51
|
Tsoi BM, Beckhouse AG, Gelling CL, Raftery MJ, Chiu J, Tsoi AM, Lauterbach L, Rogers PJ, Higgins VJ, Dawes IW. Essential role of one-carbon metabolism and Gcn4p and Bas1p transcriptional regulators during adaptation to anaerobic growth of Saccharomyces cerevisiae. J Biol Chem 2009; 284:11205-15. [PMID: 19224916 DOI: 10.1074/jbc.m809225200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion. In addition, the one-carbon metabolism and purine biosynthesis transcriptional regulator Bas1p were strictly required for anaerobic growth on minimal medium, and this was similarly due to l-serine limitation in bas1 mutants. The induction of one-carbon metabolism during anaerobiosis is needed to increase the supply of l-serine from the glycine and threonine pathways. Using a number of experimental approaches, we demonstrate that these transcription regulators play vital roles in regulating l-serine biosynthesis in the face of increased demand during adaptation to anaerobiosis. This increased l-serine requirement is most likely due to anaerobic remodeling of the cell wall, involving de novo synthesis of a large number of very serine-rich mannoproteins and an increase in the total serine content of the cell wall. During anaerobic starvation for l-serine, this essential amino acid is preferentially directed to the cell wall, indicating the existence of a regulatory mechanism to balance competing cellular demands.
Collapse
Affiliation(s)
- Bonny M Tsoi
- School of Biomedical and Health Sciences, University of Western Sydney, Penrith, New South Wales DC 1791, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 2009; 10:75. [PMID: 19203396 PMCID: PMC2657799 DOI: 10.1186/1471-2164-10-75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS In studies on beta-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the beta-lactam pathway.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Zita A van der Krogt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Paul Klaassen
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Leonie M Raamsdonk
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Susanne Hage
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Marco A van den Berg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Roel AL Bovenberg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
53
|
Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N. Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 2009; 9:7-19. [PMID: 19053082 DOI: 10.1002/pmic.200701163] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fungus Aspergillus nidulans reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP under hypoxic conditions in a mechanism called ammonia fermentation (Takasaki, K. et al.. J. Biol. Chem. 2004, 279, 12414-12420). To elucidate the mechanism, the fungus was cultured under normoxic and hypoxic (ammonia fermenting) conditions, intracellular proteins were resolved by 2-DE, and 332 protein spots were identified using MALDI MS after tryptic digestion. Alcohol and aldehyde dehydrogenases that play key roles in oxidizing ethanol were produced at the basal level under hypoxic conditions but were obviously provoked by ethanol under normoxic conditions. Enzymes involved in gluconeogenesis, as well as the tricarboxylic and glyoxylate cycles, were downregulated. These results indicate that the mechanism of fungal energy conservation is altered under hypoxic conditions. The results also showed that proteins in the pentose phosphate pathway as well as the metabolism of both nucleotide and thiamine were upregulated under hypoxic conditions. Levels of xanthine and hypoxanthine, deamination products of guanine and adenine were increased in DNA from hypoxic cells, indicating an association between hypoxia and intracellular DNA base damage. This study is the first proteomic comparison of the hypoxic responses of A. nidulans.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
54
|
Abstract
Chemostat cultivation of micro-organisms offers unique opportunities for experimental manipulation of individual environmental parameters at a fixed, controllable specific growth rate. Chemostat cultivation was originally developed as a tool to study quantitative aspects of microbial growth and metabolism. Renewed interest in this cultivation method is stimulated by the availability of high-information-density techniques for systemic analysis of microbial cultures, which require high reproducibility and careful experimental design. Genome-wide analysis of transcript levels with DNA micro-arrays is currently the most commonly applied of these high-information-density analysis tools for microbial gene expression. Based on published studies on the yeast Saccharomyces cerevisiae, a critical overview is presented of the possibilities and pitfalls associated with the combination of chemostat cultivation and transcriptome analysis with DNA micro-arrays. After a brief introduction to chemostat cultivation and micro-array analysis, key aspects of experimental design of chemostat-based micro-array experiments are discussed. The main focus of this review is on key biological concepts that can be accessed by chemostat-based micro-array analysis. These include effects of specific growth rate on transcriptional regulation, context-dependency of transcriptional responses, correlations between transcript profiles and contribution of the corresponding proteins to cellular function and fitness, and the analysis and application of evolutionary adaptation during prolonged chemostat cultivation. It is concluded that, notwithstanding the incompatibility of chemostat cultivation with high-throughput analysis, integration of chemostat cultivation with micro-array analysis and other high-information-density analytical approaches (e.g. proteomics and metabolomics techniques) offers unique advantages in terms of reproducibility and experimental design in comparison with standard batch cultivation systems. Therefore, chemostat cultivation and derived methods for controlled cultivation of micro-organisms are anticipated to become increasingly important in microbial physiology and systems biology.
Collapse
|
55
|
Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 2008; 71:662-9. [PMID: 19070690 DOI: 10.1016/j.jprot.2008.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/23/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to grow under aerobic as well as anaerobic conditions. We and others previously found that transcription levels of approximately 500 genes differed more than two-fold when cells from anaerobic and aerobic conditions were compared. Here, we addressed the effect of anaerobic growth at the post-transcriptional level by comparing the proteomes of cells isolated from steady-state glucose-limited anaerobic and aerobic cultures. Following two-dimensional gel electrophoresis and mass spectrometry we identified 110 protein spots, corresponding to 75 unique proteins, of which the levels differed more than two-fold between aerobically and anaerobically-grown cells. For 21 of the 110 spots, the intensities decreased more than two-fold whereas the corresponding mRNA levels increased or did not change significantly under anaerobic conditions. The intensities of the other 89 spots changed in the same direction as the mRNA levels of the corresponding genes, although to different extents. For some genes of glycolysis a small increase in mRNA levels, 1.5-2 fold, corresponded to a 5-10 fold increase in protein levels. Extrapolation of our results suggests that transcriptional regulation is the major but not exclusive mechanism for adaptation of S. cerevisiae to anaerobic growth conditions.
Collapse
|
56
|
Kundaje A, Xin X, Lan C, Lianoglou S, Zhou M, Zhang L, Leslie C. A predictive model of the oxygen and heme regulatory network in yeast. PLoS Comput Biol 2008; 4:e1000224. [PMID: 19008939 PMCID: PMC2573020 DOI: 10.1371/journal.pcbi.1000224] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 10/08/2008] [Indexed: 11/18/2022] Open
Abstract
Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging computational problem. Previous computational studies have used large expression datasets in order to resolve fine patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen, heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally identified transcription factor binding sites. Because MEDUSA's regulatory program associates regulators to target genes through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of the candidate regulator resulted in the predicted effect on promoter activity, confirming that several novel regulators identified by MEDUSA are indeed involved in oxygen regulation. MEDUSA can reveal important information from a small dataset and generate testable hypotheses for further experimental analysis. Supplemental data are included. The cell uses complex regulatory networks to modulate the expression of genes in response to changes in cellular and environmental conditions. The transcript level of a gene is directly affected by the binding of transcriptional regulators to DNA motifs in its promoter sequence. Therefore, both expression levels of transcription factors and other regulatory proteins as well as sequence information in the promoters contribute to transcriptional gene regulation. In this study, we describe a new computational strategy for learning gene regulatory programs from gene expression data based on the MEDUSA algorithm. We learn a model that predicts differential expression of target genes from the expression levels of regulators, the presence of DNA motifs in promoter sequences, and binding data for transcription factors. Unlike many previous approaches, we do not assume that genes are regulated in clusters, and we learn DNA motifs de novo from promoter sequences as an integrated part of our algorithm. We use MEDUSA to produce a global map of the yeast oxygen and heme regulatory network. To demonstrate that MEDUSA can reveal detailed information about regulatory mechanisms, we perform biochemical experiments to confirm the predicted regulators for an important hypoxia gene.
