51
|
Haghighat S, Siadat SD, Rezayat Sorkhabadi SM, Akhavan Sepahi A, Sadat SM, Yazdi MH, Mahdavi M. Recombinant PBP2a as a vaccine candidate against methicillin-resistant Staphylococcus aureus : Immunogenicity and protectivity. Microb Pathog 2017; 108:32-39. [DOI: 10.1016/j.micpath.2017.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 11/28/2022]
|
52
|
Reddy PN, Srirama K, Dirisala VR. An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus. Infect Dis (Lond) 2017; 10:1179916117703999. [PMID: 28579798 PMCID: PMC5443039 DOI: 10.1177/1179916117703999] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/18/2017] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is an important pathogen responsible for a variety of diseases ranging from mild skin and soft tissue infections, food poisoning to highly serious diseases such as osteomyelitis, endocarditis, and toxic shock syndrome. Proper diagnosis of pathogen and virulence factors is important for providing timely intervention in the therapy. Owing to the invasive nature of infections and the limited treatment options due to rampant spread of antibiotic-resistant strains, the trend for development of vaccines and antibody therapy is increasing at rapid rate than development of new antibiotics. In this article, we have discussed elaborately about the host-pathogen interactions, clinical burden due to S aureus infections, status of diagnostic tools, and treatment options in terms of prophylaxis and therapy.
Collapse
|
53
|
Hajighahramani N, Nezafat N, Eslami M, Negahdaripour M, Rahmatabadi SS, Ghasemi Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. INFECTION GENETICS AND EVOLUTION 2017; 48:83-94. [DOI: 10.1016/j.meegid.2016.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/29/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022]
|
54
|
Abeyrathne CD, Huynh DH, Mcintire TW, Nguyen TC, Nasr B, Zantomio D, Chana G, Abbott I, Choong P, Catton M, Skafidas E. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus. Analyst 2017; 141:1922-9. [PMID: 26811849 DOI: 10.1039/c5an02301g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.
Collapse
Affiliation(s)
- Chathurika D Abeyrathne
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Duc H Huynh
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Thomas W Mcintire
- Melbourne Medical School, The University of Melbourne, Victoria 3010, Australia
| | - Thanh C Nguyen
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Babak Nasr
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Daniela Zantomio
- Department of Haematology, Austin Health, Victoria 3084, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Psychiatry, Royal Melbourne Hospital, The University of Melbourne, Victoria 3050, Australia
| | - Iain Abbott
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Victoria 3000, Australia
| | - Peter Choong
- Department of Surgery at St. Vincent's Hospital, University of Melbourne, Victoria 3000, Australia
| | - Mike Catton
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Victoria 3000, Australia
| | - Efstratios Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC 3053, Australia. and Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Australia and Department of Psychiatry, Royal Melbourne Hospital, The University of Melbourne, Victoria 3050, Australia
| |
Collapse
|
55
|
Murine Models of Bacteremia and Surgical Wound Infection for the Evaluation of Staphylococcus aureus Vaccine Candidates. Methods Mol Biol 2016; 1403:409-18. [PMID: 27076144 DOI: 10.1007/978-1-4939-3387-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is an unmet need for an effective vaccine to prevent infections caused by Staphylococcus aureus. Murine models of staphylococcal infections are useful tools for evaluation of experimental vaccines and adjuvants in preclinical studies. Mice can be actively immunized with vaccines or passively immunized with antibodies prior to bacterial challenge. We described two infection models, bacteremia and surgical wound infection, that are relevant to human disease. To achieve a persistent bacteremia, mice are challenged with a sublethal inoculum of S. aureus by the intraperitoneal route. Bacteremia is assessed 2 h after challenge, and weight loss and renal infection are quantified after 4 days. Surgical wound infection can be achieved by inoculation of S. aureus directly into the sutured incision of a thigh muscle. After 3 days the tissue bacterial burden and weight loss are evaluated in this localized infection. Protective efficacy of experimental vaccines is analyzed by comparison with mice immunized with appropriate control vaccines.
Collapse
|
56
|
Haghighat S, Siadat SD, Sorkhabadi SMR, Sepahi AA, Mahdavi M. Cloning, expression and purification of autolysin from methicillin-resistant Staphylococcus aureus: potency and challenge study in Balb/c mice. Mol Immunol 2016; 82:10-18. [PMID: 28006655 DOI: 10.1016/j.molimm.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus (MRSA) is an opportunistic pathogen which causes a variety of clinical diseases and leads to high rates of morbidity and mortality. Development of an effective vaccine appears to be a useful strategy to control the infection. Here, the internal region of atl was cloned into the pET24a plasmid and expressed in E. coli BL21 (DE3). Cloning of atl was confirmed by colony-PCR, enzymatic digestion and sequencing. Protein expressed in E coli, BL21 DE3 and was confirmed with SDS-PAGE and western blot analysis. Subsequently, BALB/c mice were injected subcutaneously three times with 20μg of the recombinant autolysin. After Bleeding, autolysin-specific total IgG antibodies and isotypes were evaluated using ELISA. Opsonophagocytic killing assay was performed and experimental challenge was done by intraperitoneal injection with sub lethal doses of MRSA in mice and also survival rate was regularly monitored. Results showed that vaccinated mice could exhibit higher levels of autolysin-specific antibodies (P<0.0001) with a predominant IgG1 response versus control group. Results from in vitro experiments indicated that S. aureus opsonized with immunized-mice sera displayed significantly increased phagocytic uptake and effective intracellular killing versus non-immunized mice. The number of viable bacteria in the kidney of immunized mice showed 1000 times less than the control mice; additionally, an increased survival rate was found after immunization with the candidate vaccine versus control group. Results from this study demonstrated that the autolysin is a valuable target for the development of immunotherapeutic strategies against S. aureus and candidate vaccines.
Collapse
Affiliation(s)
- Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Microbiology Research center, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Rezayat Sorkhabadi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
57
|
Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease. Infect Immun 2016; 84:3408-3422. [PMID: 27647868 DOI: 10.1128/iai.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine.
