51
|
Lee SW, Devlin JM, Markham JF, Noormohammadi AH, Browning GF, Ficorilli NP, Hartley CA, Markham PF. Comparative analysis of the complete genome sequences of two Australian origin live attenuated vaccines of infectious laryngotracheitis virus. Vaccine 2011; 29:9583-7. [PMID: 22044743 DOI: 10.1016/j.vaccine.2011.10.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in poultry. Live attenuated ILTV vaccines have been used extensively to help control outbreaks of disease. Two Australian-origin attenuated vaccine strains, SA2 and A20 ILTV, are commercially available and are in frequent use in Australia. Both these vaccines are of chicken embryo origin (CEO). The A20 ILTV strain was developed from the SA2 ILTV strain by sequential passage of SA2 ILTV in tissue culture in order to reduce its residual virulence. Previous studies in our laboratories have demonstrated the greater attenuation of A20 ILTV under controlled experimental conditions, but the genetic basis of the in vivo phenotypes of A20 and SA2 ILTV has not been elucidated. In this study, the genetic differences between A20 and SA2 ILTV were examined by performing complete genome sequencing and comparative analysis. The genome sequences were also compared to a reference sequence from another CEO ILTV vaccine (Serva ILTV: GenBank accession number HQ_630064) of European-origin. Additional in ovo studies to assess cell to cell spread were performed in order to allow further comparisons of the pathogenicity of SA2 and A20 ILTV. The sequencing results showed that the genome sizes of SA2 and A20 ILTV were 152,975 and 152,978bp, respectively, while Serva ILTV had a genome size of 152,630bp. The genomes of SA2 and A20 ILTV shared 99.9% nucleotide sequence identity with each other, but only 99.2% identity with Serva ILTV. In complete genome alignments between SA2 and A20 ILTV, a total of 24 single nucleotide polymorphisms (SNPs) were identified, but only two of these were non-synonymous. These were located in the ORF B and UL15 genes. Four indels were detected in non-coding regions. The findings from this study demonstrate the general genetic stability of ILTV, but also show that non-synonymous changes in the ORF B and UL15 genes have arisen following tissue culture passage of SA2 ILTV to produce the A20 vaccine. It is likely that these non-synonymous changes are related to the greater attenuation of A20 ILTV compared to SA2 ILTV, and to the reduced ability of A20 ILTV to spread from cell to cell, as observed in this study. The results from this study also demonstrate the divergence between the genomes of the Australian-origin ILTV vaccine strains and the Serva vaccine strain.
Collapse
Affiliation(s)
- Sang-Won Lee
- School of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog 2011; 7:e1002282. [PMID: 22022263 PMCID: PMC3192842 DOI: 10.1371/journal.ppat.1002282] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/10/2011] [Indexed: 12/17/2022] Open
Abstract
Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution. Alphaherpesviruses such as herpes simplex virus (HSV) are ubiquitous in the human population. HSV causes oral and genital lesions, and has co-morbidities in acquisition and spread of human immunodeficiency virus (HIV). The lack of a vaccine for HSV hinders medical progress for both of these infections. A related veterinary alphaherpesvirus, pseudorabies virus (PRV), has long served as a model for HSV vaccine development, because of their similar pathogenesis, neuronal spread, and infectious cycle. We present here the first full genome characterization of a live PRV vaccine strain, Bartha, and reveal a spectrum of unique mutations that are absent from two divergent wild-type PRV strains. These mutations can now be examined individually for their contribution to vaccine strain attenuation and for potential use in HSV vaccine development. These inter-strain comparisons also revealed an abundance of short repetitive elements in the PRV genome, a pattern which is repeated in other herpesvirus genomes and even the unrelated Mimivirus. We provide the first global characterization of repeats in viruses, comparing both their presence and their variation among different viral strains and species. Repetitive elements such as these have been shown to serve as hotspots of variation between individuals or strains of other organisms, generating adaptations or even disease states through changes in length of DNA-binding sites, protein folding motifs, and other structural elements. These data suggest for the first time that similar mechanisms could be widely distributed in viral biology as well.
Collapse
Affiliation(s)
- Moriah L. Szpara
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Yolanda R. Tafuri
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - S. Rafi Shamim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kevin J. Verstrepen
- VIB lab for Systems Biology and CMPG Lab for Genetics and Genomics, KULeuven, Gaston Geenslaan 1, Leuven, Belgium
| | - Matthieu Legendre
- Structural & Genomic Information Laboratory (CNRS, UPR2589), Mediterranean Institute of Microbiology, Aix-Marseille Université, Marseille, France
| | - L. W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
53
|
A sequence within the varicella-zoster virus (VZV) OriS is a negative regulator of DNA replication and is bound by a protein complex containing the VZV ORF29 protein. J Virol 2011; 85:12188-200. [PMID: 21937644 DOI: 10.1128/jvi.05501-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The architecture of the varicella-zoster virus (VZV) origin of DNA replication (OriS) differs significantly from that of the herpes simplex virus (HSV) DNA replication origin. Novel aspects of the VZV OriS include a GA-rich region, three binding sites for the VZV origin-binding protein (OBP) all on the same strand and oriented in the same direction, and a partial OBP binding site of unknown function. We have designated this partial binding site Box D and have investigated the role it plays in DNA replication and flanking gene expression. This has been done with a model system using a replication-competent plasmid containing OriS and a replication- and transcription-competent dual-luciferase reporter plasmid containing both the OriS and the intergenic region between VZV open reading frames (ORFs) 62 and 63. We have found that (i) Box D is a negative regulator of DNA replication independent of flanking gene expression, (ii) the mutation of Box D results in a decrease in flanking gene expression, thus a sequence within the VZV OriS affects transcription, which is in contrast to results reported for HSV-1, (iii) there is a specific Box D complex formed with infected cell extracts in electrophoretic mobility shift assay experiments, (iv) supershift assays show that this complex contains the VZV ORF29 single-strand DNA-binding protein, and (v) the formation of this complex is dependent on the presence of CGC motifs in Box D and its downstream flanking region. These findings show that the VZV ORF29 protein, while required for DNA replication, also plays a novel role in the suppression of that process.
Collapse
|
54
|
A genome-wide comparative evolutionary analysis of herpes simplex virus type 1 and varicella zoster virus. PLoS One 2011; 6:e22527. [PMID: 21799886 PMCID: PMC3143153 DOI: 10.1371/journal.pone.0022527] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and varicella zoster virus (VZV) are closely related viruses causing lifelong infections. They are typically associated with mucocutaneous or skin lesions, but may also cause severe neurological or ophthalmic diseases, possibly due to viral- and/or host-genetic factors. Although these viruses are well characterized, genome-wide evolutionary studies have hitherto only been presented for VZV. Here, we present a genome-wide study on HSV-1. We also compared the evolutionary characteristics of HSV-1 with those for VZV. We demonstrate that, in contrast to VZV for which only a few ancient recombination events have been suggested, all HSV-1 genomes contain mosaic patterns of segments with different evolutionary origins. Thus, recombination seems to occur extremely frequent for HSV-1. We conclude by proposing a timescale for HSV-1 evolution, and by discussing putative underlying mechanisms for why these otherwise biologically similar viruses have such striking evolutionary differences.
Collapse
|
55
|
Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol 2011; 85:9414-24. [PMID: 21752906 DOI: 10.1128/jvi.00281-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a recently recognized component of the life cycle of varicella-zoster virus (VZV). We have documented abundant autophagosome formation in skin vesicles (final site of virion assembly) from randomly selected cases of varicella and zoster. The fact that autophagy was an early event in the VZV replication cycle was documented by finding infected vesicle cells with the VZV IE62 protein confined to the nucleus. Next, we pursued studies in VZV-infected cultured cells to define whether autophagy was preceded by endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). First, we demonstrated that autophagosome formation in infected cells closely resembled that seen after treatment of cells with tunicamycin, a potent initiator of ER stress. Second, we demonstrated a marked expansion of ER size in both VZV-infected cells and cells transfected with the predominant VZV glycoprotein complex gE/gI. An enlarged ER is critical evidence of ER stress, which in turn is relieved by the UPR. To this end, we documented the UPR by detecting the alternatively spliced form of the XBP1 protein as well as CHOP (C/EBP homologous protein), both transcriptional activators of other UPR genes in an ER stress-dependent manner. Because VZV does not encode inhibitors of autophagy, the above results suggested that autophagy was a common event in VZV-infected cells and that it was provoked at least in part by ER stress secondary to overly abundant VZV glycoprotein biosynthesis, which led to UPR activation in an attempt to maintain cellular homeostasis.