Collapse
Affiliation(s)
- Anshul Kundaje
- Department of Computer Science, Columbia University, New York, New York, United States of America
| | - Xiantong Xin
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Changgui Lan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Steve Lianoglou
- Department of Physiology, Biophysics, and Systems Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mei Zhou
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Li Zhang
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail: (LZ); (CL)
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (LZ); (CL)
| |
Collapse
|
57
|
Abstract
The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic engineering, evolutionary engineering, and global transcription machinery engineering, in yeast strain improvement. It also summarizes existing tools for fine-tuning and regulating enzyme activities and thus metabolic pathways. Recent examples of yeast metabolic engineering for food, beverage, and industrial biotechnology (bioethanol and bulk and fine chemicals) follow. S. cerevisiae currently enjoys increasing popularity as a production organism in industrial ("white") biotechnology due to its inherent tolerance of low pH values and high ethanol and inhibitor concentrations and its ability to grow anaerobically. Attention is paid to utilizing lignocellulosic biomass as a potential substrate.
Collapse
|
58
|
Abstract
Hypoxia is typical for most battlefields of host-pathogen interactions in the human host. While adaptation of human cells to low levels of oxygen has been well established, little information exists on mechanisms of hypoxic adaptation in microbial pathogens. Importantly, the impact of hypoxia on microbial infection, virulence and pathogenesis is rarely investigated. Recent results on the human pathogens Candida albicans and Cryptococcus neoformans indicate that these fungi adapt to hypoxia specifically by altering several morphological phenotypes, metabolic and transcriptomal activities, as well as virulence traits. In this review, novel components and mechanisms involved in hypoxic adaptation of human fungals pathogens are summarized and discussed.
Collapse
Affiliation(s)
- Joachim F Ernst
- Institut für Mikrobiologie, Molekulare Mykologie, Heinrich-Heine-Universität Düsseldorf, Germany.
| | | |
Collapse
|
59
|
Park H, Hwang YS. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 2008; 46:542-8. [DOI: 10.1007/s12275-008-0053-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
|
60
|
Beckhouse AG, Grant CM, Rogers PJ, Dawes IW, Higgins VJ. The adaptive response of anaerobically grown Saccharomyces cerevisiae to hydrogen peroxide is mediated by the Yap1 and Skn7 transcription factors. FEMS Yeast Res 2008; 8:1214-22. [PMID: 18795957 DOI: 10.1111/j.1567-1364.2008.00439.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular mechanisms involved in the ability of cells to adapt and respond to differing oxygen tensions are of great interest to the pharmaceutical, medical and fermentation industries. The transcriptional profiles reported in previous studies of cells grown under anaerobic, aerobic and dynamic growth conditions have shown significantly altered responses including induction of genes regulated by the oxidative stress transcription factor Yap1p when oxygen was present. The present study investigated the phenotypic changes that occur in cells when shifted from anaerobic to aerobic growth conditions and it was found through mutant analyses that the elevated activity of Yap1p during the shift was mediated by the phospholipid hydroperoxide-sensing protein encoded by GPX3. Cell viability and growth rate were unaffected even though anaerobically grown cells were found to be hypersensitive to low doses of the oxidative stress-inducing compound hydrogen peroxide (H(2)O(2)). Adaptation to H(2)O(2) treatment was demonstrated to occur when anaerobically grown wild-type cells were aerated for a short time that was reliant on the Yap1p and Skn7p transcription factors.
Collapse
Affiliation(s)
- Anthony G Beckhouse
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
61
|
Anoxia-induced suspended animation in budding yeast as an experimental paradigm for studying oxygen-regulated gene expression. EUKARYOTIC CELL 2008; 7:1795-808. [PMID: 18708563 DOI: 10.1128/ec.00160-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A lack of oxygen can force many organisms to enter into recoverable hypometabolic states. To better understand how organisms cope with oxygen deprivation, our laboratory previously had shown that when challenged with anoxia, both the nematode Caenorhabditis elegans and embryos of the zebrafish Danio rerio enter into suspended animation, in which all life processes that can be observed by light microscopy reversibly halt pending the restoration of oxygen (P. A. Padilla and M. B. Roth, Proc. Natl. Acad. Sci. USA 98:7331-7335, 2001, and P. A. Padilla, T. G. Nystul, R. A. Zager, A. C. Johnson, and M. B. Roth, Mol. Biol. Cell 13:1473-1483, 2002). Here, we show that both sporulating and vegetative cells of the budding yeast Saccharomyces cerevisiae also enter into a similar state of suspended animation when made anoxic on a nonfermentable carbon source. Transcriptional profiling using cDNA microarrays and follow-on quantitative real-time PCR analysis revealed a relative derepression of aerobic metabolism genes in carbon monoxide (CO)-induced anoxia when compared to nitrogen (N(2)) gas-induced anoxia, which is consistent with the known oxygen-mimetic effects of CO. We also found that mutants deleted for components of the mitochondrial retrograde signaling pathway can tolerate prolonged exposure to CO but not to N(2). We conclude that the cellular response to anoxia is dependent on whether the anoxic gas is an oxygen mimetic and that the mitochondrial retrograde signaling pathway is functionally important for mediating this response.
Collapse
|
62
|
Fazio A, Jewett MC, Daran-Lapujade P, Mustacchi R, Usaite R, Pronk JT, Workman CT, Nielsen J. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design. BMC Genomics 2008; 9:341. [PMID: 18638364 PMCID: PMC2500033 DOI: 10.1186/1471-2164-9-341] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/18/2008] [Indexed: 12/15/2022] Open
Abstract
Background Characterization of cellular growth is central to understanding living systems. Here, we applied a three-factor design to study the relationship between specific growth rate and genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae. The three factors we considered were specific growth rate, nutrient limitation, and oxygen availability. Results We identified 268 growth rate dependent genes, independent of nutrient limitation and oxygen availability. The transcriptional response was used to identify key areas in metabolism around which mRNA expression changes are significantly associated. Among key metabolic pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing and consuming reactions at fast cellular growth. By scoring the significance of overlap between growth rate dependent genes and known transcription factor target sets, transcription factors that coordinate balanced growth were also identified. Our analysis shows that Fhl1, Rap1, and Sfp1, regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response regulators, such as Yap1, were also shown to have significantly enriched target sets. Conclusion Our work, which is the first genome-wide gene expression study to investigate specific growth rate and consider the impact of oxygen availability, provides a more conservative estimate of growth rate dependent genes than previously reported. We also provide a global view of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate. We anticipate that multi-factorial designs will play an increasing role in elucidating cellular regulation.
