51
|
Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827069 PMCID: PMC6906460 DOI: 10.1038/s12276-019-0333-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
52
|
Abstract
DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
53
|
Lin Y, Zheng C. A Tug of War: DNA-Sensing Antiviral Innate Immunity and Herpes Simplex Virus Type I Infection. Front Microbiol 2019; 10:2627. [PMID: 31849849 PMCID: PMC6901958 DOI: 10.3389/fmicb.2019.02627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cytosolic DNA sensors are the most recently described class of pattern recognition receptors (PRRs), which induce the production of type I interferons (IFN-I) and trigger the induction of a rapid and efficient innate immune response. Herpes simplex virus type I (HSV-1), a typical DNA virus, has displayed the ability to manipulate and evade host antiviral innate immune responses. Therefore, with an aim to highlight IFN-I-mediated innate immune response in a battle against viral infection, we have summarized the current understandings of DNA-sensing signal pathways and the most recent findings on the molecular mechanisms utilized by HSV-1 to counteract antiviral immune responses. A comprehensive understanding of the interplay between HSV-1 and host early antiviral immune responses will contribute to the development of novel therapies and vaccines in the future.
Collapse
Affiliation(s)
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
54
|
The E3 Ubiquitin Ligase TBK1 Mediates the Degradation of Multiple Picornavirus VP3 Proteins by Phosphorylation and Ubiquitination. J Virol 2019; 93:JVI.01438-19. [PMID: 31534043 DOI: 10.1128/jvi.01438-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is essential for interferon beta (IFN-β) production and innate antiviral immunity. However, other, additional functions of TBK1 have remained elusive. Here, we showed that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. Further evidence showed that TBK1 could also be self-ubiquitylated in vivo Importantly, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Mechanistically, TBK1 phosphorylated multiple picornavirus VP3 proteins at serine residues and ubiquitinated them via K63-linked ubiquitination at lysine residues. In addition, the C426 and C605 residues of TBK1 were not essential for TBK1 innate immunity activity; however, these residues were required for degradation of multiple picornavirus VP3 proteins and for its E3 ubiquitin ligase activity. Hence, our findings identified a novel role of TBK1 in regulating the virus life cycle and provided new insights into the molecular mechanisms of TBK1-mediated antiviral response.IMPORTANCE TBK1 is an important adaptor protein required for innate immune response to viruses, but its other functions were unknown. In this study, we found that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. In addition, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Our report provides evidence that TBK1 plays a role in viral protein degradation.
Collapse
|
55
|
Comprehensive Mutagenesis of Herpes Simplex Virus 1 Genome Identifies UL42 as an Inhibitor of Type I Interferon Induction. J Virol 2019; 93:JVI.01446-19. [PMID: 31511375 DOI: 10.1128/jvi.01446-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
In spite of several decades of research focused on understanding the biology of human herpes simplex virus 1 (HSV-1), no tool has been developed to study its genome in a high-throughput fashion. Here, we describe the creation of a transposon insertion mutant library of the HSV-1 genome. Using this tool, we aimed to identify novel viral regulators of type I interferon (IFN-I). HSV-1 evades the host immune system by encoding viral proteins that inhibit the type I interferon response. Applying differential selective pressure, we identified the three strongest viral IFN-I regulators in HSV-1. We report that the viral polymerase processivity factor UL42 interacts with the host transcription factor IFN regulatory factor 3 (IRF-3), inhibiting its phosphorylation and downstream beta interferon (IFN-β) gene transcription. This study represents a proof of concept for the use of high-throughput screening of the HSV-1 genome in investigating viral biology and offers new targets both for antiviral therapy and for oncolytic vector design.IMPORTANCE This work is the first to report the use of a high-throughput mutagenesis method to study the genome of HSV-1. We report three novel viral proteins potentially involved in regulating the host type I interferon response. We describe a novel mechanism by which the viral protein UL42 is able to suppress the production of beta interferon. The tool we introduce in this study can be used to study the HSV-1 genome in great detail to better understand viral gene functions.