Collapse
|
58
|
Stentzel S, Gläser R, Bröker BM. Elucidating the anti-Staphylococcus aureusantibody response by immunoproteomics. Proteomics Clin Appl 2016; 10:1011-1019. [DOI: 10.1002/prca.201600050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Stentzel
- Department of Immunology; University Medicine Greifswald; Greifswald Germany
| | - Regine Gläser
- Department of Dermatology; University Hospital Schleswig-Holstein; Kiel Germany
| | - Barbara M. Bröker
- Department of Immunology; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
59
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
60
|
Missiakas D, Schneewind O. Staphylococcus aureus vaccines: Deviating from the carol. J Exp Med 2016; 213:1645-53. [PMID: 27526714 PMCID: PMC4995089 DOI: 10.1084/jem.20160569] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus, a commensal of the human nasopharynx and skin, also causes invasive disease, most frequently skin and soft tissue infections. Invasive disease caused by drug-resistant strains, designated MRSA (methicillin-resistant S. aureus), is associated with failure of antibiotic therapy and elevated mortality. Here we review polysaccharide-conjugate and subunit vaccines that were designed to prevent S. aureus infection in patients at risk of bacteremia or surgical wound infection but failed to reach their clinical endpoints. We also discuss vaccines with ongoing trials for combinations of polysaccharide-conjugates and subunits. S. aureus colonization and invasive disease are not associated with the development of protective immune responses, which is attributable to a large spectrum of immune evasion factors. Two evasive strategies, assembly of protective fibrin shields via coagulases and protein A-mediated B cell superantigen activity, are discussed as possible vaccine targets. Although correlates for protective immunity are not yet known, opsonophagocytic killing of staphylococci by phagocytic cells offers opportunities to establish such criteria.
Collapse
Affiliation(s)
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
61
|
Waryah CB, Gogoi-Tiwari J, Wells K, Mukkur T. An immunological assay for identification of potential biofilm-associated antigens of Staphylococcus aureus. Folia Microbiol (Praha) 2016; 61:473-478. [PMID: 27106696 DOI: 10.1007/s12223-016-0459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
Attachment of bacterial pathogens to the niche tissue in the host is the first step in biofilm formation leading to colonization and establishment of infection in the host. While the most common method used for determining the potential role of a bacterial antigen in biofilm formation has been demonstration of loss of this property using specific knockout mutants, it is an expensive and a laborious procedure. This study describes an alternative immunological assay for identification of attachment antigens of Staphylococcus aureus, potentially important in the development of an effective vaccine against infections caused by this pathogen. The method is based upon the concept of inhibition of attachment of S. aureus to PEGs coated with virulence antigen-specific antibodies. Antibodies used for validation of this assay were specific for ClfA, FnBPA, SdrD, PNAG and α-toxin, accredited biofilm-associated antigens of S. aureus.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.,Department of Medicine, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jully Gogoi-Tiwari
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Kelsi Wells
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Trilochan Mukkur
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.
| |
Collapse
|
62
|
Selle M, Hertlein T, Oesterreich B, Klemm T, Kloppot P, Müller E, Ehricht R, Stentzel S, Bröker BM, Engelmann S, Ohlsen K. Global antibody response to Staphylococcus aureus live-cell vaccination. Sci Rep 2016; 6:24754. [PMID: 27103319 PMCID: PMC4840433 DOI: 10.1038/srep24754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration.
Collapse
Affiliation(s)
- Martina Selle
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Tobias Hertlein
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Babett Oesterreich
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Theresa Klemm
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| | - Peggy Kloppot
- University Greifswald, Institute for Microbiology, Greifswald, Germany
| | - Elke Müller
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany.,InfectoGnostics Research Campus Jena, Germany
| | - Sebastian Stentzel
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Barbara M Bröker
- University Medicine Greifswald, Department of Immunology, Greifswald, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Braunschweig, Germany.,Helmholtz-Zentrum für Infektionsforschung, Mikrobielle Proteomik, Braunschweig, Germany
| | - Knut Ohlsen
- University Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany
| |
Collapse
|
63
|
Khan SN, Khan AU. Breaking the Spell: Combating Multidrug Resistant 'Superbugs'. Front Microbiol 2016; 7:174. [PMID: 26925046 PMCID: PMC4757689 DOI: 10.3389/fmicb.2016.00174] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria have become a severe threat to community wellbeing. Conventional antibiotics are getting progressively more ineffective as a consequence of resistance, making it imperative to realize improved antimicrobial options. In this review we emphasized the microorganisms primarily reported of being resistance, referred as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae) accentuating their capacity to "escape" from routine antimicrobial regimes. The upcoming antimicrobial agents showing great potential and can serve as alternative therapeutic options are discussed. We also provided succinct overview of two evolving technologies; specifically network pharmacology and functional genomics profiling. Furthermore, In vivo imaging techniques can provide novel targets and a real time tool for potential lead molecule assessment. The employment of such approaches at prelude of a drug development process, will enables more informed decisions on candidate drug selection and will maximize or predict therapeutic potential before clinical testing.
Collapse
Affiliation(s)
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
64
|
Lacey KA, Geoghegan JA, McLoughlin RM. The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens. Pathogens 2016; 5:pathogens5010022. [PMID: 26901227 PMCID: PMC4810143 DOI: 10.3390/pathogens5010022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus (S. aureus) causes the vast majority of skin and soft tissue infections (SSTIs) in humans. S. aureus has become increasingly resistant to antibiotics and there is an urgent need for new strategies to tackle S. aureus infections. Vaccines offer a potential solution to this epidemic of antimicrobial resistance. However, the development of next generation efficacious anti-S. aureus vaccines necessitates a greater understanding of the protective immune response against S. aureus infection. In particular, it will be important to ascertain if distinct immune mechanisms are required to confer protection at distinct anatomical sites. Recent discoveries have highlighted that interleukin-17-producing T cells play a particularly important role in the immune response to S. aureus skin infection and suggest that vaccine strategies to specifically target these types of T cells may be beneficial in the treatment of S. aureus SSTIs. S. aureus expresses a large number of cell wall-anchored (CWA) proteins, which are covalently attached to the cell wall peptidoglycan. The virulence potential of many CWA proteins has been demonstrated in infection models; however, there is a paucity of information regarding their roles during SSTIs. In this review, we highlight potential candidate antigens for vaccines targeted at protection against SSTIs.
Collapse
Affiliation(s)
- Keenan A Lacey
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Joan A Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
65
|
Yang L, Cai C, Feng Q, Shi Y, Zuo Q, Yang H, Jing H, Wei C, Zhuang Y, Zou Q, Zeng H. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models. Sci Rep 2016; 6:20929. [PMID: 26865417 PMCID: PMC4750066 DOI: 10.1038/srep20929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/13/2016] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia.
