51
|
Bosch M, Garrido ME, Pérez de Rozas AM, Badiola I, Barbé J, Llagostera M. Pasteurella multocida contains multiple immunogenic haemin- and haemoglobin-binding proteins. Vet Microbiol 2004; 99:103-12. [PMID: 15019101 DOI: 10.1016/j.vetmic.2003.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 11/14/2003] [Accepted: 11/25/2003] [Indexed: 11/25/2022]
Abstract
Iron-dependent outer membrane proteins (IROMPs) play an important role in bacterial pathogenesis and present several attributes of potential vaccine candidates. TBLASTN analysis of the Pasteurella multocida Pm70 genome using the same molecules of other bacterial pathogens as a query identified eight putative haemin and haemoglobin receptors for this organism. Quantitative binding assays have demonstrated that the proteins PM0040, PM0236, PM0741, PM1081, PM1428, PM0592 and HgbA bind both haemin and haemoglobin, whereas PM0576 and PM1282 ORFs only bind either haemoglobin or haemin, respectively. Furthermore, Western blot analysis showed that P. multocida-infected mice generate specific antibodies against PM0040, PM0236, PM0741, PM1081, PM1428, PM0592 and HgbA proteins. Nevertheless, inoculation of mice with any single one of these receptors alone did not protect against P. multocida infection.
Collapse
Affiliation(s)
- Montserrat Bosch
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
52
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
53
|
Perkins-Balding D, Baer MT, Stojiljkovic I. Identification of functionally important regions of a haemoglobin receptor from Neisseria meningitidis. MICROBIOLOGY-SGM 2004; 149:3423-3435. [PMID: 14663076 DOI: 10.1099/mic.0.26448-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The HmbR outer-membrane receptor enables Neisseria meningitidis to use haemoglobin (Hb) as a source of iron. This protein functions by binding Hb, removing haem from it, and releasing the haem into the periplasm. Functionally important HmbR receptor domains were discerned using a series of HmbR deletions and site-directed mutations. Mutations exhibiting similar defective phenotypes in N. meningitidis fell into two groups. The first group of mutations affected Hb binding and were located in putative extracellular loops (L) L2 (amino acid residues (aa) 192-230) and L3 (aa 254-284). The second group of mutations resulted in a failure to utilize Hb but proficiency in Hb binding was retained. These mutations localized to the putative extracellular loops L6 (aa 420-462) and L7 (aa 486-516). A highly conserved protein motif found in all haem/Hb receptors, within putative extracellular loop L7 of HmbR, is essential for Hb utilization but not required for Hb binding. This finding suggests a mechanistic involvement of this motif in haem removal from Hb. In addition, an amino-terminal deletion in the putative cork-like domain of HmbR affected Hb usage but not Hb binding. This result supports a role of the cork domain in utilization steps that are subsequent to Hb binding.
Collapse
Affiliation(s)
- D Perkins-Balding
- Department of Microbiology and Immunology, Emory School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | - M T Baer
- Department of Microbiology and Immunology, Emory School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
| | - I Stojiljkovic
- Department of Microbiology and Immunology, Emory School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
54
|
Chen CJ, Tobiason DM, Thomas CE, Shafer WM, Seifert HS, Sparling PF. A mutant form of the Neisseria gonorrhoeae pilus secretin protein PilQ allows increased entry of heme and antimicrobial compounds. J Bacteriol 2004; 186:730-9. [PMID: 14729699 PMCID: PMC321488 DOI: 10.1128/jb.186.3.730-739.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A spontaneous point mutation in pilQ (pilQ1) resulted in phenotypic suppression of a hemoglobin (Hb) receptor mutant (hpuAB mutant), allowing gonococci to grow on Hb as the sole source of iron. PilQ, formerly designated OMP-MC, is a member of the secretin family of proteins located in the outer membrane and is required for pilus biogenesis. The pilQ1 mutant also showed decreased piliation and transformation efficiency. Insertional inactivation of pilQ1 resulted in the loss of the Hb utilization phenotype and decreased entry of free heme. Despite the ability of the pilQ1 mutant to use Hb for iron acquisition and porphyrin, there was no demonstrable binding of Hb to the cell surface. The pilQ1 mutant was more sensitive to the toxic effect of free heme in growth medium and hypersensitive to the detergent Triton X-100 and multiple antibiotics. Double mutation in pilQ1 and tonB had no effect on these phenotypes, but a double pilQ1 pilT mutant showed a reduction in Hb-dependent growth and decreased sensitivity to heme and various antimicrobial agents. Insertional inactivation of wild-type pilQ also resulted in reduced entry of heme, Triton X-100, and some antibiotics. These results show that PilQ forms a channel that allows entry of heme and certain antimicrobial compounds and that a gain-of function point mutation in pilQ results in TonB-independent, PilT-dependent increase of entry.
Collapse
Affiliation(s)
- Ching-ju Chen
- Department of Medicine. Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7031, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Skaar EP, Gaspar AH, Schneewind O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J Biol Chem 2003; 279:436-43. [PMID: 14570922 DOI: 10.1074/jbc.m307952200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus requires iron for growth and utilizes heme as a source of iron during infection. Staphylococcal surface proteins capture hemoglobin, release heme from hemoglobin and transport this compound across the cell wall envelope and plasma membrane into the bacterial cytoplasm. Here we show that Staphylococcus aureus isdG and isdI encode cytoplasmic proteins with heme binding properties. IsdG and IsdI cleave the tetrapyrrol ring structure of heme in the presence of NADPH cytochrome P450 reductase, thereby releasing iron. Further, IsdI complements the heme utilization deficiency of a Corynebacterium ulcerans heme oxygenase mutant, demonstrating in vivo activity of this enzyme. Although Staphylococcus epidermidis, Listeria monocytogenes, and Bacillus anthracis encode homologues of IsdG and IsdI, these proteins are not found in other bacteria or mammals. Thus, it appears that bacterial pathogens evolved different strategies to retrieve iron from scavenged heme molecules and that staphylococcal IsdG and IsdI represent examples of bacterial heme-oxygenases.
Collapse
Affiliation(s)
- Eric P Skaar
- Committee on Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
56
|
Friedman J, Lad L, Deshmukh R, Li H, Wilks A, Poulos TL. Crystal structures of the NO- and CO-bound heme oxygenase from Neisseriae meningitidis. Implications for O2 activation. J Biol Chem 2003; 278:34654-9. [PMID: 12819228 DOI: 10.1074/jbc.m302985200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenases catalyze the oxidation of heme to biliverdin, carbon monoxide, and free iron while playing a critical role in mammalian heme homeostasis. Pathogenic bacteria such as Neisseriae meningitidis also produce heme oxygenase as part of a mechanism to mine host iron. The key step in heme oxidation is the regioselective oxidation of the heme alpha-meso-carbon by an activated Fe(III)-OOH complex. The structures of various diatomic ligands bound to the heme iron can mimic the dioxygen complex and provide important insights on the mechanism of O2 activation. Here we report the crystal structures of N. meningitidis heme oxygenase (nm-HO) in the Fe(II), Fe(II)-CO, and Fe(II)-NO states and compare these to the NO complex of human heme oxygenase-1 (Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz de Montellano, P. R., and Poulos, T. L. (2003) J. Mol. Biol. 330, 527-538). Coordination of NO or CO results in a reorientation of Arg-77 that enables Arg-77 to participate in an active site H-bonded network involving a series of water molecules. One of these water molecules directly H-bonds to the Fe(II)-linked ligand and very likely serves as the proton source required for oxygen activation. Although the active site residues differ between nm-HO and human HO-1, the close similarity in the H-bonded water network suggests a common mechanism shared by all heme oxygenases.
Collapse
Affiliation(s)
- Jonathan Friedman
- Department of Molecular Biology and Biochemistry, and Program in Macromolecular Structure, University of California, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
57
|
Dryla A, Gelbmann D, von Gabain A, Nagy E. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol Microbiol 2003; 49:37-53. [PMID: 12823809 DOI: 10.1046/j.1365-2958.2003.03542.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is an extremely adaptable pathogen causing a wide variety of infections. Staphylococcal surface proteins that directly interact with host extracellular proteins greatly contribute to virulence and are involved in adhesion, immune escape and nutrient acquisition. In our extensive search for highly immunogenic, in vivo-expressed, staphylococcal proteins, previously, we identified a novel member of the family of Gram-positive anchor motif proteins with a predicted 895 amino acid long sequence. In order to determine the ligand for this novel LPXTG cell wall protein, we employed affinity purification of human plasma using the recombinant form of the protein. Two-dimensional electrophoresis of eluted plasma proteins identified haptoglobin as a specific binding partner. Importantly, we also observed this specific ligand binding when living S. aureus cells were exposed to biotin-labelled haptoglobin (Hp) in a FACS-based assay. Targeted deletion of the gene eliminated Hp-binding, a function that has not been attributed to S. aureus before. Based on these data we specified the protein as the staphylococcal haptoglobin receptor A (HarA). Similarly to other haptoglobin receptors identified in Gram-negative pathogens, HarA binds not only Hp, but also haptoglobin-haemoglobin complexes with an even higher affinity, as demonstrated in in vitro binding assays. Employing specific deletion mutants, ligand binding was localized to two homologous regions with about 145 amino acid residues located within the N-terminal part of the protein. In addition, we demonstrated that expression of HarA was strictly controlled by iron through the iron-dependent transcriptional regulator Fur. Based on these data we propose that HarA can be added to the list of staphylococcal virulence factors with a most likely function related to iron acquisition.