Collapse
|
56
|
The ICP0 Protein of Herpes Simplex Virus 1 (HSV-1) Downregulates Major Autophagy Adaptor Proteins Sequestosome 1 and Optineurin during the Early Stages of HSV-1 Infection. J Virol 2019; 93:JVI.01258-19. [PMID: 31375597 DOI: 10.1128/jvi.01258-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects mucosal epithelial cells and establishes lifelong infections in sensory neurons. Following reactivation, the virus is transferred anterograde to the initial site of infection or to sites innervated by infected neurons, causing vesicular lesions. Upon immunosuppression, frequent HSV-1 reactivation can cause severe diseases, such as blindness and encephalitis. Autophagy is a process whereby cell components are recycled, but it also serves as a defense mechanism against pathogens. HSV-1 is known to combat autophagy through the functions of the γ134.5 protein, which prevents formation of the autophagophore by binding to Beclin 1, a key factor involved in the elongation of the isolation membrane, and by redirecting the protein phosphatase 1α (PP1α) to dephosphorylate the translation initiation factor 2α (eIF2α) to prevent host translational shutoff. Other viral proteins that counteract innate immunity negatively impact autophagy. Here, we present a novel strategy of HSV-1 to evade the host through the downregulation of the autophagy adaptor protein sequestosome (p62/SQSTM1) and of the mitophagy adaptor optineurin (OPTN). This down-modulation occurs during the early steps of the infection. We also found that infected cell protein 0 (ICP0) of the virus mediates the down-modulation of the two autophagy adaptors in a mechanism independent of its E3 ubiquitin ligase activity. Cells depleted of either p62 or OPTN were able to mount greater antiviral responses, whereas cells expressing exogenous p62 displayed decreased virus yields. We conclude that downregulation of p62/SQSTM1 and OPTN is a viral strategy to counteract the host.IMPORTANCE Autophagy is a homeostatic mechanism of cells to recycle components, as well as a defense mechanism to get rid of pathogens. Strategies that HSV-1 has developed to counteract autophagy have been described and involve inhibition of autophagosome formation or indirect mechanisms. Here, we present a novel mechanism that involves downregulation of two major autophagy adaptor proteins, sequestosome 1 (p62/SQSTM1) and optineurin (OPTN). These findings generate the question of why the virus targets two major autophagy adaptors if it has mechanisms to block autophagosome formation. P62/SQSTM1 and OPTN proteins have pleiotropic functions, including regulation of innate immunity, inflammation, protein sorting, and chromatin remodeling. The decrease in virus yields in the presence of exogenous p62/SQSTM1 suggests that these adaptors have an antiviral function. Thus, HSV-1 may have developed multiple strategies to incapacitate autophagy to ensure replication. Alternatively, the virus may target another antiviral function of these proteins.
Collapse
|
57
|
Li K, Liu Y, Xu Z, Zhang Y, Luo D, Gao Y, Qian Y, Bao C, Liu C, Zhang Y, Qi X, Cui H, Wang Y, Gao L, Wang X. Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLoS Pathog 2019; 15:e1007999. [PMID: 31539404 PMCID: PMC6799934 DOI: 10.1371/journal.ppat.1007999] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/18/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
The cellular DNA sensor cGMP-AMP synthase (cGAS) detects cytosolic viral DNA via the stimulator of interferon genes (STING) to initiate innate antiviral response. Herpesviruses are known to target key immune signaling pathways to persist in an immune-competent host. Marek’s disease virus (MDV), a highly pathogenic and oncogenic herpesvirus of chickens, can antagonize host innate immune responses to achieve persistent infection. With a functional screen, we identified five MDV proteins that blocked beta interferon (IFN-β) induction downstream of the cGAS-STING pathway. Specifically, the MDV major oncoprotein Meq impeded the recruitment of TANK-binding kinase 1 and IFN regulatory factor 7 (IRF7) to the STING complex, thereby inhibiting IRF7 activation and IFN-β induction. Meq overexpression markedly reduced antiviral responses stimulated by cytosolic DNA, whereas knockdown of Meq heightened MDV-triggered induction of IFN-β and downstream antiviral genes. Moreover, Meq-deficient MDV induced more IFN-β production than wild-type MDV. Meq-deficient MDV also triggered a more robust CD8+ T cell response than wild-type MDV. As such, the Meq-deficient MDV was highly attenuated in replication and lymphoma induction compared to wild-type MDV. Taken together, these results revealed that MDV evades the cGAS-STING DNA sensing pathway, which underpins the efficient replication and oncogenesis. These findings improve our understanding of the virus-host interaction in MDV-induced lymphoma and may contribute to the development of novel vaccines against MDV infection. Marek’s disease virus (MDV) is an avian oncogenic herpesvirus that causes a fatal disease in poultry worldwide. Chickens infected with MDV become more susceptible to secondary viral or bacterial infections. However, the mechanisms of MDV-induced immunosuppression and tumorigenesis remain largely unknown. The cGAS-STING pathway is crucial for innate immune responses against both microbial pathogens and intrinsic tumors. Here we identified the MDV oncoprotein, Meq, as an inhibitor of the cGAS-STING DNA-sensing pathway. Mechanistically, Meq interacted with STING and IRF7, and impaired the recruitment of TBK1 and IRF7 to the STING complex, thus inhibiting IRF7 activation and IFN-β induction. Loss of Meq potently enhanced innate immune response, while impaired the replication and oncogenesis of MDV in chickens. Our findings reveal an important mechanism of immune evasion of MDV, instructing us on the virus-host interaction in MDV-induced lymphoma and potential new means to develop MDV vaccine.
Collapse
Affiliation(s)
- Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zengkun Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dan Luo
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (LG); (XW)
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (LG); (XW)
| |
Collapse
|
58
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Front Immunol 2019; 10:2196. [PMID: 31572398 PMCID: PMC6753173 DOI: 10.3389/fimmu.2019.02196] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Alphaherpesviruses are a large family of highly successful human and animal DNA viruses that can establish lifelong latent infection in neurons. All alphaherpesviruses have a protein-rich layer called the tegument that, connects the DNA-containing capsid to the envelope. Tegument proteins have a variety of functions, playing roles in viral entry, secondary envelopment, viral capsid nuclear transportation during infection, and immune evasion. Recently, many studies have made substantial breakthroughs in characterizing the innate immune evasion of tegument proteins. A wide range of antiviral tegument protein factors that control incoming infectious pathogens are induced by the type I interferon (IFN) signaling pathway and other innate immune responses. In this review, we discuss the immune evasion of tegument proteins with a focus on herpes simplex virus type I.
