51
|
Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, Sahel JA, Dalkara D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8. Biotechnol Bioeng 2016; 113:2712-2724. [PMID: 27259396 DOI: 10.1002/bit.26031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/20/2023]
Abstract
Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Mélissa Desrosiers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Céline Winckler
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Gwenaëlle Auregan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, Paris, France
| | - Deniz Dalkara
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
52
|
Fischer MD. On Retinal Gene Therapy. Ophthalmologica 2016; 236:1-7. [PMID: 27119148 DOI: 10.1159/000445782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022]
Abstract
Mutations in a large number of genes cause retinal degeneration and blindness with no cure currently available. Retinal gene therapy has evolved over the last decades to become a promising new treatment paradigm for these rare disorders. This article reflects on the ideas and concepts arising from basic science towards the translation of retinal gene therapy into the clinical realm. It describes the advances and present thinking on the efficacy of current clinical trials and discusses potential roadblocks and solutions for the future of retinal gene therapy.
Collapse
Affiliation(s)
- M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
53
|
Boye SL, Bennett A, Scalabrino ML, McCullough KT, Van Vliet K, Choudhury S, Ruan Q, Peterson J, Agbandje-McKenna M, Boye SE. Impact of Heparan Sulfate Binding on Transduction of Retina by Recombinant Adeno-Associated Virus Vectors. J Virol 2016; 90:4215-4231. [PMID: 26865709 PMCID: PMC4810560 DOI: 10.1128/jvi.00200-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Adeno-associated viruses (AAVs) currently are being developed to efficiently transduce the retina following noninvasive, intravitreal (Ivt) injection. However, a major barrier encountered by intravitreally delivered AAVs is the inner limiting membrane (ILM), a basement membrane rich in heparan sulfate (HS) proteoglycan. The goal of this study was to determine the impact of HS binding on retinal transduction by Ivt-delivered AAVs. The heparin affinities of AAV2-based tyrosine-to-phenylalanine (Y-F) and threonine-to-valine (T-V) capsid mutants, designed to avoid proteasomal degradation during cellular trafficking, were established. In addition, the impact of grafting HS binding residues onto AAV1, AAV5, and AAV8(Y733F) as well as ablation of HS binding by AAV2-based vectors on retinal transduction was investigated. Finally, the potential relationship between thermal stability of AAV2-based capsids and Ivt-mediated transduction was explored. The results show that the Y-F and T-V AAV2 capsid mutants bind heparin but with slightly reduced affinity relative to that of AAV2. The grafting of HS binding increased Ivt transduction by AAV1 but not by AAV5 or AAV8(Y733F). The substitution of any canonical HS binding residues ablated Ivt-mediated transduction by AAV2-based vectors. However, these same HS variant vectors displayed efficient retinal transduction when delivered subretinally. Notably, a variant devoid of canonical HS binding residues, AAV2(4pMut)ΔHS, was remarkably efficient at transducing photoreceptors. The disparate AAV phenotypes indicate that HS binding, while critical for AAV2-based vectors, is not the sole determinant for transduction via the Ivt route. Finally, Y-F and T-V mutations alter capsid stability, with a potential relationship existing between stability and improvements in retinal transduction by Ivt injection. IMPORTANCE AAV has emerged as the vector of choice for gene delivery to the retina, with attention focused on developing vectors that can mediate transduction following noninvasive, intravitreal injection. HS binding has been postulated to play a role in intravitreally mediated transduction of retina. Our evaluation of the HS binding of AAV2-based variants and other AAV serotype vectors and the correlation of this property with transduction points to HS affinity as a factor controlling retinal transduction following Ivt delivery. However, HS binding is not the only requirement for improved Ivt-mediated transduction. We show that AAV2-based vectors lacking heparin binding transduce retina by subretinal injection and display a remarkable ability to transduce photoreceptors, indicating that other receptors are involved in this phenotype.
Collapse
Affiliation(s)
- Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Miranda L Scalabrino
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - K Tyler McCullough
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shreyasi Choudhury
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Qing Ruan
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James Peterson
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shannon E Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
54
|
Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution. Mol Ther 2015; 23:1819-31. [PMID: 26388463 PMCID: PMC4700111 DOI: 10.1038/mt.2015.173] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany
| | - Sergei Zolotukhin
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
55
|
Nance ME, Duan D. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Hum Gene Ther 2015; 26:786-800. [PMID: 26414293 PMCID: PMC4692109 DOI: 10.1089/hum.2015.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.
Collapse
MESH Headings
- Animals
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Dependovirus/genetics
- Dependovirus/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- Protein Engineering
- Species Specificity
Collapse
Affiliation(s)
- Michael E. Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
56
|
Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo. J Virol 2015; 90:412-20. [PMID: 26491162 DOI: 10.1128/jvi.01939-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1(HEP) mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1(HEP) mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1(HEP) mice. FX remained essential for Ad5 transduction in vivo in Ext1(HEP) mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These results reopen the question of the identity of the Ad5 receptor in vivo and emphasize the necessity of demonstrating the nature of the receptor by genetic means, both for understanding Ad5 entry into cells in vivo and for optimization of Ad5 vectors as therapeutic agents.
Collapse
|
57
|
Buchholz CJ, Friedel T, Büning H. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends Biotechnol 2015; 33:777-790. [PMID: 26497425 DOI: 10.1016/j.tibtech.2015.09.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Recent progress in gene transfer technology enables the delivery of genes precisely to the application-relevant cell type ex vivo on cultivated primary cells or in vivo on local or systemic administration. Gene vectors based on lentiviruses or adeno-associated viruses can be engineered such that they use a cell surface marker of choice for cell entry instead of their natural receptors. Binding to the surface marker is mediated by a targeting ligand displayed on the vector particle surface, which can be a peptide, single-chain antibody, or designed ankyrin repeat protein. Examples include vectors that deliver genes to specialized endothelial cells or lymphocytes, tumor cells, or particular cells of the nervous system with potential applications in gene function studies and molecular medicine.
Collapse
Affiliation(s)
- Christian J Buchholz
- Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | | | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner sites Bonn-Cologne and Hannover-Braunschweig, Germany
| |
Collapse
|
58
|
Büning H, Huber A, Zhang L, Meumann N, Hacker U. Engineering the AAV capsid to optimize vector–host-interactions. Curr Opin Pharmacol 2015; 24:94-104. [DOI: 10.1016/j.coph.2015.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
|
59
|
Sieber T, Hare E, Hofmann H, Trepel M. Biomathematical description of synthetic peptide libraries. PLoS One 2015; 10:e0129200. [PMID: 26042419 PMCID: PMC4456392 DOI: 10.1371/journal.pone.0129200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries.