Collapse
Affiliation(s)
- Liuyang Yang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Changzhi Cai
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Yun Shi
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huijie Yang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chao Wei
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products &Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
66
|
Reyes-Robles T, Lubkin A, Alonzo F, Lacy DB, Torres VJ. Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis. EMBO Rep 2016; 17:428-40. [PMID: 26882549 DOI: 10.15252/embr.201540994] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta-barrel, bi-component, pore-forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine-rich motifs within the membrane-penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine-rich motifs exhibit dominant-negative inhibitory effects toward their wild-type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant-negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant-negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild-type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi-component dominant-negative toxins and their potential as novel therapeutics to combat S. aureus infection.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ashira Lubkin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
67
|
Ohsawa H, Baba T, Enami J, Hiramatsu K. Successful selection of an infection-protective anti-Staphylococcus aureus monoclonal antibody and its protective activity in murine infection models. Microbiol Immunol 2016; 59:183-92. [PMID: 25659598 PMCID: PMC5029779 DOI: 10.1111/1348-0421.12242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 01/19/2023]
Abstract
Recent clinical trials to develop anti-methicillin-resistant Staphylococcus aureus (MRSA) therapeutic antibodies have met unsuccessful sequels. To develop more effective antibodies against MRSA infection, a panel of mAbs against S. aureus cell wall was generated and then screened for the most protective mAb in mouse infection models. Twenty-two anti-S. aureus IgG mAbs were obtained from mice that had been immunized with alkali-processed, deacetylated cell walls of S. aureus. One of these mAbs, ZBIA5H, exhibited life-saving effects in mouse models of sepsis caused by community-acquired MRSA strain MW2 and vancomycin-resistant S. aureus strain VRS1. It also had a curative effect in a MW2-caused pneumonia model. Curiously, the target of ZBIA5H was considered to be a conformational epitope of either the 1,4-β-linkage between N-acetylmuramic acid and N-acetyl-D-glucosamine or the peptidoglycan per se. Reactivity of ZBIA5H to S. aureus whole cells or purified peptidoglycan was weaker than that of most of the other mAbs generated in this study. However, the latter mAbs did not have the protective activities against S. aureus that ZBIA5H did. These data indicate that the epitopes that trigger production of high-yield and/or high-affinity antibodies may not be the most suitable epitopes for developing anti-infective antibodies. ZBIA5H or its humanized form may find a future clinical application, and its target epitope may be used for the production of vaccines against S. aureus infection.
Collapse
Affiliation(s)
- Hiroyoshi Ohsawa
- Central Research Laboratory, Zenyaku Kogyo, 2-33-7, Ohizumi-machi, Nerima-ku, Tokyo, 178-0062; Department of Bacteriology, Juntendo University, 2-1-1 Hongo, Bunnkyo-ku, Tokyo, 113-8421, Japan
| | | | | | | |
Collapse
|
68
|
Karauzum H, Datta SK. Adaptive Immunity Against Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:419-439. [PMID: 26919865 DOI: 10.1007/82_2016_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
69
|
Abstract
Staphylococcus aureus is a leading pathogen in surgical site, intensive care unit, and skin infections, as well as healthcare-associated pneumonias. These infections are associated with an enormous burden of morbidity, mortality, and increase of hospital length of stay and patient cost. S. aureus is impressively fast in acquiring antibiotic resistance, and multidrug-resistant strains are a serious threat to human health. Due to resistance or insufficient effectiveness, antibiotics and bundle measures leave a tremendous unmet medical need worldwide. There are no licensed vaccines on the market despite the significant efforts done by public and private initiatives. Indeed, vaccines tested in clinical trials in the last two decades have failed to show efficacy. However, they targeted single antigens and contained no adjuvants and efficacy trials were performed in severely ill subjects. Herein, we provide a comprehensive evaluation of potential target populations for efficacy trials taking into account key factors such as population size, incidence of S. aureus infection, disease outcome, primary endpoints, as well as practical advantages and disadvantages. We describe the whole-blood assay as a potential surrogate of protection, and we show the link between phase III clinical trial data of failed vaccines with their preclinical observations. Finally, we give our perspective on how new vaccine formulations and clinical development approaches may lead to successful S. aureus vaccines.
Collapse
|
70
|
Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections. Trends Pharmacol Sci 2015; 37:231-241. [PMID: 26719219 DOI: 10.1016/j.tips.2015.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
Abstract
The growing incidence of serious infections mediated by methicillin-resistant Staphylococcus aureus (MRSA) strains poses a significant risk to public health. This risk is exacerbated by a prolonged void in the discovery and development of truly novel antibiotics and the absence of a vaccine. These gaps have created renewed interest in the use of biologics in the prevention and treatment of serious staphylococcal infections. In this review, we focus on efforts towards the discovery and development of antibody-based biologic agents and their potential as clinical agents in the management of serious S. aureus infections. Recent promising data for monoclonal antibodies (mAbs) targeting anthrax and Ebola highlight the potential of antibody-based biologics as therapeutic agents for serious infections.
Collapse
Affiliation(s)
- William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Peter T Buckley
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - William R Strohl
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - A Simon Lynch
- Janssen Research & Development LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
71
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
72
|
Zhang J, Yang F, Zhang X, Jing H, Ren C, Cai C, Dong Y, Zhang Y, Zou Q, Zeng H. Protective Efficacy and Mechanism of Passive Immunization with Polyclonal Antibodies in a Sepsis Model of Staphylococcus aureus Infection. Sci Rep 2015; 5:15553. [PMID: 26490505 PMCID: PMC4614693 DOI: 10.1038/srep15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/23/2015] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases, resulting in considerable yearly mortality rates. Due to its rapid acquisition of antibiotic resistance, it becomes increasingly difficult to cure S. aureus infections with conventional antibiotics. Immunotherapy represents a promising alternative strategy to prevent and/or treat the infection. In the present study, passive immunization with polyclonal antibodies targeting three possible S. aureus antigens, Hla, SEB and MntC (termed "SAvac-pcAb") after challenge with lethal dose of S. aureus resulted in reduced bacterial loads, inflammatory cell infiltration and decreased pathology, and was able to provide nearly complete protection in a murine sepsis model. In vitro studies confirmed the direct interaction of SAvac-pcAb with S. aureus bacteria. Additional studies validated that SAvac-pcAb contained both opsonic and neutralizing antibodies that contributed to its protective efficacy. The former mediated opsonophagocytosis in a neutrophil-dependent manner, while the later inhibited the biological functions of Hla and SEB, two major virulence factors secreted by S. aureus. Critically, we demonstrated that SAvac-pcAb was cross-reactive with different clinical strains of S. aureus. These results confirmed the efficacy for treatment of S. aureus infection by passive immunization as an important therapeutic option.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Feng Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China.,College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xiaoli Zhang
- Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Chunyan Ren
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Changzhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yandong Dong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Yudong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, PR China
| |
Collapse
|
73
|
McNeely TB, Shah NA, Fridman A, Joshi A, Hartzel JS, Keshari RS, Lupu F, DiNubile MJ. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum Vaccin Immunother 2015; 10:3513-6. [PMID: 25483690 DOI: 10.4161/hv.34407] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In a blinded randomized trial, preoperative receipt of the Merck V710 Staphylococcus aureus vaccine was associated with a higher mortality rate than placebo in patients who later developed postoperative S. aureus infections. Of the tested patients, all 12 V710 recipients (but only 1 of 13 placebo recipients) with undetectable serum IL2 levels prior to vaccination and surgery died after postoperative S. aureus infection. The coincidence of 3 factors (low prevaccination IL-2 levels, receipt of V710, and postoperative S. aureus infection) appeared to substantially increase mortality in our study population after major cardiothoracic surgery. Furthermore, 9 of the 10 V710 recipients with undetectable preoperative IL17a levels and postoperative S. aureus infections died. Although the current study is hypothesis-generating and the exact pathophysiology remains speculative, these findings raise concern that immune predispositions may adversely impact the safety and efficacy of staphylococcal vaccines actively under development. The potential benefits of an effective vaccine against S. aureus justify continued but cautious pursuit of this elusive goal.