Collapse
|
56
|
Hillary W, Lin SH, Upton C. Base-By-Base version 2: single nucleotide-level analysis of whole viral genome alignments. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:2. [PMID: 22587754 PMCID: PMC3348662 DOI: 10.1186/2042-5783-1-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 06/14/2011] [Indexed: 01/06/2023]
Abstract
Background Base-By-Base is a Java-based multiple sequence alignment editor. It is capable of working with protein and DNA molecules, but many of its unique features relate to the manipulation of the genomes of large DNA viruses such as poxviruses, herpesviruses, baculoviruses and asfarviruses (1-400 kb). The tool was built to serve as a platform for comparative genomics at the level of individual nucleotides. Results In version 2, BBB-v2, of Base-By-Base we have added a series of new features aimed at providing the bench virologist with a better platform to view, annotate and analyze these complex genomes. Although a poxvirus genome, for example, may be less than 200 kb, it probably encodes close to 200 proteins using multiple classes of promoters with frequent overlapping of promoters and coding sequences and even some overlapping of genes. The new features allow users to 1) add primer annotations or other data sets in batch mode, 2) export differences between sequences to other genome browsers, 3) compare multiple genomes at a single nucleotide level of detail, 4) create new alignments from subsets/subsequences of a very large master alignment and 5) allow display of summaries of deep RNA sequencing data sets on a genome sequence. Conclusion BBB-v2 significantly improves the ability of virologists to work with genome sequences and provides a platform with which they can use a multiple sequence alignment as the basis for their own editable documents. Also, a .bbb document, with a variety of annotations in addition to the basic coding regions, can be shared among collaborators or made available to an entire research community. The program is available via Virology.ca using Java Web Start and is platform independent; the Java 1.5 virtual machine is required.
Collapse
Affiliation(s)
- William Hillary
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B,C,, V8W 3P6, Canada.
| | | | | |
Collapse
|
57
|
Bleymehl K, Cinatl J, Schmidt-Chanasit J. Phenotypic and genetic characterization of varicella-zoster virus mutants resistant to acyclovir, brivudine and/or foscarnet. Med Microbiol Immunol 2011; 200:193-202. [DOI: 10.1007/s00430-011-0191-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 10/18/2022]
|
58
|
Tyler S, Severini A, Black D, Walker M, Eberle R. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 2011; 410:181-91. [PMID: 21130483 PMCID: PMC3017652 DOI: 10.1016/j.virol.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 01/24/2023]
Abstract
We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.
Collapse
Affiliation(s)
- Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Dept. of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Darla Black
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - R. Eberle
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
59
|
Nichols RA, Averbeck KT, Poulsen AG, al Bassam MM, Cabral F, Aaby P, Breuer J. Household size is critical to varicella-zoster virus transmission in the tropics despite lower viral infectivity. Epidemics 2010; 3:12-8. [PMID: 21420656 PMCID: PMC3072572 DOI: 10.1016/j.epidem.2010.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/28/2010] [Accepted: 11/30/2010] [Indexed: 02/01/2023] Open
Abstract
The epidemiology and severity of infections can vary dramatically in different geographical regions. Varicella zoster virus (VZV) is a particularly tractable model for investigating such global differences, since infections can be unambiguously identified. VZV is spread by aerosol to cause chickenpox, which, in temperate countries, is a relatively benign childhood infection; yet in tropical countries it tends to occur at later age, a trend associated with markedly increased severity including complications, hospitalization, and overall burden of care. To investigate global differences in the epidemiology of chickenpox we studied a population in Guinea Bissau, which in contrast to other tropical countries has an unexpectedly early age of infection with VZV, comparable to temperate latitudes. In this study we used detailed records from over 3000 houses during an outbreak of chickenpox, combined with viral genetic information on routes of infection, to obtain precise estimates of disease transmission within and between houses. This community contains many large households in which different families live under a single roof, in living quarters divided by partitions. Our data show that household infectivity in tropical Guinea Bissau is reduced four-fold compared with temperate climates (14.8% versus 61–85%), with an intermediate rate between members of the same family who are in more intimate contact (23.5%). All else being equal, these lower infection rates would be expected to lead to a later age of infection as is commonly seen in other tropical countries. The young age of infection, which had drawn our attention to the Guinea Bissau population, can however be explained by the exceptionally large household sizes (mean 14.5 people). We have combined genetic and demographic data to show that the epidemiology of chickenpox in tropical Guinea Bissau is dependent on the interaction of the social and physical environments. The distinctive clinical presentation of VZV and its ubiquitous distribution make it an attractive model for estimating the variables that contribute to global differences in the transmission of airborne viruses.
Collapse
Affiliation(s)
- Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
Grose C, Carpenter JE, Jackson W, Duus KM. Overview of varicella-zoster virus glycoproteins gC, gH and gL. Curr Top Microbiol Immunol 2010; 342:113-28. [PMID: 20186613 DOI: 10.1007/82_2009_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The VZV genome is smaller than the HSV genome and only encodes nine glycoproteins. This chapter provides an overview of three VZV glycoproteins: gH (ORF37), gL (ORF60), and gC (ORF14). All three glycoproteins are highly conserved among the alpha herpesviruses. However, VZV gC exhibits unexpected differences from its HSV counterpart gC. In particular, both VZV gC transcription and protein expression are markedly delayed in cultured cells. These delays occur regardless of the virus strain or the cell type, and may account in part for the aberrant assembly of VZV particles. In contrast to VZV gC, the general properties of gH and gL more closely resemble their HSV homologs. VZV gL behaves as a chaperone protein to facilitate the maturation of the gH protein. The mature gH protein in turn is a potent fusogen. Its fusogenic activity can be abrogated when infected cultures are treated with monoclonal anti-gH antibodies.
Collapse
Affiliation(s)
- Charles Grose
- Department of Pediatrics/2501 JCP, University of Iowa Hospital, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
61
|
Abstract
This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
62
|
Chono K, Katsumata K, Kontani T, Kobayashi M, Sudo K, Yokota T, Konno K, Shimizu Y, Suzuki H. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother 2010; 65:1733-41. [PMID: 20534624 DOI: 10.1093/jac/dkq198] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate and describe the anti-herpesvirus effect of ASP2151, amenamevir, a novel non-nucleoside oxadiazolylphenyl-containing herpesvirus helicase-primase complex inhibitor. METHODS The inhibitory effect of ASP2151 on enzymatic activities associated with a recombinant HSV-1 helicase-primase complex was assessed. To investigate the effect on viral DNA replication, we analysed viral DNA in cells infected with herpesviruses [herpes simplex virus (HSV), varicella-zoster virus (VZV) and human cytomegalovirus]. Sequencing analyses were conducted on an ASP2151-resistant VZV mutant. In vitro and in vivo antiviral activities were evaluated using a plaque reduction assay and an HSV-1-infected zosteriform-spread model in mice. RESULTS ASP2151 inhibited the single-stranded DNA-dependent ATPase, helicase and primase activities associated with the HSV-1 helicase-primase complex. Antiviral assays revealed that ASP2151, unlike other known HSV helicase-primase inhibitors, exerts equipotent activity against VZV, HSV-1 and HSV-2 through prevention of viral DNA replication. Further, the anti-VZV activity of ASP2151 (EC(50), 0.038-0.10 microM) was more potent against all strains tested than that of aciclovir (EC(50), 1.3-27 microM). ASP2151 was also active against aciclovir-resistant VZV. Amino acid substitutions were found in helicase and primase subunits of ASP2151-resistant VZV. In a mouse zosteriform-spread model, ASP2151 was orally active and inhibited disease progression more potently than valaciclovir. CONCLUSIONS ASP2151 is a novel herpes helicase-primase inhibitor that warrants further investigation for the potential treatment of both VZV and HSV infections.