Collapse
Affiliation(s)
- Timo Sieber
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hare
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Heike Hofmann
- Department of Statistics, Iowa State University, Ames, IA, USA
- * E-mail:
| | - Martin Trepel
- Department of Hematology and Oncology, Augsburg Medical Center, Interdisciplinary Cancer Center, Augsburg, Germany
| |
Collapse
|
60
|
Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE, Huckfeldt RM, Busskamp V, Kohler H, Lagali PS, Roska B, Bennett J. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2015; 6:1175-90. [PMID: 25092770 PMCID: PMC4197864 DOI: 10.15252/emmm.201404077] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (∼100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use.
Collapse
Affiliation(s)
- Therese Cronin
- Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luk H Vandenberghe
- Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Péter Hantz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Josephine Juttner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Reimann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Rachel M Huckfeldt
- Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Busskamp
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Genetics Department, Harvard Medical School, Boston, MA, USA
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pamela S Lagali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Botond Roska
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jean Bennett
- Center for Advanced Retinal and Ophthalmic Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
61
|
Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 2015; 6:6246. [PMID: 25665714 DOI: 10.1038/ncomms7246] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/08/2015] [Indexed: 11/09/2022] Open
Abstract
We describe receptor-targeted adeno-associated viral (AAV) vectors that allow genetic modification of rare cell types ex vivo and in vivo while showing no detectable off-targeting. Displaying designed ankyrin repeat proteins (DARPins) on the viral capsid and carefully depleting DARPin-deficient particles, AAV vectors were made specific for Her2/neu, EpCAM or CD4. A single intravenous administration of vector targeted to the tumour antigen Her2/neu was sufficient to track 75% of all tumour sites and to extend survival longer than the cytostatic antibody Herceptin. CD4-targeted AAVs hit human CD4-positive cells present in spleen of a humanized mouse model, while CD8-positive cells as well as liver or other off-target organs remained unmodified. Mimicking conditions of circulating tumour cells, EpCAM-AAV detected single tumour cells in human blood opening the avenue for tumour stem cell tracking. Thus, the approach developed here delivers genes to target cell types of choice with antibody-like specificity.
Collapse
|
62
|
Geoghegan JC, Keiser NW, Okulist A, Martins I, Wilson MS, Davidson BL. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e202. [PMID: 25313621 PMCID: PMC4217075 DOI: 10.1038/mtna.2014.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/19/2014] [Indexed: 01/31/2023]
Abstract
Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.
Collapse
Affiliation(s)
- James C Geoghegan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas W Keiser
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Anna Okulist
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Inês Martins
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew S Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Beverly L Davidson
- 1] Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA [2] Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
63
|
Manzano-Szalai K, Thell K, Willensdorfer A, Weghofer M, Pfanzagl B, Singer J, Ritter M, Stremnitzer C, Flaschberger I, Michaelis U, Jensen-Jarolim E. Adeno-associated virus-like particles as new carriers for B-cell vaccines: testing immunogenicity and safety in BALB/c mice. Viral Immunol 2014; 27:438-48. [PMID: 25247267 DOI: 10.1089/vim.2014.0059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated viruses (AAVs) are established vectors for gene therapy of different human diseases. AAVs are assembled of 60 capsomers, which can be genetically modified, allowing high-density display of short peptide sequences at their surface. The aim of our study was to evaluate the immunogenicity and safety of an adeno-associated virus-like particle (AAVLP)-displayed B-cell peptide epitope taking ovalbumin (OVA) as a model antigen or allergen from egg, respectively. An OVA-derived B-cell epitope was expressed as fusion protein with the AAV-2 capsid protein of VP3 (AAVLP-OVA) and for control, with the nonrelated peptide TP18 (AAVLP-TP18). Cellular internalization studies revealed an impaired uptake of AAVLP-OVA by mouse BMDC, macrophages, and human HeLa cells. Nevertheless, BALB/c mice immunized subcutaneously with AAVLP-OVA formed similarly high titers of OVA-specific IgG1 compared to mice immunized with the native OVA. The extent of the immune response was independent whether aluminum hydroxide or water in oil emulsion was used as adjuvant. Furthermore, in mice immunized with native OVA, high OVA-specific IgE levels were observed, which permitted OVA-specific mast-cell degranulation in a β-hexosaminidase release assay, whereas immunizations with AAVLP-OVA rendered background IgE levels only. Accordingly, OVA-immunized mice, but not AAVLP-OVA immunized mice, displayed an anaphylactic reaction with a significant drop of body temperature upon intravenous OVA challenge. From this mouse model, we conclude that AAVLPs that display B-cell epitope peptides on their surface are suitable vaccine candidates, especially in the field of allergy.
Collapse
Affiliation(s)
- Krisztina Manzano-Szalai
- 1 Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine Vienna , Medical University of Vienna and University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tropism-modified AAV vectors overcome barriers to successful cutaneous therapy. Mol Ther 2014; 22:929-39. [PMID: 24468915 DOI: 10.1038/mt.2014.14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/11/2014] [Indexed: 12/11/2022] Open
Abstract
Autologous human keratinocytes (HK) forming sheet grafts are approved as skin substitutes. Genetic engineering of HK represents a promising technique to improve engraftment and survival of transplants. Although efficacious in keratinocyte-directed gene transfer, retro-/lentiviral vectors may raise safety concerns when applied in regenerative medicine. We therefore optimized adeno-associated viral (AAV) vectors of the serotype 2, characterized by an excellent safety profile, but lacking natural tropism for HK, through capsid engineering. Peptides, selected by AAV peptide display, engaged novel receptors that increased cell entry efficiency by up to 2,500-fold. The novel targeting vectors transduced HK with high efficiency and a remarkable specificity even in mixed cultures of HK and feeder cells. Moreover, differentiated keratinocytes in organotypic airlifted three-dimensional cultures were transduced following topical vector application. By exploiting comparative gene analysis we further succeeded in identifying αvβ8 integrin as a target receptor thus solving a major challenge of directed evolution approaches and describing a promising candidate receptor for cutaneous gene therapy.