Collapse
|
74
|
Lagousi T, Routsias J, Piperi C, Tsakris A, Chrousos G, Theodoridou M, Spoulou V. Discovery of Immunodominant B Cell Epitopes within Surface Pneumococcal Virulence Proteins in Pediatric Patients with Invasive Pneumococcal Disease. J Biol Chem 2015; 290:27500-10. [PMID: 26396191 DOI: 10.1074/jbc.m115.666818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 01/17/2023] Open
Abstract
The identification of immunodominant B cell epitopes within surface pneumococcal virulence proteins in pediatric patients with invasive pneumococcal disease (IPD) is a valuable approach to define novel vaccine candidates. To this aim, we evaluated sera from children with IPD and age-matched controls against 141 20-mer synthetic peptides covering the entire sequence of major antigenic fragments within pneumococcal virulence proteins; namely, choline-binding protein D (CbpD), pneumococcal histidine triad proteins (PhtD and PhtE), pneumococcal surface protein A (PspA), plasminogen and fibronectin binding protein B (PfbB), and zinc metalloproteinase B (ZmpB). Ten immunodominant B cell epitopes were identified: CbpD-pep4 (amino acids (aa) 291-310), PhtD-pep11 (aa 88-107), PhtD-pep17 (aa 172-191), PhtD-pep19 (aa 200-219), PhtE-pep32 (aa 300-319), PhtE-pep40 (aa 79-98), PfbB-pep76 (aa 180-199), PfbB-pep79 (aa 222-241), PfbB-pep90 (aa 484-503), and ZmpB-pep125 (aa 431-450). All epitopes were highly conserved among different pneumococcal serotypes, and four of them were located within the functional zinc-binding domain of the histidine triad proteins PhtD and PhtE. Peptides CbpD-pep4, PhtD-pep19, and PhtE-pep40 were broadly recognized by IPD patient sera with prevalences of 96.4%, 92.9%, and 71.4%, respectively, whereas control sera exhibited only minor reactivities (<10.7%). Their specificities for IPD were 93.3%, 95%, and 96.7%; their sensitivities were 96.4%, 92.9%, and 71.4% and their positivity likelihood ratios for IPD were 14.5, 18.6, and 21.4, respectively. Furthermore, purified antibodies against CbpD-pep4, PhtD-pep19, and PhtE-pep40 readily bound on the surfaces of different pneumococcal serotypes, as assessed by FACS and immunofluorescence analysis. The identified immunodominant B cell epitopes provide a better understanding of immune response in IPD and are worth evaluation in additional studies as potential vaccine candidates.
Collapse
Affiliation(s)
- Theano Lagousi
- From the First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," and Departments of Microbiology and
| | | | | | | | - George Chrousos
- From the First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," and
| | - Maria Theodoridou
- From the First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," and
| | - Vana Spoulou
- From the First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA," and
| |
Collapse
|
75
|
Raeisi J, Saifi M, Pourshafie MR, Asadi Karam MR, Mohajerani HR. Rapid Detection of Methicillin-Resistant Staphylococcus aureus Isolates by Turanose Fermentation Method. Jundishapur J Microbiol 2015; 8:e21198. [PMID: 26495105 PMCID: PMC4609385 DOI: 10.5812/jjm.21198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/28/2014] [Accepted: 11/04/2014] [Indexed: 11/16/2022] Open
Affiliation(s)
- Javad Raeisi
- Department of Microbiology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Mahnaz Saifi
- Department of Mycobacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | | | | | | |
Collapse
|
76
|
Choi SJ, Kim MH, Jeon J, Kim OY, Choi Y, Seo J, Hong SW, Lee WH, Jeon SG, Gho YS, Jee YK, Kim YK. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS One 2015; 10:e0136021. [PMID: 26333035 PMCID: PMC4558092 DOI: 10.1371/journal.pone.0136021] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/30/2015] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.
Collapse
Affiliation(s)
- Seng Jin Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Min-Hye Kim
- Department of Medicine, Ewha Womans University School of Medicine and Ewha Institute of Convergence Medicine, Ewha Womans Medical Center, Seoul, Republic of Korea
| | - Jinseong Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Oh Youn Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Youngwoo Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jihye Seo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Won-Hee Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seong Gyu Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- * E-mail: (YK); (SJ)
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Young-Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yoon-Keun Kim
- Department of Medicine, Ewha Womans University School of Medicine and Ewha Institute of Convergence Medicine, Ewha Womans Medical Center, Seoul, Republic of Korea
- * E-mail: (YK); (SJ)
| |
Collapse
|
77
|
Protection of mice against Staphylococcus aureus infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. Med Microbiol Immunol 2015; 205:47-55. [PMID: 26155981 DOI: 10.1007/s00430-015-0425-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus is one of the most important causes of nosocomial infections. An effective vaccine to prevent S. aureus infections is urgently required due to the dramatic increase in the number of antibiotic-resistant strains. In this report, we evaluated a newly recombinant protein composed of selected antigenic regions of clumping factor A (ClfA), iron surface determinant B (IsdB) and gamma hemolysin B (HlgB) of S. aureus and sequence coding for hydrophobic linkers between three domains. The recombinant gene was constructed in pET-28a (+) and expressed in Escherichia coli BL21. In addition, sequence coding for a His(6)-tag was added followed by a hybrid procedure of nickel chelate protein purification. Immunization of BALB/c mice with the recombinant protein ClfA-IsdB-Hlg evoked antigen-specific antibodies that could opsonize S. aureus cells, enhancing in vitro phagocytosis by macrophages. Vaccination with the recombinant protein also reduced the bacterial load recovered from mice spleen samples and increased survival following the intraperitoneal challenge with pathogenic S. aureus compared to the control mice. Our results showed that the recombinant protein ClfA-IsdB-Hlg is a promising vaccine candidate for the prevention of S. aureus bacteremia infections.