Collapse
Affiliation(s)
- Koji Chono
- Drug Discovery Research, Astellas Pharma Inc., Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Toi CS, Dwyer DE. Prevalence of varicella-zoster virus genotypes in Australia characterized by high-resolution melt analysis and ORF22 gene analyses. J Med Microbiol 2010; 59:935-940. [PMID: 20466839 DOI: 10.1099/jmm.0.019547-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence variation analysis has divided varicella-zoster virus (VZV; Human herpesvirus 3) into distinct geographical clades: European, Asian, African and Japanese. These genotypes are becoming increasingly prevalent within regions atypical to their original source and there has been the suggestion of recombination between genotypes. Seventy-eight clinical isolates from hospitalized patients with varicella were collected in New South Wales, the Northern Territory, Western Australia and Victoria from 2006 to 2009. The wild-type strains and the vaccine strain (vOka) were differentiated by single nucleotide polymorphism detection using high-resolution melt analysis of five target genes (ORF1, -21, -37, -60 and -62), and by DNA sequence analysis of a 484 bp region of ORF22. Phylogenetic analysis showed that 46 % (36/78) of the clinical isolates were European clade 1 (C/E1) strains, 21 % (16/78) were European clade 3 (B/E2) strains, 12 % (9/78) were Asian/African clade 5 (A/M1) strains, 10 % (8/78) were clade 4 (J2/M2), 6 % (5/78) were clade 2 (J/J) and 5 % (4/78) belonged to the novel clade VI. No significant association was shown between VZV genotype and region, age or gender. Although European strains were most common, the results suggest an increase in African/Asian, Japanese and clade VI genotypes circulating in Australia.
Collapse
Affiliation(s)
- Cheryl S Toi
- Clinical Virology, Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW 2145, Australia
| | - Dominic E Dwyer
- Clinical Virology, Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW 2145, Australia
| |
Collapse
|
64
|
Gershon AA, Gershon MD, Breuer J, Levin MJ, Oaklander AL, Griffiths PD. Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J Clin Virol 2010; 48 Suppl 1:S2-7. [PMID: 20510263 PMCID: PMC5391040 DOI: 10.1016/s1386-6532(10)70002-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary varicella zoster virus (VZV) infection results in chickenpox (varicella), which is transmitted via the airborne route. VZV is highly infectious, but in the USA the incidence of varicella has been reduced by 76-87% as a result of the varicella vaccine. The virus establishes latency in the dorsal root ganglia during varicella and, when reactivated, travels along the sensory nerve axons to cause shingles (herpes zoster [HZ]). There are over 1 million cases of HZ in the USA each year, with an estimated lifetime attack rate of 30%. The incidence of HZ, which causes significant morbidity, increases with age and reaches approximately 10 cases per 1,000 patient-years by age 80. Cell-mediated immunity (CMI) is known to decline with age as part of immunosenescence, and decreased CMI is associated with reactivation of VZV. This article provides an overview of our emerging understanding of the epidemiology and pathogenesis of varicella and HZ, in addition to exploring the current theories on latency and reactivation. Understanding the risk factors for developing HZ and the complications associated with infection, particularly in older people, is important for prompt diagnosis and management of HZ in primary care, and they are therefore also reviewed.
Collapse
Affiliation(s)
- Anne A. Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, Columbia University, P&S, 630 West 168th Street, New York, NY 10032, USA
| | - Judith Breuer
- Centre for Infectious Disease, 4 Newark St, London E1 2AT, UK
| | - Myron J. Levin
- Pediatric Infectious Diseases, University of Colorado Denver, Mail Stop C227, Building 401, 1784 Racine Street, Room R09–108, Aurora, CO 80045, USA
| | - Anne Louise Oaklander
- Harvard Medical School, Nerve Injury Unit, Massachusetts General Hospital, 275 Charles Street, Boston, MA 02214, USA
| | - Paul D. Griffiths
- Centre for Virology, University College Medical School, Rowland Hill St, London NW3 2PF, UK
| |
Collapse
|
65
|
Simultaneous cocirculation of both European varicella-zoster virus genotypes (E1 and E2) in Mexico city. J Clin Microbiol 2010; 48:1712-5. [PMID: 20220168 DOI: 10.1128/jcm.00112-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Full-length genome analysis of varicella-zoster virus (VZV) has shown that viral strains can be classified into seven different genotypes: European (E), Mosaic (M), and Japanese (J), and the E and M genotypes can be further subclassified into E1, E2, and M1 through 4, respectively. The distribution of the main VZV genotypes in Mexico was described earlier, demonstrating the predominance of E genotype, although other genotypes (M1 and M4) were also identified. However, no information regarding the circulation of either E genotype in the country is available. In the present study, we confirm the presence of both E1 and E2 genotypes in the country and explore the possibility of coinfection as the triggering factor for increased virulence among severe cases. A total of 61 different European VZV isolates collected in the Mexico City metropolitan area from 2005 to 2006 were typed by using a PCR method based on genotype-specific primer amplification. Fifty isolates belonged to the E1 genotype, and the eleven remaining samples were classified as E2 genotypes. No coinfection with both E genotypes was identified among these specimens. We provide here new information on the distribution of VZV genotypes circulating in Mexico City.
Collapse
|
66
|
Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol 2010; 84:5303-13. [PMID: 20219902 DOI: 10.1128/jvi.00312-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a well-adapted human pathogen that can invade the peripheral nervous system and persist there as a lifelong latent infection. Despite their ubiquity, only one natural isolate of HSV-1 (strain 17) has been sequenced. Using Illumina high-throughput sequencing of viral DNA, we obtained the genome sequences of both a laboratory strain (F) and a low-passage clinical isolate (H129). These data demonstrated the extent of interstrain variation across the entire genome of HSV-1 in both coding and noncoding regions. We found many amino acid differences distributed across the proteome of the new strain F sequence and the previously known strain 17, demonstrating the spectrum of variability among wild-type HSV-1 proteins. The clinical isolate, strain H129, displays a unique anterograde spread phenotype for which the causal mutations were completely unknown. We have defined the sequence differences in H129 and propose a number of potentially causal genes, including the neurovirulence protein ICP34.5 (RL1). Further studies will be required to demonstrate which change(s) is sufficient to recapitulate the spread defect of strain H129. Unexpectedly, these data also revealed a frameshift mutation in the UL13 kinase in our strain F isolate, demonstrating how deep genome sequencing can reveal the full complement of background mutations in any given strain, particularly those passaged or plaque purified in a laboratory setting. These data increase our knowledge of sequence variation in large DNA viruses and demonstrate the potential of deep sequencing to yield insight into DNA genome evolution and the variation among different pathogen isolates.
Collapse
|
67
|
Breuer J, Grose C, Norberg P, Tipples G, Schmid DS. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry, 24-25 July 2008. J Gen Virol 2010; 91:821-8. [PMID: 20071486 PMCID: PMC2888159 DOI: 10.1099/vir.0.017814-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Varicella-zoster virus (VZV), the cause of chickenpox and zoster, was the first human herpesvirus to be sequenced fully and the first for which vaccines have been licensed and widely used. Three groups have published genotyping schemes based on single nucleotide polymorphisms (SNPs) and, between them, have identified five distinct phylogenetic clades, with an additional two putative clades. Sequencing of over 23 whole VZV genomes from around the world further refined the phylogenetic distinctions between SNP genotypes. Widespread surveillance in countries in which the varicella vaccine is now in use and the difficulties posed by three unique genotyping approaches prompted an international meeting, at which a common nomenclature based on phylogenetic clades was agreed upon. In this paper, we review the original genotyping schemes and discuss the basis for a novel common nomenclature for VZV strains. We propose a minimum set of SNPs that we recommend should be used to genotype these viruses. Finally, we suggest criteria by which novel clades can be recognized.
Collapse
Affiliation(s)
- Judith Breuer
- Division of Infection and Immunity, University College London, Windeyer Institute, 46 Cleveland Street, London WC1 4JF, UK.
| | | | | | | | | |
Collapse
|
68
|
Abstract
The genetic differences that potentially account for the attenuation of the Oka vaccine VZV preparation are more clearly defined than for perhaps any other vaccine in current use. This is due in large part to the small number of differences between the vaccine and the parental strain from which it was derived, and to the high level of genomic conservation that characterizes VZV. This information has been used with great success to develop methods that discriminate vaccine from wild-type strains, to begin determining which specific vaccine markers contribute to the attenuated phenotype, to improve evaluations of vaccine efficacy and safety, and to observe the behavior of the live, attenuated preparation as it becomes more prevalent through widespread immunization.