Collapse
Affiliation(s)
- Alessandro Fazio
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800, Kgs, Lyngby, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttilä M, Maaheimo H. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC SYSTEMS BIOLOGY 2008; 2:60. [PMID: 18613954 PMCID: PMC2507709 DOI: 10.1186/1752-0509-2-60] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is able to adjust to external oxygen availability by utilizing both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen is a major determinant of the physiology of S. cerevisiae but understanding of the oxygen dependence of intracellular flux distributions is still scarce. RESULTS Metabolic flux distributions of S. cerevisiae CEN.PK113-1A growing in glucose-limited chemostat cultures at a dilution rate of 0.1 h-1 with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O2 in the inlet gas were quantified by 13C-MFA. Metabolic flux ratios from fractional [U-13C]glucose labelling experiments were used to solve the underdetermined MFA system of central carbon metabolism of S. cerevisiae.While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%, was the biomass yield exceeded by the yields of ethanol and CO2. Respirative ATP generation provided 59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway. CONCLUSION 13C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions of different redox challenges without including redox cofactors in metabolite mass balances. A redistribution of fluxes was observed not only for respirative, respiro-fermentative and fermentative metabolisms, but also for cells grown with 2.8%, 1.0% and 0.5% oxygen. Although the cellular metabolism was respiro-fermentative in each of these low oxygen conditions, the actual amount of oxygen available resulted in different contributions through respirative and fermentative pathways.
Collapse
Affiliation(s)
- Paula Jouhten
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Eija Rintala
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Anne Huuskonen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Anu Tamminen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
64
|
Rintala E, Wiebe MG, Tamminen A, Ruohonen L, Penttilä M. Transcription of hexose transporters of Saccharomyces cerevisiae is affected by change in oxygen provision. BMC Microbiol 2008; 8:53. [PMID: 18373847 PMCID: PMC2324102 DOI: 10.1186/1471-2180-8-53] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 03/28/2008] [Indexed: 12/03/2022] Open
Abstract
Background The gene family of hexose transporters in Saccharomyces cerevisiae consists of 20 members; 18 genes encoding transporters (HXT1-HXT17, GAL2) and two genes encoding sensors (SNF3, RGT2). The effect of oxygen provision on the expression of these genes was studied in glucose-limited chemostat cultivations (D = 0.10 h-1, pH 5, 30°C). Transcript levels were measured from cells grown in five steady state oxygen levels (0, 0.5, 1, 2.8 and 20.9% O2), and from cells under conditions in which oxygen was introduced to anaerobic cultures or removed from cultures receiving oxygen. Results The expression pattern of the HXT gene family was distinct in cells grown under aerobic, hypoxic and anaerobic conditions. The transcription of HXT2, HXT4 and HXT5 was low when the oxygen concentration in the cultures was low, both under steady state and non-steady state conditions, whereas the expression of HXT6, HXT13 and HXT15/16 was higher in hypoxic than in fully aerobic or anaerobic conditions. None of the HXT genes showed higher transcript levels in strictly anaerobic conditions. Expression of HXT9, HXT14 and GAL2 was not detected under the culture conditions studied. Conclusion When oxygen becomes limiting in a glucose-limited chemostat cultivation, the glucose uptake rate per cell increases. However, the expression of none of the hexose transporter encoding genes was increased in anaerobic conditions. It thus seems that the decrease in the moderately low affinity uptake and consequently the relative increase of high affinity uptake may itself allow the higher specific glucose consumption rate to occur in anaerobic compared to aerobic conditions.
Collapse
Affiliation(s)
- Eija Rintala
- VTT, Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT, Finland.
| | | | | | | | | |
Collapse
|
65
|
Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:859-71. [PMID: 18326586 DOI: 10.1128/ec.00414-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unlike pathogenic fungi, the budding yeast Saccharomyces cerevisiae is not efficient at using heme as a nutritional source of iron. Here we report that for this yeast, heme uptake is induced under conditions of heme starvation. Heme synthesis requires oxygen, and yeast grown anaerobically exhibited an increased uptake of hemin. Similarly, a strain lacking aminolevulinate synthase exhibited a sixfold increase in hemin uptake when grown without 2-aminolevulinic acid. We used microarray analysis of cells grown under reduced oxygen tension or reduced intracellular heme conditions to identify candidate genes involved in heme uptake. Surprisingly, overexpression of PUG1 (protoporphyrin uptake gene 1) resulted in reduced utilization of exogenous heme by a heme-deficient strain and, conversely, increased the utilization of protoporphyrin IX. Pug1p was localized to the plasma membrane by indirect immunofluorescence and subcellular fractionation. Strains overexpressing PUG1 exhibited decreased accumulation of [(55)Fe]hemin but increased accumulation of protoporphyrin IX compared to the wild-type strain. To measure the effect of PUG1 overexpression on intracellular heme pools, we used a CYC1-lacZ reporter, which is activated in the presence of heme, and we monitored the activity of a heme-containing metalloreductase, Fre1p, expressed from a constitutive promoter. The data from these experiments were consistent with a role for Pug1p in inducible protoporphyrin IX influx and heme efflux.
Collapse
|
66
|
Abstract
The yeast Saccharomyces cerevisiae is an important industrial microorganism. Nowadays, it is being used as a cell factory for the production of pharmaceuticals such as insulin, although this yeast has long been utilized in the bakery to raise dough, and in the production of alcoholic beverages, fermenting the sugars derived from rice, wheat, barley, corn and grape juice. S. cerevisiae has also been extensively used as a model eukaryotic system. In the last decade, genomic techniques have revealed important features of its molecular biology. For example, DNA array technologies are routinely used for determining gene expression levels in cells under different physiological conditions or environmental stimuli. Laboratory strains of S. cerevisiae are different from wine strains. For instance, laboratory yeasts are unable to completely transform all the sugar in the grape must into ethanol under winemaking conditions. In fact, standard culture conditions are usually very different from winemaking conditions, where multiple stresses occur simultaneously and sequentially throughout the fermentation. The response of wine yeasts to these stimuli differs in some aspects from laboratory strains, as suggested by the increasing number of studies in functional genomics being conducted on wine strains. In this paper we review the most recent applications of post-genomic techniques to understand yeast physiology in the wine industry. We also report recent advances in wine yeast strain improvement and propose a reference framework for integration of genomic information, bioinformatic tools and molecular biology techniques for cellular and metabolic engineering. Finally, we discuss the current state and future perspectives for using 'modern' biotechnology in the wine industry.