Collapse
Affiliation(s)
- Linjiang Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
59
|
Marek's Disease Virus RLORF4 Inhibits Type I Interferon Production by Antagonizing NF-κB Activation. J Virol 2019; 93:JVI.01037-19. [PMID: 31243133 DOI: 10.1128/jvi.01037-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Marek's disease virus (MDV), which causes T cell lymphomas in chickens, is economically important and has contributed to knowledge of herpesvirus-associated oncogenicity. The DNA-sensing pathway induces innate immune responses against DNA virus infection, and nuclear factor κB (NF-κB) signaling is critical for the establishment of innate immunity. Here, we report that RLORF4, an MDV-specific protein directly involved in viral attenuation, is an inhibitor of the DNA-sensing pathway. The results showed that ectopically expressed RLORF4 blocked beta interferon (IFN-β) promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). RLORF4 selectively inhibited the activation of NF-κB but not IFN-regulatory factor 7. RLORF4 was found to bind the endogenous NF-κB subunits p65 and p50, and it also bound to the Rel homology domains of these subunits. Furthermore, RLORF4 suppressed the nuclear translocation of p65 and p50 mediated by tumor necrosis factor alpha and interferon-stimulatory DNA. Finally, deletion of RLORF4 from the MDV genome promoted IFN-β and interleukin-6 (IL-6) production in vitro and in vivo In the absence of RLORF4, the host cellular immunity was significantly increased, and reduced viral titers were observed during infection of chickens. Our results suggest that the RLORF4-mediated suppression of the host antiviral innate immunity might play an important role in MDV pathogenesis.IMPORTANCE Marek's disease virus (MDV) RLORF4 has been shown to be directly involved in the attenuation of MDV upon serial passages in vitro; however, the exact function of this protein during viral infection was not well characterized. This study demonstrated that RLORF4 significantly inhibits cGAS-STING-mediated NF-κB activation by binding to the Rel homology domains of the NF-κB subunits p65 and p50, interrupting their translocation to the nuclei and thereby inhibiting IFN-β production. Furthermore, RLORF4 deficiency promoted the induction of IFN-β and downstream IFN-stimulated genes during MDV infection in chickens. Our results suggest that the contribution of RLORF4 to MDV virulence may stem from its inhibition of viral DNA-triggered IFN-β responses.
Collapse
|
60
|
Herpes Simplex Virus Type 1-Encoded miR-H2-3p Manipulates Cytosolic DNA-Stimulated Antiviral Innate Immune Response by Targeting DDX41. Viruses 2019; 11:v11080756. [PMID: 31443275 PMCID: PMC6723821 DOI: 10.3390/v11080756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), one of the human pathogens widely epidemic and transmitted among various groups of people in the world, often causes symptoms known as oral herpes or lifelong asymptomatic infection. HSV-1 employs many sophisticated strategies to escape host antiviral immune response based on its multiple coding proteins. However, the functions involved in the immune evasion of miRNAs encoded by HSV-1 during lytic (productive) infection remain poorly studied. Dual-luciferase reporter gene assay and bioinformatics revealed that Asp-Glu-Ala-Asp (DEAD)-box helicase 41 (DDX41), a cytosolic DNA sensor of the DNA-sensing pathway, was a putative direct target gene of HSV-1-encoded miR-H2-3p. The transfection of miR-H2-3p mimics inhibited the expression of DDX41 at the level of mRNA and protein, as well as the expression of interferon beta (IFN-β) and myxoma resistance protein I (MxI) induced by HSV-1 infection in THP-1 cells, and promoted the viral replication and its gene transcription. However, the transfection of miR-H2-3p inhibitor showed opposite effects. This finding indicated that HSV-1-encoded miR-H2-3p attenuated cytosolic DNA-stimulated antiviral immune response by manipulating host DNA sensor molecular DDX41 to enhance virus replication in cultured cells.
Collapse
|
61
|
Liu Q, Rao Y, Tian M, Zhang S, Feng P. Modulation of Innate Immune Signaling Pathways by Herpesviruses. Viruses 2019; 11:E572. [PMID: 31234396 PMCID: PMC6630988 DOI: 10.3390/v11060572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses can be detected by pattern recognition receptors (PRRs), which then activate downstream adaptors, kinases and transcription factors (TFs) to induce the expression of interferons (IFNs) and inflammatory cytokines. IFNs further activate the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, inducing the expression of interferon-stimulated genes (ISGs). These signaling events constitute host innate immunity to defeat herpesvirus infection and replication. A hallmark of all herpesviruses is their ability to establish persistent infection in the presence of active immune response. To achieve this, herpesviruses have evolved multiple strategies to suppress or exploit host innate immune signaling pathways to facilitate their infection. This review summarizes the key host innate immune components and their regulation by herpesviruses during infection. Also we highlight unanswered questions and research gaps for future perspectives.