Collapse
Affiliation(s)
- D Scott Schmid
- Herpesvirus Team and National VZV Laboratory, MMRHLB, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
69
|
Abstract
The molecular epidemiology of varicella zoster virus (VZV) has led to an understanding of virus evolution, spread, and pathogenesis. The availability of over 20 full length genomes has confirmed the existence of at least five virus clades and generated estimates of VZV evolution, with evidence of recombination both past and ongoing. Genotyping by restriction enzyme analysis (REA) and single nucleotide polymorphisms (SNP) has proven that the virus causing varicella is identical to that which later reactivates as zoster in an individual. Moreover, these methods have shown that reinfection, which is mostly asymptomatic, may also occur and the second virus may establish latency and reactivate. VZV is the only human herpesvirus that is spread by the respiratory route. Genotyping methods, together with epidemiological data and modeling, have provided insights into global differences in the transmission patterns of this ubiquitous virus.
Collapse
|
70
|
Schmid DS, Jumaan AO. Impact of varicella vaccine on varicella-zoster virus dynamics. Clin Microbiol Rev 2010; 23:202-17. [PMID: 20065330 PMCID: PMC2806663 DOI: 10.1128/cmr.00031-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The licensure and recommendation of varicella vaccine in the mid-1990s in the United States have led to dramatic declines in varicella incidence and varicella-related deaths and hospitalizations. Varicella outbreaks remain common and occur increasingly in highly vaccinated populations. Breakthrough varicella in vaccinated individuals is characteristically mild, typically with fewer lesions that frequently do not progress to a vesicular stage. As such, the laboratory diagnosis of varicella has grown increasingly important, particularly in outbreak settings. In this review the impact of varicella vaccine on varicella-zoster virus (VZV) disease, arising complications in the effective diagnosis and monitoring of VZV transmission, and the relative strengths and limitations of currently available laboratory diagnostic techniques are all addressed. Since disease symptoms often resolve in outbreak settings before suitable test specimens can be obtained, the need to develop new diagnostic approaches that rely on alternative patient samples is also discussed.
Collapse
Affiliation(s)
- D Scott Schmid
- Herpesvirus Team and National VZV Laboratory, Measles, Mumps, Rubella, and Herpesvirus Laboratory Branch, Centers for Disease Control and Prevention, National Center for Immunizations and Respiratory Diseases, Division of Viral Diseases, Atlanta, Georgia 30333, USA.
| | | |
Collapse
|
71
|
Abstract
ORF47, a serine protein kinase of varicella-zoster virus (VZV) and homolog of herpes simplex virus UL13, is an interesting modulator of VZV pathogenesis. This chapter summarizes research showing that ORF47 protein kinase activity, by virtue of phosphorylation of or binding to various viral substrates, regulates VZV proteins during all phases of viral infection and has a pronounced effect on the trafficking of gE, the predominant VZV glycoprotein, which in turn is critical for cell-to-cell spread of the virus. Casein kinase II, an ubiquitous cellular protein kinase, recognizes a similar but less stringent phosphorylation consensus sequence and can partially compensate for lack of ORF47 activity in VZV-infected cells. Differences between the phosphorylation consensus sites of the viral and cellular kinases are outlined in detail.
Collapse
|
72
|
Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, Quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 2010; 342:229-41. [PMID: 20186615 DOI: 10.1007/82_2009_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Varicella zoster virus (VZV) establishes latency in neurons of human peripheral ganglia where the virus genome is most likely maintained as a circular episome bound to histones. There is considerable variability among individuals in the number of latent VZV DNA copies. The VZV DNA burden does not appear to exceed that of herpes simplex type 1 (HSV-1). Expression of VZV genes during latency is highly restricted and is regulated epigenetically. Of the VZV open reading frames (ORFs) that have been analyzed for transcription during latency using cDNA sequencing, only ORFs 21, 29, 62, 63, and 66 have been detected. VZV ORF 63 is the most frequently and abundantly transcribed VZV gene detected in human ganglia during latency, suggesting a critical role for this gene in maintaining the latent state and perhaps the early stages of virus reactivation. The inconsistent detection and low abundance of other VZV transcripts suggest that these genes play secondary roles in latency or possibly reflect a subpopulation of neurons undergoing VZV reactivation. New technologies, such as GeXPS multiplex PCR, have the sensitivity to detect multiple low abundance transcripts and thus provide a means to elucidate the entire VZV transcriptome during latency.
Collapse
|
73
|
Insulin-degrading enzyme binds to the nonglycosylated precursor of varicella-zoster virus gE protein found in the endoplasmic reticulum. J Virol 2009; 84:847-55. [PMID: 19864391 DOI: 10.1128/jvi.01801-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Insulin degradation enzyme (IDE) is a 110-kDa zinc metalloprotease found in the cytosol of all cells. IDE degrades insulin and a variety of small proteins including amyloid-beta. Recently, IDE has been proposed as the receptor for varicella-zoster virus (VZV) attachment. During our reassessment, some of the original studies were repeated and expanded in scope. We first confirmed that IDE antibody reduced VZV spread. For additional controls, we repeated the same experiments with herpes simplex virus (HSV)-infected cells as well as uninfected cells. There was a visible reduction in HSV spread but less than seen in the VZV system. Of greater importance, IDE antibody also inhibited the growth of uninfected cells. Second, we repeated the coprecipitation assays. We confirmed that antibodies to VZV gE (open reading frame 68) coprecipitated IDE and that anti-IDE antibody coprecipitated gE. However, the detected gE protein was not the mature 98-kDa form; rather, it was a precursor 73-kDa gE form found in the endoplasmic reticulum. Additional control experiments included VZV-infected cell cultures treated with tunicamycin to block gE glycosylation in the endoplasmic reticulum; again, the anti-IDE antibody coprecipitated a 73-kDa gE product. Finally, Orbitrap mass spectrometry analysis of a chromatographically purified gE sample revealed four cellular proteins associated with the unfolded protein response: BiP (HSPA5), HSPA8, HSPD1, and PPIA (peptidyl-propyl cis-trans isomerase). We conclude that IDE protease binds to the 73-kDa gE precursor and that this event occurs in the cytosol but not as a receptor/ligand interaction.
Collapse
|
74
|
Rodríguez-Castillo A, Vaughan G, Ramírez-González JE, González-Durán E, Gudiño-Rosales JC, Escobar-Gutiérrez A. Genetic variation of Varicella-Zoster Virus strains circulating in Mexico City. J Clin Virol 2009; 46:349-53. [PMID: 19828367 DOI: 10.1016/j.jcv.2009.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Different studies regarding VZV genotype distribution worldwide have demonstrated that genetic diversity and epidemiology of infection significantly vary from region to region. In Mexico, VZV genotype distribution is largely unknown mostly due to the lack of a surveillance system that monitors accurately the presence of viral strains circulating in the country. OBJECTIVE To identify the main VZV genotypes circulating in the metropolitan area of Mexico City. STUDY DESIGN In this study, 127 different VZV isolates, obtained from residents of the Mexico City Metropolitan area from 2005 to 2008, were identified and genotyped. Viral detection and preliminary genotyping was performed by amplification of the VZV ORF-38 and -54 and RFLP analysis using PstI and BglI endonuclease restriction patterns, respectively. Genotype was confirmed by nucleotide sequence variation along the ORF-22. RESULTS RFLP analysis classified 121 viral strains as European and 6 as mosaic genotype. Genotyping scheme based on the ORF-22 sequence variation identified 120 viral strains belonging to the E genotype, 6 M1 and 1 M4 genotype strains. CONCLUSIONS VZV European genotype appears to predominate in Mexico City. This is the first study addressing VZV genotype distribution in Mexico. The information reported in this paper may be useful for future epidemiological studies conducted in the country and also contributes to understand better the molecular epidemiology of VZV in the Americas.