Collapse
|
78
|
McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. Biofilms in periprosthetic orthopedic infections. Future Microbiol 2015; 9:987-1007. [PMID: 25302955 DOI: 10.2217/fmb.14.64] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed.
Collapse
|
79
|
Which are important targets in development of S. aureus mastitis vaccine? Res Vet Sci 2015; 100:88-99. [DOI: 10.1016/j.rvsc.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
80
|
Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F. Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev 2015; 39:750-63. [PMID: 25994610 DOI: 10.1093/femsre/fuv024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 01/14/2023] Open
Abstract
Lack of known mechanisms of protection against Staphylococcus aureus in humans is hindering development of efficacious vaccines. Preclinical as well as clinical data suggest that antibodies play an important role against S. aureus. For instance, certain hypogammaglobulinaemic patients are at increased risk of staphylococcal infections. However, development of effective humoral response may be dampened by converging immune-evasion mechanisms of S. aureus. We hypothesize that B-cell proliferation induced by staphylococcal protein A (SpA) and continuous antigen exposure, without the proper T-cell help and cytokine stimuli, leads to antigen-activated B-cell deletion and anergy. Recent findings suggest an important role of type I neutrophils (PMN-I) and conventionally activated macrophages (M1) against S. aureus, while alternatively activated macrophages (M2) favour biofilm persistence and sepsis. In addition, neutrophil-macrophage cooperation promotes extravasation and activation of neutrophils as well as clearance of bacteria ensnared in neutrophil extracellular traps. Activation of these processes is modulated by cytokines and T cells. Indeed, low CD4(+) T-cell counts represent an important risk factor for skin infections and bacteraemia in patients. Altogether, these observations could lead to the identification of predictive correlates of protection and ways for shifting the balance of the response to the benefit of the host through vaccination.
Collapse
Affiliation(s)
- Clarissa Pozzi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Mancini
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | | | - Pietro Speziale
- Department of Molecular Medicine, Institute of Biochemistry, 27100 Pavia, Italy
| | - Ennio De Gregorio
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Sylvie Bertholet
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Guido Grandi
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines, Research Center, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
81
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
82
|
Nair N, Vinod V, Suresh MK, Vijayrajratnam S, Biswas L, Peethambaran R, Vasudevan AK, Biswas R. Amidase, a cell wall hydrolase, elicits protective immunity against Staphylococcus aureus and S. epidermidis. Int J Biol Macromol 2015; 77:314-21. [PMID: 25841371 DOI: 10.1016/j.ijbiomac.2015.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 02/08/2023]
Abstract
The morbidity and the mortality associated with Staphylococcus aureus and S. epidermidis infections have greatly increased due to the rapid emergence of highly virulent and antibiotic resistant strains. Development of a vaccine-based therapy is greatly desired. However, no staphylococcal vaccine is available till date. In this study, we have identified Major amidase (Atl-AM) as a prime candidate for future vaccine design against these pathogens. Atl-AM is a multi-functional non-covalently cell wall associated protein which is involved in staphylococcal cell separation after cell division, host extracellular matrix adhesion and biofilm formation. Atl-AM is present on the surface of diverse S. aureus and S. epidermidis strains. When used in combination with Freund's adjuvant, Atl-AM generated a mixed Th1 and Th2 mediated immune response which is skewed more toward Th1; and showed increased production of opsonophagocytic IgG2a and IgG2b antibodies. Significant protective immune response was observed when vaccinated mice were challenged with S. aureus or S. epidermidis. Vaccination prevented the systemic dissemination of both organisms. Our results demonstrate the remarkable efficacy of Atl-AM as a vaccine candidate against both of these pathogens.
Collapse
Affiliation(s)
- Nisha Nair
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Vivek Vinod
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Maneesha K Suresh
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Sukhithasri Vijayrajratnam
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Lalitha Biswas
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Reshmi Peethambaran
- Department of Veterinary Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India
| | - Raja Biswas
- Amrita Center for Nanoscience and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, AIMS - Ponekkara, Cochin, Kerala 682041, India.
| |
Collapse
|
83
|
Lechowicz J, Krawczyk-Balska A. An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. Biometals 2015; 28:587-603. [PMID: 25820385 PMCID: PMC4481299 DOI: 10.1007/s10534-015-9849-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes a rare but severe human disease with high mortality rate. The microorganism is widespread in the natural environment where it shows a saprophytic lifestyle. In the human body it infects many different cell types, where it lives intracellularly, however it may also temporarily live extracellularly. The ability to survive and grow in such diverse niches suggests that this bacterium has a wide range of mechanisms for both the acquisition of various sources of iron and effective management of this microelement. In this review, data about the mechanisms of transport, metabolism and regulation of iron, including recent findings in these areas, are summarized with focus on the importance of these mechanisms for the virulence of L. monocytogenes. These data indicate the key role of haem transport and maintenance of intracellular iron homeostasis for the pathogenesis of L. monocytogenes. Furthermore, some of the proteins involved in iron homeostasis like Fri and FrvA seem to deserve special attention due to their potential use in the development of new therapeutic antilisterial strategies.
Collapse
Affiliation(s)
- Justyna Lechowicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | |
Collapse
|
84
|
Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:3680-5. [PMID: 25775551 DOI: 10.1073/pnas.1424924112] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.