Collapse
Affiliation(s)
- Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Mao Tian
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA.
| |
Collapse
|
62
|
Discovery of Small-Molecule Inhibitors Targeting the E3 Ubiquitin Ligase Activity of the Herpes Simplex Virus 1 ICP0 Protein Using an In Vitro High-Throughput Screening Assay. J Virol 2019; 93:JVI.00619-19. [PMID: 30996104 DOI: 10.1128/jvi.00619-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) has infected more than 80% of the population. Reactivation of the virus causes diseases ranging in severity from benign cold sores to fatal encephalitis. Current treatments involve viral DNA replication inhibitors, but the emergence of drug-resistant mutants is observed frequently, highlighting the need for novel antiviral therapies. Infected cell protein 0 (ICP0) of HSV-1 is encoded by an immediate early gene and plays a fundamental role during infection, because it enables viral gene expression and blocks antiviral responses. One mechanism by which ICP0 functions is through an E3 ubiquitin ligase activity that induces the degradation of targeted proteins. A ΔICP0 virus or mutants with deficiencies in E3 ligase activity cannot counteract beta interferon (IFN-β)-induced restriction of viral infection, are highly immunogenic, are avirulent, and fail to spread. Thus, small molecules interfering with essential and conserved ICP0 functions are expected to compromise HSV-1 infection. We have developed a high-throughput screening assay, based on the autoubiquitination properties of ICP0, to identify small-molecule inhibitors of ICP0 E3 ubiquitin ligase activity. Through a pilot screening procedure, we identified nine compounds that displayed dose-dependent inhibitory effects on ICP0 but not on Mdm2, a control E3 ubiquitin ligase. Following validation, one compound displayed ICP0-dependent inhibition of HSV-1 infection. This compound appeared to bind ICP0 in a cellular thermal shift assay, it blocked ICP0 self-elimination, and it blocked wild-type but not ICP0-null virus gene expression. This scaffold displays specificity and could be used to develop optimized ICP0 E3 ligase inhibitors.IMPORTANCE Since acyclovir and its derivatives were launched for herpesviruses control almost four decades ago, the search for novel antivirals has waned. However, as human life expectancy has increased, so has the number of immunocompromised individuals who receive prolonged treatment for HSV recurrences. This has led to an increase in unresponsive patients due to acquired viral drug resistance. Thus, novel treatments need to be explored. Here we explored the HSV-1 ICP0 E3 ligase as a potential antiviral target because (i) ICP0 is expressed before virus replication, (ii) it is essential for infection in vivo, (iii) it is required for efficient reactivation of the virus from latency, (iv) inhibition of its E3 ligase activity would sustain host immune responses, and (v) it is shared by other herpesviruses. We report a compound that inhibits HSV-1 infection in an ICP0-dependent manner by inhibiting ICP0 E3 ligase activity.
Collapse
|
63
|
You H, Zheng S, Huang Z, Lin Y, Shen Q, Zheng C. Herpes Simplex Virus 1 Tegument Protein UL46 Inhibits TANK-Binding Kinase 1-Mediated Signaling. mBio 2019; 10:e00919-19. [PMID: 31113902 PMCID: PMC6529639 DOI: 10.1128/mbio.00919-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key component of the antiviral immunity signaling pathway. It activates downstream interferon regulatory factor 3 (IRF3) and subsequent type I interferon (IFN-I) production. Herpes simplex virus type 1 (HSV-1) can antagonize host antiviral immune responses and lead to latent infection. Here, HSV-1 tegument protein UL46 was demonstrated to downregulate TBK1-dependent antiviral innate immunity. UL46 interacted with TBK1 and reduced TBK1 activation and its downstream signaling. Our results showed that UL46 impaired the interaction of TBK1 and IRF3 and downregulated the activation of IRF3 by inhibiting the dimerization of TBK1 to reduce the IFN-I production induced by TBK1 and immunostimulatory DNA. The IFN-I and its downstream antiviral genes induced by UL46-deficient HSV-1 (ΔUL46 HSV-1) were higher than those of wild-type HSV-1 (WT HSV-1). In addition, the stable knockdown of TBK1 facilitated the replication of ΔUL46 HSV-1, but not WT HSV-1. Together, these findings reveal a novel mechanism of immune evasion by HSV-1.IMPORTANCE HSV-1 has evolved multiple strategies to evade host antiviral responses and establish a lifelong latent infection, but the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity are not completely understood. As TBK1 is very critical for antiviral innate immunity, it is of great interest to reveal the immune evasion mechanism of HSV-1 by targeting TBK1. In the present study, HSV-1 UL46 was found to inhibit the activation of IFN-I by targeting TBK1, suggesting that the evasion of TBK1 mediated antiviral innate immunity by HSV-1 UL46. Findings in this study will provide new insights into the host-virus interaction and help develop new approaches against HSV-1 infection.