Collapse
Affiliation(s)
- Araceli Rodríguez-Castillo
- Departamento de Genoma de Patógenos, Instituto de Diagnóstico y Referencia Epidemiológicos, Secretaría de Salud, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
75
|
Characterization of interspecific recombinants generated from closely related bovine herpesviruses 1 and 5 through multiple PCR sequencing assays. J Virol Methods 2009; 161:75-83. [DOI: 10.1016/j.jviromet.2009.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/19/2009] [Accepted: 05/28/2009] [Indexed: 11/30/2022]
|
76
|
Norberg P. Divergence and genotyping of human alpha-herpesviruses: an overview. INFECTION GENETICS AND EVOLUTION 2009; 10:14-25. [PMID: 19772930 DOI: 10.1016/j.meegid.2009.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
Herpesviruses are large DNA viruses that are highly disseminated among animals. Of the eight herpesviruses identified in humans, three are classified into the alpha-herpesvirus subfamily: herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which are typically associated with mucocutaneous lesions, and varicella-zoster virus (VZV), which is the cause of chicken pox and herpes zoster. All three viruses establish lifelong infections and may also induce more severe symptoms, such as neurological manifestations and fatal neonatal infections. Despite thorough investigation of the genetic variability among circulating strains of each virus in recent decades, little is known about possible associations between the genetic setups of the viruses and clinical manifestations in human hosts. This review focuses mainly on evolutionary studies of and genotyping strategies for these three human alpha-herpesviruses, emphasizing the ambiguities induced by a high frequency of circulating recombinant strains. It also aims to shed light on the challenges of establishing a uniform genotyping strategy for all three viruses.
Collapse
Affiliation(s)
- Peter Norberg
- Dept. of Cell and Molecular Biology, Microbiology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden.
| |
Collapse
|
77
|
Schmidt-Chanasit J, Olschläger S, Bialonski A, Heinemann P, Bleymehl K, Gross G, Günther S, Ulrich RG, Doerr HW. Novel approach to differentiate subclades of varicella-zoster virus genotypes E1 and E2 in Germany. Virus Res 2009; 145:347-9. [PMID: 19712712 DOI: 10.1016/j.virusres.2009.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 11/16/2022]
Abstract
Varicella-zoster virus (VZV) is the causative agent of chicken pox (varicella) in children and reactivation of VZV in elderly or immunocompromised persons can cause shingles (zoster). A subclade differentiation of the most prevalent VZV genotypes E1 and E2 in Germany was not possible with the current genotyping methods in use, but is highly important to understand the VZV molecular evolution in more detail and especially to follow up the routes of infection. Therefore the objective of this study was to develop a simple PCR-based method for differentiation of E1 and E2 subclades. Viral DNA was isolated from vesicle fluid samples of six selected German zoster patients and used to amplify nine complete open reading frames (ORFs) of the VZV genome by different PCR assays. Phylogenetic analysis was performed by a Bayesian approach. Based on the analysis of a total of nine ORFs, a 7482 bp stretch consisting of ORFs 5, 37 and 62 contained informative sites for identification of novel subclades E1a, E2a and E2b for VZV genotypes E1 and E2. Specific single nucleotide polymorphisms (SNPs) were demonstrated for subclades E2a and E2b within the ORFs 5, 37 and 62, whereas a subclade E1a-specific SNP was found in ORF 56. The classification of E1 and E2 subclades may facilitate a more exact and in-depth monitoring of the molecular evolution of VZV in Germany in the future.
Collapse
Affiliation(s)
- Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Varicella-zoster virus infection induces autophagy in both cultured cells and human skin vesicles. J Virol 2009; 83:5466-76. [PMID: 19297471 DOI: 10.1128/jvi.02670-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
When grown in cultured cells, varicella-zoster virus (VZV) forms many aberrant light particles and produces low titers. Various studies have explored the reasons for such a phenotype and have pointed to impaired expression of specific late genes and at lysosomal targeting of egressing virions as possible causes. In the studies presented here, we report that the autophagic degradation pathway was induced at late time points after VZV infection of cultured cells, as documented by immunoblot analysis of the cellular proteins LC3B and p62/SQSTM1, along with electron microscopy analysis, which demonstrated the presence of both early autophagosomes and late autophagic compartments. Autophagy was induced in infected cells even in the presence of phosphonoacetic acid, an inhibitor of viral late gene expression, thus suggesting that accumulation of immediate-early and early viral gene products might be the major stimulus for its induction. We also showed that the autophagic response was not dependent on a specific cell substrate, virus strain, or type of inoculum. Finally, using immunofluorescence imaging, we demonstrated autophagosome-specific staining in human zoster vesicles but not in normal skin. Thus, our results document that this innate immune response pathway is a component of the VZV infectious cycle in both cultured cells and the human skin vesicle, the final site of virion formation in the infected human host.
Collapse
|
79
|
Abstract
Relationships among varicella-zoster virus (VZV; Human herpesvirus 3) genome sequences were examined to evaluate descent of strains, structures of lineages and incidence of recombination events. Eighteen complete, published genome sequences were aligned and 494 single nucleotide polymorphisms (SNPs) extracted, each as two alleles. At 281 SNPs, a single sequence differed from all the others. Distributions of the remaining 213 SNPs indicated that the sequences fell into five groups, which coincided with previously recognized phylogenetic groupings, termed E1, E2, J, M1 and M2. The 213-SNP set was divisible into 104 SNPs that were specific to a single group, and 109 cross-group SNPs that defined relationships among groups. This last set was evaluated by criteria of continuities in relationships between groups and breaks in such patterns, to identify crossover points and ascribe them to lineages. For the 99 cross-group SNPs in the genome's long unique region, it was seen that the E2 and M2 groups were almost completely distinct in their SNP alleles, and the E1 group was derived from a recombinant of E2 and M2. A valid phylogenetic tree could thus be constructed for the four E2 and two M2 strains. There was no substantive evidence for recombination within the E2 group or the E1 group (ten strains). The J and M1 groups each contained only one strain, and both were interpreted as having substantial distinct histories plus possible recombinant elements from the E2 and M2 lineages. The view of VZV recombination and phylogeny reached represents a major clarification of deep relationships among VZV lineages.
Collapse
Affiliation(s)
- Duncan J McGeoch
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
80
|
Genotyping of clinical varicella-zoster virus isolates collected in China. J Clin Microbiol 2009; 47:1418-23. [PMID: 19244468 DOI: 10.1128/jcm.01806-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Varicella-zoster virus (VZV) is genetically stable; and various schemes for the genotyping of VZV based on restriction fragment length polymorphisms (RFLPs), PCR, and sequencing have been developed. At least three major genotypes have been recognized among VZV isolates or clinical samples from different locations around the world; however, few data were available for viral isolates from China. In the current study, a collection of 19 VZV isolates from patients with zoster or varicella in the middle eastern region of China was examined for genetic variations. RFLP analysis of DNA fragments of open reading frames (ORFs) 38, 54, and 62 showed that all 19 isolates were PstI and BglI positive and SmaI negative, and this may represent the major restriction pattern of wild-type VZV strains in China. Further analysis of the R5 variable-repeat region in those strains revealed that 9 (47.4%) were type R5A, while the remaining 10 strains (52.6%) were type R5B. On the basis of the sequencing data for ORFs 1, 21, 22, and 54, all 19 Chinese strains could be grouped into genotype J or J1. A novel in-frame 3-nucleotide insertion (CGG) in ORF1 was found in 4 (21%) of the 19 isolates. Additionally three new nucleotide substitutions were detected in two of the isolates. A varicella isolate from the United States, strain MLS, was included in this study as a control for American wild-type VZV, and was found to be type M1, which represents one of the minor genotypes in North America.
