51
|
Bhowmick R, Mukherjee A, Patra U, Chawla-Sarkar M. Rotavirus disrupts cytoplasmic P bodies during infection. Virus Res 2015; 210:344-54. [PMID: 26386333 DOI: 10.1016/j.virusres.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
Cytoplasmic Processing bodies (P bodies), the RNA-protein aggregation foci of translationally stalled and potentially decaying mRNA, have been reported to be differentially modulated by viruses. Rotavirus, the causative agent of acute infantile gastroenteritis is a double stranded RNA virus which completes its entire life-cycle exclusively in host cell cytoplasm. In this study, the fate of P bodies was investigated upon rotavirus infection. It was found that P bodies get disrupted during rotavirus infection. The disruption occurred by more than one different mechanism where deadenylating P body component Pan3 was degraded by rotavirus NSP1 and exonuclease XRN1 along with the decapping enzyme hDCP1a were relocalized from cytoplasm to nucleus. Overall the study highlights decay and subcellular relocalization of P body components as novel mechanisms by which rotavirus subverts cellular antiviral responses.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, West Bengal, India.
| |
Collapse
|
52
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
53
|
Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015; 484:288-304. [PMID: 26142496 DOI: 10.1016/j.virol.2015.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.
Collapse
Affiliation(s)
- Jon Sin
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vrushali Mangale
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Wdee Thienphrapa
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
54
|
Jagdeo JM, Dufour A, Fung G, Luo H, Kleifeld O, Overall CM, Jan E. Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection. J Virol 2015; 89:7064-78. [PMID: 25926642 PMCID: PMC4473559 DOI: 10.1128/jvi.02977-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Picornavirus infection involves a dynamic interplay of host and viral protein interactions that modulates cellular processes to facilitate virus infection and evade host antiviral defenses. Here, using a proteomics-based approach known as TAILS to identify protease-generated neo-N-terminal peptides, we identify a novel target of the poliovirus 3C proteinase, the heterogeneous nuclear ribonucleoproteinM(hnRNP M), a nucleocytoplasmic shuttling RNA-binding protein that is primarily known for its role in pre-mRNA splicing. hnRNPMis cleaved in vitro by poliovirus and coxsackievirus B3 (CVB3) 3C proteinases and is targeted in poliovirus- and CVB3-infected HeLa cells and in the hearts of CVB3-infected mice. hnRNPMrelocalizes from the nucleus to the cytoplasm during poliovirus infection. Finally, depletion of hnRNPMusing small interfering RNA knockdown approaches decreases poliovirus and CVB3 infections in HeLa cells and does not affect poliovirus internal ribosome entry site translation and viral RNA stability. We propose that cleavage of and subverting the function of hnRNPMis a general strategy utilized by picornaviruses to facilitate viral infection. IMPORTANCE Enteroviruses, a member of the picornavirus family, are RNA viruses that cause a range of diseases, including respiratory ailments, dilated cardiomyopathy, and paralysis. Although enteroviruses have been studied for several decades, the molecular basis of infection and the pathogenic mechanisms leading to disease are still poorly understood. Here, we identify hnRNPMas a novel target of a viral proteinase. We demonstrate that the virus subverts the function of hnRNPMand redirects it to a step in the viral life cycle. We propose that cleavage of hnRNPMis a general strategy that picornaviruses use to facilitate infection.
Collapse
Affiliation(s)
- Julienne M. Jagdeo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antoine Dufour
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oded Kleifeld
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Christopher M. Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
55
|
Virus-induced translational arrest through 4EBP1/2-dependent decay of 5'-TOP mRNAs restricts viral infection. Proc Natl Acad Sci U S A 2015; 112:E2920-9. [PMID: 26038567 DOI: 10.1073/pnas.1418805112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.