Collapse
Affiliation(s)
- Hongjuan You
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sisilia Zheng
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Zhiming Huang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yingying Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qingtang Shen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
64
|
Hou P, Zhao M, He W, He H, Wang H. Cellular microRNA bta-miR-2361 inhibits bovine herpesvirus 1 replication by directly targeting EGR1 gene. Vet Microbiol 2019; 233:174-183. [PMID: 31176405 DOI: 10.1016/j.vetmic.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023]
Abstract
Bovine herpesvirus 1 (BHV-1) is an economically important pathogen of cattle and has led to significant consequences on the cattle industry worldwide. MicroRNAs (miRNAs) are a class of regulators that play critical roles in virus and host interaction. However, the roles of host miRNAs in BHV-1 infection remain largely unclear. In this study, a set of differentially expressed miRNAs by small RNA deep sequencing were analyzed in the Madin-Darby Bovine Kidney Cells (MDBK) infected with BHV-1 after 12 h, 24 h and 48 h post-infection compared to mock infection, and it was confirmed that bta-miR-2361 was significantly down-regulated. Moreover, bta-miR-2361 mimics transfection could inhibit BHV-1 replication. Combined with up-regulated genes from BHV-1-infected MDBK cells by deep RNA-sequencing and predicted by bioinformatics tools, early growth response 1 (EGR1) was putative target of bta-miR-2361. Furthermore, EGR1 was up-regulated during BHV-1 infection, and overexpression of EGR1 promoted BHV-1 replication whereas knockdown of EGR1 had the opposite effects. Subsequently, the target association between bta-miR-2361 and 3'UTR of EGR1 was further validated using a dual-luciferase reporter assay. In addition, overexpression of bta-miR-2361 resulted in decreased EGR1 mRNA and protein levels. Further mechanistic study showed that EGR1 stimulated BHV-1 UL46 promoter activity, but overexpression of bta-miR-2361 suppressed the production of UL46 gene. Collectively, this is the first study to reveal that bta-miR-2361 as a novel host factor regulates BHV-1 replication via directly targeting the EGR1 gene, which is a transcription factor that regulates viral UL46 gene of BHV-1. These results provide further insight into the study of BHV-1 pathogenesis.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Min Zhao
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
65
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
66
|
Abstract
A network of pattern recognition receptors (PRRs) is responsible for the detection of invading viruses and acts as the trigger for the host antiviral response. Central to this apparatus is stimulator of interferon genes (STING), which functions as a node and integrator of detection signals. Owing to its role in both intrinsic and adaptive immunity, STING has become a focus for researchers in the field of oncolytic virotherapy. In this review, we consider the function of the cGAS-STING axis and its regulation, both by cellular mechanisms and as a result of viral interference.
Collapse
|
67
|
Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol 2019; 63:51-64. [PMID: 30677166 PMCID: PMC7168513 DOI: 10.1111/1348-0421.12669] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
How host cells recognize many kinds of RNA and DNA viruses and initiate innate antiviral responses against them has not yet been fully elucidated. Over the past decade, investigations into the mechanisms underlying these antiviral responses have focused extensively on immune surveillance sensors that recognize virus‐derived components (such as lipids, sugars and nucleic acids). The findings of these studies have suggested that antiviral responses are mediated by cytosolic or intracellular compartment sensors and their adaptor molecules (e.g., TLR, myeloid differentiation primary response 88, retinoic acid inducible gene‐I, IFN‐β promoter stimulator‐1, cyclic GMP‐AMP synthase and stimulator of IFN genes axis) for the primary sensing of virus‐derived nucleic acids, leading to production of type I IFNs, pro‐inflammatory cytokines and chemokines by the host cells. Thus, host cells have evolved an elaborate host defense machinery to recognize and eliminate virus infections. In turn, to achieve sustained viral infection and induce pathogenesis, viruses have also evolved several counteracting strategies for achieving immune escape by targeting immune sensors, adaptor molecules, intracellular kinases and transcription factors. In this review, we discuss recent discoveries concerning the role of the cytosolic nucleic acid‐sensing immune response in viral recognition and control of viral infection. In addition, we consider the regulatory machinery of the cytosolic nucleic acid‐sensing immune response because these immune surveillance systems must be tightly regulated to prevent aberrant immune responses to self and non‐self‐nucleic acids.
Collapse
Affiliation(s)
- Takayuki Abe
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Yuki Marutani
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku Kobe 650-0017, Japan
| |
Collapse
|
68
|
Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med Microbiol Immunol 2019; 208:495-512. [PMID: 30805724 DOI: 10.1007/s00430-019-00582-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/20/2023]
Abstract
Early detection of viral invasion by pattern recognition receptors (PRR) is crucial for the induction of a rapid and efficient immune response. Cytosolic DNA sensors are the most recently described class of PRR, and induce transcription of type I interferons (IFN) and proinflammatory cytokines via the key adaptor protein stimulator of interferon genes (STING). Herpesviruses are a family of large DNA viruses widely known for their immense arsenal of proteins dedicated to manipulating and evading host immune responses. Tantamount to the significant role played by DNA sensors and STING in innate immune responses, herpesviruses have in turn evolved a range of mechanisms targeting virtually every step of this key signaling pathway. Strikingly, some herpesviruses also take advantage of this pathway to promote their own replication. In this review, we will summarize the current understanding of DNA sensing and subsequent induction of signaling and transcription, and showcase the close adaptation of herpesviruses to their host reflected by the myriad of viral proteins dedicated to modulating this critical innate immune pathway.