Collapse
Affiliation(s)
- Agnieszka Dryla
- Intercell AG, Campus Vienna Biocenter 6, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
58
|
Anderson JE, Hobbs MM, Biswas GD, Sparling PF. Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol Microbiol 2003; 48:1325-37. [PMID: 12787359 DOI: 10.1046/j.1365-2958.2003.03496.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All isolates of Neisseria gonorrhoeae express receptors that bind human transferrin (Tf). Although lactoferrin (Lf) is abundant on mucosa and in purulent exudates, many gonococci do not express an Lf receptor. The naturally occurring Lf receptor deletion mutant FA1090 (LbpB-LbpA-) is infectious, but a Tf receptor mutant of FA1090 is unable to infect male volunteers [Cornelissen, C.N., Kelley, M., Hobbs, M.M., Anderson, J.E., Cannon, J.G., Cohen, M.S., and Sparling, P.F. (1998) Mol Microbiol 27: 611-616]. Here, we report that expression of an Lf receptor in the absence of the Tf receptor was sufficient for infection, and that expression of both Lf and Tf receptors resulted in a competitive advantage over a strain that made only the Tf receptor in mixed infection of male volunteers. We confirmed that nearly 50% of clinical isolates do not make an Lf receptor. Surprisingly, about half of geographically diverse Lf - isolates representing many different auxotypes and porin serovars carried an identical lbpB lbpA deletion. Among Lf+ strains, all produced the integral outer membrane protein LbpA, but 70% did not express the lipoprotein LbpB. Thus, there are apparently selective pressures for expression of the Lf receptor in the male urethra that are balanced by others against expression of the Lf receptor in niches other than the male urethra.
Collapse
Affiliation(s)
- James E Anderson
- Department of Medicine, School of Medicine, University of North Carolina, 521 Burnett Womack Building, CB 7030, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
59
|
Bates CS, Montañez GE, Woods CR, Vincent RM, Eichenbaum Z. Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun 2003; 71:1042-55. [PMID: 12595414 PMCID: PMC148835 DOI: 10.1128/iai.71.3.1042-1055.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemolytic Streptococcus pyogenes can use a variety of heme compounds as an iron source. In this study, we investigate hemoprotein utilization by S. pyogenes. We demonstrate that surface proteins contribute to the binding of hemoproteins to S. pyogenes. We identify an ABC transporter from the iron complex family named sia for streptococcal iron acquisition, which consists of a lipoprotein (siaA), membrane permease (siaB), and ATPase (siaC). The sia transporter is part of a highly conserved, iron regulated, 10-gene operon. SiaA, which was localized to the cell membrane, could specifically bind hemoglobin. The operon's first gene encodes a novel bacterial protein that bound hemoglobin, myoglobin, heme-albumin, and hemoglobin-haptoglobin (but not apo-haptoglobin) and therefore was named Shr, for streptococcal hemoprotein receptor. PhoZ fusion and Western blot analysis showed that Shr has a leader peptide and is found in both membrane-bound and soluble forms. An M1 SF370 strain with a polar mutation in shr was more resistant to streptonigrin and hydrogen peroxide, suggesting decreased iron uptake. The addition of hemoglobin to the culture medium increased cell resistance to hydrogen peroxide in SF370 but not in the mutant, implying the sia operon may be involved in hemoglobin-dependent resistance to oxidative stress. The shr mutant demonstrated reduced hemoglobin binding, though cell growth in iron-depleted medium supplemented with hemoglobin, whole blood, or ferric citrate was not affected, suggesting additional systems are involved in hemoglobin utilization. SiaA and Shr are the first hemoprotein receptors identified in S. pyogenes; their possible role in iron capture is discussed.
Collapse
Affiliation(s)
- Christopher S Bates
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
60
|
Murphy ER, Sacco RE, Dickenson A, Metzger DJ, Hu Y, Orndorff PE, Connell TD. BhuR, a virulence-associated outer membrane protein of Bordetella avium, is required for the acquisition of iron from heme and hemoproteins. Infect Immun 2002; 70:5390-403. [PMID: 12228263 PMCID: PMC128346 DOI: 10.1128/iai.70.10.5390-5403.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron (Fe) is an essential element for most organisms which must be obtained from the local environment. In the case of pathogenic bacteria, this fundamental element must be acquired from the fluids and tissues of the infected host. A variety of systems have evolved in bacteria for efficient acquisition of host-bound Fe. The gram-negative bacterium Bordetella avium, upon colonization of the avian upper respiratory tract, produces a disease in birds that has striking similarity to whooping cough, a disease caused by the obligate human pathogen Bordetella pertussis. We describe a B. avium Fe utilization locus comprised of bhuR and six accessory genes (rhuIR and bhuSTUV). Genetic manipulations of B. avium confirmed that bhuR, which encodes a putative outer membrane heme receptor, mediates efficient acquisition of Fe from hemin and hemoproteins (hemoglobin, myoglobin, and catalase). BhuR contains motifs which are common to bacterial heme receptors, including a consensus FRAP domain, an NPNL domain, and two TonB boxes. An N-terminal 32-amino-acid segment, putatively required for rhuIR-dependent regulated expression of bhuR, is present in BhuR but not in other bacterial heme receptors. Two forms of BhuR were observed in the outer membrane of B. avium: a 91-kDa polypeptide consistent in size with the predicted mature protein and a smaller 82-kDa polypeptide which lacks the 104 amino acids found at the N terminus of the 91-kDa form. A mutation in hemA was engineered in B. avium to demonstrate that the bacterium transports heme into the cytoplasm in a BhuR-dependent manner. The role of BhuR in virulence was established in turkey poults by use of a competitive-infection model.
Collapse
Affiliation(s)
- Erin R Murphy
- The Witebsky Center for Microbial Pathogenesis and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Sebastian S, Agarwal S, Murphy JR, Genco CA. The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 2002; 184:3965-74. [PMID: 12081969 PMCID: PMC135177 DOI: 10.1128/jb.184.14.3965-3974.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we have characterized the in vitro binding of Neisseria gonorrhoeae Fur to several well-defined iron transport genes, as well as to additional genes involved in major catabolic, secretory, and recombination pathways of gonococci. The gonococcal Fur protein was recombinantly expressed in Escherichia coli HBMV119. Fur was isolated from inclusion bodies and partially purified by ion-exchange chromatography. Gonococcal Fur was found to bind to the promoter/operator region of a gene encoding the previously identified Fur-regulated periplasmic binding protein (FbpA) in a metal ion-dependent fashion, demonstrating that purified Fur is functional. In silico analysis of the partially completed gonococcal genome (FA1090) identified Fur boxes in the promoters of several genes, including tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, a hypothetical gene (Fe-S homolog), and the opa family of genes. By using purified gonococcal Fur, we demonstrate binding to the operator regions of tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, the Fe-S homolog gene, and the opa gene family as determined by an electrophoretic mobility shift assay. While gonococcal Fur was demonstrated to bind to the promoter regions of all 11 opa genes (opaA through -K), we did not detect binding of purified E. coli Fur with 8 of the 11 opa members, indicating that target DNA sequence specificities between these two closely related proteins exist. Furthermore, we observed differences in the relative strengths of binding of gonococcal Fur for these different genes, which most likely reflect a difference in affinity between gonococcal Fur and its DNA targets. This is the first report that definitively demonstrates the binding of gonococcal Fur to its own promoter/operator region, as well as to the opa family of genes that encode surface proteins. Our results demonstrate that the gonococcal Fur protein binds to the regulatory regions of a broad array of genes and indicates that the gonococcal Fur regulon is larger than originally proposed.