Collapse
|
65
|
Xie Q, Spilman M, Meyer NL, Lerch TF, Stagg SM, Chapman MS. Electron microscopy analysis of a disaccharide analog complex reveals receptor interactions of adeno-associated virus. J Struct Biol 2013; 184:129-35. [PMID: 24036405 DOI: 10.1016/j.jsb.2013.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
Abstract
Mechanistic studies of macromolecular complexes often feature X-ray structures of complexes with bound ligands. The attachment of adeno-associated virus (AAV) to cell surface glycosaminoglycans (GAGs) is an example that has not proven amenable to crystallography, because the binding of GAG analogs disrupts lattice contacts. The interactions of AAV with GAGs are of interest in mediating the cell specificity of AAV-based gene therapy vectors. Previous electron microscopy led to differing conclusions on the exact binding site and the existence of large ligand-induced conformational changes in the virus. Conformational changes are expected during cell entry, but it has remained unclear whether the electron microscopy provided evidence of their induction by GAG-binding. Taking advantage of automated data collection, careful processing and new methods of structure refinement, the structure of AAV-DJ complexed with sucrose octasulfate is determined by electron microscopy difference map analysis to 4.8Å resolution. At this higher resolution, individual sulfate groups are discernible, providing a stereochemical validation of map interpretation, and highlighting interactions with two surface arginines that have been implicated in genetic studies. Conformational changes induced by the SOS are modest and limited to the loop most directly interacting with the ligand. While the resolution attainable will depend on sample order and other factors, there are an increasing number of macromolecular complexes that can be studied by cryo-electron microscopy at resolutions beyond 5Å, for which the approaches used here could be used to characterize the binding of inhibitors and other small molecule effectors when crystallography is not tractable.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health &v Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
66
|
Zhang F, Aguilera J, Beaudet JM, Xie Q, Lerch TF, Davulcu O, Colón W, Chapman MS, Linhardt RJ. Characterization of interactions between heparin/glycosaminoglycan and adeno-associated virus. Biochemistry 2013; 52:6275-85. [PMID: 23952613 PMCID: PMC3859860 DOI: 10.1021/bi4008676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this work, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans (GAGs). Surface plasmon resonance results revealed that heparin binds to AAV with an extremely high affinity. Solution competition studies showed that binding of AAV to heparin is chain length-dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV-heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 in a complex with heparin.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Javier Aguilera
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Julie M. Beaudet
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Qing Xie
- Department of Biochemistry and Molecular Biology School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas F. Lerch
- Department of Biochemistry and Molecular Biology School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Omar Davulcu
- Department of Biochemistry and Molecular Biology School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
67
|
Dissen GA, Lomniczi A, Boudreau RL, Chen YH, Davidson BL, Ojeda SR. Applying gene silencing technology to contraception. Reprod Domest Anim 2013; 47 Suppl 6:381-6. [PMID: 23279544 DOI: 10.1111/rda.12016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 11/24/2022]
Abstract
Population control of feral animals is often difficult, as it can be dangerous for the animals, labour intensive and expensive. Therefore, a useful tool for control of animal populations would be a non-surgical method to induce sterility. Our laboratories utilize methods aimed at targeting brain cells in vivo with vehicles that deliver a payload of either inhibitory RNAs or genes intended to correct cellular dysfunction. A useful framework for design of a new approach will be the combination of these methods with the intended goal to produce a technique that can be used to non-invasively sterilize cats and dogs. For this approach to succeed, it has to meet several conditions: the target gene must be essential for fertility; the method must include a mechanism to effectively and specifically silence the gene of interest; the method of delivering the silencing agent must be minimally invasive, and finally, the silencing effect must be sustained for the lifespan of the target species, so that expansion of the population can be effectively prevented. In this article, we discuss our work to develop gene silencing technology to induce sterility; we will use examples of our previous studies demonstrating that this approach is viable. These studies include (i) the use of viral vectors able to disrupt reproductive cyclicity when delivered to the regions of the brain involved in the control of reproduction and (ii) experiments with viral vectors that are able to ameliorate neuronal disease when delivered systemically using a novel approach of gene therapy.
Collapse
Affiliation(s)
- G A Dissen
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health & Science University, Beaverton, OR 97006-3448, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Arnett ALH, Beutler LR, Quintana A, Allen J, Finn E, Palmiter RD, Chamberlain JS. Heparin-binding correlates with increased efficiency of AAV1- and AAV6-mediated transduction of striated muscle, but negatively impacts CNS transduction. Gene Ther 2013; 20:497-503. [PMID: 22855092 PMCID: PMC4004370 DOI: 10.1038/gt.2012.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/09/2022]
Abstract
Gene delivery vectors derived from adeno-associated virus (AAV) have great potential as therapeutic agents. rAAV1 and rAAV6, efficiently target striated muscle, but the mechanisms that determine their tropism remain unclear. It is known that AAV6, but not AAV1, interacts with heparin-sulfate proteoglycans (HSPG). HSPGs are not primary receptors for AAV6, but heparin interactions may affect tissue tropism and transduction. To investigate these possibilities, we generated rAAV1 and rAAV6 capsids that do or do not bind heparin. We evaluated the transduction profile of these vectors in vivo across multiple routes of administration, and found that heparin-binding capability influences tissue transduction in striated muscle and neuronal tissues. Heparin-binding capsids transduce striated muscle more efficiently than non-binding capsids, via both intramuscular and intravenous injection. However, rAAV6 achieved greater muscle transduction than the heparin-binding rAAV1 variant, suggesting that there are additional factors that influence differences in transduction efficiency between AAV1 and AAV6. Interestingly, the opposite trend was found when vectors were delivered via intracranial injection. Non-binding vectors achieved robust and widespread gene expression, whereas transduction via heparin-binding serotypes was substantially reduced. These data indicate that heparin-binding capability is an important determinant of transduction that should be considered in the design of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andrea L. H. Arnett
- Department of Neurology, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Lisa R. Beutler
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Albert Quintana
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - James Allen
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Eric Finn
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Richard D. Palmiter
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, and Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
69
|
Dissen GA, Lomniczi A, Boudreau RL, Chen YH, Davidson BL, Ojeda SR. Targeted gene silencing to induce permanent sterility. Reprod Domest Anim 2013; 47 Suppl 4:228-32. [PMID: 22827375 DOI: 10.1111/j.1439-0531.2012.02080.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A non-surgical method to induce sterility would be a useful tool to control feral populations of animals. Our laboratories have experience with approaches aimed at targeting brain cells in vivo with vehicles that deliver a payload of either inhibitory RNAs or genes intended to correct cellular dysfunction. A combination/modification of these methods may provide a useful framework for the design of approaches that can be used to sterilize cats and dogs. For this approach to succeed, it has to meet several conditions: it needs to target a gene essential for fertility. It must involve a method that can selectively silence the gene of interest. It also needs to deliver the silencing agent via a minimally invasive method. Finally, the silencing effect needs to be sustained for many years, so that expansion of the targeted population can be effectively prevented. In this article, we discuss this subject and provide a succinct account of our previous experience with: (i) molecular reagents able to disrupt reproductive cyclicity when delivered to regions of the brain involved in the control of reproduction and (ii) molecular reagents able to ameliorate neuronal disease when delivered systemically using a novel approach of gene therapy.
