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bebbington C, Yarranton G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr Opin Biotechnol 2008; 19:613-9. [DOI: 10.1016/j.copbio.2008.10.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 01/10/2023]
|
88
|
Abstract
In contrast to the commonly accepted hypothesis of host-centred pathology, it is possible that surface bacteria, not host dysfunction, cause the chronicity and perpetual inflammation associated with chronic non-healing wounds.
Collapse
Affiliation(s)
- R D Wolcott
- Southwest Regional Wound Care Center, Lubbock, Texas, USA.
| | | | | |
Collapse
|
89
|
Abstract
MgrA is a pleiotropic regulator that controls autolysis, virulence, and efflux pump activity in Staphylococcus aureus. We recently found that mgrA mutants of strains RN6390, SH1000, and MW2 also displayed enhanced biofilm formation compared with their respective parents. The biofilms formed by mgrA mutants of RN6390 and MW2 are independent of sigB and ica loci, two genetic elements that have been previously associated with biofilm formation in S. aureus. Biofilms formed by mgrA mutants are dependent on the expression of surface proteins mediated by the sortase gene srtA. Extracellular DNA was also a crucial component of the early biofilm of mgrA mutants. Genetic analysis indicated that biofilm formation in mgrA mutants is mediated in part by agr RNAIII, a genetic locus regulated by mgrA. Additionally, SarA is important to biofilm formation in mgrA mutants since the double sarA mgrA mutants failed to form biofilms compared to single mgrA mutants of RN6390 and MW2. However, the SarA-mediated effect is independent of agr and proteases such as V8 protease and aureolysin. Collectively, our data showed MgrA to be a repressor of biofilm formation, and biofilms formed by mgrA mutants have features that are distinct from other reported biofilm types in S. aureus.
Collapse
|
90
|
|
91
|
Cerca N, Jefferson KK. Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 2008; 283:36-41. [PMID: 18445167 DOI: 10.1111/j.1574-6968.2008.01142.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli contains a four-gene operon, pgaABCD, which encodes the proteins necessary for the synthesis of polymeric N-acetylglucosamine, or PGA. Poly-N-acetyl-glucosamine was first described in Staphylococcus aureus and Staphylococcus epidermidis and was found to have important roles in biofilm formation and immune evasion. PGA also plays a role in biofilm formation in E. coli, but its role in immune evasion has not been thoroughly studied. We previously reported that E. coli PGA cross-reacts with an opsonic-antibody raised against S. aureus PNAG and this is the basis for an ongoing investigation regarding the development of a vaccine against both pathogens. In this paper we investigated pga expression in wild type and csrA or nhaR deletion mutant strains during different growth phases and temperatures, and in response to chemical stimuli using a pga promoter-reporter fusion construct, real-time reverse transcriptase-PCR, immunoblotting, and biofilm assays. Expression of pga and polysaccharide synthesis were induced by glucose, NaCl, and ethanol, but only glucose augmented biofilm formation. The regulatory factor NhaR was required for NaCl-induced pga expression, whereas the effects of glucose and ethanol were independent of CsrA and NhaR.
Collapse
Affiliation(s)
- Nuno Cerca
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
92
|
Itoh Y, Rice JD, Goller C, Pannuri A, Taylor J, Meisner J, Beveridge TJ, Preston JF, Romeo T. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 2008; 190:3670-80. [PMID: 18359807 PMCID: PMC2394981 DOI: 10.1128/jb.01920-07] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/08/2008] [Indexed: 01/13/2023] Open
Abstract
The linear homopolymer poly-beta-1,6-N-acetyl-D-glucosamine (beta-1,6-GlcNAc; PGA) serves as an adhesin for the maintenance of biofilm structural stability in diverse eubacteria. Its function in Escherichia coli K-12 requires the gene products of the pgaABCD operon, all of which are necessary for biofilm formation. PgaC is an apparent glycosyltransferase that is required for PGA synthesis. Using a monoclonal antibody directed against E. coli PGA, we now demonstrate that PgaD is also needed for PGA formation. The deletion of genes for the predicted outer membrane proteins PgaA and PgaB did not prevent PGA synthesis but did block its export, as shown by the results of immunoelectron microscopy (IEM) and antibody adsorption assays. IEM also revealed a conditional localization of PGA at the cell poles, the initial attachment site for biofilm formation. PgaA contains a predicted beta-barrel porin and a superhelical domain containing tetratricopeptide repeats, which may mediate protein-protein interactions, implying that it forms the outer membrane secretin for PGA. PgaB contains predicted carbohydrate binding and polysaccharide N-deacetylase domains. The overexpression of pgaB increased the primary amine content (glucosamine) of PGA. Site-directed mutations targeting the N-deacetylase catalytic activity of PgaB blocked PGA export and biofilm formation, implying that N-deacetylation promotes PGA export through the PgaA porin. The results of previous studies indicated that N-deacetylation of beta-1,6-GlcNAc in Staphylococcus epidermidis by the PgaB homolog, IcaB, anchors it to the cell surface. The deletion of icaB resulted in release of beta-1,6-GlcNAc into the growth medium. Thus, covalent modification of beta-1,6-GlcNAc by N-deacetylation serves distinct biological functions in gram-negative and gram-positive species, dictated by cell envelope differences.