Collapse
Affiliation(s)
- Shite Sebastian
- Evans Biomedical Research Center, Department of Medicine, Section of Infectious Diseases, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
62
|
Jerse AE, Crow ET, Bordner AN, Rahman I, Cornelissen CN, Moench TR, Mehrazar K. Growth of Neisseria gonorrhoeae in the female mouse genital tract does not require the gonococcal transferrin or hemoglobin receptors and may be enhanced by commensal lactobacilli. Infect Immun 2002; 70:2549-58. [PMID: 11953395 PMCID: PMC127891 DOI: 10.1128/iai.70.5.2549-2558.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Revised: 09/18/2001] [Accepted: 01/03/2002] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is capable of utilizing a variety of iron sources in vitro, including human transferrin, human lactoferrin, hemoglobin, hemoglobin-haptoglobin complexes, heme, and heterologous siderophores. Transferrin has been implicated as a critical iron store for N. gonorrhoeae in the human male urethra. The demonstration that gonococci can infect the lower genital tracts of estradiol-treated BALB/c mice in the absence of human transferrin, however, suggests that other usable iron sources are present in the murine genital tract. Here we demonstrate that gonococcal transferrin and hemoglobin receptor mutants are not attenuated in mice, thereby ruling out transferrin and hemoglobin as essential for murine infection. An increased frequency of phase variants with the hemoglobin receptor "on" (Hg(+)) occurred in ca. 50% of infected mice; this increase was temporally associated with an influx of neutrophils and detectable levels of hemoglobin in the vagina, suggesting that the presence of hemoglobin in inflammatory exudates selects for Hg(+) phase variants during infection. We also demonstrate that commensal lactobacilli support the growth of N. gonorrhoeae in vitro unless an iron chelator is added to the medium. We hypothesize that commensal lactobacilli may enhance growth of gonococci in vivo by promoting the solubilization of iron on mucosal surfaces through the production of metabolic intermediates. Finally, transferrin-binding lipoprotein (TbpB) was detected on gonococci in vaginal smears, suggesting that although gonococci replicate within the genital tracts of mice, they may be sufficiently iron-stressed to express iron-repressible proteins. In summary, these studies support the potential role of nontransferrin, nonhemoglobin iron sources during gonococcal infection of the female genital tract.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
An extensive amount of new knowledge on bacterial systems involved in heme processing has been accumulated in the last 10 years. We discuss common themes in heme transport across bacterial outer and inner membranes, emphasizing proteins and mechanisms involved. The processing of heme in the bacterial cytoplasm is extensively covered, and a new hypothesis about the fate of heme in the bacterial cell is presented. Auxiliary genes involved in heme utilization, i.e., TonB, proteases, proteins involved in heme storage and pigmentation, as well as genes involved in regulation of heme assimilation are reviewed.
Collapse
Affiliation(s)
- Igor Stojiljkovic
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
64
|
Larson JA, Higashi DL, Stojiljkovic I, So M. Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect Immun 2002; 70:1461-7. [PMID: 11854233 PMCID: PMC127810 DOI: 10.1128/iai.70.3.1461-1467.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2001] [Revised: 11/06/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis (meningococcus [MC]) is able to enter and replicate within epithelial cells. Iron, an essential nutrient for nearly all organisms, is an important determinant in the ability of MC to cause disease; however, its role in MC intracellular replication has not been investigated. We analyzed the growth of MC within the A431 human epithelial cell line and the dependence of this growth on iron uptake. We present evidence here that chelation of iron from infected tissue culture cells with Desferal strongly inhibited intracellular replication of wild-type (wt) MC. We also provide genetic evidence that iron must be acquired by MC from the host cell in order for it to replicate. An hmbR mutant that is unable to use hemoglobin iron and could not grow in tissue culture media without iron supplementation replicated more rapidly within epithelial cells than its wt parent strain. An fbpA mutant that is unable to utilize human transferrin iron or lactoferrin iron replicated normally within cells. In contrast, a tonB mutant could not replicate intracellularly unless infected cultures were supplemented with ferric nitrate. Taken together, these findings strongly suggest that MC intracellular replication requires TonB-dependent uptake of a novel host cell iron source.
Collapse
Affiliation(s)
- Jason A Larson
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | |
Collapse
|
65
|
Rouquette-Loughlin C, Stojiljkovic I, Hrobowski T, Balthazar JT, Shafer WM. Inducible, but not constitutive, resistance of gonococci to hydrophobic agents due to the MtrC-MtrD-MtrE efflux pump requires TonB-ExbB-ExbD proteins. Antimicrob Agents Chemother 2002; 46:561-5. [PMID: 11796379 PMCID: PMC127027 DOI: 10.1128/aac.46.2.561-565.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MtrC-MtrD-MtrE efflux pump possessed by Neisseria gonorrhoeae is very similar to the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Because the antimicrobial resistance property afforded by the MexA-MexB-OprM efflux pump also requires the TonB protein, we asked whether a similar requirement exists for the gonococcal efflux pump. Unlike earlier studies with P. aeruginosa, we found that constitutive levels of gonococcal resistance to hydrophobic antimicrobial agents (i.e., Triton X-100 [TX-100]) did not require the TonB, ExbB, or ExbD protein. However, inducible levels of TX-100 resistance in gonococci had an absolute requirement for the TonB-ExbB-ExbD system, suggesting that such resistance in gonococci has an energy requirement above and beyond that required for constitutive pump activity.
Collapse
Affiliation(s)
- Corinne Rouquette-Loughlin
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
66
|
Rohde KH, Gillaspy AF, Hatfield MD, Lewis LA, Dyer DW. Interactions of haemoglobin with the Neisseria meningitidis receptor HpuAB: the role of TonB and an intact proton motive force. Mol Microbiol 2002; 43:335-54. [PMID: 11985713 DOI: 10.1046/j.1365-2958.2002.02745.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the interaction of the Neisseria meningitidis TonB-dependent receptor HpuAB with haemoglobin (Hb). Protease accessibility assays indicated that HpuA and HpuB are surface exposed, HpuB interacts physically with HpuA, and TonB energization affects the conformation of HpuAB. Binding assays using [125I]-Hb revealed that the bipartite receptor has a single binding site for Hb (Kd 150 nM). Competitive binding assays using heterologous Hbs revealed that HpuAB Hb recognition was not species specific. The binding kinetics of Hb to HpuAB were dramatically altered in a TonB- mutant and in wild-type meningococci treated with the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), indicating that TonB and an intact proton motive force are required for normal Hb binding and release from HpuAB. Our results support a model in which both HpuA and HpuB are required to form a receptor complex in the outer membrane with a single binding site, whose structure and ligand interactions are significantly affected by the TonB-mediated energy state of the receptor.
Collapse
Affiliation(s)
- K H Rohde
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | | | | | | | | |
Collapse
|
67
|
Chen CJ, Mclean D, Thomas CE, Anderson JE, Sparling PF. Point mutations in HpuB enable gonococcal HpuA deletion mutants to grow on hemoglobin. J Bacteriol 2002; 184:420-6. [PMID: 11751818 PMCID: PMC139576 DOI: 10.1128/jb.184.2.420-426.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae ordinarily requires both HpuA and HpuB to use hemoglobin (Hb) as a source of iron for growth. Deletion of HpuA resulted in reduced Hb binding and failure of growth on Hb. We identified rare Hb-utilizing colonies (Hb(+)) from an hpuA deletion mutant of FA1090, which fell into two phenotypic classes. One class of the Hb(+) revertants required expression of both TonB and HpuB for growth on Hb, while the other class required neither TonB nor HpuB. All TonB/HpuB-dependent mutants had single amino acid alterations in HpuB, which occurred in clusters, particularly near the C terminus. The point mutations in HpuB did not restore normal Hb binding. Human serum albumin inhibited Hb-dependent growth of HpuB point mutants lacking HpuA but did not inhibit growth when expression of HpuA was restored. Thus, HpuB point mutants internalized heme in the absence of HpuA despite reduced binding of Hb. HpuA facilitated Hb binding and was important in allowing use of heme from Hb for growth.