Collapse
Affiliation(s)
- G A Dissen
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health & Science University, Beaverton, OR 97006-3448, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Tomatsu S, Mackenzie WG, Theroux MC, Mason RW, Thacker MM, Shaffer TH, Montaño AM, Rowan D, Sly W, Alméciga-Díaz CJ, Barrera LA, Chinen Y, Yasuda E, Ruhnke K, Suzuki Y, Orii T. Current and emerging treatments and surgical interventions for Morquio A syndrome: a review. RESEARCH AND REPORTS IN ENDOCRINE DISORDERS 2012; 2012:65-77. [PMID: 24839594 PMCID: PMC4020877 DOI: 10.2147/rred.s37278] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with mucopolysaccharidosis type IVA (MPS IVA; Morquio A syndrome) have accumulation of the glycosaminoglycans, keratan sulfate, and chondroitin-6-sulfate, in bone and cartilage, causing systemic spondyloepiphyseal dysplasia. Features include lumbar gibbus, pectus carinatum, faring of the rib cage, marked short stature, cervical instability and stenosis, kyphoscoliosis, genu valgum, and laxity of joints. Generally, MPS IVA patients are wheelchair-bound as teenagers and do not survive beyond the second or third decade of life as a result of severe bone dysplasia, causing restrictive lung disease and airway narrowing, increasing potential for pneumonia and apnea; stenosis and instability of the upper cervical region; high risk during anesthesia administration due to narrowed airway as well as thoracoabdominal dysfunction; and surgical complications. Patients often need multiple surgical procedures, including cervical decompression and fusion, hip reconstruction and replacement, and femoral or tibial osteotomy, throughout their lifetime. Current measures to intervene in disease progression are largely palliative, and improved therapies are urgently needed. A clinical trial for enzyme replacement therapy (ERT) and an investigational trial for hematopoietic stem cell transplantation (HSCT) are underway. Whether sufficient enzyme will be delivered effectively to bone, especially cartilage (avascular region) to prevent the devastating skeletal dysplasias remains unclear. This review provides an overview of historical aspects of studies on MPS IVA, including clinical manifestations and pathogenesis of MPS IVA, orthopedic surgical interventions, and anesthetic care. It also describes perspectives on potential ERT, HSCT, and gene therapy.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | | | - Mary C Theroux
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Mihir M Thacker
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Thomas H Shaffer
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | | | - Daniel Rowan
- Department of Pediatrics, Saint Louis University, St Louis, MO, USA
| | - William Sly
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO, USA
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yasutsugu Chinen
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Eriko Yasuda
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Kristen Ruhnke
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
71
|
Naumer M, Popa-Wagner R, Kleinschmidt JA. Impact of capsid modifications by selected peptide ligands on recombinant adeno-associated virus serotype 2-mediated gene transduction. J Gen Virol 2012; 93:2131-2141. [PMID: 22764318 DOI: 10.1099/vir.0.044735-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today's most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.
Collapse
Affiliation(s)
- Matthias Naumer
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ruth Popa-Wagner
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jürgen A Kleinschmidt
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| |
Collapse
|
72
|
Lerch TF, Chapman MS. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B). Virology 2011; 423:6-13. [PMID: 22169623 DOI: 10.1016/j.virol.2011.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/27/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022]
Abstract
Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.
Collapse
Affiliation(s)
- Thomas F Lerch
- Department of Biochemistry & Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
73
|
Michelfelder S, Varadi K, Raupp C, Hunger A, Körbelin J, Pahrmann C, Schrepfer S, Müller OJ, Kleinschmidt JA, Trepel M. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo. PLoS One 2011; 6:e23101. [PMID: 21850255 PMCID: PMC3151269 DOI: 10.1371/journal.pone.0023101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022] Open
Abstract
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl Varadi
- Internal Medicine III, University Medical Center Heidelberg, Im Neuenheimer Feld 10, Heidelberg, Germany
| | - Christina Raupp
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg, Germany
| | - Agnes Hunger
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Körbelin
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Pahrmann
- Transplant and Stem Cell Immunobiology Lab, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver J. Müller
- Internal Medicine III, University Medical Center Heidelberg, Im Neuenheimer Feld 10, Heidelberg, Germany
| | | | - Martin Trepel
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
74
|
The Wire. Hum Gene Ther 2011. [DOI: 10.1089/hum.2011.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
75
|
Uhrig S, Coutelle O, Wiehe T, Perabo L, Hallek M, Büning H. Successful target cell transduction of capsid-engineered rAAV vectors requires clathrin-dependent endocytosis. Gene Ther 2011; 19:210-8. [DOI: 10.1038/gt.2011.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Zaiss AK, Lawrence R, Elashoff D, Esko JD, Herschman HR. Differential effects of murine and human factor X on adenovirus transduction via cell-surface heparan sulfate. J Biol Chem 2011; 286:24535-43. [PMID: 21596747 DOI: 10.1074/jbc.m111.241562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum coagulation factor X (FX) is proposed to play a major role in adenovirus tropism, promoting transduction by bridging the virus to cell-surface heparan sulfate proteoglycans (HSPGs). Both murine FX and human FX increased transduction by Ad.CMVfLuc, an adenovirus vector, in murine hepatocyte-like cells and human hepatocarcinoma cells. In contrast, only hFX increased transduction of several non-hepatic cancer cell lines and Chinese hamster ovary (CHO) cells. Not only was mFX unable to promote transduction in these cells, it competitively blocked hFX-enhanced transduction. Competition and HSPG digestion experiments suggested mFX- and hFX-enhanced transduction in hepatocyte-derived cells, and hFX-enhanced transduction in epithelial cancer cells were dependent on HSPGs. Ad·hFX-mediated transduction of CHO mutants unable to produce HSPGs was also curtailed. Hepatocyte-derived cells expressed substantially more HSPGs than the cancer cell lines. Dose-response curves and heparin-Sepharose binding suggested Ad·hFX has greater affinity for HSPGs than does Ad·mFX. In coagulation factor-depleted mice hFX also had enhanced ability, compared with mFX, to reconstitute hepatic adenovirus transduction. The results suggest that differences in Ad·hFX and Ad·mFX affinity to HSPGs may result in differences in their ability to enhance adenovirus transduction of many cells. These findings may have implications for murine models of adenovirus vector targeting.
Collapse
Affiliation(s)
- Anne K Zaiss
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
77
|
Moulay G, Boutin S, Masurier C, Scherman D, Kichler A. Polymers for improving the in vivo transduction efficiency of AAV2 vectors. PLoS One 2010; 5:e15576. [PMID: 21203395 PMCID: PMC3011005 DOI: 10.1371/journal.pone.0015576] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins.