Collapse
|
81
|
Volkening JD, Spatz SJ. Purification of DNA from the cell-associated herpesvirus Marek's disease virus for 454 pyrosequencing using micrococcal nuclease digestion and polyethylene glycol precipitation. J Virol Methods 2009; 157:55-61. [PMID: 19103224 DOI: 10.1016/j.jviromet.2008.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/27/2008] [Accepted: 11/27/2008] [Indexed: 11/19/2022]
Abstract
Methods for the isolation of DNA from cell-associated herpesviruses have often yielded samples contaminated with host cellular DNA. Because 2nd and 3rd generation nucleotide sequencers do not rely on molecular cloning of viral DNA, there is a need to develop methods for isolating highly pure DNA from these viruses. The cell-associated alphaherpesvirus Marek's disease virus (MDV-1) was chosen as a test virus for the development of such methodologies. The genomes of six MDV-1 strains have previously been sequenced using both Sanger dideoxy sequencing and 454 Life Sciences pyrosequencing. These genomes largely represent cell culture adapted strains due to the difficulty in obtaining large quantities of DNA from true low passage isolates. There are clear advantages in analyzing MDV-1 virus taken directly from infected tissues or low passage isolates since serial passage attenuates the virus. Procedures using an ATP-dependent exonuclease and Phi29 DNA polymerase to degrade host DNA selectively and amplify MDV-1 DNA enzymatically from total DNA preps were attempted without much success. Ultimately, however, a protocol was developed for purification of low passage MDV-1 DNA from infected avian fibroblasts. The method builds upon and extends available protocols based on hypotonic lysis to release virus particles followed by micrococcal nuclease treatment to degrade cellular DNA. Intact high-molecular weight viral DNA is purified away from an excess of degraded cellular DNA using polyethylene glycol precipitation. 454-based pyrosequencing of viral DNA purified in this manner has generated data containing as little as 2.3% host sequence. On average, DNA preparations were 70% (+/-20%) pure yielding a genome coverage range of 25-74-fold.
Collapse
Affiliation(s)
- Jeremy D Volkening
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, GA 30605, USA.
| | | |
Collapse
|
82
|
Coinfection with two closely related alphaherpesviruses results in a highly diversified recombination mosaic displaying negative genetic interference. J Virol 2009; 83:3127-37. [PMID: 19153224 DOI: 10.1128/jvi.02474-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phylogenetic studies of the emergence and spread of natural recombinants in herpesviruses infecting humans and animals have been reported recently. However, despite an ever-increasing amount of evidence of recombination in herpesvirus history, the recombination process and the consequences on the genetic diversity of the progeny remain poorly characterized. We addressed this issue by using multiple single-nucleotide polymorphisms (SNPs) differentiating the two subtypes of an alphaherpesvirus, bovine herpesvirus 1 (BoHV-1). Analysis of a large sample of progeny virions obtained in a single growth cycle of coinfected BoHV-1 strains provided a prospective investigation of the recombination dynamics by using SNPs as recombination markers. We found that the simultaneous infection with two closely related herpesviruses results in a highly diversified recombination mosaic. From the analysis of multiple recombinants arising in the progeny, we provide the first evidence of genetic interference influencing the recombination process in herpesviruses. In addition, we report striking differences in the levels of recombination frequency observed along the BoHV-1 genome. With particular emphasis on the genetic structure of a progeny virus population rising in vitro, our data show to which extent recombination participates to the genetic diversification of herpesviruses.
Collapse
|
83
|
Macneil A, Reynolds MG, Braden Z, Carroll DS, Bostik V, Karem K, Smith SK, Davidson W, Li Y, Moundeli A, Mombouli JV, Jumaan AO, Schmid DS, Regnery RL, Damon IK. Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin Infect Dis 2009; 48:e6-8. [PMID: 19025497 PMCID: PMC5895105 DOI: 10.1086/595552] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
During a suspected monkeypox outbreak in the Republic of Congo, we documented transmission of varicella-zoster virus (VZV) infection with palm and sole manifestations among 5 family members. Genotyping results confirmed the VZV strain European E2, a genotype not previously reported in Africa. VZV with palm and sole involvement should be considered when differentiating a monkeypox diagnosis.
Collapse
Affiliation(s)
- Adam Macneil
- National Center for Zoonotic, Vector-Borne, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes. Virology 2008; 383:216-25. [PMID: 19019403 DOI: 10.1016/j.virol.2008.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/13/2008] [Accepted: 10/15/2008] [Indexed: 11/23/2022]
Abstract
Phylogenetic analysis of 19 complete VZV genomic sequences resolves wild-type strains into 5 genotypes (E1, E2, J, M1, and M2). Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed.
Collapse
|
85
|
Quinlivan M, Sengupta N, Breuer J. A case of varicella caused by co-infection with two different genotypes of varicella-zoster virus. J Clin Virol 2008; 44:66-9. [PMID: 18996045 DOI: 10.1016/j.jcv.2008.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
We describe for the first time a case of varicella caused by co-infection with 2 genotypes of Varicella-zoster virus in a 19 month old child 3 days post-immunization with the varicella live vaccine. The presence of 2 different wild-type viruses in vesicular fluid was confirmed by amplification from single virus genomes and genotyping of single nucleotide polymorphisms (SNPs) known to distinguish the 5 different genotypes of VZV. The finding has important implications for recombination of wild type VZV.
Collapse
Affiliation(s)
- M Quinlivan
- Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts, and the London School of Medicine and Dentistry, Queen Mary College, London E1 2AT, UK.
| | | | | |
Collapse
|
86
|
Storlie J, Carpenter JE, Jackson W, Grose C. Discordant varicella-zoster virus glycoprotein C expression and localization between cultured cells and human skin vesicles. Virology 2008; 382:171-81. [PMID: 18954885 DOI: 10.1016/j.virol.2008.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/26/2022]
Abstract
Because of its very low titer, varicella-zoster virus (VZV) infectivity is usually transferred by passage of trypsin dispersed infected cells. Previously, we observed that gC biosynthesis was markedly delayed in monolayers inoculated with cell free virus. In this report, we investigated the kinetics of gC expression in more detail and included studies of monolayers inoculated with trypsin dispersed infected cells, the more traditional method of VZV infection. Extensive imaging analyses disclosed that gC was detectable in some inoculum cells, but little gC biosynthesis occurred during the first 48 hpi in the newly infected underlying monolayer. In contrast, during the first 24-48 hpi, expression of VZV gE and gB was easily detectable. Using real-time RT-PCR, we found a delay in accumulation of VZV gC transcripts that paralleled the delay in expression of VZV gC protein. Treatment with hexamethylene bisacetamide (HMBA) increased expression of both gC protein and gC mRNA. HMBA treatment also increased virus titer by 4-fold, but paradoxically reduced plaque size in the titration assay. Finally, we examined skin vesicles from cases of chickenpox and zoster in humans and observed abundant amounts of gC expression. In short, this report documents an unexpected delay in both gC mRNA and protein production under all conditions of VZV infection of cultured cells.
Collapse
Affiliation(s)
- Johnathan Storlie
- Departments of Microbiology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
87
|
Abstract
Varicella-zoster virus (VZV) is a herpesvirus and is the causative agent of chicken pox (varicella) and shingles (herpes zoster). Active immunization against varicella became possible with the development of live attenuated varicella vaccine. The Oka vaccine strain was isolated in Japan from a child who had typical varicella, and it was then attenuated by serial passages in cell culture. Several manufacturers have obtained this attenuated Oka strain and, following additional passages, have developed their own vaccine strains. Notably, the vaccines Varilrix and Varivax are produced by GlaxoSmithKline Biologicals and Merck & Co., Inc., respectively. Both vaccines have been well studied in terms of safety and immunogenicity. In this study, we report the complete nucleotide sequence of the Varilrix (Oka-V(GSK)) and Varivax (Oka-V(Merck)) vaccine strain genomes. Their genomes are composed of 124,821 and 124,815 bp, respectively. Full genome annotations covering the features of Oka-derived vaccine genomes have been established for the first time. Sequence analysis indicates 36 nucleotide differences between the two vaccine strains throughout the entire genome, among which only 14 are involved in unique amino acid substitutions. These results demonstrate that, although Oka-V(GSK) and Oka-V(Merck) vaccine strains are not identical, they are very similar, which supports the clinical data showing that both vaccines are well tolerated and elicit strong immune responses against varicella.
Collapse
|
88
|
Yan H, Koyano S, Inami Y, Yamamoto Y, Suzutani T, Mizuguchi M, Ushijima H, Kurane I, Inoue N. Genetic linkage among human cytomegalovirus glycoprotein N (gN) and gO genes, with evidence for recombination from congenitally and post-natally infected Japanese infants. J Gen Virol 2008; 89:2275-2279. [DOI: 10.1099/vir.0.83685-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Investigation of sequence polymorphisms in the glycoprotein N (gN; gp4273), gO (gp4274) and gH (gp4275) genes of human cytomegalovirus (HCMV) strains collected from 63 Japanese children revealed that their gO genotype distribution differed slightly from that of Caucasian populations and that there was a significant linkage between the gN and gO genotypes. Linkage of these genotypes in strains obtained from Caucasian populations has been reported, so our similar findings in Japanese infants are consistent with this, and suggest generality of this linkage. Sequence analysis suggests that recombination between two strains of different linkage groups occurred approximately 200 bp upstream of the 3′-end of the gO gene. Further studies are required to elucidate differences in biological characteristics among the linkage groups and the selective constraints that maintain the linkage.