Collapse
Affiliation(s)
- Ching-Ju Chen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
68
|
Turner PC, Thomas CE, Stojiljkovic I, Elkins C, Kizel G, Ala'Aldeen DAA, Sparling PF. Neisserial TonB-dependent outer-membrane proteins: detection, regulation and distribution of three putative candidates identified from the genome sequences. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1277-1290. [PMID: 11320131 DOI: 10.1099/00221287-147-5-1277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computer searches were carried out of the gonococcal and meningococcal genome databases for previously unknown members of the TonB-dependent family (Tdf) of outer-membrane receptor proteins. Seven putative non-contiguous genes were found and three of these (identified in gonococcal strain FA1090) were chosen for further study. Consensus motif analysis of the peptide sequences was consistent with the three genes encoding TonB-dependent receptors. In view of the five previously characterized TonB-dependent proteins of pathogenic neisseriae, the putative genes were labelled tdfF, tdfG and tdfH. TdfF had homology with the siderophore receptors FpvA of Pseudomonas aeruginosa and FhuE of Escherichia coli, whereas TdfG and TdfH had homology with the haemophore receptor HasR of Serratia marcescens. The aim of this project was to characterize these proteins and determine their expression, regulation, distribution and surface exposure. Strain surveys of iron-stressed commensal and pathogenic neisseriae revealed that TdfF is unlikely to be expressed, TdfG is expressed by gonococci only and that TdfH is expressed by both meningococci and gonococci. Expression of TdfH was unaffected by iron availability. Susceptibility of TdfH to cleavage by proteases in live gonococci was consistent with surface exposure of this protein. TdfH may function as a TonB-dependent receptor for a non-iron nutrient source. Furthermore, TdfH is worthy of future investigation as a potential meningococcal vaccine candidate as it is a highly conserved, widely distributed and surface-exposed outer-membrane protein.
Collapse
Affiliation(s)
- Paul C Turner
- Meningococcal Research Group, Division of Microbiology and Infectious Diseases, University of Nottingham, University Hospital, Nottingham NG7 2UH, UK4
- Departments of Medicine1 and Microbiology and Immunology3, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher E Thomas
- Departments of Medicine1 and Microbiology and Immunology3, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Igor Stojiljkovic
- Department of Microbiology and Immunology, 1510 Clifton Road, Emory University, AK 30322, USA2
| | - Christopher Elkins
- Departments of Medicine1 and Microbiology and Immunology3, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Goksel Kizel
- Meningococcal Research Group, Division of Microbiology and Infectious Diseases, University of Nottingham, University Hospital, Nottingham NG7 2UH, UK4
| | - Dlawer A A Ala'Aldeen
- Meningococcal Research Group, Division of Microbiology and Infectious Diseases, University of Nottingham, University Hospital, Nottingham NG7 2UH, UK4
| | - P F Sparling
- Departments of Medicine1 and Microbiology and Immunology3, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
69
|
Kahler CM, Blum E, Miller YK, Ryan D, Popovic T, Stephens DS. exl, an exchangeable genetic island in Neisseria meningitidis. Infect Immun 2001; 69:1687-96. [PMID: 11179344 PMCID: PMC98073 DOI: 10.1128/iai.69.3.1687-1696.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic structure and evolution of a novel exchangeable meningococcal genomic island was defined for the important human pathogen Neisseria meningitidis. In 125 meningococcal strains tested, one of three unrelated nucleotide sequences, designated exl (exchangeable locus), was found between a gene required for heme utilization, hemO, and col, encoding a putative Escherichia coli collagenase homologue. The 5' boundary of each exl cassette was the stop codon of hemO, whereas the 3' boundary was delineated by a 33-bp repeat containing neisserial uptake sequences located downstream of col. One of the three alternative exl cassettes contained the meningococcal hemoglobin receptor gene, hmbR (exl3). In other meningococcal strains, hmbR was absent from the genome and was replaced by either a nucleotide sequence containing a novel open reading frame, exl2, or a cassette containing exl3. The proteins encoded by exl2 and exl3 had no significant amino acid homology to HmbR but contained six motifs that are also present in the lipoprotein components of the lactoferrin (LbpB), transferrin (TbpB), and hemoglobin-haptoglobin (HpuA) uptake systems. To determine the evolutionary relationships among meningococci carrying hmbR, exl2, or exl3, isolates representing 92 electrophoretic types were examined. hmbR was found throughout the population structure of N. meningitidis (genetic distance, >0.425), whereas exl2 and exl3 were found in clonal groups at genetic distances of <0.2. The commensal neisserial species were identified as reservoirs for all of the exl cassettes found in meningococci. The structure of these cassettes and their correlation with clonal groups emphasize the extensive gene pool and frequent horizontal DNA transfer events that contribute to the evolution and virulence of N. meningitidis.
Collapse
Affiliation(s)
- C M Kahler
- Department of Medicine and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
Gram-negative pathogenic bacteria have evolved novel strategies to obtain iron from host haem-sequestering proteins. These include the production of specific outer membrane receptors that bind directly to host haem-sequestering proteins, secreted haem-binding proteins (haemophores) that bind haem/haemoglobin/haemopexin and deliver the complex to a bacterial cell surface receptor and bacterial proteases that degrade haem-sequestering proteins. Once removed from haem-sequestering proteins, haem may be transported via the bacterial outer membrane receptor into the cell. Recent studies have begun to define the steps by which haem is removed from bacterial haem proteins and transported into the cell. This review describes recent work on the discovery and characterization of these systems. Reference is also made to the transport of haem in serum (via haemoglobin, haemoglobin/haptoglobin, haemopexin, albumin and lipoproteins) and to mechanisms of iron removal from the haem itself (probably via a haem oxygenase pathway in which the protoporphyrin ring is degraded). Haem protein-receptor interactions are discussed in terms of the criteria that govern protein-protein interactions in general, and connections between haem transport and the emerging field of metal transport via metallochaperones are outlined.
Collapse
Affiliation(s)
- C A Genco
- Department of Medicine, Boston University School of Medicine, Section of Infectious Diseases, 650 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
71
|
Desai PJ, Garges E, Genco CA. Pathogenic neisseriae can use hemoglobin, transferrin, and lactoferrin independently of the tonB locus. J Bacteriol 2000; 182:5586-91. [PMID: 10986265 PMCID: PMC111005 DOI: 10.1128/jb.182.19.5586-5591.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Redundant TonB systems which function in iron transport from TonB-dependent ligands have recently been identified in several gram-negative bacteria. We demonstrate here that in addition to the previously described tonB locus, an alternative system exists for the utilization of iron from hemoglobin, transferrin, or lactoferrin in Neisseria meningitidis and Neisseria gonorrhoeae. Following incubation on media containing hemoglobin, N. meningitidis IR3436 (tonB exbB exbD deletion mutant) and N. gonorrhoeae PD3401 (tonB insertional mutant) give rise to colonies which can grow with hemoglobin. Transfer of Hb(+) variants (PD3437 or PD3402) to media containing hemoglobin, transferrin, and/or lactoferrin as sole iron sources resulted in growth comparable to that observed for the wild-type strains. Transformation of N. meningitidis IR3436 or N. gonorrhoeae PD3401 with chromosomal DNA from the Hb(+) variants yielded transformants capable of growth with hemoglobin. When we inactivated the TonB-dependent outer membrane hemoglobin receptors (HmbR or HpuB) in the Neisseria Hb(+) variants, these strains could not grow with hemoglobin; however, growth was observed with transferrin and/or lactoferrin. These results demonstrate that accumulation of iron from hemoglobin, transferrin, and lactoferrin in the pathogenic neisseriae can occur via a system that is independent of the previously described tonB locus.
Collapse
Affiliation(s)
- P J Desai
- The Maxwell Finland Laboratory for Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
72
|
Simpson W, Olczak T, Genco CA. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 2000; 182:5737-48. [PMID: 11004172 PMCID: PMC94695 DOI: 10.1128/jb.182.20.5737-5748.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative pathogen Porphyromonas gingivalis requires hemin for growth. Hemoglobin bound to haptoglobin and hemin complexed to hemopexin can be used as heme sources, indicating that P. gingivalis must have a means to remove the hemin from these host iron-binding proteins. However, the specific mechanisms utilized by P. gingivalis for the extraction of heme from heme-binding proteins and for iron transport are poorly understood. In this study we have determined that a newly identified TonB-dependent hemoglobin-hemin receptor (HmuR) is involved in hemoglobin binding and utilization in P. gingivalis A7436. HmuR shares amino acid homology with TonB-dependent outer membrane receptors of gram-negative bacteria involved in the acquisition of iron from hemin and hemoglobin, including HemR of Yersinia enterocolitica, ShuA of Shigella dysenteriae, HpuB of Neisseria gonorrhoeae and N. meningitidis, HmbR of N. meningitidis, HgbA of Haemophilus ducreyi, and HgpB of H. influenzae. Southern blot analysis confirmed the presence of the hmuR gene and revealed genetic variability in the carboxy terminus of hmuR in P. gingivalis strains 33277, 381, W50, and 53977. We also identified directly upstream of the hmuR gene a gene which we designated hmuY. Upstream of the hmuY start codon, a region with homology to the Fur binding consensus sequence was identified. Reverse transcription-PCR analysis revealed that hmuR and hmuY were cotranscribed and that transcription was negatively regulated by iron. Inactivation of hmuR resulted in a decreased ability of P. gingivalis to bind hemoglobin and to grow with hemoglobin or hemin as sole iron sources. Escherichia coli cells expressing recombinant HmuR were shown to bind hemoglobin and hemin. Furthermore, purified recombinant HmuR was demonstrated to bind hemoglobin. Taken together, these results indicate that HmuR serves as the major TonB-dependent outer membrane receptor involved in the utilization of both hemin and hemoglobin in P. gingivalis.