Collapse
|
69
|
Gao L, Li K, Zhang Y, Liu Y, Liu C, Zhang Y, Gao Y, Qi X, Cui H, Wang Y, Wang X. Inhibition of DNA-Sensing Pathway by Marek's Disease Virus VP23 Protein through Suppression of Interferon Regulatory Factor 7 Activation. J Virol 2019; 93:e01934-18. [PMID: 30518647 PMCID: PMC6363996 DOI: 10.1128/jvi.01934-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
The type I interferon (IFN) response is the first line of host innate immune defense against viral infection; however, viruses have developed multiple strategies to antagonize host IFN responses for efficient infection and replication. Here, we report that Marek's disease virus (MDV), an oncogenic herpesvirus, encodes VP23 protein as a novel immune modulator to block the beta interferon (IFN-β) activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) in chicken fibroblasts and macrophages. VP23 overexpression markedly reduces viral DNA-triggered IFN-β production and promotes viral replication, while knockdown of VP23 during MDV infection enhances the IFN-β response and suppresses viral replication. VP23 selectively inhibits IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) activation. Furthermore, we found that VP23 interacts with IRF7 and blocks its binding to TANK-binding kinase 1 (TBK1), thereby inhibiting IRF7 phosphorylation and nuclear translocation, resulting in reduced IFN-β production. These findings expand our knowledge of DNA sensing in chickens and reveal a mechanism through which MDV antagonizes the host IFN response.IMPORTANCE Despite widespread vaccination, Marek's disease (MD) continues to pose major challenges for the poultry industry worldwide. MDV causes immunosuppression and deadly lymphomas in chickens, suggesting that this virus has developed a successful immune evasion strategy. However, little is known regarding the initiation and modulation of the host innate immune response during MDV infection. This study demonstrates that the cGAS-STING DNA-sensing pathway is critical for the induction of the IFN-β response against MDV infection in chicken fibroblasts and macrophages. An MDV protein, VP23, was found to efficiently inhibit the cGAS-STING pathway. VP23 selectively inhibits IRF7 but not NF-κB activation. VP23 interacts with IRF7 and blocks its binding to TBK1, thereby suppressing IRF7 activation and resulting in inhibition of the DNA-sensing pathway. These findings expand our knowledge of DNA sensing in chickens and reveal a mechanism through which MDV antagonizes the host IFN response.
Collapse
Affiliation(s)
- Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongqiang Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
70
|
Biogenesis of Extracellular Vesicles during Herpes Simplex Virus 1 Infection: Role of the CD63 Tetraspanin. J Virol 2019; 93:JVI.01850-18. [PMID: 30355691 DOI: 10.1128/jvi.01850-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infections afflict more than 80% of the population worldwide. The virus primarily infects mucoepithelial cells and establishes latent reservoirs in neurons in sensory ganglia. Frequent reactivation has been linked to severe diseases, especially in immunocompromised individuals. Earlier, we reported that viral and host factors are packaged in extracellular vesicles (EVs) and delivered to uninfected cells, where they activate antiviral responses and restrict virus infection. Here, we interrogated the effect of HSV-1 infection on EV biogenesis. We found that HSV-1 infection causes a decrease in the amount of intracellular CD63 protein with a concomitant increase in extracellular CD63. This observation correlates with our previous finding that infected cells release more CD63-positive EVs than uninfected cells. The stimulation of CD63 exocytosis requires virus replication. CD63 is a member of the tetraspanin family of proteins that traffics between the plasma membrane and endosomal compartments and has a role in sorting cargo into the EVs. Previously, we reported that in cells depleted of CD63, HSV-1 virus yields increased, and here we provide data showing that in cells overexpressing CD63, HSV-1 virus yields decreased. Taken together, our data indicate that CD63 negatively impacts HSV-1 infection and that the CD63-positive EVs could control the dissemination of the virus in the host. Perhaps EV release by HSV-1-infected cells is a mechanism that controls virus dissemination.IMPORTANCE Intercellular communication, especially in neurons, largely relies on EVs, and modulation of EVs is known to impact physiological processes. Here, we present evidence that HSV-1 infection causes major alterations in the biogenesis of EVs, including an increase in their number and an increase in the CD63-positive population of EVs. These alterations result in an enrichment of the milieu of infection with EVs carrying signatures from infected cells. In addition to changes in the origin and type, EVs released by infected cells have differences in cargo, as they carry viral and host factors determined by the virus. The tetraspanin CD63 negatively impacts the infection, as demonstrated by CD63-knockdown and overexpression assays. A proposed mechanism involves the activation of antiviral responses in cells receiving CD63-positive EVs released by infected cells. Overall, HSV-1 causes major alterations in EVs that could contribute to HSV-1 persistence and pathogenesis.
Collapse
|
71
|
Qualitative Differences in Capsidless L-Particles Released as a By-Product of Bovine Herpesvirus 1 and Herpes Simplex Virus 1 Infections. J Virol 2018; 92:JVI.01259-18. [PMID: 30185590 PMCID: PMC6206470 DOI: 10.1128/jvi.01259-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis. Despite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment. IMPORTANCE The alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.