Collapse
Affiliation(s)
- Hainian Yan
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shin Koyano
- Department of Pediatrics, Asahikawa Medical College, Hokkaido, Japan
| | - Yuhki Inami
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumiko Yamamoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Ushijima
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ichiro Kurane
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Inoue
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
89
|
Molecular analysis of varicella-zoster virus strains circulating in Tanzania demonstrating the presence of genotype M1. J Clin Microbiol 2008; 46:3530-3. [PMID: 18701658 DOI: 10.1128/jcm.01057-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on analysis of 16,392 bp encompassing the complete open reading frames (ORFs) 1, 5, 31, 36, 37, 47, 60, 62, 67, and 68 of the genome of genotype M1 varicella-zoster virus (VZV) was found in swab samples originating from eight Tanzanian zoster patients. Moreover, sequence analysis suggests recombination events between different VZV genotypes within ORFs 1, 31, 60, and 67.
Collapse
|
90
|
Storlie J, Maresova L, Jackson W, Grose C. Comparative analyses of the 9 glycoprotein genes found in wild-type and vaccine strains of varicella-zoster virus. J Infect Dis 2008; 197 Suppl 2:S49-53. [PMID: 18419408 DOI: 10.1086/522127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complete DNA sequences of wild-type and vaccine strains of varicella-zoster virus have been published and listed in GenBank. In this comparative genomic analysis, the sequences of the 9 glycoprotein open reading frames (ORFs) were compared. They included gE (ORF68), gI (ORF 67), gC (ORF14), gH (ORF37), gL (ORF60), gB (ORF31), gK (ORF5), gM (ORF50), and gN (ORF8 or ORF9A). After realignment on the basis of newer data, the corrected gB sequence was lengthened to include 931 residues. The data showed that there were glycoprotein polymorphisms that differentiated North American/European strains from Japanese strains-for example, an additional ATG codon in the gL of all Oka strains. Also, there were a small number of coding single-nucleotide polymorphisms present only in glycoproteins of vaccine strains. Because these changes were highly conserved, the structure of the glycoprotein was unlikely to be altered.
Collapse
Affiliation(s)
- Johnathan Storlie
- Departments of Pediatrics and Microbiology, University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|
91
|
Breuer J. Herpes zoster: new insights provide an important wake-up call for management of nosocomial transmission. J Infect Dis 2008; 197:635-7. [PMID: 18260760 DOI: 10.1086/527421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
92
|
Lopez AS, Burnett-Hartman A, Nambiar R, Ritz L, Owens P, Loparev VN, Guris D, Schmid DS. Transmission of a newly characterized strain of varicella-zoster virus from a patient with herpes zoster in a long-term-care facility, West Virginia, 2004. J Infect Dis 2008; 197:646-53. [PMID: 18260757 DOI: 10.1086/527419] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated a small outbreak of varicella in a long-term-care facility after a case of herpes zoster. Clinical specimens and environmental samples were collected from all case patients and from surfaces in the case patients' rooms and other common-use areas. Wild-type varicella-zoster virus (VZV) DNA was identified in all 3 varicella case patients, and high concentrations of VZV DNA were detected in environmental samples from the room of the herpes zoster case patient. Genotypic analysis showed that the identical VZV strain was present in all samples; moreover, the strain was a unique Mosaic genotype isolate that included a stable Oka vaccine marker that had hitherto never been observed in a wild-type strain of VZV. This study provides evidence for the value of including environmental sampling during the investigation of varicella outbreaks and illustrates the importance of evaluating multiple vaccine-associated markers for the discrimination of vaccine virus from wild-type VZV.
Collapse
Affiliation(s)
- Adriana S Lopez
- National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Toi CS, Dwyer DE. Differentiation between vaccine and wild-type varicella-zoster virus genotypes by high-resolution melt analysis of single nucleotide polymorphisms. J Clin Virol 2008; 43:18-24. [PMID: 18479962 DOI: 10.1016/j.jcv.2008.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/21/2008] [Accepted: 03/27/2008] [Indexed: 11/19/2022]
Abstract
BACKGROUND The analysis of single nucleotide polymorphisms (SNPs) of varicella-zoster virus (VZV) has enabled differentiation between wild-type genotypes from the Oka vaccine strain (V-Oka). OBJECTIVES To genotype VZV strains in Australia using high-resolution melt (HRM) analysis of SNPs in five gene targets. STUDY DESIGN Extracted DNA from 78 samples obtained from patients with chickenpox and zoster were genotyped by HRM analysis of SNPs in five open reading frames (ORFs): 1 (685 G>A), 21 (33725 C>T), 37 (66288 G>A), 60 (101464 C>A) and 62 (106262 T>C) using a double-stranded (ds) DNA saturating dye, LC Green Plus. RESULTS For each genotype, melt curve temperature (Tm) shifts differentiated the nucleotide present at that locus (P<0.0001) with melting curve shifts between alleles ranging from 0.56 degrees C (ORF 37) to 3.34 degrees C (ORF 62). The most common genotypes detected were the European Type C (59%) and B (18%) strains. This was followed by the African/Asian Type A (14%) and Japanese J1 (9%), strains, both prevalent in the Northern Territory and Western Australia. CONCLUSIONS HRM analysis of SNPs showed that the European B and C genotypes were most prevalent in Australia, with genotypes A and J strains also present. HRM analysis using a dsDNA dye provides a useful tool in classifying varicella-zoster viruses.
Collapse
Affiliation(s)
- Cheryl S Toi
- Clinical Virology, Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
94
|
Egress of light particles among filopodia on the surface of Varicella-Zoster virus-infected cells. J Virol 2008; 82:2821-35. [PMID: 18184710 DOI: 10.1128/jvi.01821-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is renowned for its very low titer when grown in cultured cells. There remains no single explanation for the low infectivity. In this study, viral particles on the surfaces of infected cells were examined by several imaging technologies. Few surface particles were detected at 48 h postinfection (hpi), but numerous particles were observed at 72 and 96 hpi. At 72 hpi, 75% of the particles resembled light (L) particles, i.e., envelopes without capsids. By 96 hpi, 85% of all particles resembled L particles. Subsequently, the envelopes of complete virions and L particles were investigated to determine their glycoprotein constituents. Glycoproteins gE, gI, and gB were detected in the envelopes of both types of particles in similar numbers; i.e., there appeared to be no difference in the glycoprotein content of the L particles. The viral particles emerged onto the cell surface amid actin-based filopodia, which were present in abundance within viral highways. Viral particles were easily detected at the base of and along the exterior surfaces of the filopodia. VZV particles were not detected within filopodia. In short, these results demonstrate that VZV infection of cultured cells produces a larger proportion of aberrant coreless particles than has been seen with any other previously examined alphaherpesvirus. Further, these results suggested a major disassociation between capsid formation and envelopment as an explanation for the invariably low VZV titer in cultured cells.