Collapse
Affiliation(s)
- W Simpson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
73
|
Abstract
Neisseria meningitidis, an exclusive pathogen of humans, remains the leading worldwide cause of meningitis and fatal sepsis, usually in otherwise healthy individuals. In recent years, significant advances have improved our understanding of the epidemiology and genetic basis of meningococcal disease and led to progress in the development of the next generation of meningococcal vaccines. This review summarizes current knowledge of the human susceptibility to and the epidemiology and molecular pathogenesis of meningococcal disease.
Collapse
Affiliation(s)
- Y L Tzeng
- Department of Medicine and Microbiology, Emory University School of Medicine, Veterans Affairs Medical Center, Georgia, Atlanta, USA
| | | |
Collapse
|
74
|
Wandersman C, Stojiljkovic I. Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 2000; 3:215-20. [PMID: 10744995 DOI: 10.1016/s1369-5274(00)00078-3] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The major mechanisms by which Gram-negative bacteria acquire heme from host heme-carrier proteins involve either direct binding to specific outer membrane receptors or release of bacterial hemophores that take up heme from host heme carriers and shuttle it back to specific receptors. The ability to interact with and remove heme from carrier proteins distinguishes heme from conceptually similar siderophore and vitamin B12 receptors. Recent genetic, biochemical and crystallization studies have started to unravel the mechanism and molecular interactions between heme-carrier proteins and components of bacterial heme assimilation systems.
Collapse
Affiliation(s)
- C Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 1300), Paris Cedex 15, 75724, France.
| | | |
Collapse
|
75
|
Litt DJ, Palmer HM, Borriello SP. Neisseria meningitidis expressing transferrin binding proteins of Actinobacillus pleuropneumoniae can utilize porcine transferrin for growth. Infect Immun 2000; 68:550-7. [PMID: 10639416 PMCID: PMC97175 DOI: 10.1128/iai.68.2.550-557.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination was used to generate a number of mutants of serogroup B Neisseria meningitidis B16B6 with the following characteristics: (i) an inability to bind human or porcine transferrin because of loss of both transferrin binding proteins (Tbp) A and B [strain B16B6(Str(r))/tbpA(-)B(-)] and (ii) an ability to bind porcine transferrin but not human transferrin [strain B16B6(Str(r))/tbpA(ap)B(ap)] due to replacement of the meningococcal Tbp with the Tbp of Actinobacillus pleuropneumoniae. During construction of the B16B6(Str(r))/tbpA(ap)B(ap) strain, transformants expressing only TbpA or TbpB of A. pleuropneumoniae were isolated [strains B16B6(Str(r))/tbpA(ap)B(-) and B16B6(Str(r))/tbpA(-)B(ap)]. Expression of the A. pleuropneumoniae Tbp in N. meningitidis B16B6 was iron regulated and expressed under the control of the meningococcal promoter. The relative abilities of the meningococcal transformants to bind porcine transferrin were in the order B16B6(Str(r))/tbpA(ap)B(ap) > B16B6(Str(r))/tbpA(ap)B(-) > B16B6(Str(r))/tbpA(-)B(ap). Of these transformants, only B16B6(Str(r))/tbpA(ap)B(ap) could grow in the presence of porcine transferrin as the sole iron source, achieving a growth rate similar to that of the B16B6 parent strain in the presence of human transferrin.
Collapse
Affiliation(s)
- D J Litt
- Institute of Infections and Immunity, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
76
|
Cook GM, Poole RK. Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem-membrane association. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):527-536. [PMID: 10708391 DOI: 10.1099/00221287-146-2-527] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism(s) that bacteria use to transport haem into and across the cytoplasmic membrane to complete the assembly of periplasmic cytochromes is unknown. The authors have tested directly the role(s) of two ATP-binding cassette (ABC) transporters - the cydDC and ccmAB gene products - in Escherichia coli by measuring haem uptake in everted (inside-out) membrane vesicles. If haem is exported to the periplasm in vivo, the same process should result in active accumulation in such everted vesicles. [14C]Haemin (chloride) with bovine serum albumin (BSA) as a carrier protein was accumulated in intact everted membrane vesicles by an energy-independent mechanism. The kinetics of this process were biphasic: rapid uptake/binding was followed by a slower uptake of haem, which was inhibited by a large excess of unlabelled haemin-BSA, but not by BSA. However, accumulated haemin was not chased out of the vesicles by unlabelled haemin-BSA, suggesting specific binding of haemin with the membrane or transport into the lumen of the vesicle. Neither ATP nor a protonmotive force (delta(p)) generated by lactate oxidation was required for haemin binding or subsequent transport, and carbonyl cyanide m-chlorophenylhydrazone (CCCP), sodium vanadate and monensin had no effect on haemin transport. The rate of haemin uptake following the initial rapid binding was proportional to the external haemin concentration, suggesting that the uptake process was driven by the haemin concentration gradient across the cell membrane. The kinetics of [14C]haemin uptake were similar in wild-type and cydD1 or delta(ccmA) mutants, suggesting that the activity of neither the CydDC nor CcmAB transporters is essential for haem export to the periplasm. Cytochrome d levels were unaffected by mutations in trxB (encoding thioredoxin reductase), trxA (thioredoxin), or grx (glutaredoxin), suggesting that the CydDC transporter does not export these components of reducing pathways for cytochrome assembly.
Collapse
Affiliation(s)
- Gregory M Cook
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK1
| | - Robert K Poole
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK1
| |
Collapse
|
77
|
Zhu W, Hunt DJ, Richardson AR, Stojiljkovic I. Use of heme compounds as iron sources by pathogenic neisseriae requires the product of the hemO gene. J Bacteriol 2000; 182:439-47. [PMID: 10629191 PMCID: PMC94294 DOI: 10.1128/jb.182.2.439-447.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Heme compounds are an important source of iron for neisseriae. We have identified a neisserial gene, hemO, that is essential for heme, hemoglobin (Hb), and haptoglobin-Hb utilization. The hemO gene is located 178 bp upstream of the hmbR Hb receptor gene in Neisseria meningitidis isolates. The product of the hemO gene is homologous to enzymes that degrade heme; 21% of its amino acid residues are identical, and 44% are similar, to those of the human heme oxygenase-1. DNA sequences homologous to hemO were ubiquitous in commensal and pathogenic neisseriae. HemO genetic knockout strains of Neisseria gonorrhoeae and N. meningitidis were unable to use any heme source, while the assimilation of transferrin-iron and iron-citrate complexes was unaffected. A phenotypic characterization of a conditional hemO mutant, constructed by inserting an isopropyl-beta-D-thiogalactopyranoside (IPTG)-regulated promoter upstream of the ribosomal binding site of hemO, confirmed the indispensability of the HemO protein in heme utilization. The expression of HemO also protected N. meningitidis cells against heme toxicity. hemO mutants were still able to transport heme into the cell, since both heme and Hb could complement an N. meningitidis hemA hemO double mutant for growth. The expression of the HmbR receptor was reduced significantly by the inactivation of the hemO gene, suggesting that hemO and hmbR are transcriptionally linked. The expression of the unlinked Hb receptor, HpuAB, was not altered. Comparison of the polypeptide patterns of the wild type and the hemO mutant led to detection of six protein spots with an altered expression pattern, suggesting a more general role of HemO in the regulation of gene expression in Neisseriae.