Collapse
Affiliation(s)
- Francisco Pizarro
- Department of Chemical and Bioprocess Engineering, College of Engineering, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile
| | | | | |
Collapse
|
67
|
New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess. BMC Genomics 2008; 9:100. [PMID: 18304306 PMCID: PMC2292174 DOI: 10.1186/1471-2164-9-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 02/27/2008] [Indexed: 01/13/2023] Open
Abstract
Background The capacity of respiring cultures of Saccharomyces cerevisiae to immediately switch to fast alcoholic fermentation upon a transfer to anaerobic sugar-excess conditions is a key characteristic of Saccharomyces cerevisiae in many of its industrial applications. This transition was studied by exposing aerobic glucose-limited chemostat cultures grown at a low specific growth rate to two simultaneous perturbations: oxygen depletion and relief of glucose limitation. Results The shift towards fully fermentative conditions caused a massive transcriptional reprogramming, where one third of all genes within the genome were transcribed differentially. The changes in transcript levels were mostly driven by relief from glucose-limitation. After an initial strong response to the addition of glucose, the expression profile of most transcriptionally regulated genes displayed a clear switch at 30 minutes. In this respect, a striking difference was observed between the transcript profiles of genes encoding ribosomal proteins and those encoding ribosomal biogenesis components. Not all regulated genes responded with this binary profile. A group of 87 genes showed a delayed and steady increase in expression that specifically responded to anaerobiosis. Conclusion Our study demonstrated that, despite the complexity of this multiple-input perturbation, the transcriptional responses could be categorized and biologically interpreted. By comparing this study with public datasets representing dynamic and steady conditions, 14 up-regulated and 11 down-regulated genes were determined to be anaerobic specific. Therefore, these can be seen as true "signature" transcripts for anaerobicity under dynamic as well as under steady state conditions.
Collapse
|
68
|
de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, Heck AJR, Slijper M. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. MICROBIOLOGY-SGM 2008; 153:3864-3878. [PMID: 17975095 DOI: 10.1099/mic.0.2007/009969-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.
Collapse
Affiliation(s)
- Marco J L de Groot
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Bas van Breukelen
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Theo A Knijnenburg
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Erik A F de Hulster
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel J T Reinders
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
| | - Jack T Pronk
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Albert J R Heck
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | - Monique Slijper
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
69
|
Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. EUKARYOTIC CELL 2007; 7:387-400. [PMID: 18156292 DOI: 10.1128/ec.00323-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with analyses of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low-oxygen conditions. Several additional lines of evidence obtained suggest that these responses could involve effects on heme. First, the hem1Delta mutant lacking the first enzyme in the heme biosynthetic pathway showed increased sensitivity to sampangine, and exogenously supplied hemin partially rescued the inhibitory activity of sampangine in wild-type cells. In addition, heterozygous mutants with deletions in genes involved in five out of eight steps in the heme biosynthetic pathway showed increased susceptibility to sampangine. Furthermore, spectral analyses of pyridine extracts indicated significant accumulation of free porphyrins in sampangine-treated cells. Transcriptional profiling experiments were also performed with C. albicans to investigate the response of a pathogenic fungal species to sampangine. Taking into account the known differences in the physiological responses of C. albicans and S. cerevisiae to low oxygen, significant correlations were observed between the two transcription profiles, suggestive of heme-related defects. Our results indicate that the antifungal activity of the plant alkaloid sampangine is due, at least in part, to perturbations in the biosynthesis or metabolism of heme.
Collapse
|
70
|
Desfougères T, Ferreira T, Bergès T, Régnacq M. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion. Biochem J 2007; 409:299-309. [PMID: 17803462 DOI: 10.1042/bj20071028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899–908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion.
Collapse
Affiliation(s)
- Thomas Desfougères
- Laboratoire de Génétique de la Levure CNRS-UMR6161, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | | | | | | |
Collapse
|
71
|
Hickman MJ, Winston F. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 2007; 27:7414-24. [PMID: 17785431 PMCID: PMC2169065 DOI: 10.1128/mcb.00887-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/25/2007] [Accepted: 08/27/2007] [Indexed: 12/17/2022] Open
Abstract
Changes in oxygen levels cause widespread changes in gene expression in organisms ranging from bacteria to humans. In Saccharomyces cerevisiae, this response is mediated in part by Hap1, originally identified as a heme-dependent transcriptional activator that functions during aerobic growth. We show here that Hap1 also plays a significant and direct role under hypoxic conditions, not as an activator, but as a repressor. The repressive activity of Hap1 controls several genes, including three ERG genes required for ergosterol biosynthesis. Chromatin immunoprecipitation experiments showed that Hap1 binds to the ERG gene promoters, while additional experiments showed that the corepressor Tup1/Ssn6 is recruited by Hap1 and is also required for repression. Furthermore, mutational analysis demonstrated that conserved Hap1 binding sites in the ERG5 5' regulatory region are required for repression. The switch of Hap1 from acting as a hypoxic repressor to an aerobic activator is determined by heme, which is synthesized only in the presence of oxygen. The ability of Hap1 to function as a ligand-dependent repressor and activator is a property shared with mammalian nuclear hormone receptors and likely allows greater transcriptional control by Hap1 in response to changing oxygen levels.
Collapse
Affiliation(s)
- Mark J Hickman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
72
|
Abe F. Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett 2007; 581:4993-8. [PMID: 17910955 DOI: 10.1016/j.febslet.2007.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 09/14/2007] [Accepted: 09/18/2007] [Indexed: 11/16/2022]
Abstract
Global transcriptional profiles of Saccharomyces cerevisiae were studied following changes in growth conditions to high hydrostatic pressure and low temperature. These profiles were quantitatively very similar, encompassing 561 co-upregulated genes and 161 co-downregulated genes. In particular, expression of the DAN/TIR cell wall mannoprotein genes, which are generally expressed under hypoxia, were markedly upregulated by high pressure and low temperature, suggesting the overlapping regulatory networks of transcription. In support of the role of mannoproteins in cell wall integrity, cells acquired resistance against treatment with SDS, Zymolyase and lethal levels of high pressure when preincubated under high pressure and low temperature.
Collapse
Affiliation(s)
- Fumiyoshi Abe
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| |
Collapse
|
73
|
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling: Figure 1. FEMS Microbiol Rev 2007; 31:535-69. [PMID: 17645521 DOI: 10.1111/j.1574-6976.2007.00076.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Collapse
Affiliation(s)
- Brian R Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | |
Collapse
|
74
|
Rautio JJ, Huuskonen A, Vuokko H, Vidgren V, Londesborough J. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 2007; 24:741-60. [PMID: 17605133 DOI: 10.1002/yea.1510] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment.