Collapse
|
85
|
Rozemeijer W, Fink P, Rojas E, Jones CH, Pavliakova D, Giardina P, Murphy E, Liberator P, Jiang Q, Girgenti D, Peters RPH, Savelkoul PHM, Jansen KU, Anderson AS, Kluytmans J. Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease. PLoS One 2015; 10:e0116945. [PMID: 25719409 PMCID: PMC4342157 DOI: 10.1371/journal.pone.0116945] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a versatile pathogen of medical significance, using multiple virulence factors to cause disease. A prophylactic S. aureus 4-antigen (SA4Ag) vaccine comprising capsular polysaccharide (types 5 and 8) conjugates, clumping factor A (ClfA) and manganese transporter C (MntC) is under development. This study was designed to characterize S. aureus isolates recovered from infected patients and also to investigate approaches for examining expression of S. aureus vaccine candidates and the host response during human infection. Confirmation of antigen expression in different disease states is important to support the inclusion of these antigens in a prophylactic vaccine. Hospitalized patients with diagnosed S. aureus wound (27) or bloodstream (24) infections were enrolled. Invasive and nasal carriage S. aureus isolates were recovered and characterized for genotypic diversity. S. aureus antigen expression was evaluated directly by real-time, quantitative, reverse-transcriptase PCR (qRT-PCR) analysis and indirectly by serology using a competitive Luminex immunoassay. Study isolates were genotypically diverse and all had the genes encoding the antigens present in the SA4Ag vaccine. S. aureus nasal carriage was detected in 55% of patients, and in those subjects 64% of the carriage isolates matched the invasive strain. In swab samples with detectable S. aureus triosephosphate isomerase housekeeping gene expression, RNA transcripts encoding the S. aureus virulence factors ClfA, MntC, and capsule polysaccharide were detected by qRT-PCR. Antigen expression was indirectly confirmed by increases in antibody titer during the course of infection from acute to convalescent phase. Demonstration of bacterial transcript expression together with immunological response to the SA4Ag antigens in a clinically relevant patient population provides support for inclusion of these antigens in a prophylactic vaccine.
Collapse
Affiliation(s)
| | - Pamela Fink
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Eduardo Rojas
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - C. Hal Jones
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Danka Pavliakova
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Peter Giardina
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Ellen Murphy
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Paul Liberator
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Qin Jiang
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Douglas Girgenti
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | | | | | - Kathrin U. Jansen
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Annaliesa S. Anderson
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
- * E-mail:
| | - Jan Kluytmans
- VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Delfani S, Imani Fooladi AA, Mobarez AM, Emaneini M, Amani J, Sedighian H. In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. Clin Exp Vaccine Res 2015; 4:99-106. [PMID: 25649548 PMCID: PMC4313115 DOI: 10.7774/cevr.2015.4.1.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
Purpose Staphylococcus aureus is one of the most important causes of nosocomial and community-acquired infections. The increasing incidence of multiple antibiotic-resistant S. aureus strains and the emergence of vancomycin resistant S. aureus strains have placed renewed interest on alternative means of prevention and control of infection. S. aureus produces a variety of virulence factors, so a multi-subunit vaccine will be more successful for preventing S. aureus infections than a mono-subunit vaccine. Materials and Methods We selected three important virulence factors of S. aureus, clumping factor A (ClfA), iron-regulated surface determinant (IsdB), and gamma hemolysin (Hlg) that are potential candidates for vaccine development. We designed synthetic genes encoding the clfA, isdB, and hlg and used bioinformatics tools to predict structure of the synthetic construct and its stabilities. VaxiJen analysis of the protein showed a high antigenicity. Linear and conformational B-cell epitopes were identified. Results The proteins encoded by these genes were useful as vaccine candidates against S. aureus infections. Conclusion In silico tools are highly suited to study, design, and evaluate vaccine strategies.
Collapse
Affiliation(s)
- Somayeh Delfani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
87
|
Kim HK, Falugi F, Thomer L, Missiakas DM, Schneewind O. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs. mBio 2015; 6:e02369-14. [PMID: 25564466 PMCID: PMC4313907 DOI: 10.1128/mbio.02369-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/01/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links V(H)3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High V(H)3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpA(KKAA), which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity. IMPORTANCE Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines.
Collapse
|
88
|
Miller LG, McKinnell JA, Vollmer ME, Spellberg B. Impact of Methicillin-Resistant Staphylococcus aureus Prevalence among S. aureus Isolates on Surgical Site Infection Risk after Coronary Artery Bypass Surgery. Infect Control Hosp Epidemiol 2015. [DOI: 10.1086/522269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective.Cephalosporins are recommended for antibiotic prophylaxis to prevent cardiothoracic surgical site infections (SSIs) except in patients withβ-lactam allergy or in settings with a “high” prevalence of methicillin-resistantStaphylococcus aureus(MRSA) among S.aureusisolates (hereafter, “MRSA prevalence”); however, “high” remains undefined. We sought to identify the MRSA prevalence at which glycopeptide prophylaxis would minimize SSIs relative toβ-lactam prophylaxis.Methods.We developed a decision analysis model to estimate SSI likelihood when either glycopeptides orβ-lactams were used for prophylaxis in cardiothoracic surgery. Event probabilities were derived from a systematic literature review. A similar cost-minimization model was also developed.Results.At 0% MRSA prevalence, SSI probability was 3.64% with glycopeptide prophylaxis and 3.49% withβ-lactam prophylaxis. At MRSA prevalences of 10%, 20%, 30%, or 40%, SSI probabilities with glycopeptide prophylaxis did not change, but they were 3.98%, 4.48%, 4.97%, and 5.47% withβ-lactam prophylaxis. The threshold of MRSA prevalence at which glycopeptide prophylaxis minimized SSI probability and cost was 3%. In sensitivity analyses, variations in most model estimates only modestly affected the threshold.Conclusion.Glycopeptide prophylaxis minimizes the risk of SSIs and cost when MRSA prevalence exceeds 3%. At very low MRSA prevalence (between 3% and 10%), the SSI minimization provided by glycopeptide prophylaxis is small and may be within the error of the model. Given the current MRSA prevalence in most community and healthcare settings, clinicians should consider routine prophylaxis with vancomycin. Our findings may have important policy implications, as benefits in cardiothoracic surgery antibiotic prophylaxis must be weighed against the limitations of increased glycopeptide use.
Collapse
|
89
|
Recombinant ESAT-6-like proteins provoke protective immune responses against invasive Staphylococcus aureus disease in a murine model. Infect Immun 2014; 83:339-45. [PMID: 25368117 DOI: 10.1128/iai.02498-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a common pathogen found in the community and in hospitals. Most notably, methicillin-resistant S. aureus is resistant to many antibiotics, which is a growing public health concern. The emergence of drug-resistant strains has prompted the search for alternative treatments, such as immunotherapeutic approaches. To date, most clinical trials of vaccines or of passive immunization against S. aureus have ended in failure. In this study, we investigated two ESAT-6-like proteins secreted by S. aureus, S. aureus EsxA (SaEsxA) and SaEsxB, as possible targets for a vaccine. Mice vaccinated with these purified proteins elicited high titers of anti-SaEsxA and anti-SaEsxB antibodies, but these antibodies could not prevent S. aureus infection. On the other hand, recombinant SaEsxA (rSaEsxA) and rSaEsxB could induce Th1- and Th17-biased immune responses in mice. Mice immunized with rSaEsxA and rSaEsxB had significantly improved survival rates when challenged with S. aureus compared with the controls. These findings indicate that SaEsxA and SaEsxB are two promising Th1 and Th17 candidate antigens which could be developed into multivalent and serotype-independent vaccines against S. aureus infection.