Collapse
Affiliation(s)
- W Zhu
- Department of Microbiology, Emory School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
78
|
Ochsner UA, Johnson Z, Vasil ML. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):185-198. [PMID: 10658665 DOI: 10.1099/00221287-146-1-185] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene cluster similar to haem iron uptake loci of bacterial pathogens was identified in Pseudomonas aeruginosa. This phu locus ('Pseudomonas haem uptake') consisted of the phuR receptor gene and the phuSTUVW operon encoding a typical ABC transporter. Expression of phuR and phuSTUVW from mapped transcriptional-start sites occurred under iron-restricted growth conditions and was directly controlled by the Fur protein. Binding of Fur was demonstrated by DNase footprinting of two adjacent 'Fur boxes' that overlapped both the phuR and phuSTUVW promoters. Two tandem repeats of 154 bp were identified downstream of the phuSTUVW operon, each of which contained a strong Fur-dependent promoter driving expression of iron-regulated RNAs antisense to phuSTUVW. Mutant strains with deletions in phuR and phuSTUV showed greatly reduced growth with either haem or haemoglobin as the only iron source: the defects were complemented by plasmids harbouring the phuR or the phuSTUV genes, respectively. Deletions of phuW or of the tandem repeats had only minor effects on haem utilization. The remaining haem and haemoglobin uptake still observed in the deltaphuR or deltaphuSTUV deletion mutants was due to a second haem-acquisition system, has, which was also under the direct control of Fur. This second haem-receptor gene, hasR, was identified upstream of and in an operon with hasA, encoding a haem-binding extracellular protein. A deltahasR mutant also exhibited decreased utilization of haem and haemoglobin, and a deltaphuR deltahasR double mutant was virtually unable to take up either compound. Both the PhuR and HasR proteins were detected in the outer-membrane fraction of P. aeruginosa grown in low-iron media. Taken together, the evidence suggests that the phu and has loci encode two distinct systems required for the acquisition of haem and haemoglobin in P. aeruginosa.
Collapse
Affiliation(s)
- Urs A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E Ninth Avenue, Campus Box B175, Denver, CO 80262, USA1
| | - Zaiga Johnson
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E Ninth Avenue, Campus Box B175, Denver, CO 80262, USA1
| | - Michael L Vasil
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 E Ninth Avenue, Campus Box B175, Denver, CO 80262, USA1
| |
Collapse
|
79
|
Bracken CS, Baer MT, Abdur-Rashid A, Helms W, Stojiljkovic I. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J Bacteriol 1999; 181:6063-72. [PMID: 10498719 PMCID: PMC103634 DOI: 10.1128/jb.181.19.6063-6072.1999] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abilities of two bacterial active heme transporters, HmbR of Neisseria meningitidis and HemR of Yersinia enterocolitica, to use different heme sources were compared. While HmbR-expressing cells used only hemoglobin (Hb) and heme, HemR-expressing bacteria were able to grow on Hb, heme, myoglobin, hemopexin, catalase, human and bovine serum albumin-heme, and haptoglobin-hemoglobin complexes as sources of iron. Expression of functional HemR allowed Escherichia coli cells to respond to heme-containing peptides, microperoxidases MP-8, MP-9, and MP-11, suggesting the ability of HemR to transport heme covalently linked to other molecules. Comparison of HemR with other heme receptors identified several highly conserved histidine residues as well as two conserved amino acid motifs, the FRAP and NPNL boxes. A site-directed mutagenesis approach was used to investigate the roles of His128, His192, His352, and His461 residues in HemR function. The HemR receptor with histidine changed to lysine at position 128 (HemR(H128K)), HemR(H461L), HemR(H461A), and HemR(H128A,H461A) mutant receptors were unable to use Hb, human serum albumin-heme, and myoglobin as sources of porphyrin and iron. Utilization of free heme was also severely affected, with some residual heme uptake in cells expressing HemR(H128K), HemR(H461A), and HemR(H461L). Conversely, the HemR(H192T), HemR(H352A), HemR(H352K), and HemR(H192T,H352K) mutant receptors were fully functional. All mutant HemR proteins were expressed in the outer membrane at levels similar to that of the wild-type HemR receptor. Nonfunctional HemRs were able to bind heme- and Hb-agarose. A hypothetical model of the HemR function in which two conserved histidine residues, His128 and His461, participate in the transport of heme through the receptor pore is postulated.
Collapse
Affiliation(s)
- C S Bracken
- Department of Microbiology & Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
80
|
Abstract
The fbpABC locus of Neisseria gonorrhoeae has been proposed to encode a periplasmic protein-dependent iron transport system. Although the function of the gonococcal FbpA protein has been well characterized and its role as a periplasmic binding protein is well defined, little is known about the function of the FbpB and FbpC proteins. To define the function of the gonococcal FbpC protein, an N. gonorrhoeae F62 fbpC mutant was constructed by insertional inactivation with the kanamycin gene. The N. gonorrhoeae F62 fbpC mutant was observed to grow with heme, transferrin, or ferric nitrate as the sole exogenous iron source, indicating that the gonococcal FbpC protein is not absolutely required for growth with these iron sources. In previous studies we were unable to detect fbpB- or fbpC-specific transcripts by Northern analysis. Reverse transcription-PCR analysis with RNA obtained from N. gonorrhoeae F62 grown under iron-replete and -depleted conditions detected fbpA and fbpAB transcripts but failed to detect fbpC or fbpBC transcripts. These results indicate that FbpC does not play a pivotal role in iron transport in N. gonorrhoeae and suggest that additional ABC transport systems are functional in the gonococcus for the acquisition of iron.
Collapse
Affiliation(s)
- S Sebastian
- The Maxwell Finland Laboratory for Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
81
|
Abstract
Pathogenic neisseriae have a repertoire of high-affinity iron uptake systems to facilitate acquisition of this essential element in the human host. They possess surface receptor proteins that directly bind the extracellular host iron-binding proteins transferrin and lactoferrin. Alternatively, they have siderophore receptors capable of scavenging iron when exogenous siderophores are present. Released intracellular haem iron present in the form of haemoglobin, haemoglobin-haptoglobin or free haem can be used directly as a source of iron for growth through direct binding by specific surface receptors. Although these receptors may vary in complexity and composition, the key protein involved in the transport of iron (as iron, haem or iron-siderophore) across the outer membrane is a TonB-dependent receptor with an overall structure presumably similar to that determined recently for Escherichia coli FhuA or FepA. The receptors are potentially ideal vaccine targets in view of their critical role in survival in the host. Preliminary pilot studies indicate that transferrin receptor-based vaccines may be protective in humans.
Collapse
Affiliation(s)
- A B Schryvers
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
82
|
Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J, Dyer DW. Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 1999; 32:977-89. [PMID: 10361300 DOI: 10.1046/j.1365-2958.1999.01409.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously described HpuAB, a two-component receptor that mediates binding to haemoglobin (Hb), haemoglobin-haptoglobin (Hb-Hp) and apo-haptoglobin (Hp). In this communication, we constructed non-polar mutations in the hpuA and hpuB loci to examine the individual roles of HpuA and HpuB. Our results indicate that both HpuA and HpuB are required for the acquisition of Fe from Hb and Hb-Hp. We isolated Hb utilization-positive (Hb+) variants of our Hb utilization-negative (Hb-) hpu mutants at a frequency of 10(-3) and demonstrated that the Hb+ phenotype resulted from the expression of a second Hb receptor, HmbR. Expression of HmbR in DNM2 was found to be controlled by translational frameshifting involving a polyguanine (G) tract located within the hmbR locus. The hpuA locus also contains a poly(G) tract, which suggested that meningococci could phase vary each Hb receptor independently by slip-strand mispairing in the poly(G) tracts found in hpuA and hmbR. Thus, we isolated a naturally occurring Hb- variant of DNM2, designated DNM2 Hb-, which did not express either HpuAB or HmbR. Hb+ variants of DNM2Hb- were selected and examined for HpuAB and HmbR expression. In each instance, acquisition of HpuAB or HmbR expression was correlated with phase variation in the poly(G) tract of each Hb receptor.
Collapse
Affiliation(s)
- L A Lewis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1053 BMSB, 940 Stanton L. Young Blvd, Oklahoma City, OK 73190, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Archambault M, Rioux S, Jacques M. Evaluation of the hemoglobin-binding activity of Actinobacillus pleuropneumoniae using fluorescein-labeled pig hemoglobin and flow cytometry. FEMS Microbiol Lett 1999; 173:17-25. [PMID: 10220876 DOI: 10.1111/j.1574-6968.1999.tb13479.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the present study, the hemoglobin (Hb)-binding activity of Actinobacillus pleuropneumoniae was examined using fluorescein-labeled pig Hb and flow cytometry. Comparison of the Hb-binding activity of A. pleuropneumoniae serotype 1 strain 4074 grown under iron-restricted conditions with cells grown under iron-sufficient conditions indicated that iron-restriction in A. pleuropneumoniae promotes the expression of Hb receptors, and that Hb-binding activity is, at least in part, iron-repressible. Hb-binding activity was also observed in representative strains of A. pleuropneumoniae belonging to serotypes 1 and 2. In addition, A. pleuropneumoniae serotype 1 LPS or capsule isogenic mutants were tested in flow cytometry in order to understand the influence of surface polysaccharides on Hb-binding activity. Experiments with an acapsulated mutant indicated that surface molecules with Hb-binding activity are more exposed at the cell surface in the absence of capsular polysaccharides. However, the Hb-binding activity of LPS mutants analyzed in this study was unchanged compared to the parent strain. The outer membrane proteins profile of A. pleuropneumoniae serotype 1 grown under iron-restricted or iron-sufficient conditions was also evaluated by polyacrylamide gel electrophoresis. Iron-regulated outer membrane proteins were observed under iron-restricted growth conditions which suggests that one or more of these outer membrane proteins may play a role in the Hb-binding activity detected by flow cytometry.