Collapse
Affiliation(s)
| | | | | | - Daniel Scherman
- UMR 8151 CNRS-U1022 INSERM, Université René Descartes, Chimie Paristech, Paris, France
| | - Antoine Kichler
- Research Department, Genethon, Evry, France
- UMR 8151 CNRS-U1022 INSERM, Université René Descartes, Chimie Paristech, Paris, France
- * E-mail:
| |
Collapse
|
78
|
Bradshaw AC, Parker AL, Duffy MR, Coughlan L, van Rooijen N, Kähäri VM, Nicklin SA, Baker AH. Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X. PLoS Pathog 2010; 6:e1001142. [PMID: 20949078 PMCID: PMC2951380 DOI: 10.1371/journal.ppat.1001142] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/08/2010] [Indexed: 01/22/2023] Open
Abstract
Human adenoviruses from multiple species bind to coagulation factor X (FX), yet the importance of this interaction in adenovirus dissemination is unknown. Upon contact with blood, vectors based on adenovirus serotype 5 (Ad5) binds to FX via the hexon protein with nanomolar affinity, leading to selective uptake of the complex into the liver and spleen. The Ad5:FX complex putatively targets heparan sulfate proteoglycans (HSPGs). The aim of this study was to elucidate the specific requirements for Ad5:FX-mediated cellular uptake in this high-affinity pathway, specifically the HSPG receptor requirements as well as the role of penton base-mediated integrin engagement in subsequent internalisation. Removal of HS sidechains by enzymatic digestion or competition with highly-sulfated heparins/heparan sulfates significantly decreased FX-mediated Ad5 cell binding in vitro and ex vivo. Removal of N-linked and, in particular, O-linked sulfate groups significantly attenuated the inhibitory capabilities of heparin, while the chemical inhibition of endogenous HSPG sulfation dose-dependently reduced FX-mediated Ad5 cellular uptake. Unlike native heparin, modified heparins lacking O- or N-linked sulfate groups were unable to inhibit Ad5 accumulation in the liver 1h after intravascular administration of adenovirus. Similar results were observed in vitro using Ad5 vectors possessing mutations ablating CAR- and/or α(v) integrin binding, demonstrating that attachment of the Ad5:FX complex to the cell surface involves HSPG sulfation. Interestingly, Ad5 vectors ablated for α(v) integrin binding showed markedly delayed cell entry, highlighting the need for an efficient post-attachment internalisation signal for optimal Ad5 uptake and transport following surface binding mediated through FX. This study therefore integrates the established model of α(v) integrin-dependent adenoviral infection with the high-affinity FX-mediated pathway. This has important implications for mechanisms that define organ targeting following contact of human adenoviruses with blood.
Collapse
MESH Headings
- Adenoviridae Infections/metabolism
- Adenoviridae Infections/virology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Adenoviruses, Human/physiology
- Factor X/metabolism
- Hep G2 Cells
- Heparan Sulfate Proteoglycans/metabolism
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Multiprotein Complexes/metabolism
- Multiprotein Complexes/physiology
- Oligopeptides/chemistry
- Oligopeptides/physiology
- Organisms, Genetically Modified
- Protein Binding/drug effects
- Protein Processing, Post-Translational/physiology
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Receptors, Virus/physiology
- Sulfates/metabolism
- Tumor Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Angela C Bradshaw
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Adachi K, Nakai H. A NEW RECOMBINANT ADENO-ASSOCIATED VIRUS (AAV)-BASED RANDOM PEPTIDE DISPLAY LIBRARY SYSTEM: INFECTION-DEFECTIVE AAV1.9-3 AS A NOVEL DETARGETED PLATFORM FOR VECTOR EVOLUTION. GENE THERAPY AND REGULATION 2010; 5:31-55. [PMID: 21603583 PMCID: PMC3095953 DOI: 10.1142/s1568558610000197] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Directed evolution through genetic engineering of viral capsids followed by selection has emerged as a powerful means to create novel recombinant adeno-associated virus (rAAV) vectors with desired tropism and enhanced properties. One of the most effective approaches uses rAAV-based random peptide display libraries. Here we report a novel system based on an infection-defective rAAV1.9-3 as a platform for random peptide display, and show that biopanning of the libraries in vitro effectively identifies the peptides that restore and enhance rAAV transduction. rAAV1.9-3 has a genetically engineered AAV1 capsid with amino acids 445-568 being replaced with those of AAV9, and has been identified as a variant exhibiting significantly impaired infectivity and delayed blood clearance when infused into mice. In this study, we generated rAAV1.9-3 variant libraries in which 7- or 12-mer random peptides were expressed at the capsid amino acid position 590. Three rounds of positive selection for primary human dermal fibroblasts successfully identified new rAAV-peptide variants that transduce them more efficiently than the prototype rAAV2. Thus our study demonstrates that an infection-defective rAAV variant serves as a novel detargeted platform for random peptide display libraries. We also describe a brief review of recent progress in rAAV-based random peptide display library approaches.
Collapse
Affiliation(s)
- Kei Adachi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hiroyuki Nakai
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
80
|
Lerch TF, Xie Q, Chapman MS. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology 2010; 403:26-36. [PMID: 20444480 DOI: 10.1016/j.virol.2010.03.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/03/2010] [Accepted: 03/17/2010] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are leading candidate vectors for human gene therapy. AAV serotypes have broad cellular tropism and use a variety of cellular receptors. AAV serotype 3 binds to heparan sulfate proteoglycan prior to cell entry and is serologically distinct from other serotypes. The capsid features that distinguish AAV-3B from other serotypes are poorly understood. The structure of AAV-3B has been determined to 2.6A resolution from twinned crystals of an infectious virus. The most distinctive structural features are located in regions implicated in receptor and antibody binding, providing insights into the cell entry mechanisms and antigenic nature of AAVs. We show that AAV-3B has a lower affinity for heparin than AAV-2, which can be rationalized by the distinct features of the AAV-3B capsid. The structure of AAV-3B provides an additional foundation for the future engineering of improved gene therapy vectors with modified receptor binding or antigenic characteristics.