Collapse
Affiliation(s)
- Jari J Rautio
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland.
| | | | | | | | | |
Collapse
|
75
|
Camarasa C, Faucet V, Dequin S. Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1. Yeast 2007; 24:391-401. [PMID: 17345583 DOI: 10.1002/yea.1467] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Saccharomyces cerevisiae possesses both a cytoplasmic and a mitochondrial fumarate reductase, encoded by FRDS1 and OSM1, respectively. While previous studies have shown that mutants lacking FRDS1 and OSM1 cannot grow under anaerobiosis (Arikawa et al., 1998), the physiological role of fumarate reductase (FR) remains poorly understood. Here, we report that an osm1 frds1 mutant is unable to grow anaerobically, even with glutamate as a sole nitrogen source, when succinate can be produced by the TCA oxidative branch. We also show that the growth of the mutant is not restored by adding acetoin, an alternative sink for NADH oxidation, but it is at least partly restored by the addition of oxygen or menadione, which can oxidize FADH(2) in addition to NADH. These data indicate that the growth inhibition of the mutant is due to an inability to reoxidize FAD, rather than an indirect effect on NADH or an inability to produce succinate per se. During anaerobic growth, FRDS1 expression was two to eight times higher than that of OSM1, and fumarate reductase activity was higher in the osm1 mutant than in the frds1 mutant. FRDS1 expression was induced by anaerobiosis, and this induction was abolished in a rox1 mutant. We conclude that the formation of succinate is strictly required for the reoxidation of FADH(2) during anaerobiosis, and that it is regulated through the control of FRDS1 expression when oxygen is limiting. Based on these data, we discuss the potential role of fumarate reductase in the regeneration of the FAD-prosthetic group of essential flavoproteins.
Collapse
Affiliation(s)
- Carole Camarasa
- UMR1083 Sciences pour l'Oenologie, INRA, 2 Place Viala, F-34060 Montpellier, France.
| | | | | |
Collapse
|
76
|
Ferreira TC, Hertzberg L, Gassmann M, Campos ÉG. The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:255-263. [PMID: 17035097 DOI: 10.1016/j.cbpc.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.
Collapse
Affiliation(s)
- Túlio César Ferreira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Libi Hertzberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Élida Geralda Campos
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
77
|
Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 2007; 63:1606-28. [PMID: 17367383 DOI: 10.1111/j.1365-2958.2007.05614.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogenic fungus Candida albicans can cause a wide range of infections and invade multiple organs. To identify C. albicans genes that are expressed during invasion of the liver, we used genome-wide transcriptional profiling in vivo and ex vivo. By analysing the different phases of intraperitoneal infection from attachment to tissue penetration in a time-course experiment and by comparing the profiles of an invasive with those of a non-invasive strain, we identified genes and transcriptional pattern which are associated with the invasion process. This includes genes involved in metabolism, stress, and nutrient uptake, as well as transcriptional programmes regulating morphology and environmental sensing. One of the genes identified as associated with liver invasion was DFG16, a gene crucial for pH-dependent hyphal formation, correct pH sensing, invasion at physiological pH and systemic infection.
Collapse
Affiliation(s)
- Sascha Thewes
- Division Mycology, Robert-Koch Institute, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MDW, de Winde JH, Pronk JT, Daran JM. Transcriptional responses ofSaccharomyces cerevisiaeto preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 2007; 7:604-20. [PMID: 17419774 DOI: 10.1111/j.1567-1364.2007.00220.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae grown with six different nitrogen sources were subjected to transcriptome analysis. The use of chemostats enabled an analysis of nitrogen-source-dependent transcriptional regulation at a fixed specific growth rate. A selection of preferred (ammonium and asparagine) and nonpreferred (leucine, phenylalanine, methionine and proline) nitrogen sources was investigated. For each nitrogen source, distinct sets of genes were induced or repressed relative to the other five nitrogen sources. In total, 131 such 'signature transcripts' were identified in this study. In addition to signature transcripts, genes were identified that showed a transcriptional coresponse to two or more of the six nitrogen sources. For example, 33 genes were transcriptionally upregulated in leucine-grown, phenylalanine-grown and methionine-grown cultures; this was partly attributed to the involvement of common enzymes in the dissimilation of these amino acids. In addition to specific transcriptional responses elicited by individual nitrogen sources, their impact on global regulatory mechanisms such as nitrogen catabolite repression (NCR) were monitored. NCR-sensitive gene expression in the chemostat cultures showed that ammonium and asparagine were 'rich' nitrogen sources. By this criterion, leucine, proline and methionine were 'poor' nitrogen sources, and phenylalanine showed an 'intermediate' NCR response.
Collapse
Affiliation(s)
- Viktor M Boer
- Department of Biotechnology, Delft University of Technology, Julianalaan, Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res 2007; 8:140-54. [PMID: 17425669 DOI: 10.1111/j.1567-1364.2007.00234.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 0%, 0.5%, 1.0%, 2.8% or 20.9% O2 in the inlet gas (D=0.10 h(-1), pH 5, 30 degrees C) to determine the effects of oxygen on 17 metabolites and 69 genes related to central carbon metabolism. The concentrations of tricarboxylic acid cycle (TCA) metabolites and all glycolytic metabolites except 2-phosphoglycerate+3-phosphoglycerate and phosphoenolpyruvate were higher in anaerobic than in fully aerobic conditions. Provision of only 0.5-1% O2 reduced the concentrations of most metabolites, as compared with anaerobic conditions. Transcription of most genes analyzed was reduced in 0%, 0.5% or 1.0% O2 relative to cells grown in 2.8% or 20.9% O2. Ethanol production was observed with 2.8% or less O2. After steady-state analysis in defined oxygen concentrations, the conditions were switched from aerobic to anaerobic. Metabolite and transcript levels were monitored for up to 96 h after the transition, and this showed that more than 30 h was required for the cells to fully adapt to anaerobiosis. Levels of metabolites of upper glycolysis and the TCA cycle increased following the transition to anaerobic conditions, whereas those of metabolites of lower glycolysis generally decreased. Gene regulation was more complex, with some genes showing transient upregulation or downregulation during the adaptation to anaerobic conditions.
Collapse
|
80
|
Howell KA, Cheng K, Murcha MW, Jenkin LE, Millar AH, Whelan J. Oxygen initiation of respiration and mitochondrial biogenesis in rice. J Biol Chem 2007; 282:15619-31. [PMID: 17383966 DOI: 10.1074/jbc.m609866200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rice growth under aerobic and anaerobic conditions allowed aspects of mitochondrial biogenesis to be identified as dependent on or independent of an oxygen signal. Analysis of transcripts encoding mitochondrial components found that a subset of these genes respond to oxygen (defined as aerobic), whereas others are relatively unaffected by oxygen availability. Mitochondria formed during growth in anaerobic conditions had reduced protein levels of tricarboxylic acid cycle components and cytochrome-containing complexes of the respiratory chain and repressed respiratory functionality. In general, the capacity of the general import pathway was found to be significantly lower in mitochondria isolated from tissue grown under anaerobic conditions, whereas the carrier import pathway capacity was not affected by changes in oxygen availability. Transcript levels of genes encoding components of the protein import apparatus were generally not affected by the absence of oxygen, and their protein abundance was severalfold higher in mitochondria isolated from anaerobically grown tissue. However, both transcript and protein abundances of the subunits of the mitochondrial processing peptidase, which in plants is integrated into the cytochrome bc(1) complex, were repressed under anaerobic conditions. Therefore, in this system, an increase in import capacity is correlated with an increase in the abundance of the cytochrome bc(1) complex, which is ultimately dependent on the presence of oxygen, providing a link between the respiratory chain and protein import apparatus.