Collapse
Affiliation(s)
- M Archambault
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Qué, Canada
| | | | | |
Collapse
|
84
|
Richardson AR, Stojiljkovic I. HmbR, a hemoglobin-binding outer membrane protein of Neisseria meningitidis, undergoes phase variation. J Bacteriol 1999; 181:2067-74. [PMID: 10094683 PMCID: PMC93618 DOI: 10.1128/jb.181.7.2067-2074.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1998] [Accepted: 01/23/1999] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis uses hemoglobin (Hb) as an iron source via two TonB-dependent outer membrane receptors, HmbR and HpuB. Analysis of 25 epidemiologically unrelated clinical isolates from serogroups A, B, C, and Y revealed that 64% strains possessed both Hb receptor genes. Examination of the hmbR expression pattern in strains in which the hpuB gene was genetically inactivated revealed two distinct Hb utilization phenotypes. Five strains retained the ability to grow as a confluent lawn, while seven grew only as single colonies around Hb discs. The single-colony phenotype observed for some hpuB mutants is suggestive of phase variation of hmbR. The length of the poly(G) tract starting at position +1164 of hmbR absolutely correlated with the two Hb utilization phenotypes. All five strains that grew as confluent lawns around Hb discs possessed either 9 or 12 consecutive G residues. All seven strains that grew as single colonies around Hb discs had poly(G) tracts of a length other than 9 or 12. These single-colony variants that arose around the Hb discs had poly(G) tracts with either 9 or 12 consecutive G residues restoring the hmbR reading frame. Inactivation of hmbR in these strains resulted in a loss of Hb utilization, demonstrating that the change in the hmbR gene was responsible for the phenotypic switch. The switching rates from hmbR phase off to phase on were approximately 5 x 10(-4) in four serogroup C strains, 2 x 10(-2) in the serogroup A isolate, and 7 x 10(-6) in the serogroup B isolate.
Collapse
Affiliation(s)
- A R Richardson
- Department of Microbiology and Immunology, Emory University School of Medicine, 3001 Rollins Research Center, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
85
|
Lewis LA, Sung MH, Gipson M, Hartman K, Dyer DW. Transport of intact porphyrin by HpuAB, the hemoglobin-haptoglobin utilization system of Neisseria meningitidis. J Bacteriol 1998; 180:6043-7. [PMID: 9811666 PMCID: PMC107682 DOI: 10.1128/jb.180.22.6043-6047.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The meningococcal hemA gene was cloned and used to construct a porphyrin biosynthesis mutant. An analysis of the hemA mutant indicated that meningococci can transport intact porphyrin from heme (Hm), hemoglobin (Hb), and Hb-haptoglobin (Hp). By constructing a HemA- HpuAB- double mutant, we demonstrated that HpuAB is required for the transport of porphyrin from Hb and Hb-Hp.
Collapse
Affiliation(s)
- L A Lewis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73103, USA.
| | | | | | | | | |
Collapse
|
86
|
Ren Z, Jin H, Morton DJ, Stull TL. hgpB, a gene encoding a second Haemophilus influenzae hemoglobin- and hemoglobin-haptoglobin-binding protein. Infect Immun 1998; 66:4733-41. [PMID: 9746572 PMCID: PMC108583 DOI: 10.1128/iai.66.10.4733-4741.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/1998] [Accepted: 07/17/1998] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae requires heme for growth and can utilize both hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified a hemoglobin- and hemoglobin-haptoglobin-binding protein, HgpA, in H. influenzae HI689. Mutation of hgpA did not affect binding or utilization of either heme source. The hgpA mutant exhibited loss of a 120-kDa protein and increased expression of a 115-kDa protein. These data suggested that at least one other gene product is involved in binding of these heme sources by H. influenzae. A 3.2-kbp PCR product derived from HI689 was cloned. The nucleotide sequence indicated a separate, distinct gene with high homology to hgpA, which would encode a 115-kDa protein. Primers were designed for directional cloning of the structural gene in the correct reading frame. Sonicates of induced Escherichia coli harboring the cloned open reading frame bound both hemoglobin and hemoglobin-haptoglobin. An insertion/deletion mutant of H. influenzae at the newly identified locus, designated hgpB, was constructed. The 115-kDa protein was not detected in the mutant after affinity purification using biotinylated hemoglobin. An hgpA hgpB double-mutant strain exhibited a reduced ability to utilize hemoglobin-haptoglobin, although it was unaltered in the ability to utilize hemoglobin. Affinity isolation of hemoglobin-binding proteins from the double mutant resulted in isolation of an approximately 120-kDa protein. Internal peptide sequencing revealed this protein to be a third distinct protein, highly homologous to HgpA and HgpB. In summary a second hemoglobin- and hemoglobin-haptoglobin-binding protein of H. influenzae has been identified and characterized, and the presence of an additional protein of similar function has been revealed.
Collapse
Affiliation(s)
- Z Ren
- Departments of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
87
|
Cope LD, Thomas SE, Hrkal Z, Hansen EJ. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect Immun 1998; 66:4511-6. [PMID: 9712810 PMCID: PMC108548 DOI: 10.1128/iai.66.9.4511-4516.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utilization of heme-hemopexin as a source of heme by Haemophilus influenzae type b is dependent on expression by this bacterium of the 100-kDa HxuA protein, which is both present on the bacterial cell surface and released into the culture supernatant (L. D. Cope, R. Yogev, U. Muller-Eberhard, and E. J. Hansen, J. Bacteriol. 177:2644-2653, 1995). Radioimmunoprecipitation analysis showed that the soluble HxuA protein present in H. influenzae type b culture supernatant bound heme-hemopexin complexes in solution. An isogenic H. influenzae type b hxuA mutant was unable to utilize soluble heme-hemopexin complexes for growth in vitro unless soluble HxuA protein was provided exogenously. Soluble HxuA protein secreted by a nontypeable H. influenzae strain also allowed growth of this H. influenzae type b hxuA mutant. These results indicated that the heme present in heme-hemopexin complexes is rendered accessible to H. influenzae when these complexes are bound by the soluble HxuA protein.
Collapse
Affiliation(s)
- L D Cope
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9048, USA
| | | | | | | |
Collapse
|
88
|
Leung KP, Subramaniam PS, Okamoto M, Fukushima H, Lai CH. The binding and utilization of hemoglobin by Prevotella intermedia. FEMS Microbiol Lett 1998; 162:227-33. [PMID: 9627957 DOI: 10.1111/j.1574-6968.1998.tb13003.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prevotella intermedia, a putative periodontopathic microorganism, requires iron for growth. Hemoglobin can be a major source of iron for bacterial growth in vivo since it is present in the crevicular fluid collected from periodontitis sites. Experiments studying the growth of P. intermedia in iron-depleted Todd-Hewitt broth supplemented with human hemoglobin showed that the bacteria were able to utilize human hemoglobin as a source of iron. The uptake of iron from hemoglobin by P. intermedia appears to be initiated by the binding of hemoglobin to the bacteria as shown by direct binding studies using 125I-labeled human hemoglobin. Scatchard analysis of saturation binding data revealed that 125I-labeled human hemoglobin had a dissociation constant (Kd) of 2.53 x 10(-8) M for the receptor on P. intermedia. Binding of labeled hemoglobin to P. intermedia was competitively inhibited by unlabeled human hemoglobin showing that the binding was specific. The ability of bovine hemoglobin, but not hemin or non-hemoglobin heme-containing compounds, to inhibit binding competitively suggested that the globin moiety of the hemoglobin molecule is recognized by the hemoglobin binding receptors.
Collapse
Affiliation(s)
- K P Leung
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
89
|
Khun HH, Kirby SD, Lee BC. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth. Infect Immun 1998; 66:2330-6. [PMID: 9573125 PMCID: PMC108199 DOI: 10.1128/iai.66.5.2330-2336.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.