Collapse
|
90
|
Analysis of humoral immune response of animals exposed to bacterial antigens. Cent Eur J Immunol 2014; 39:323-6. [PMID: 26155142 PMCID: PMC4440006 DOI: 10.5114/ceji.2014.45942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022] Open
Abstract
From the Aeromonas hydrophila strain, five different types of antigens such as heat killed antigen, whole cell antigen, heat killed antigen with antiserum, whole cell antigen with antiserum and nucleotide antigens were prepared and injected into the experimental fish (Catla catla) groups for the study of immunomodulation. Analysis of immunogenicity of antigens against the fish Catla catla was estimated. The A. hydrophila produced β hemolytic pattern on the blood agar plate. B lymphocyte counts using rosette forming assay revealed a significant decrement in pathogens exposed fishes as compared to controls. Fishes exposed to pathogenic strains (1/10th sublethal concentration) for 3 weeks showed a reduction in PFC. The effect or pathogenic antigens in direct spleenic plaque forming cells (1 g M producing cells) showed a reduction in the secondary plaque forming cell in the first 3 weeks and a time- and dose-dependent decrease in primary and secondary PFC response. A remarkable observation enhancement in B cell production due to immune complex of antigens was noted in the present study. The enhancement of this type of immune responses confirms the potential of immune complexes to be used as vaccines.
Collapse
|
91
|
Vaccine protection of leukopenic mice against Staphylococcus aureus bloodstream infection. Infect Immun 2014; 82:4889-98. [PMID: 25183728 DOI: 10.1128/iai.02328-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The risk for Staphylococcus aureus bloodstream infection (BSI) is increased in immunocompromised individuals, including patients with hematologic malignancy and/or chemotherapy. Due to the emergence of antibiotic-resistant strains, designated methicillin-resistant S. aureus (MRSA), staphylococcal BSI in cancer patients is associated with high mortality; however, neither a protective vaccine nor pathogen-specific immunotherapy is currently available. Here, we modeled staphylococcal BSI in leukopenic CD-1 mice that had been treated with cyclophosphamide, a drug for leukemia and lymphoma patients. Cyclophosphamide-treated mice were highly sensitive to S. aureus BSI and developed infectious lesions lacking immune cell infiltrates. Virulence factors of S. aureus that are key for disease establishment in immunocompetent hosts-α-hemolysin (Hla), iron-regulated surface determinants (IsdA and IsdB), coagulase (Coa), and von Willebrand factor binding protein (vWbp)-are dispensable for the pathogenesis of BSI in leukopenic mice. In contrast, sortase A mutants, which cannot assemble surface proteins, display delayed time to death and increased survival in this model. A vaccine with four surface antigens (ClfA, FnBPB, SdrD, and SpAKKAA), which was identified by genetic vaccinology using sortase A mutants, raised antigen-specific immune responses that protected leukopenic mice against staphylococcal BSI.
Collapse
|
92
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
93
|
Kim HK, Missiakas D, Schneewind O. Mouse models for infectious diseases caused by Staphylococcus aureus. J Immunol Methods 2014; 410:88-99. [PMID: 24769066 PMCID: PMC6211302 DOI: 10.1016/j.jim.2014.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus - a commensal of the human skin, nares and gastrointestinal tract - is also a leading cause of bacterial skin and soft tissue infection (SSTIs), bacteremia, sepsis, peritonitis, pneumonia and endocarditis. Antibiotic-resistant strains, designated MRSA (methicillin-resistant S. aureus), are common and represent a therapeutic challenge. Current research and development efforts seek to address the challenge of MRSA infections through vaccines and immune therapeutics. Mice have been used as experimental models for S. aureus SSTI, bacteremia, sepsis, peritonitis and endocarditis. This work led to the identification of key virulence factors, candidate vaccine antigens or immune-therapeutics that still require human clinical testing to establish efficacy. Past failures of human clinical trials raised skepticism whether the mouse is an appropriate model for S. aureus disease in humans. S. aureus causes chronic-persistent infections that, even with antibiotic or surgical intervention, reoccur in humans and in mice. Determinants of S. aureus evasion from human innate and adaptive immune responses have been identified, however only some of these are relevant in mice. Future research must integrate these insights and refine the experimental mouse models for specific S. aureus diseases to accurately predict the failure or success for candidate vaccines and immune-therapeutics.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| |
Collapse
|
94
|
Stentzel S, Vu HC, Weyrich AM, Jehmlich N, Schmidt F, Salazar MG, Steil L, Völker U, Bröker BM. Altered immune proteome ofStaphylococcus aureusunder iron-restricted growth conditions. Proteomics 2014; 14:1857-67. [DOI: 10.1002/pmic.201300512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Stentzel
- Department of Immunology; Institute of Immunology and Transfusion Medicine; University Medicine Greifswald; Greifswald Germany
| | - Hai Chi Vu
- Department of Immunology; Institute of Immunology and Transfusion Medicine; University Medicine Greifswald; Greifswald Germany
| | - Anna Maria Weyrich
- Department of Immunology; Institute of Immunology and Transfusion Medicine; University Medicine Greifswald; Greifswald Germany
| | - Nico Jehmlich
- Interfaculty Institute of Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Frank Schmidt
- Interfaculty Institute of Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
- ZIK-FunGene Junior Research Group “Applied Proteomics”; University Medicine Greifswald; Greifswald Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute of Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Leif Steil
- Interfaculty Institute of Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics; University Medicine Greifswald; Greifswald Germany
| | - Barbara M. Bröker
- Department of Immunology; Institute of Immunology and Transfusion Medicine; University Medicine Greifswald; Greifswald Germany
| |
Collapse
|
95
|
Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 2014; 12:585-91. [PMID: 24998740 DOI: 10.1038/nrmicro3308] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is a highly successful bacterial pathogen owing to its abundance of cell surface and secreted virulence factors. It is estimated that 30% of the population is colonized with S. aureus, usually on mucosal surfaces, and methicillin-resistant S. aureus is a major public health concern. There have been multiple attempts to develop an S. aureus vaccine using one or more cell surface virulence factors as antigens; all of these vaccine trials have failed. In this Opinion article, we suggest that an over-reliance on rodent models and a focus on targeting cell surface components have been major contributing factors to this failure.