Collapse
Affiliation(s)
- Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Nevoigt E, Fischer C, Mucha O, Matthäus F, Stahl U, Stephanopoulos G. Engineering promoter regulation. Biotechnol Bioeng 2007; 96:550-8. [PMID: 16964624 DOI: 10.1002/bit.21129] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Systems for easily controlled, conditional induction or repression of gene expression are indispensable tools in fundamental research and industrial-scale biotechnological applications. Both native and rationally designed inducible promoters have been widely used for this purpose. However, inherent regulation modalities or toxic, expensive or inconvenient inducers can impose limitations on their use. Tailored promoters with user-specified regulatory properties would permit sophisticated manipulations of gene expression. Here, we report a generally applicable strategy for the directed evolution of promoter regulation. Specifically, we applied random mutagenesis and a multi-stage flow cytometry screen to isolate mutants of the oxygen-responsive Saccharomyces cerevisiae DAN1 promoter. Two mutants were isolated which were induced under less-stringent anaerobiosis than the wild-type promoter enabling induction of gene expression in yeast fermentations simply by oxygen depletion during cell growth. Moreover, the engineered promoters showed a markedly higher maximal expression than the unmutated DAN1 promoter, under both fastidious anaerobiosis and microaerobisois.
Collapse
Affiliation(s)
- Elke Nevoigt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
82
|
Merico A, Sulo P, Piskur J, Compagno C. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 2007; 274:976-89. [PMID: 17239085 DOI: 10.1111/j.1742-4658.2007.05645.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory-deficient mitochondrial mutants, so-called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole-genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre-genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite-negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole-genome duplication and led to the modern Saccharomyces cerevisiae yeast.
Collapse
Affiliation(s)
- Annamaria Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
83
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
84
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
85
|
Ishtar Snoek IS, Yde Steensma H. Factors involved in anaerobic growth ofSaccharomyces cerevisiae. Yeast 2007; 24:1-10. [PMID: 17192845 DOI: 10.1002/yea.1430] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen.
Collapse
Affiliation(s)
- I S Ishtar Snoek
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
86
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1468-89. [PMID: 16963631 PMCID: PMC1563586 DOI: 10.1128/ec.00107-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a comprehensive genomic analysis of the temporal response of yeast to anaerobiosis (six generations) and subsequent aerobic recovery ( approximately 2 generations) to reveal metabolic-state (galactose versus glucose)-dependent differences in gene network activity and function. Analysis of variance showed that far fewer genes responded (raw P value of <or=10(-8)) to the O(2) shifts in glucose (1,603 genes) than in galactose (2,388 genes). Gene network analysis reveals that this difference is due largely to the failure of "stress"-activated networks controlled by Msn2/4, Fhl1, MCB, SCB, PAC, and RRPE to transiently respond to the shift to anaerobiosis in glucose as they did in galactose. After approximately 1 generation of anaerobiosis, the response was similar in both media, beginning with the deactivation of Hap1 and Hap2/3/4/5 networks involved in mitochondrial functions and the concomitant derepression of Rox1-regulated networks for carbohydrate catabolism and redox regulation and ending (>or=2 generations) with the activation of Upc2- and Mot3-regulated networks involved in sterol and cell wall homeostasis. The response to reoxygenation was rapid (<5 min) and similar in both media, dominated by Yap1 networks involved in oxidative stress/redox regulation and the concomitant activation of heme-regulated ones. Our analyses revealed extensive networks of genes subject to combinatorial regulation by both heme-dependent (e.g., Hap1, Hap2/3/4/5, Rox1, Mot3, and Upc2) and heme-independent (e.g., Yap1, Skn7, and Puf3) factors under these conditions. We also uncover novel functions for several cis-regulatory sites and trans-acting factors and define functional regulons involved in the physiological acclimatization to changes in oxygen availability.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Ave., Urbana, 61801, USA
| | | | | | | |
Collapse
|
87
|
Rautio JJ, Smit BA, Wiebe M, Penttilä M, Saloheimo M. Transcriptional monitoring of steady state and effects of anaerobic phases in chemostat cultures of the filamentous fungus Trichoderma reesei. BMC Genomics 2006; 7:247. [PMID: 17010217 PMCID: PMC1617104 DOI: 10.1186/1471-2164-7-247] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/02/2006] [Indexed: 12/03/2022] Open
Abstract
Background Chemostat cultures are commonly used in production of cellular material for systems-wide biological studies. We have used the novel TRAC (transcript analysis with aid of affinity capture) method to study expression stability of approximately 30 process relevant marker genes in chemostat cultures of the filamentous fungus Trichoderma reesei and its transformant expressing laccase from Melanocarpus albomyces. Transcriptional responses caused by transient oxygen deprivations and production of foreign protein were also studied in T. reesei by TRAC. Results In cultures with good steady states, the expression of the marker genes varied less than 20% on average between sequential samples for at least 5 or 6 residence times. However, in a number of T. reesei cultures continuous flow did not result in a good steady state. Perturbations to the steady state were always evident at the transcriptional level, even when they were not measurable as changes in biomass or product concentrations. Both unintentional and intentional perturbations of the steady state demonstrated that a number of genes involved in growth, protein production and secretion are sensitive markers for culture disturbances. Exposure to anaerobic conditions caused strong responses at the level of gene expression, but surprisingly the cultures could regain their previous steady state quickly, even after 3 h O2 depletion. The main effect of producing M. albomyces laccase was down-regulation of the native cellulases compared with the host strain. Conclusion This study demonstrates the usefulness of transcriptional analysis by TRAC in ensuring the quality of chemostat cultures prior to costly and laborious genome-wide analysis. In addition TRAC was shown to be an efficient tool in studying gene expression dynamics in transient conditions.
Collapse
Affiliation(s)
- Jari J Rautio
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, P.O. Box 1000, 02044 VTT-Espoo, Finland
| | - Bart A Smit
- Campina Innovation, Nieuwe Kanaal 7C, 6709 PA, Wageningen, The Netherlands
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, P.O. Box 1000, 02044 VTT-Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, P.O. Box 1000, 02044 VTT-Espoo, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, P.O. Box 1000, 02044 VTT-Espoo, Finland
| |
Collapse
|
88
|
Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF. Transcriptional Response of Candida albicans to Hypoxia: Linkage of Oxygen Sensing and Efg1p-regulatory Networks. J Mol Biol 2006; 361:399-411. [PMID: 16854431 DOI: 10.1016/j.jmb.2006.06.040] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 11/28/2022]
Abstract
The major human fungal pathogen, Candida albicans, colonizes different body sites, differing greatly in oxygen levels. Using whole-genome DNA microarrays, we analysed the transcriptomal response of C. albicans to hypoxia. In this condition, transcripts of genes involved in fermentative metabolism, including glycolytic genes, as well as hypha-specific genes, were up-regulated; in contrast, genes regulating oxidative metabolism were down-regulated. Although the morphogenetic and metabolic regulator Efg1p regulates these genes during normoxia, we found that Efg1p is not involved in their hypoxic regulation. Instead, Efg1p was specifically required for hypoxic expression or repression of subsets of genes. One class of hypoxia-regulated genes, encoding proteins involved in fatty acid biosynthesis, was dependent on Efg1p for maximal hypoxic expression, requiring Efg1p for transcriptional activation. During hypoxia, efg1 mutants contained lower levels of unsaturated fatty acids, while hyphal morphogenesis on solid media was significantly increased at temperatures <37 degrees C. These results suggest that during oxygen-limitation, Efg1p acts as a repressor of filamentation and as a positive regulator of fatty acid desaturation. We discuss that C. albicans responds to hypoxia largely by different mechanisms compared to budding yeast and that hypoxic adaptation requiring Efg1p is crucial for successful infection of human cells and tissues.