Collapse
|
56
|
Lloyd RE. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 2015; 479-480:457-74. [PMID: 25818028 PMCID: PMC4426963 DOI: 10.1016/j.virol.2015.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Plus strand RNA viruses that replicate in the cytoplasm face challenges in supporting the numerous biosynthetic functions required for replication and propagation. Most of these viruses are genetically simple and rely heavily on co-opting cellular proteins, particularly cellular RNA-binding proteins, into new roles for support of virus infection at the level of virus-specific translation, and building RNA replication complexes. In the course of infectious cycles many nuclear-cytoplasmic shuttling proteins of mostly nuclear distribution are detained in the cytoplasm by viruses and re-purposed for their own gain. Many mammalian viruses hijack a common group of the same factors. This review summarizes recent gains in our knowledge of how cytoplasmic RNA viruses use these co-opted host nuclear factors in new functional roles supporting virus translation and virus RNA replication and common themes employed between different virus groups. Nuclear shuttling host proteins are commonly hijacked by RNA viruses to support replication. A limited group of ubiquitous RNA binding proteins are commonly hijacked by a broad range of viruses. Key virus proteins alter roles of RNA binding proteins in different stages of virus replication.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
57
|
Dickey LL, Duncan JK, Hanley TM, Fearns R. Decapping protein 1 phosphorylation modulates IL-8 expression during respiratory syncytial virus infection. Virology 2015; 481:199-209. [PMID: 25796077 DOI: 10.1016/j.virol.2015.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Respiratory syncytial virus (RSV) is a negative-strand RNA virus that is an important cause of bronchiolitis and pneumonia. We investigated the effect of RSV infection on the expression patterns of cellular proteins involved in regulating mRNA translation and degradation, and found that a processing-body protein involved in mRNA degradation, decapping protein 1a (DCP1), was phosphorylated rapidly following infection. UV-inactivated and sucrose-purified RSV were sufficient to mediate DCP1 phosphorylation, indicating that it occurs as a consequence of an early event in RSV infection. Analysis using kinase inhibitors showed that RSV-induced DCP1 phosphorylation occurred through the ERK1/2 pathway. The DCP1 phosphorylation sites were limited to serine 315, serine 319, and threonine 321. Overexpression of wt DCP1 led to a decrease in RSV-induced IL-8 production, but this effect was abrogated in cells overexpressing phosphorylation-deficient DCP1 mutants. These results suggest that DCP1 phosphorylation modulates the host chemokine response to RSV infection.
Collapse
Affiliation(s)
- Laura L Dickey
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Julie K Duncan
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Timothy M Hanley
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| | - Rachel Fearns
- Department of Microbiology, Boston University, School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
58
|
Abstract
Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1-4 (dengue virus types 1-4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein-RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.
Collapse
|
59
|
Martínez JP, Pérez-Vilaró G, Muthukumar Y, Scheller N, Hirsch T, Diestel R, Steinmetz H, Jansen R, Frank R, Sasse F, Meyerhans A, Díez J. Screening of small molecules affecting mammalian P-body assembly uncovers links with diverse intracellular processes and organelle physiology. RNA Biol 2014; 10:1661-9. [PMID: 24418890 DOI: 10.4161/rna.26851] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2α and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.