Collapse
|
95
|
Sauerbrei A, Zell R, Philipps A, Wutzler P. Genotypes of varicella-zoster virus wild-type strains in Germany. J Med Virol 2008; 80:1123-30. [DOI: 10.1002/jmv.21178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
96
|
Sauerbrei A, Philipps A, Zell R, Wutzler P. Genotyping of varicella-zoster virus strains after serial passages in cell culture. J Virol Methods 2007; 145:80-3. [PMID: 17555827 DOI: 10.1016/j.jviromet.2007.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/27/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
There is little information in the literature about the stability of single nucleotide polymorphisms (SNP) used for genotyping of varicella-zoster virus (VZV) in sequencing studies. The objective of this study was to genotype VZV wild-type and vaccine isolates representing the four major clades A, B, C and J before and after serial passages in cell culture. Eleven VZV strains were genotyped by sequencing of the open reading frames (ORF) 1, 21, 37, 50, 54 and 60 as well as by restriction fragment length polymorphism (RFLP) analysis of the ORFs 38 and 62 after 1-16 passages in human embryonic lung fibroblasts (HELF). Results revealed no variations of nucleotide sequences in the ORFs 1, 21, 37, 50, 54 and 60 within 16 cell culture passages. Additionally, there were no changes in the RFLP profile of the ORFs 38 and 62. In conclusion, VZV can be isolated in HELF and propagated for at least 16 passages before genotyping by sequencing without the risk of intra-strain variations. For rapid diagnostic identification of vaccine versus wild-type strains, the RFLP profile that is stable within several cell culture passages can be determined using DNA prepared from clinical specimens.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, Friedrich-Schiller University of Jena, Hans-Knoell-Strasse 2, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
97
|
Loparev VN, Rubtcova EN, Bostik V, Govil D, Birch CJ, Druce JD, Schmid DS, Croxson MC. Identification of five major and two minor genotypes of varicella-zoster virus strains: a practical two-amplicon approach used to genotype clinical isolates in Australia and New Zealand. J Virol 2007; 81:12758-65. [PMID: 17898056 PMCID: PMC2169114 DOI: 10.1128/jvi.01145-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Whole genome phylogenetic analysis in this study resolved a total of five major genotypes among the 22 varicella-zoster virus (VZV) strains or isolates for which complete genomic sequences are available. Consistent with earlier publications we have designated these genotypes European 1 (E1), European 2 (E2), Japanese (J), mosaic 1 (M1), and mosaic 2 (M2). Single nucleotide polymorphism (SNP) analysis performed in a whole-genome alignment revealed that VZV isolates of all five genotypes can be accurately genotyped using SNPs from two amplicons: open reading frame 22 (ORF22) and either ORF21 or ORF50. This modified approach identifies all of the genotypes observed using any of the published genotyping protocols. Of 165 clinical varicella and zoster isolates from Australia and New Zealand typed using this approach, 67 of 127 eastern Australian isolates were E1, 30 were E2, 16 were J, 10 were M1, and 4 were M2; 25 of 38 New Zealand isolates were E1, 8 were E2, and 5 were M1. VZV strain diversity in eastern Australia is thus broader than has been described for any other region, including Europe, Africa, and North America. J strains were far more prevalent than previously observed in countries other than Japan. Two-amplicon typing was in complete accord with genotypes derived using SNP in multiple ORFs (ORFs 1, 21, 22, 38, 50, 54, and 62). Two additional minor genotypes, M3 and M4, could also be resolved using two-amplicon typing.
Collapse
Affiliation(s)
- Vladimir N Loparev
- Centers for Disease Control and Prevention, National Center for Preparedness, Detection, and Control of Infectious Diseases, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Norberg P, Kasubi MJ, Haarr L, Bergström T, Liljeqvist JA. Divergence and recombination of clinical herpes simplex virus type 2 isolates. J Virol 2007; 81:13158-67. [PMID: 17881457 PMCID: PMC2169075 DOI: 10.1128/jvi.01310-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infects the genital mucosa and is one of the most common sexually transmitted viruses. Here we sequenced a segment comprising 3.5% of the HSV-2 genome, including genes coding for glycoproteins G, I, and E, from 27 clinical isolates from Tanzania, 10 isolates from Norway, and 10 isolates from Sweden. The sequence variation was low compared to that described for clinical HSV-1 isolates, with an overall similarity of 99.6% between the two most distant HSV-2 isolates. Phylogenetic analysis revealed a divergence into at least two genogroups arbitrarily designated A and B, supported by high bootstrap values and evolutionarily separated at the root. Genogroup A contained isolates collected in Tanzania, and genogroup B contained isolates collected in Tanzania and Scandinavia, implying that the genetic variability of HSV-2 is higher in Tanzania than in Scandinavia. Recombination network analysis and bootscan analysis revealed a complex pattern of phylogenetically conflicting informative sites in the sequence alignments. These signals were present in synonymous and nonsynonymous sites in all three genes and were not accumulated in specific regions, observations arguing against positive selection. Since the PHI test applied solely to synonymous sites revealed a high statistical probability of recombination, we suggest as a novel finding that homologous recombination is, as reported earlier for HSV-1 and varicella-zoster virus, a prominent feature in the evolution of HSV-2.
Collapse
MESH Headings
- Cluster Analysis
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Evolution, Molecular
- Genotype
- Geography
- Herpes Genitalis/virology
- Herpesvirus 2, Human/classification
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/isolation & purification
- Humans
- Molecular Sequence Data
- Norway
- Phylogeny
- Polymorphism, Genetic
- Recombination, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sweden
- Tanzania
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- Peter Norberg
- Department of Virology, University of Göteborg, Guldhedsgatan 10 B, S-413 46 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
99
|
Schmidt-Chanasit J, Stürmer M, Hahn A, Schäd SG, Gross G, Ulrich RG, Heckel G, Doerr HW. Novel approach for genotyping varicella-zoster virus strains from Germany. J Clin Microbiol 2007; 45:3540-5. [PMID: 17855572 PMCID: PMC2168525 DOI: 10.1128/jcm.00979-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present a novel genotyping scheme to classify German wild-type varicella-zoster virus (VZV) strains and to differentiate them from the Oka vaccine strain (genotype B). This approach is based on analysis of four loci in open reading frames (ORFs) 51 to 58, encompassing a total length of 1,990 bp. The new genotyping scheme produced identical clusters in phylogenetic analyses compared to full-genome sequences from well-characterized VZV strains. Based on genotype A, D, B, and C reference strains, a dichotomous identification key (DIK) was developed and applied for VZV strains obtained from vesicle fluid and liquor samples originating from 42 patients suffering from varicella or zoster between 2003 and 2006. Sequencing of regions in ORFs 51, 52, 53, 56, 57, and 58 identified 18 single-nucleotide polymorphisms (SNPs), including two novel ones, SNP 89727 and SNP 92792 in ORF51 and ORF52, respectively. The DIK as well as phylogenetic analysis by Bayesian inference showed that 14 VZV strains belonged to genotype A, and 28 VZV strains were classified as genotype D. Neither Japanese (vaccine)-like B strains nor recombinant-like C strains were found within the samples from Germany. The novel genotyping scheme and the DIK were demonstrated to be practical and simple and allow the highly efficient replication of phylogenetic patterns in VZV initially derived from full-genome DNA sequence analyses. Therefore, this approach may allow us to draw a more comprehensive picture of wild-type VZV strains circulating in Germany and Central Europe by high-throughput procedures in the future.
Collapse
Affiliation(s)
- Jonas Schmidt-Chanasit
- Institute of Medical Virology, Hospital of the Johann Wolfgang Goethe University, Paul Ehrlich Strasse 40, D-60596, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Sauerbrei A, Wutzler P. Different genotype pattern of varicella-zoster virus obtained from patients with varicella and zoster in Germany. J Med Virol 2007; 79:1025-31. [PMID: 17516537 DOI: 10.1002/jmv.20879] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The general use of the varicella vaccine requires the surveillance of varicella-zoster virus (VZV) strains in patients infected with VZV. This paper reports the data achieved from a prospective study of genotyping VZV in Germany, analyzing the restriction fragment length polymorphism (RFLP) of the open reading frames (ORF) 38, 54, and 62 as well as the polymorphism of the R5 repeat region. The study included 177 patients with varicella. Seventy-eight patients with zoster served as controls. Results revealed that 78% of VZV strains in patients with varicella had the genetic profile of the dominant wild-genotype occurring in Europe and 22% had the markers of African or Asian strains. Varicella patients with the profile of African or Asian strains were significantly younger than patients with varicella caused by the dominant genotype. By contrast, all zoster patients exhibited strains representing the majority of wild-type strains in Europe. In conclusion, VZV strains from patients with varicella have a significantly higher genetic variability than viral strains from zoster patients. Since variants with the markers of African or Asian strains could only be found in young children with chickenpox, the results suggest a changing scene of VZV genotypes in Germany. As reasons, the spread of viruses, which may be imported originally by persons immigrating from warmer climates, or the recombination between wild-and vaccine-type viruses have to be considered.
Collapse
Affiliation(s)
- A Sauerbrei
- Institute of Virology and Antiviral Therapy, Friedrich-Schiller University of Jena, Jena, Germany.
| | | |
Collapse
|