Collapse
Affiliation(s)
- Thomas F Lerch
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
81
|
Combined paracrine and endocrine AAV9 mediated expression of hepatocyte growth factor for the treatment of renal fibrosis. Mol Ther 2010; 18:1302-9. [PMID: 20424598 DOI: 10.1038/mt.2010.71] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In chronic renal disease, tubulointerstitial fibrosis is a leading cause of renal failure. Here, we made use of one of the most promising gene therapy vector platforms, the adeno-associated viral (AAV) vector system, and the COL4A3-deficient mice, a genetic mouse model of renal tubulointerstitial fibrosis, to develop a novel bidirectional treatment strategy to prevent renal fibrosis. By comparing different AAV serotypes in reporter studies, we identified AAV9 as the most suitable delivery vector to simultaneously target liver parenchyma for endocrine and renal tubular epithelium for paracrine therapeutic expression of the antifibrogenic cytokine human hepatocyte growth factor (hHGF). We used transcriptional targeting to drive hHGF expression from the newly developed CMV-enhancer-Ksp-cadherin-promoter (CMV-Ksp) in renal and hepatic tissue following tail vein injection of rAAV9-CMV-Ksp-hHGF into COL4A3-deficient mice. The therapeutic efficiency of our approach was demonstrated by a remarkable attenuation of tubulointerstitial fibrosis and repression of fibrotic markers such as collagen1alpha1 (Col1A1), platelet-derived growth factor receptor-beta (PDGFR-beta), and alpha-smooth muscle actin (SMA). Taken together, our results show the great potential of rAAV9 as an intravenously applicable vector for the combined paracrine and endocrine expression of antifibrogenic factors in the treatment of renal failure caused by tubulointerstitial fibrosis.
Collapse
|
82
|
Boucas J, Lux K, Huber A, Schievenbusch S, von Freyend MJ, Perabo L, Quadt-Humme S, Odenthal M, Hallek M, Büning H. Engineering adeno-associated virus serotype 2-based targeting vectors using a new insertion site-position 453-and single point mutations. J Gene Med 2010; 11:1103-13. [PMID: 19777441 DOI: 10.1002/jgm.1392] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genetic modification of capsid proteins by peptide insertion has created the possibility of using adeno-associated viral (AAV) vectors for receptor specific gene transfer (AAV targeting). The most common site used for insertion in AAV serotype 2 capsids are amino acid positions 587 and 588 located at the second highest capsid protrusion. Reasoning that peptide insertions at the most exposed position augments target receptor interaction, we explored position 453 as a new insertion site. METHODS Position 453 was identified in silico. Capsid mutants carrying the model ligand RGD-4C in position 453 with and without R585A/R588A substitutions were compared with respective mutants carrying the ligand in position 587. The accessibility of the inserted ligand was determined by an enzyme-linked immunosorbent assay, whereas the transduction efficiency and specificity of receptor binding were assayed by gene transfer and competition experiments, respectively. Vector biodistribution was determined in mice by quantitative polymerase chain reaction analysis. RESULTS Initially, RGD-4C, inserted at position 453, failed to efficiently bind its target receptor. R585 and R588, located at the neighboring peak and known to mediate primary receptor binding, were identified as interfering residues. R585A and R588A substitutions rendered position 453 mutants superior to those with the ligand in position 587 in target receptor binding and cell transduction efficiency. The in vivo biodistribution was independent of the insertion site, but directed by the inserted ligand when primary receptor binding was avoided. CONCLUSIONS Position 453 emerged as a prominent site for the development of targeting mutants. Furthermore, we show for the first time that linearly distant residues can be critical for the efficiency of inserted peptide ligands.
Collapse
Affiliation(s)
- Jorge Boucas
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Optimization of stealth adeno-associated virus vectors by randomization of immunogenic epitopes. Virology 2010; 397:167-75. [DOI: 10.1016/j.virol.2009.10.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/28/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
84
|
Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. ADVANCES IN GENETICS 2010; 67:29-60. [PMID: 19914449 DOI: 10.1016/s0065-2660(09)67002-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Efficient and specific delivery of genes to the cell type of interest is a crucial issue in gene therapy. Adeno-associated virus (AAV) has gained particular interest as gene vector recently and is therefore the focus of this chapter. Its low frequency of random integration into the genome and the moderate immune response make AAV an attractive platform for vector design. Like in most other vector systems, the tropism of AAV vectors limits their utility for certain tissues especially upon systemic application. This may in part be circumvented by using AAV serotypes with an in vivo gene transduction pattern most closely fitting the needs of the application. Also, the tropism of AAV capsids may be changed by combining parts of the natural serotype diversity. In addition, peptides mediating binding to the cell type of interest can be identified by random phage display library screening and subsequently be introduced into an AAV capsid region critical for receptor binding. Such peptide insertions can abrogate the natural tropism of AAV capsids and result in detargeting from the liver in vivo. In a novel approach, cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids or serotype-shuffling libraries in vitro and in vivo for optimized transduction of the cell type or tissue of interest.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
85
|
Morizono K, Xie Y, Helguera G, Daniels TR, Lane TF, Penichet ML, Chen ISY. A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. J Gene Med 2009; 11:655-63. [PMID: 19455593 DOI: 10.1002/jgm.1345] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. METHODS We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. RESULTS When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. CONCLUSIONS This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin.
Collapse
Affiliation(s)
- Kouki Morizono
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat Med 2009; 15:1215-8. [PMID: 19749771 PMCID: PMC3181494 DOI: 10.1038/nm.2025] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 08/12/2009] [Indexed: 12/13/2022]
Abstract
The brain vasculature forms an immense network such that most neural cells are in contact with a microvessel. Here we tested the hypothesis that endothelia lining these vessels can be harnessed to create a cellular reservoir of enzyme replacement therapy to diseased brain. As a model system, we used mice with central nervous system (CNS) deficits due to lysosomal storage disease (LSD mice). The basic premise of this work is that recombinant enzyme expressed in, and secreted from, the vascular endothelia will be endocytosed by underlying neurons and glia, decreasing neuropathology. We screened a phage library in vivo by panning to identify peptides that bound the vascular endothelia in diseased and wild-type mice. Epitopes binding diseased brain were distinct from those panned from normal brain. Moreover, different epitopes were identified in two distinct LSD disease models, implying a unique vascular signature imparted by the disease state. Presentation of these epitopes on the capsid of adeno-associated virus (AAV) expanded the biodistribution of intravenously injected AAV from predominantly liver to include the CNS. Peripheral injection of the epitope-modified AAVs expressing the enzymes lacking in LSD mice reconstituted enzyme activity throughout the brain and improved disease phenotypes in two distinct disease models.