Collapse
Affiliation(s)
- Eleonora R Setiadi
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
89
|
Abstract
The study of gene expression profiling of cells and tissue has become a major tool for discovery in medicine. Microarray experiments allow description of genome-wide expression changes in health and disease. The results of such experiments are expected to change the methods employed in the diagnosis and prognosis of disease in obstetrics and gynecology. Moreover, an unbiased and systematic study of gene expression profiling should allow the establishment of a new taxonomy of disease for obstetric and gynecologic syndromes. Thus, a new era is emerging in which reproductive processes and disorders could be characterized using molecular tools and fingerprinting. The design, analysis, and interpretation of microarray experiments require specialized knowledge that is not part of the standard curriculum of our discipline. This article describes the types of studies that can be conducted with microarray experiments (class comparison, class prediction, class discovery). We discuss key issues pertaining to experimental design, data preprocessing, and gene selection methods. Common types of data representation are illustrated. Potential pitfalls in the interpretation of microarray experiments, as well as the strengths and limitations of this technology, are highlighted. This article is intended to assist clinicians in appraising the quality of the scientific evidence now reported in the obstetric and gynecologic literature.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Computer Science, Wayne State University
| | - Roberto Romero
- Perinatology Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University
| | - Sorin Draghici
- Department of Computer Science, Wayne State University
- Karmanos Cancer Institute, Detroit, MI
| |
Collapse
|
90
|
Martin CE, Oh CS, Jiang Y. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:271-85. [PMID: 16920014 DOI: 10.1016/j.bbalip.2006.06.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae forms monounsaturated fatty acids using the ER membrane-bound Delta-9 fatty acid desaturase, Ole1p, an enzyme system that forms a double bond in saturated fatty acyl CoA substrates. Ole1p is a chimeric protein consisting of an amino terminal desaturase domain fused to cytochrome b5. It catalyzes the formation of the double bond through an oxygen-dependent mechanism that requires reducing equivalents from NADH. These are transferred to the enzyme via NADH cytochrome b5 reductase to the Ole1p cytochrome b5 domain and then to the diiron-oxo catalytic center of the enzyme. The control of OLE1 gene expression appears to mediated through the ER membrane proteins Spt23p and Mga2p. N-terminal fragments of these proteins are released by an ubiquitin/proteasome mediated proteolysis system and translocated to the nucleus where they appear to act as transcription coactivators of OLE1. OLE1 is regulated through Spt23p and Mga2p by multiple systems that control its transcription and mRNA stability in response to diverse stimuli that include nutrient fatty acids, carbon source, metal ions and the availability of oxygen.
Collapse
Affiliation(s)
- Charles E Martin
- Rutgers University, Department of Cell Biology and Neuroscience, Nelson Laboratories, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| | | | | |
Collapse
|
91
|
Chen M, Hancock LC, Lopes JM. Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:310-21. [PMID: 16854618 DOI: 10.1016/j.bbalip.2006.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 12/26/2022]
Abstract
The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
92
|
Roberts GG, Hudson AP. Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genomics 2006; 276:170-86. [PMID: 16741729 DOI: 10.1007/s00438-006-0133-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Transcriptome analyses using a wild-type strain of Saccharomyces cerevisiae were performed to assess the overall pattern of gene expression during the transition from glucose-based fermentative to glycerol-based respiratory growth. These experiments revealed a complex suite of metabolic and structural changes associated with the adaptation process. Alterations in gene expression leading to remodeling of various membrane transport systems and the cortical actin cytoskeleton were observed. Transition to respiratory growth was accompanied by alterations in transcript patterns demonstrating not only a general stress response, as seen in earlier studies, but also the oxidative and osmotic stress responses. In some contrast to earlier studies, these experiments identified modulation of expression for many genes specifying transcription factors during the transition to glycerol-based growth. Importantly and unexpectedly, an ordered series of changes was seen in transcript levels from genes encoding components of the TFIID, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and SLIK (Saga LIKe) complexes and all three RNA polymerases, suggesting a modulation of structure for the basal transcriptional machinery during adaptation to respiratory growth. In concert with data given in earlier studies, the results presented here highlight important aspects of metabolic and other adaptations to respiratory growth in yeast that are common to utilization of multiple carbon sources. Importantly, they also identify aspects specific to adaptation of this organism to growth on glycerol as sole carbon source.
Collapse
Affiliation(s)
- George G Roberts
- Department Immunology and Microbiology, Wayne State University School of Medicine, Gordon H. Scott Hall, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
93
|
Andrau JC, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, van de Peppel J, Werner M, Holstege FCP. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell 2006; 22:179-92. [PMID: 16630888 DOI: 10.1016/j.molcel.2006.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/30/2006] [Accepted: 03/20/2006] [Indexed: 11/25/2022]
Abstract
Mediator is a general coactivator of RNA polymerase II (Pol II) transcription. Genomic location analyses of different Mediator subunits indicate a uniformly composed core complex upstream of active genes but unexpectedly also upstream of inactive genes and on the coding regions of some highly active genes. The repressive Cdk8 submodule is associated with core Mediator at all sites but with a lower degree of occupancy, indicating transient interaction, regardless of promoter activity. This suggests gene-specific regulation of Cdk8 activity, rather than regulated Cdk8 recruitment. Mediator presence is not necessarily linked to transcription. This goes beyond Cdk8-repressed genes, indicating that Mediator can mark some regulatory regions ahead of additional signals. Overlap with intergenic Pol II location in stationary phase points to a role as a binding platform for inactive Pol II during quiescence. These results shed light on Cdk8 repression, suggest additional roles for Mediator, and query models of recruitment-coupled regulation.