Collapse
Affiliation(s)
- Javier P Martínez
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Yazh Muthukumar
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Nicoletta Scheller
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| | - Tatjana Hirsch
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Randi Diestel
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Heinrich Steinmetz
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Florenz Sasse
- Department of Chemical Biology; Helmholtz Centre for Infection Research; Braunschweig, Germany
| | - Andreas Meyerhans
- Infection Biology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group; Department of Experimental and Health Sciences; Universitat Pompeu Fabra; Barcelona, Spain
| |
Collapse
|
60
|
Cathcart AL, Semler BL. Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections. J Gen Virol 2014; 95:1488-1492. [PMID: 24722678 DOI: 10.1099/vir.0.064501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During infection by picornaviruses, the cellular environment is modified to favour virus replication. This includes the modification of specific host proteins, including the recently discovered viral proteinase cleavage of mRNA decay factor AU-rich binding factor 1 (AUF1). This cellular RNA-binding protein was shown previously to act as a restriction factor during poliovirus, rhinovirus and coxsackievirus infection. During infection by these viruses, AUF1 relocalizes to the cytoplasm and is cleaved by the viral 3C/3CD proteinase. In this study, we demonstrated that replication of encephalomyocarditis virus (EMCV), a picornavirus belonging to the genus Cardiovirus, is AUF1 independent. During EMCV infection, AUF1 relocalized to the cytoplasm; however, unlike what is seen during enterovirus infections, AUF1 was not cleaved to detectable levels, even at late times after infection. This suggests that AUF1 does not act broadly as an inhibitor of picornavirus infections but may instead act as a selective restriction factor targeting members of the genus Enterovirus.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
61
|
Rasekhian M, Roohvand F, Teimoori-Toolabi L, Amini S, Azadmanesh K. Application of the 3'-noncoding region of poliovirus RNA for cell-based regulation of mRNA stability: implication for biotechnological applications. Biotechnol Appl Biochem 2014; 61:699-706. [PMID: 24612228 DOI: 10.1002/bab.1218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/12/2014] [Indexed: 11/08/2022]
Abstract
Enrichment of production yield of therapeutic proteins in mammalian cell cultures by modulation of the mRNA stability of the target protein to increase its in vivo half-life is a new strategy in biotechnological applications. The present article describes one of the most novel approaches to modulate mRNA stability by application of 3'-noncoding region (3'NCR) from RNA viral genome in the expression constructs. Our data indicated that although utilizing the 3'NCR sequence form poliovirus (PV-3'NCR) downstream of the target gene might generally stabilize the secondary structure of RNA, it influenced the mRNA stability (and thereby the amount of protein production) in a cell type and time-dependent manner, thus indicating a central role of mRNA-stabilizing binding sites/cellular factors in this process. Our data might be of interest to the biotechnology community to improve recombinant protein production in mammalian cell cultures and RNA-based therapy/vaccination approaches.
Collapse
Affiliation(s)
- Mahsa Rasekhian
- Virology Department, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|
62
|
Dougherty JD, Reineke LC, Lloyd RE. mRNA decapping enzyme 1a (Dcp1a)-induced translational arrest through protein kinase R (PKR) activation requires the N-terminal enabled vasodilator-stimulated protein homology 1 (EVH1) domain. J Biol Chem 2013; 289:3936-49. [PMID: 24382890 DOI: 10.1074/jbc.m113.518191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that poliovirus infection disrupts cytoplasmic P-bodies in infected mammalian cells. During the infectious cycle, poliovirus causes the directed cleavage of Dcp1a and Pan3, coincident with the dispersion of P-bodies. We now show that expression of Dcp1a prior to infection, surprisingly, restricts poliovirus infection. This inhibition of infection was independent of P-body formation because expression of GFP-Dcp1a mutants that cannot enter P-bodies restricted poliovirus infection similar to wild-type GFP-Dcp1a. Expression of wild-type or mutant GFP-Dcp1a induced phosphorylation of eIF2α through the eIF2α kinase protein kinase R (PKR). Activation of PKR required the amino-terminal EVH1 domain of Dcp1a. This PKR-induced translational inhibition appears to be specific to Dcp1a because the expression of other P-body components, Pan2, Pan3, Ccr4, or Caf1, did not result in the inhibition of poliovirus gene expression or induce eIF2α phosphorylation. The translation blockade induced by Dcp1a expression suggests novel signaling linking RNA degradation/decapping and regulation of translation.