Collapse
|
87
|
Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P, Balaggan KS, MacLaren RE, Bainbridge JWB, Smith AJ, Ali RR. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009; 11:486-97. [PMID: 19340848 PMCID: PMC2841821 DOI: 10.1002/jgm.1327] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Adeno-associated virus serotype 2 (AAV2) vectors show considerable promise for ocular gene transfer. However, one potential barrier to efficacious long-term therapy is the development of immune responses against the vector or transgene product. Methods We evaluated cellular and humoural responses in mice following both single and repeated subretinal administration of AAV2, and examined their effects on RPE65 and green fluorescent protein transgene expression. Results Following subretinal administration of vector, splenocytes and T-cells from draining lymph nodes showed minimal activation following stimulation by co-culture with AAV2. Neutralizing antibodies (NAbs) were not detected in the ocular fluids of any mice receiving AAV2 or in the serum of mice receiving a lower dose. NAbs were present in the serum of a proportion of mice receiving a higher dose of the vector. Furthermore, no differences in immunoglobulin titre in serum or ocular fluids against RPE65 protein or AAV2 capsid between treated and control mice were detected. Histological examination showed no evidence of retinal toxicity or leukocyte infiltration compared to uninjected eyes. Repeat administration of low-dose AAV.hRPE65.hRPE65 to both eyes of RPE65−/− mice resulted in transgene expression and functional rescue, but re-administration of high-dose AAV2 resulted in boosted NAb titres and variable transgene expression in the second injected eye. Conclusions These data, which were obtained in mice, suggest that, following subretinal injection, immune responses to AAV2 are dose-dependent. Low-dose AAV2 is well tolerated in the eye, with minimal immune responses, and transgene expression after repeat administration of vector is achievable. Higher doses lead to the expression of NAbs that reduce the efficacy of repeated vector administration. Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Susie E Barker
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
In the late 1970s, it was predicted that gene therapy would be applied to humans within a decade. However, despite some success, gene therapy has still not become a routine practise in medicine. In this review, we will examine the problems, both experimental and clinical, associated with the use of viral material for transgenic insertion. We shall also discuss the development of viral vectors involving the most important vector types derived from retroviruses, adenoviruses, herpes simplex viruses and adeno-associated viruses.
Collapse
|
89
|
Newman CM, Crosdale DJ, Fisher KD, Briggs SS, Norman KE, Seymour LW, Hellewell PG. P-selectin dependent targeting to inflamed endothelium of recombinant P-selectin glycoprotein ligand-1 immunoglobulin chimera-coated poly[N-(2-hydroxypropyl) methacrylamide]-DNA polyplexes in vivo visualised by intravital microscopy. J Gene Med 2009; 11:326-34. [PMID: 19219895 DOI: 10.1002/jgm.1294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Developing vectors that target specifically to disease sites after systemic injection is an important goal in gene therapy research. METHODS We prepared fluorescent DNA polyplexes (< or =150 nm in diameter) comprising plasmid DNA condensed with poly(L-lysine) and coated with a multivalent reactive copolymer based on poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA). These polyplexes were then surface modified with a recombinant P-selectin glycoprotein ligand-1 immunoglobulin chimera (rPSGL-Ig) previously investigated as a selectin antagonist in clinical studies. RESULTS Five minutes after jugular vein injection of these polyplexes, fluorescence accumulation in inflamed cremasteric venules of C57BL6 mice was more than eight-fold higher than that observed after injection of Fc-blocked control polyplexes. Fluorescence above background was not observed in P-selectin deficient mice, confirming the specificity for P-selectin in this model. CONCLUSIONS These data provide encouragement for the further development of rPSGL-Ig-coated polyplexes as potential nonviral vectors for targeted gene therapy in inflammatory conditions, such as ischaemia reperfusion injury, unstable atherosclerotic plaques and myocarditis. This approach may also be transferable to the use of other targeting ligands whose cognate partner is specifically upregulated on the vascular endothelium in individual pathological situations.
Collapse
Affiliation(s)
- Christopher M Newman
- Cardiovascular Research Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | |
Collapse
|
90
|
Michelfelder S, Kohlschütter J, Skorupa A, Pfennings S, Müller O, Kleinschmidt JA, Trepel M. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS One 2009; 4:e5122. [PMID: 19357785 PMCID: PMC2664470 DOI: 10.1371/journal.pone.0005122] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 02/26/2009] [Indexed: 12/30/2022] Open
Abstract
Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV), we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | - Johannes Kohlschütter
- University Medical Center Hamburg-Eppendorf, Department of Oncology and Hematology, Hamburg, Germany
| | - Alexandra Skorupa
- Institute for Molecular Medicine and Cell Research, Freiburg, Germany
| | - Sabrina Pfennings
- Institute for Molecular Medicine and Cell Research, Freiburg, Germany
| | - Oliver Müller
- University of Heidelberg, Internal Medicine III, Heidelberg, Germany
| | | | - Martin Trepel
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
- Institute for Molecular Medicine and Cell Research, Freiburg, Germany
- University Medical Center Hamburg-Eppendorf, Department of Oncology and Hematology, Hamburg, Germany
| |
Collapse
|
91
|
Abstract
A number of preclinical studies have shown the adeno-associated virus (AAV) to be an efficient vehicle for gene therapy. Clinical studies successfully demonstrated its potential for in vivo gene transfer. The complexity of host-vector interactions when progressing from small to large animal models, and eventually to humans, has impeded translation of AAV technology to the clinic. One approach to address this complexity has been to explore the biological characteristics of variations in AAV capsid structure. Initial strategies characterized the naturally occurring capsid variants from mammalian species. The structural and functional knowledge gathered on these natural AAV variants as vectors has led to the first series of second-generation vectors that aim at specifically improving certain properties by rational design of the capsid. A third exciting approach uses directed evolution to isolate vectors that are able to overcome selective pressures applied in the laboratory and thereby steer the capsid to evolve toward improved functionality.
Collapse
|
92
|
Capsid modification of adeno-associated virus and tumor targeting gene therapy. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M. Recent developments in adeno-associated virus vector technology. J Gene Med 2008; 10:717-33. [PMID: 18452237 DOI: 10.1002/jgm.1205] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adeno-associated virus (AAV), a single-stranded DNA parvovirus, is emerging as one of the leading gene therapy vectors owing to its nonpathogenicity and low immunogenicity, stability and the potential to integrate site-specifically without known side-effects. A portfolio of recombinant AAV vector types has been developed with the aim of optimizing efficiency, specificity and thereby also the safety of in vitro and in vivo gene transfer. More and more information is now becoming available about the mechanism of AAV/host cell interaction improving the efficacy of recombinant AAV vector (rAAV) mediated gene delivery. This review summarizes the current knowledge of the infectious biology of AAV, provides an overview of the latest developments in the field of AAV vector technology and discusses remaining challenges.
Collapse
Affiliation(s)
- Hildegard Büning
- Clinic I for Internal Medicine, University of Cologne, Cologne, Germany.
| | | | | | | | | |
Collapse
|
94
|
In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 2008; 82:5887-911. [PMID: 18400866 DOI: 10.1128/jvi.00254-08] [Citation(s) in RCA: 523] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications.