Collapse
|
72
|
Herpes Simplex Virus 1 γ 134.5 Protein Inhibits STING Activation That Restricts Viral Replication. J Virol 2018; 92:JVI.01015-18. [PMID: 30045990 DOI: 10.1128/jvi.01015-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The γ134.5 gene of herpes simplex virus 1 (HSV-1) encodes a virulence factor that promotes viral pathogenesis. Although it perturbs TANK-binding kinase 1 (TBK1) in the complex network of innate immune pathways, the underlying mechanism is obscure. Here we report that HSV-1 γ134.5 targets stimulator of interferon genes (STING) in the intracellular DNA recognition pathway that regulates TBK1 activation. In virus-infected cells the γ134.5 protein associates with and inactivates STING, which leads to downregulation of interferon regulatory factor 3 (IRF3) and IFN responses. Importantly, HSV-1 γ134.5 disrupts translocation of STING from the endoplasmic reticulum to Golgi apparatus, a process necessary to prime cellular immunity. Deletion of γ134.5 or its amino-terminal domain from HSV-1 abolishes the observed inhibitory activities. Consistently, an HSV mutant that lacks functional γ134.5 replicated less efficiently in STING+/+ than in STING-/- mouse embryonic fibroblasts. Moreover, reconstituted expression of human STING in the STING-/- cells activated IRF3 and reduced viral growth. These results suggest that control of the DNA sensing pathway by γ134.5 is advantageous to HSV infection.IMPORTANCE Viral inhibition of innate immunity contributes to herpes simplex virus pathogenesis. Although this complex process involves multiple factors, the underlying events remain unclear. We demonstrate that an HSV virulence factor γ134.5 precludes the activation of STING, a central adaptor in the intracellular DNA sensing pathway. Upon HSV infection, this viral protein engages with and inactivates STING. Consequently, it compromises host immunity and facilitates HSV replication. These observations uncover an HSV mechanism that is likely to mediate viral virulence.
Collapse
|
73
|
Extracellular Vesicles Released by Herpes Simplex Virus 1-Infected Cells Block Virus Replication in Recipient Cells in a STING-Dependent Manner. J Virol 2018; 92:JVI.01102-18. [PMID: 29976662 DOI: 10.1128/jvi.01102-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1)-infected cells release extracellular vesicles (EVs) that deliver to uninfected cells viral factors and host components, such as the stimulator of interferon genes (STING), which activates type I interferon upon foreign DNA sensing. The functions of EVs released by HSV-1-infected cells have remained unknown. Here, we describe a procedure to separate the EVs from HSV-1 virions that is based on an iodixanol/sucrose gradient. STING, along with the EV markers CD63 and CD9, was found in light-density fractions, while HSV components accumulated in heavy-density fractions. HSV-1 infection stimulated the release of EVs from the cells. The EVs derived from infected cells, but not from uninfected cells, activated innate immunity in recipient cells and suppressed viral gene expression and virus replication. Moreover, only the EVs derived from infected cells stimulated the expression of a subset of M1-type markers in recipient macrophages. Conversely, EVs derived from STING-knockdown cells failed to stimulate the expression of these M1-type markers, they activated innate immune responses to a lesser extent in recipient cells, and they did not sustain the inhibition of virus replication. These data suggest that STING from the EV donor cells contributes to the antiviral responses in cells receiving EVs from HSV-1-infected cells. Perturbations in the biogenesis of EVs by silencing CD63 or blocking the activity of the neutral spingomyelinase-2 (nSMase-2) increased the HSV-1 yields. Overall, our data suggest that the EVs released from HSV-1-infected cells negatively impact the infection and could control the dissemination of the virus.IMPORTANCE Extracellular vesicles (EVs) are released by all types of cells as they constitute major mechanism of intercellular communication and have the capacity to alter the functions of recipient cells despite their limited capacity for cargo. How the EVs released by HSV-infected cells could alter the surrounding microenvironment and influence the infection currently remains unknown. The cargo of EVs reflects the physiological state of the cells in which they were produced, so the content of EVs originating from infected cells is expected to be substantially different from that of healthy cells. Our studies indicate that the EVs released by HSV-1-infected cells carry innate immune components such as STING and other host and viral factors; they can activate innate immune responses in recipient cells and inhibit HSV-1 replication. The implication of these data is that the EVs released by HSV-1-infected cells could control HSV-1 dissemination promoting its persistence in the host.
Collapse
|
74
|
Huang J, You H, Su C, Li Y, Chen S, Zheng C. Herpes Simplex Virus 1 Tegument Protein VP22 Abrogates cGAS/STING-Mediated Antiviral Innate Immunity. J Virol 2018; 92:e00841-18. [PMID: 29793952 PMCID: PMC6052299 DOI: 10.1128/jvi.00841-18] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Cytosolic DNA arising from intracellular pathogens is sensed by cyclic GMP-AMP synthase (cGAS) and triggers a powerful innate immune response. However, herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, has developed multiple mechanisms to attenuate host antiviral machinery and facilitate viral infection and replication. In the present study, we found that HSV-1 tegument protein VP22 acts as an inhibitor of cGAS/stimulator of interferon genes (cGAS/STING)-mediated production of interferon (IFN) and its downstream antiviral genes. Our results showed that ectopic expression of VP22 decreased cGAS/STING-mediated IFN-β promoter activation and IFN-β production. Infection with wild-type (WT) HSV-1, but not VP22-deficient virus (ΔVP22), inhibited immunostimulatory DNA (ISD)-induced activation of the IFN signaling pathway. Further study showed that VP22 interacted with cGAS and inhibited the enzymatic activity of cGAS. In addition, stable knockdown of cGAS facilitated the replication of ΔVP22 virus but not the WT. In summary, our findings indicate that HSV-1 VP22 acts as an antagonist of IFN signaling to persistently evade host innate antiviral responses.IMPORTANCE cGAS is very important for host defense against viral infection, and many viruses have evolved ways to target cGAS and successfully evade the attack by the immune system of their susceptible host. This study demonstrated that HSV-1 tegument protein VP22 counteracts the cGAS/STING-mediated DNA-sensing antiviral innate immunity signaling pathway by inhibiting the enzymatic activity of cGAS. The findings in this study will expand our understanding of the interaction between HSV-1 replication and the host DNA-sensing signaling pathway.