Collapse
Affiliation(s)
- Jonathan D Dougherty
- From the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
63
|
Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother 2013; 58:1546-55. [PMID: 24366736 DOI: 10.1128/aac.01746-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon systems and a cell culture infectious model for HRV-C that can be used for antiviral screening. The replicon constructs consist of genome sequences from HRVc15, HRVc11, HRVc24, and HRVc25 strains, with the P1 capsid region replaced by a Renilla luciferase coding sequence. Following transfection of the replicon RNA into HeLa cells, the constructs produced time-dependent increases in luciferase signal that can be inhibited in a dose-dependent manner by known inhibitors of HRV replication, including the 3C protease inhibitor rupintrivir, the nucleoside analog inhibitor MK-0608, and the phosphatidylinositol 4-kinase IIIβ (PI4K-IIIβ) kinase inhibitor PIK93. Furthermore, with the exception of pleconaril and pirodavir, the other tested classes of HRV inhibitors blocked the replication of full-length HRVc15 and HRVc11 in human airway epithelial cells (HAEs) that were differentiated in the air-liquid interface, exhibiting antiviral activities similar to those observed with HRV-16. In summary, this study is the first comprehensive profiling of multiple classes of antivirals against HRV-C, and the set of newly developed quantitative HRV-C antiviral assays represent indispensable tools for the identification and evaluation of novel panserotype HRV inhibitors.
Collapse
|
64
|
Affiliation(s)
- Stephanie L. Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
65
|
Roberts APE, Doidge R, Tarr AW, Jopling CL. The P body protein LSm1 contributes to stimulation of hepatitis C virus translation, but not replication, by microRNA-122. Nucleic Acids Res 2013; 42:1257-69. [PMID: 24141094 PMCID: PMC3902931 DOI: 10.1093/nar/gkt941] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-122. This role for LSm1 is specialized for miR-122 translation activation, as LSm1 depletion does not affect the repressive function of miR-122 at 3′ untranslated region (UTR) sites, or miR-122–mediated cleavage at a perfectly complementary site. We find that LSm1 does not influence recruitment of the microRNA (miRNA)-induced silencing complex to the HCV 5′UTR, implying that it regulates miR-122 function subsequent to target binding. In contrast to the interplay between miR-122 and LSm1 in translation, we find that LSm1 is not required for miR-122 to stimulate HCV replication, suggesting that miR-122 regulation of HCV translation and replication have different requirements. For the first time, we have identified a protein factor that specifically contributes to activation of HCV IRES-driven translation by miR-122, but not to other activities of the miRNA. Our results enhance understanding of the mechanisms by which miR-122 and LSm1 regulate HCV.
Collapse
Affiliation(s)
- Ashley P E Roberts
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
66
|
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol 2013; 87:10423-34. [PMID: 23903828 PMCID: PMC3807403 DOI: 10.1128/jvi.01049-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697 USA
| | | | | |
Collapse
|
67
|
Pattnaik AK, Dinh PX. Manipulation of cellular processing bodies and their constituents by viruses. DNA Cell Biol 2013; 32:286-91. [PMID: 23617258 PMCID: PMC3665300 DOI: 10.1089/dna.2013.2054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 01/19/2023] Open
Abstract
The processing bodies (PBs) are a form of cytoplasmic aggregates that house the cellular RNA decay machinery as well as many RNA-binding proteins and mRNAs. The PBs are constitutively present in eukaryotic cells and are involved in maintaining cellular homeostasis by regulating RNA metabolism, cell signaling, and survival. Virus infections result in modification of the PBs and their constituents. Many viruses induce compositionally altered PBs, while many others use specific components of the PBs for their replication. PB constituents are also known to restrict virus replication by a variety of mechanisms. Further, continuing studies in this rapidly emerging field of PB-virus interactions will undoubtedly provide important clues to the understanding of the role of PBs in cellular homeostasis as well as their role in virus infections and innate immune signaling.