Collapse
Affiliation(s)
- H H Khun
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
90
|
Chen CJ, Elkins C, Sparling PF. Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect Immun 1998; 66:987-93. [PMID: 9488386 PMCID: PMC108006 DOI: 10.1128/iai.66.3.987-993.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
Most Neisseria gonorrhoeae isolates are unable to use human hemoglobin as the sole source of iron for growth (Hgb-), but a minor population is able to do so (Hgb+). This minor population grows luxuriously on hemoglobin, expresses two outer membrane proteins of 42 kDa (HpuA) and 89 kDa (HpuB), and binds hemoglobin under iron-stressed conditions. In addition to the previously reported HpuB, we identified and characterized HpuA, which is encoded by the gene hpuA, located immediately upstream of hpuB. Expression of both proteins was found to be controlled at the translational level by frameshift mutations in a run of guanine residues within the hpuA sequence encoding the mature HpuA protein. The "on-phase" hemoglobin-utilizing variants contained 10 G's, while the "off-phase" variants contained 9 G's. Insertional hpuB mutants of FA19 Hgb+ and FA1090 Hgb+ no longer expressed HpuB but still produced HpuA. A polar insertional mutation of the upstream hpuA gene in FA1090 Hgb+ eliminated production of both HpuA and HpuB, whereas a nonpolar insertional mutant expressed HpuB only. Insertional mutagenesis of either hpuA or hpuB or both substantially decreased the hemoglobin binding ability of the FA1090 Hgb+ variant and prevented growth on hemoglobin plates. Therefore, both HpuA and HpuB were required for the utilization of hemoglobin for growth.
Collapse
Affiliation(s)
- C J Chen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
91
|
Nakayama K, Ratnayake DB, Tsukuba T, Kadowaki T, Yamamoto K, Fujimura S. Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 1998; 27:51-61. [PMID: 9466255 DOI: 10.1046/j.1365-2958.1998.00656.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The obligately anaerobic bacterium Porphyromonas gingivalis produces characteristic black-pigmented colonies on blood agar. It is thought that the black pigmentation is caused by haem accumulation and is related to virulence of the microorganism. P. gingivalis cells expressed a prominent 19 kDa protein when grown on blood agar plates. Analysis of its N-terminal amino acid sequence indicated that the 19 kDa protein was encoded by an internal region (HGP15 domain) of an arginine-specific cysteine proteinase (Arg-gingipain, RGP)-encoding gene (rgp1) and was also present in genes for lysine-specific cysteine proteinases (prtP and kgp) and a haemagglutinin (hagA) of P. gingivalis. The HGP15 domain protein was purified from an HGP15-overproducing Escherichia coli and was found to have the ability to bind to haemoglobin in a pH-dependent manner. The anti-HGP15 antiserum reacted with the 19 kDa haemoglobin-binding protein in the envelope of P. gingivalis. P. gingivalis wild-type strain showed pH-dependent haemoglobin adsorption, whereas its non-pigmented mutants that produced no HGP15-related proteins showed deficiency in haemoglobin adsorption. These results strongly indicate a close relationship among HGP15 production, haemoglobin adsorption and haem accumulation of P. gingivalis.
Collapse
Affiliation(s)
- K Nakayama
- Department of Microbiology, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
93
|
Lee BC, Levesque S. A monoclonal antibody directed against the 97-kilodalton gonococcal hemin-binding protein inhibits hemin utilization by Neisseria gonorrhoeae. Infect Immun 1997; 65:2970-4. [PMID: 9199474 PMCID: PMC175416 DOI: 10.1128/iai.65.7.2970-2974.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neisseria gonorrhoeae expresses two hemin-binding proteins (HmBPs) of 97,000 and 44,000 in molecular weight. A murine monoclonal antibody (MAb) produced against the 97-kDa HmBP from N. gonorrhoeae PID543 specifically inhibited in a concentration-dependent manner the ability of hemin to promote growth. The anti-97-kDa HmBP MAb competitively inhibited binding of the 97-kDa HmBP to a hemin-agarose affinity column. In Western immunoblots, the MAb recognized the 97-kDa homologs from a limited survey of clinical gonococcal isolates. These results support the contention that the 97-kDa HmBP is involved in the gonococcal hemin acquisition pathway.
Collapse
Affiliation(s)
- B C Lee
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada.
| | | |
Collapse
|
94
|
Ghigo JM, Létoffé S, Wandersman C. A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J Bacteriol 1997; 179:3572-9. [PMID: 9171402 PMCID: PMC179150 DOI: 10.1128/jb.179.11.3572-3579.1997] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The utilization by Serratia marcescens of heme bound to hemoglobin requires HasA, an extracellular heme-binding protein. This unique heme acquisition system was studied in an Escherichia coli hemA mutant that was a heme auxotroph. We identified a 92-kDa iron-regulated S. marcescens outer membrane protein, HasR, which alone enabled the E. coli hemA mutant to grow on heme or hemoglobin as a porphyrin source. The concomitant secretion of HasA by the HasR-producing hemA mutant greatly facilitates the acquisition of heme from hemoglobin. This is the first report of a synergy between an outer membrane protein and an extracellular heme-binding protein, HasA, acting as a heme carrier, which we termed a hemophore.
Collapse
Affiliation(s)
- J M Ghigo
- Unité de Physiologie Cellulaire, Institut Pasteur (CNRS URA 1300), Paris, France
| | | | | |
Collapse
|
95
|
Stojiljkovic I, Srinivasan N. Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae. J Bacteriol 1997; 179:805-12. [PMID: 9006036 PMCID: PMC178763 DOI: 10.1128/jb.179.3.805-812.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism.
Collapse
Affiliation(s)
- I Stojiljkovic
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
96
|
Rokbi B, Mignon M, Maitre-Wilmotte G, Lissolo L, Danve B, Caugant DA, Quentin-Millet MJ. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun 1997; 65:55-63. [PMID: 8975892 PMCID: PMC174556 DOI: 10.1128/iai.65.1.55-63.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transferrin-binding protein B (TbpB) is a surface-exposed protein, variable among strains of Neisseria meningitidis, that has been considered as a vaccine candidate. To define a TbpB molecule that would give rise to broadly cross-reactive antibodies with TbpB of many strains, specific antisera were produced against three recombinant TbpB variants from strain M982: one corresponding to the full-length TbpB; one in which stretches of amino acids located in the central part of the molecule, described as hypervariable, have been deleted; and one corresponding to the N-terminal half of the molecule, described as the human transferrin binding domain. The reactivity of these antisera against 58 serogroup B strains with a 2.1-kb tbpB gene representing different genotypes, serotypes, and subtypes and different geographic origins was tested on intact meningococcal cells. In parallel, the bactericidal activity of the antisera was evaluated against 15 of the 58 strains studied. Of the 58 strains, 56 (98%) reacted with the antiserum specific for the N-terminal half of TbpB M982; this antiserum was bactericidal against 9 of 15 strains (60%). On the other hand, 43 of 58 strains reacted with the antiserum raised to full-length TbpB while 12 of 15 (80%) were killed with this antiserum. The antiserum specific to TbpB deleted of its central domain gave intermediate results, with 53 of 58 strains (91.3%) recognized and 10 of 15 (66.6%) killed. These results indicate that the N-terminal half of TbpB was sufficient to induce cross-reactive antibodies reacting with the protein on meningococcal cells but that the presence of the C-terminal half of the protein is necessary for the induction of cross-bactericidal antibodies.
Collapse
Affiliation(s)
- B Rokbi
- Pasteur Mérieux Sérums et Vaccins, Marcy-l'Etoile, France
| | | | | | | | | | | | | |
Collapse
|
97
|
Chen CJ, Sparling PF, Lewis LA, Dyer DW, Elkins C. Identification and purification of a hemoglobin-binding outer membrane protein from Neisseria gonorrhoeae. Infect Immun 1996; 64:5008-14. [PMID: 8945539 PMCID: PMC174481 DOI: 10.1128/iai.64.12.5008-5014.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The majority of in vitro-grown Neisseria gonorrhoeae strains were unable to use hemoglobin as the sole source of iron for growth (Hgb-), but a minor population was able to do so (Hgb+). The ability of Hgb+ gonococci to utilize hemoglobin as the iron source was associated with the expression of an iron-repressible 89-kDa hemoglobin-binding protein in the outer membrane. The N-terminal amino acid sequence of this protein revealed amino acids, from positions 2 to 16, identical to those of HpuB, an 85 kDa iron-regulated hemoglobin-haptoglobin utilization outer membrane protein of Neisseria meningitidis. Isogenic mutants constructed by allelic replacement with a meningococcal hpu::mini-Tn3erm construct no longer expressed the 89-kDa protein. Mutants could not utilize hemoglobin to support growth but still grew on heme. Thus, the gonococcal HpuB homolog is a functional hemoglobin receptor and is essential for growth with hemoglobin.
Collapse
Affiliation(s)
- C J Chen
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | |
Collapse
|