Collapse
|
96
|
Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY, Feng Q, Yang HJ, Wei ZB, Zeng H, Zou QM. Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A. PLoS One 2014; 9:e95338. [PMID: 24736634 PMCID: PMC3988184 DOI: 10.1371/journal.pone.0095338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/26/2014] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. The fibronectin binding protein A (FnBPA) of S. aureus is one of multifunctional ‘microbial surface components recognizing adhesive matrix molecules' (MSCRAMMs). It is one of the most important adhesin molecules involved in the initial adhesion steps of S. aureus infection. It has been studied as potential vaccine candidates. However, FnBPA is a high-molecular-weight protein of 106 kDa and difficulties in achieving its high-level expression in vitro limit its vaccine application in S. aureus infection diseases control. Therefore, mapping the immunodominant regions of FnBPA is important for developing polyvalent subunit fusion vaccines against S. aureus infections. In the present study, we cloned and expressed the N-terminal and C-terminal of FnBPA. We evaluated the immunogenicity of the two sections of FnBPA and the protective efficacy of the two truncated fragments vaccines in a murine model of systemic S. aureus infection. The results showed recombinant truncated fragment F130-500 had a strong immunogenicity property and survival rates significantly increased in the group of mice immunized with F130-500 than the control group. We futher identified the immunodominant regions of FnBPA. The mouse antisera reactions suggest that the region covering residues 110 to 263 (F1B110-263) is highly immunogenic and is the immunodominant regions of FnBPA. Moreover, vaccination with F1B110-263 can generate partial protection against lethal challenge with two different S. aureus strains and reduced bacterial burdens against non-lethal challenge as well as that immunization with F130-500. This information will be important for further developing anti- S. aureus polyvalent subunit fusion vaccines.
Collapse
Affiliation(s)
- Qian-Fei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chang-Zhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hong-Lei Ding
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Qiang Feng
- Department of Biological Engineering and Chemical Engineering, Chongqing University of Education, Chongqing, PR China
| | - Hui-Jie Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhen-Bo Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
97
|
Scully IL, Liberator PA, Jansen KU, Anderson AS. Covering all the Bases: Preclinical Development of an Effective Staphylococcus aureus Vaccine. Front Immunol 2014; 5:109. [PMID: 24715889 PMCID: PMC3970019 DOI: 10.3389/fimmu.2014.00109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
A key aspect of the pathogenesis of the Gram positive bacterium Staphylococcus aureus is its ability to rapidly adapt to the host environment during the course of an infection. To successfully establish infection, the organism deploys a variety of survival and immune evasion strategies, ranging from the acquisition of essential nutrients and expression of adhesins, which promote colonization and survival, to the elaboration of virulence factors such as capsule, which aids host immune evasion. The ability of S. aureus to deploy different virulence factors must be taken into account for S. aureus vaccine design. Here, we present a strategy for designing an effective vaccine against S. aureus disease by evaluating vaccine candidate performance in multiple in vivo models targeted to mimic aspects of human disease, and by co-development of functional in vitro immunoassays that measure the neutralization of relevant S. aureus virulence factors.
Collapse
Affiliation(s)
- Ingrid L Scully
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | - Paul A Liberator
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research and Development Unit , Pearl River, NY , USA
| | | |
Collapse
|
98
|
Mining the bacterial unknown proteome: identification and characterization of a novel family of highly conserved protective antigens in Staphylococcus aureus. Biochem J 2014; 455:273-84. [PMID: 23895222 DOI: 10.1042/bj20130540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.
Collapse
|
99
|
Lin L, Pantapalangkoor P, Tan B, Bruhn KW, Ho T, Nielsen T, Skaar EP, Zhang Y, Bai R, Wang A, Doherty TM, Spellberg B. Transferrin iron starvation therapy for lethal bacterial and fungal infections. J Infect Dis 2014; 210:254-64. [PMID: 24446527 DOI: 10.1093/infdis/jiu049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
New strategies to treat antibiotic-resistant infections are urgently needed. We serendipitously discovered that stem cell conditioned media possessed broad antimicrobial properties. Biochemical, functional, and genetic assays confirmed that the antimicrobial effect was mediated by supra-physiological concentrations of transferrin. Human transferrin inhibited growth of gram-positive (Staphylococcus aureus), gram-negative (Acinetobacter baumannii), and fungal (Candida albicans) pathogens by sequestering iron and disrupting membrane potential. Serial passage in subtherapeutic transferrin concentrations resulted in no emergence of resistance. Infected mice treated with intravenous human transferrin had improved survival and reduced microbial burden. Finally, adjunctive transferrin reduced the emergence of rifampin-resistant mutants of S. aureus in infected mice treated with rifampin. Transferrin is a promising, novel antimicrobial agent that merits clinical investigation. These results provide proof of principle that bacterial infections can be treated in vivo by attacking host targets (ie, trace metal availability) rather than microbial targets.
Collapse
Affiliation(s)
- Lin Lin
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| | | | - Brandon Tan
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Kevin W Bruhn
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| | - Tiffany Ho
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Travis Nielsen
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ruipeng Bai
- The Los Angeles Biomedical Research Institute, Torrance, California
| | - Amy Wang
- The Los Angeles Biomedical Research Institute, Torrance, California
| | | | - Brad Spellberg
- The Los Angeles Biomedical Research Institute, Torrance, California The Division of General Internal Medicine, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance The David Geffen School of Medicine at UCLA, Los Angeles
| |
Collapse
|
100
|
Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, Winsor J, Giraldi M, Biagini M, Liberatori S, Savino S, Bagnoli F, Anderson WF, Grandi G. Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J 2014; 28:1780-93. [PMID: 24421400 DOI: 10.1096/fj.13-241737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite the global medical needs associated with Staphylococcus aureus infections, no licensed vaccines are currently available. We identified and characterized a protein annotated as an epidermin leader peptide processing serine protease (EpiP), as a novel S. aureus vaccine candidate. In addition, we determined the structure of the recombinant protein (rEpiP) by X-ray crystallography. The crystal structure revealed that rEpiP was cleaved somewhere between residues 95 and 100, and we found that the cleavage occurs through an autocatalytic intramolecular mechanism. The protein expressed by S. aureus cells also appeared to undergo a similar processing event. To determine whether the protein acts as a serine protease, we mutated the hypothesized catalytic serine 393 residue to alanine, generating rEpiP-S393A. The crystal structure of this mutant protein showed that the polypeptide chain was not cleaved and was not interacting stably with the active site. Indeed, rEpiP-S393A was shown to be impaired in its protease activity. Mice vaccinated with rEpiP were protected from S. aureus infection (34% survival, P=0.0054). Moreover, the protective efficacy generated by rEpiP and rEpiP-S393A was comparable, implying that the noncleaving mutant could be used for vaccination purposes.
Collapse
Affiliation(s)
- Misty L Kuhn
- 2G.G., Novartis Vaccines, via Fiorentina 1, 53100, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|