Collapse
Affiliation(s)
- Yoshikane Itoh
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Vergara-Irigaray M, Maira-Litrán T, Merino N, Pier GB, Penadés JR, Lasa I. Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to the Staphylococcus aureus cell surface. MICROBIOLOGY-SGM 2008; 154:865-877. [PMID: 18310032 DOI: 10.1099/mic.0.2007/013292-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biofilm formation in Staphylococcus aureus is usually associated with the production of the poly-N-acetylglucosamine (PNAG) exopolysaccharide, synthesized by proteins encoded by the icaADBC operon. PNAG is a linear beta-(1-6)-linked N-acetylglucosaminoglycan that has to be partially deacetylated and consequently positively charged in order to be associated with bacterial cell surfaces. Here, we investigated whether attachment of PNAG to bacterial surfaces is mediated by ionic interactions with the negative charge of wall teichoic acids (WTAs), which represent the most abundant polyanions of the Gram-positive bacterial envelope. We generated WTA-deficient mutants by in-frame deletion of the tagO gene in two genetically unrelated S. aureus strains. The DeltatagO mutants were more sensitive to high temperatures, showed a higher degree of cell aggregation, had reduced initial adherence to abiotic surfaces and had a reduced capacity to form biofilms under both steady-state and flow conditions. However, the levels as well as the strength of the PNAG interaction with the bacterial cell surface were similar between DeltatagO mutants and their corresponding wild-type strains. Furthermore, double DeltatagO DeltaicaADBC mutants displayed a similar aggregative phenotype to that of single DeltatagO mutants, indicating that PNAG is not responsible for the aggregative behaviour observed in DeltatagO mutants. Overall, the absence of WTAs in S. aureus had little effect on PNAG production or anchoring to the cell surface, but did affect the biofilm-forming capacity, cell aggregative behaviour and the temperature sensitivity/stability of S. aureus.
Collapse
Affiliation(s)
- Marta Vergara-Irigaray
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, 31006 Pamplona, Spain
| | - Tomas Maira-Litrán
- Channing Laboratory, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nekane Merino
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, 31006 Pamplona, Spain
| | - Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - José R Penadés
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo 187, 12400 Segorbe, Castellón, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms, Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, 31006 Pamplona, Spain
| |
Collapse
|
94
|
Abstract
Biofilm formation in Staphylococcus aureus under in vitro growth conditions is generally promoted by high concentrations of sugar and/or salts. The addition of glucose to routinely used complex growth media triggered biofilm formation in S. aureus strain SA113. Deletion of ccpA, coding for the catabolite control protein A (CcpA), which regulates gene expression in response to the carbon source, abolished the capacity of SA113 to form a biofilm under static and flow conditions, while still allowing primary attachment to polystyrene surfaces. This suggested that CcpA mainly affects biofilm accumulation and intercellular aggregation. trans-Complementation of the mutant with the wild-type ccpA allele fully restored the biofilm formation. The biofilm produced by SA113 was susceptible to sodium metaperiodate, DNase I, and proteinase K treatment, indicating the presence of polysaccharide intercellular adhesin (PIA), protein factors, and extracellular DNA (eDNA). The investigation of several factors which were reported to influence biofilm formation in S. aureus (arlRS, mgrA, rbf, sarA, atl, ica, citZ, citB, and cidABC) showed that CcpA up-regulated the transcription of cidA, which was recently shown to contribute to eDNA production. Moreover, we showed that CcpA increased icaA expression and PIA production, presumably over the down-regulation of the tricarboxylic acid cycle genes citB and citZ.
Collapse
|
95
|
Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential. GLYCOSCIENCE AND MICROBIAL ADHESION 2008; 288:157-82. [DOI: 10.1007/128_2008_19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|