Collapse
Affiliation(s)
- Jean-Christophe Andrau
- Department of Physiological Chemistry, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Snoek ISI, Steensma HY. Why doesKluyveromyces lactisnot grow under anaerobic conditions? Comparison of essential anaerobic genes ofSaccharomyces cerevisiaewith theKluyveromyces lactisgenome. FEMS Yeast Res 2006; 6:393-403. [PMID: 16630279 DOI: 10.1111/j.1567-1364.2005.00007.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although some yeast species, e.g. Saccharomyces cerevisiae, can grow under anaerobic conditions, Kluyveromyces lactis cannot. In a systematic study, we have determined which S. cerevisiae genes are required for growth without oxygen. This has been done by using the yeast deletion library. Both aerobically essential and nonessential genes have been tested for their necessity for anaerobic growth. Upon comparison of the K. lactis genome with the genes found to be anaerobically important in S. cerevisiae, which yielded 20 genes that are missing in K. lactis, we hypothesize that lack of import of sterols might be one of the more important reasons that K. lactis cannot grow in the absence of oxygen.
Collapse
Affiliation(s)
- I S Ishtar Snoek
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
95
|
Horan S, Bourges I, Meunier B. Transcriptional response to nitrosative stress in Saccharomyces cerevisiae. Yeast 2006; 23:519-35. [PMID: 16710843 DOI: 10.1002/yea.1372] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Nitric oxide and NO-derived species (RNS) are defence molecules with broad antimicrobial activity. Microorganisms have developed strategies to sense RNS and counteract their damaging effects. We used Saccharomyces cerevisiae, harbouring a deletion of YHB1 that encodes the main NO scavenger enzyme, to study consequences of RNS exposure on whole-genome transcriptional response. The expression of > 700 genes was altered on RNS treatment. No major role for ROS-scavenging enzymes was found, and the respiratory chain, the main site of ROS production, had only minor involvement in the RNS-induced stress. The changes were generally transient and also found after treatment with the respiratory inhibitor myxothiazol. However, 117 genes showed a persistent response that was not observed after myxothiazol treatment. Of these, genes of the glutathione and DNA repair systems, iron homeostasis and transport were found to be upregulated. Severe repression of genes of respiratory chain enzymes was observed. Many of these genes are known to be regulated by the transcription factor Hap1p, suggesting that RNS might interfere with Hap1p activity. We showed also that Msn2/4p and Yap1p, key regulators of the response to general stress and oxidative stress, respectively, played a role in mediating the RNS-induced response.
Collapse
Affiliation(s)
- Susannah Horan
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
96
|
Landry CR, Townsend JP, Hartl DL, Cavalieri D. Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol Ecol 2006; 15:575-91. [PMID: 16499686 DOI: 10.1111/j.1365-294x.2006.02778.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae, the budding yeast, is the most thoroughly studied eukaryote at the cellular, molecular, and genetic levels. Yet, until recently, we knew very little about its ecology or population and evolutionary genetics. In recent years, it has been recognized that S. cerevisiae occupies numerous habitats and that populations harbour important genetic variation. There is therefore an increasing interest in understanding the evolutionary forces acting on the yeast genome. Several researchers have used the tools of functional genomics to study natural isolates of this unicellular fungus. Here, we review some of these studies, and show not only that budding yeast is a prime model system to address fundamental molecular and cellular biology questions, but also that it is becoming a powerful model species for ecological and evolutionary genomics studies as well.
Collapse
Affiliation(s)
- Christian R Landry
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
97
|
Rossignol T, Postaire O, Storaï J, Blondin B. Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl Microbiol Biotechnol 2006; 71:699-712. [PMID: 16607525 DOI: 10.1007/s00253-006-0398-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/06/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
We used DNA microarrays to study the transcriptome of a wine yeast before and after rehydration and during the first hours following inoculation of a synthetic must. There was a substantial transcriptional remodeling during this period, including 1,874 genes regulated more than threefold. Dried yeasts displayed an expression profile typical of respiratory-grown cells starved for nitrogen and carbon and which had been highly stressed. During rehydration, many genes involved in biosynthetic pathways, in transcription or in protein synthesis were coordinately induced while genes subject to glucose repression were down-regulated. The transcriptional response was very rapid indicating that yeast quickly recovered the capacity to sense environmental signals and to respond appropriately. Our data show that genes involved in the general stress response were repressed during rehydration while acid stress specific genes were induced probably in response to organic acid accumulation. The glycolytic genes and acid stress-responsive genes were simultaneously and transiently repressed after inoculation into the fermentation medium suggesting that regulation of glycolytic genes may correspond to an adjustment to the energetic needs of the cells. Surprisingly, inoculation into the must did not trigger a stress response despite the high concentrations of sugars.
Collapse
Affiliation(s)
- Tristan Rossignol
- Equipe de Microbiologie, UMR Sciences Pour l'Oenologie, INRA-ENSAM-UMI, 2 place Viala, Montpellier 34060, Cedex 1, France
| | | | | | | |
Collapse
|
98
|
Todd BL, Stewart EV, Burg JS, Hughes AL, Espenshade PJ. Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol 2006; 26:2817-31. [PMID: 16537923 PMCID: PMC1430309 DOI: 10.1128/mcb.26.7.2817-2831.2006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/29/2005] [Accepted: 01/03/2006] [Indexed: 01/10/2023] Open
Abstract
Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe, we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced > or = 2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1+ promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption.
Collapse
Affiliation(s)
- Bridget L Todd
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 107B, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
99
|
Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 2006; 3:277-87. [PMID: 16581005 DOI: 10.1016/j.cmet.2006.02.011] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/17/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved oxygen concentrations below 20 microM. This NO production is nitrite (NO2-) dependent, requires an electron donor, and is carried out by cytochrome c oxidase in a pH-dependent fashion. Mitochondrial NO production in yeast is influenced by the YHb flavohemoglobin NO oxidoreductase, stimulates expression of the hypoxic nuclear gene CYC7, and is accompanied by an increase in protein tyrosine nitration. These findings demonstrate an alternative role for the mitochondrial respiratory chain under hypoxic or anoxic conditions and suggest that mitochondrially produced NO is involved in hypoxic signaling, possibly via a pathway that involves protein tyrosine nitration.
Collapse
Affiliation(s)
- Pablo R Castello
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
100
|
Granath K, Modig T, Forsmark A, Adler L, Lidén G. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae. Yeast 2006; 22:1257-68. [PMID: 16358322 DOI: 10.1002/yea.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobic conditions S. cerevisiae produces glycerol to regenerate NAD(+) from the excess NADH produced in cell metabolism. We here report on the role of an uncharacterized protein, Yig1p (Ypl201cp), in anaerobic glycerol production. Yig1p was previously shown to interact in two-hybrid tests with the GPP1 and GPP2 encoded glycerol 3-phosphatase (Gpp), and we here demonstrate that strains overexpressing YIG1 show strongly decreased Gpp activity and content of the major phosphatase, Gpp1p. However, cells overexpressing YIG1 exhibited only slightly decreased GPP1 transcript levels, suggesting that Yig1p modulates expression on both transcriptional and post-transcriptional levels. In agreement with such a role, a GFP-tagged derivate of Yig1p was localized to both the cytosol and the nucleus. Deletion or overexpression of YIG1 did not, however, significantly affect growth yield or glycerol yield in anaerobic batch cultures, which is consistent with the previously proposed low flux control exerted at the Gpp level.
Collapse
Affiliation(s)
- K Granath
- Department of Cell and Molecular Biology--Microbiology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|