Collapse
|
95
|
Van Vliet KM, Blouin V, Brument N, Agbandje-McKenna M, Snyder RO. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol 2008; 437:51-91. [PMID: 18369962 PMCID: PMC7120696 DOI: 10.1007/978-1-59745-210-6_2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell. Prior to developing a gene therapy strategy that utilizes AAV, the serotype should be carefully considered since each capsid exhibits a unique tissue tropism and transduction efficiency. Several approaches have been undertaken in an effort to target AAV vectors to specific cell types, including utilizing natural serotypes that target a desired cellular receptor, producing pseudotyped vectors, and engineering chimeric and mosaic AAV capsids. These capsid modifications are being incorporated into vector production and purification methods that provide for the ability to scale-up the manufacturing process to support human clinical trials. Protocols for small-scale and large-scale production of AAV, as well as assays to characterize the final vector product, are presented here. The structures of AAV2, AAV4, and AAV5 have been solved by X-ray crystallography or cryo-electron microscopy (cryo-EM), and provide a basis for rational vector design in developing customized capsids for specific targeting of AAV vectors. The capsid of AAV has been shown to be remarkably stable, which is a desirable characteristic for a gene therapy vector; however, recently it has been shown that the AAV serotypes exhibit differential susceptibility to proteases. The capsid fragmentation pattern when exposed to various proteases, as well as the susceptibility of the serotypes to a series of proteases, provides a unique fingerprint for each serotype that can be used for capsid identity validation. In addition to serotype identification, protease susceptibility can also be utilized to study dynamic structural changes that must occur for the AAV capsid to perform its various functions during the virus life cycle. The use of proteases for structural studies in solution complements the crystal structural studies of the virus. A generic protocol based on proteolysis for AAV serotype identification is provided here.
Collapse
Affiliation(s)
- Kim M Van Vliet
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
96
|
White K, Büning H, Kritz A, Janicki H, McVey J, Perabo L, Murphy G, Odenthal M, Work LM, Hallek M, Nicklin SA, Baker AH. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Ther 2007; 15:443-51. [PMID: 18004401 DOI: 10.1038/sj.gt.3303077] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.
Collapse
Affiliation(s)
- K White
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Michelfelder S, Lee MK, deLima-Hahn E, Wilmes T, Kaul F, Müller O, Kleinschmidt JA, Trepel M. Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 2007; 35:1766-76. [PMID: 17920758 DOI: 10.1016/j.exphem.2007.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/17/2007] [Accepted: 07/23/2007] [Indexed: 01/02/2023]
Abstract
OBJECTIVE For acute myeloid leukemia (AML), gene therapy may be used to treat patients refractory to conventional chemotherapy. However, availability of vectors sufficiently and specifically transducing this cell type is very limited. METHOD Here we report the selection of capsid-modified adeno-associated viral (AAV) vectors targeting Kasumi-1 AML cells by screening random AAV displayed peptide libraries. RESULTS The peptide inserts of the enriched capsid mutants share a common sequence motif. The same motif was selected in an independent library screening on HL-60 AML cells. Recombinant targeted vectors displaying the selected peptides transduced the target leukemia cells they have been selected on up to 500-fold more efficiently compared to AAV vectors with control peptide inserts. One of the selected clones (NQVGSWS) also efficiently transduced all members of a panel of four other AML cell lines. Binding and blocking experiments showed that NQVGSWS binding to leukemia cells is independent of the wild-type AAV-2 receptor heparin sulfate proteoglycan. Transduction assays on a panel of hematopoietic and nonhematopoietic cell lines showed that the NQVGSWS capsid was able to overcome resistance to AAV transduction, especially in hematopoietic cancer cells, whereas normal peripheral blood mononuclear cells and CD34(+) hematopoietic progenitor cells were not transduced. CONCLUSIONS Consequently, recombinant targeted NQVGSWS AAV vectors harboring a suicide gene conferred selective killing to Kasumi-1 cells, but not to control cells. This suggests that the AAV mutant selected here may be used as a tool to target therapeutic genes to AML cells.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Kwon I, Schaffer DV. Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 2007; 25:489-99. [PMID: 17763830 PMCID: PMC2265771 DOI: 10.1007/s11095-007-9431-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/03/2007] [Indexed: 12/23/2022]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure-function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. "Shielding" polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating 'designer' gene delivery vectors with enhanced properties.
Collapse
Affiliation(s)
- Inchan Kwon
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| | - David V. Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, 201 Gilman Hall, Berkeley, California 94720-1462 USA
| |
Collapse
|
99
|
Shen X, Storm T, Kay MA. Characterization of the relationship of AAV capsid domain swapping to liver transduction efficiency. Mol Ther 2007; 15:1955-62. [PMID: 17726459 DOI: 10.1038/sj.mt.6300293] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors show promise for use in gene therapy. For liver-targeted gene transfer in animals, AAV vectors pseudotyped with the AAV serotype 8 (AAV8) capsid have definite advantages over the widely used but less efficient serotype AAV2, even though the capsid amino acid sequences are 82% conserved. To demonstrate the mechanism behind the higher liver transduction efficiency associated with AAV8 capsids, we adopted a domain-swapping strategy that would generate 27 chimeric capsid genes containing exchanged domains between AAV2 and AAV8. The resulting chimeric capsids were then used to package AAV genomes with a liver-specific human coagulation factor IX (hFIX) expression cassette. By comparing the transduction efficiencies between vectors pseudotyped with chimeric, AAV2 and AAV8 capsids, we found that the more efficient liver transduction achieved by AAV8 was closely related to the components of its interstrand Loop IV domain, particularly the subloops 1 and 4. These subloops are exposed on opposite sides of a threefold proximal peak on the virion surface, which may function as a critical structural determinant for AAV transduction. Because a single specific peptide component could not explain all the observed differences in the transduction parameters, we suggest that important subloop regions require interaction with other portions of the capsid for their functioning.
Collapse
Affiliation(s)
- Xuan Shen
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
100
|
White K, Nicklin SA, Baker AH. Novel vectors forin vivogene delivery to vascular tissue. Expert Opin Biol Ther 2007; 7:809-21. [PMID: 17555367 DOI: 10.1517/14712598.7.6.809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although some success has been achieved with gene delivery in animal models of vascular disorders, the results from some clinical trials have been less promising, possibly due, in part, to the use of suboptimal vectors for in vivo gene transfer. Non-viral vectors have a very low transfection efficiency so are largely unsuitable for most in vivo applications, and the relatively broad tropism of many of the commonly used viral vectors can limit efficient gene delivery specifically to target vascular tissues. However, characterisation of novel virus serotypes and advances in techniques that enable vectors to be targeted to the required tissue have led to progress in the development of novel vectors that could be utilised for gene delivery for vascular disorders.
Collapse
Affiliation(s)
- Kathryn White
- University of Glasgow, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, UK
| | | | | |
Collapse
|