Collapse
Affiliation(s)
- Jian Huang
- Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China
| | - Hongjuan You
- Soochow University, Institutes of Biology and Medical Sciences, Suzhou, China
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenhe Su
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shunhua Chen
- Microbiology and Immunology College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
75
|
Defining the Role of Stress Granules in Innate Immune Suppression by the Herpes Simplex Virus 1 Endoribonuclease VHS. J Virol 2018; 92:JVI.00829-18. [PMID: 29793959 DOI: 10.1128/jvi.00829-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
In response to virus-induced shutoff host protein synthesis, dynamic aggregates containing mRNA, RNA-binding proteins and translation factors termed stress granules (SGs) often accumulate within the cytoplasm. SGs typically form following phosphorylation and inactivation of the eukaryotic translation initiation factor 2α (eIF2α), a substrate of the double-stranded RNA (dsRNA)-activated kinase protein kinase R (PKR). The detection of innate immune sensors and effectors like PKR at SGs suggests a role in pathogen nucleic acid sensing. However, the functional importance of SGs in host innate responses is unclear and has primarily been examined in response to infection with select RNA viruses. During infection with the DNA virus herpes simplex virus 1 (HSV-1), the virus-encoded virion host shutoff (VHS) endoribonuclease is required to restrict interferon production, PKR activation, and SG formation, although the relationship between these activities remains incompletely understood. Here, we show that in cells infected with a VHS-deficient HSV-1 (ΔVHS) dsRNA accumulated and localized to SGs. Surprisingly, formation of dsRNA and its concentration at SGs was not required for beta interferon mRNA induction, indicating that suppression of type I interferon induction by VHS does not stem from its control of dsRNA accumulation. Instead, STING signaling downstream of cGMP-AMP synthase (cGAS)-dependent DNA sensing is required for beta interferon induction. In contrast, significantly less PKR activation is observed when SG assembly is disrupted by ISRIB, an inhibitor of phosphorylated eIF2α-mediated translation repression, or depleting SG scaffolding proteins G3BP1 or TIA1. This demonstrates that PKR activation is intimately linked to SG formation and that SGs form important hubs to potentiate PKR activation during infection.IMPORTANCE Formation of cytoplasmic stress granules that are enriched for innate immune sensors and effectors is suppressed during many viral infections. It is unclear, however, to what extent this is a side effect of viral efforts to maintain protein synthesis or intentional disruption of a hub for innate immune sensing. In this study, we utilize a herpes simplex virus 1 mutant lacking the RNA nuclease VHS which upon infection induces SGs, PKR activation, and beta interferon to address this question. We show that dsRNA is localized to SGs and that SGs can function to promote PKR activation in the context of a DNA virus infection, but we find no evidence to support their importance for interferon induction during HSV-1 infection.
Collapse
|
76
|
Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex. J Virol 2018; 92:JVI.00402-18. [PMID: 29743370 DOI: 10.1128/jvi.00402-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA-dependent protein kinase (PKR), 2',5'-oligoadenylate synthetase, RIG-I, and MDA-5. However, its precise role is incompletely defined. By screening a human cDNA library, we showed that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes TBK1 from access to Hsp90 and interferon (IFN) promoter activation. Consistently, the Us11 protein, upon HSV infection, suppresses the expression of beta interferon (IFN-β), RANTES, and interferon-stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome-dependent pathway. Accordingly, Us11 expression facilitates HSV growth. In contrast, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection.IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrated that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions.
Collapse
|
77
|
Abstract
Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
78
|
Identification and function analysis of canine stimulator of interferon gene (STING). Microb Pathog 2017; 113:202-208. [PMID: 29074428 PMCID: PMC7127566 DOI: 10.1016/j.micpath.2017.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 01/14/2023]
Abstract
Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. In this study, we identified and cloned canine STING gene. Full-length STING encodes a 375 amino acid product that shares the highest similarity with feline STING. Highest levels of mRNA of canine STING were detected in the spleen and lungs while the lowest levels in the heart and muscle. Analysis of its cellular localization showed that STING is localizes to the endoplasmic reticulum. STING overexpression induced the IFN response via the IRF3 and NF-κB pathways and up-regulated the expression of ISG15 and viperin. However, knockdown of STING did not inhibit the IFN-β response triggered by poly(dA:dT), poly(I:C), or SeV. Finally, overexpression of STING significantly inhibited the replication of canine influenza virus H3N2. Collectively, our findings indicate that STING is involved in the regulation of the IFN-β pathway in canine. Here we first identified and cloned canine STING gene. STING overexpression induced the IFN response via the IRF3 and NF-kB pathways. Overexpression of STING inhibited the replication of H3N2 CIV.
Collapse
|