Collapse
Affiliation(s)
- Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | | |
Collapse
|
68
|
Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:317-31. [PMID: 23554219 PMCID: PMC3652661 DOI: 10.1002/wrna.1162] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA granules are structures within cells that play major roles in gene expression and homeostasis. Two principle kinds of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P‐bodies, PBs), which are enriched with factors involved in RNA turnover. Since RNA granules are associated with silenced transcripts, viruses subvert RNA granule function for replicative advantages. This review, focusing on RNA viruses, discusses mechanisms that manipulate stress granules and P‐bodies to promote synthesis of viral proteins. Three main themes have emerged for how viruses manipulate RNA granules; (1) cleavage of key host factors, (2) control of protein kinase R (PKR) activation, and (3) redirecting RNA granule components for new or parallel roles in viral reproduction, at the same time disrupting RNA granules. Viruses utilize one or more of these routes to achieve robust and productive infection. WIREs RNA 2013, 4:317–331. doi: 10.1002/wrna.1162 This article is categorized under:
RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
69
|
Bhattacharya S, Stojaković J, Saha BK, MacGillivray LR. A Product of a Templated Solid-State Photodimerization Acts as a Template: Single-Crystal Reactivity in a Single Polymorph of a Cocrystal. Org Lett 2013; 15:744-7. [DOI: 10.1021/ol303283s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Suman Bhattacharya
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Jelena Stojaković
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Binoy K. Saha
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| | - Leonard R. MacGillivray
- Department of Chemistry, Pondicherry University, Puducherry 605 014, India, and Department of Chemistry, University of Iowa, 305 Chemistry Building, Iowa City, Iowa 52242, United States
| |
Collapse
|
70
|
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology 2013; 436:255-67. [PMID: 23290869 PMCID: PMC3611887 DOI: 10.1016/j.virol.2012.11.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 02/02/2023]
Abstract
RNA granules are structures within cells that impart key regulatory measures on gene expression. Two general types of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain many translation initiation factors, and processing bodies (P-bodies, PBs), which are enriched for proteins involved in RNA turnover. Because of the inverse relationship between appearance of RNA granules and persistence of translation, many viruses must subvert RNA granule function for replicative purposes. Here we discuss the viruses and mechanisms that manipulate stress granules and P-bodies to promote synthesis of viral proteins. Several themes have emerged for manipulation of RNA granules by viruses: (1) disruption of RNA granules at the mid-phase of infection, (2) prevention of RNA granule assembly throughout infection and (3) co-opting of RNA granule proteins for new or parallel roles in viral reproduction. Viruses must employ one or multiple of these routes for a robust and productive infection to occur. The possible role for RNA granules in promoting innate immune responses poses an additional reason why viruses must counteract the effects of RNA granules for efficient replication.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77035, USA
| | | |
Collapse
|
71
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
72
|
Narayanan K, Makino S. Interplay between viruses and host mRNA degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:732-41. [PMID: 23274304 PMCID: PMC3632658 DOI: 10.1016/j.bbagrm.2012.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 12/17/2022]
Abstract
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | | |
Collapse
|
73
|
Pager CT, Schütz S, Abraham TM, Luo G, Sarnow P. Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules. Virology 2012; 435:472-84. [PMID: 23141719 DOI: 10.1016/j.virol.2012.10.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
Abstract
Components of cytoplasmic processing bodies (P-bodies) and stress granules can be subverted during viral infections to modulate viral gene expression. Because hepatitis C virus (HCV) RNA abundance is regulated by P-body components such as microRNA miR-122, Argonaute 2 and RNA helicase RCK/p54, we examined whether HCV infection modulates P-bodies and stress granules during viral infection. It was discovered that HCV infection decreased the number of P-bodies, but induced the formation of stress granules. Immunofluorescence studies revealed that a number of P-body and stress granule proteins co-localized with viral core protein at lipid droplets, the sites for viral RNA packaging. Depletion of selected P-body proteins decreased overall HCV RNA and virion abundance. Depletion of stress granule proteins also decreased overall HCV RNA abundance, but surprisingly enhanced the accumulation of infectious, extracellular virus. These data argue that HCV subverts P-body and stress granule components to aid in viral gene expression at particular sites in the cytoplasm.
Collapse
Affiliation(s)
- Cara T Pager
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5124, United States
| | | | | | | | | |
Collapse
|
74
|
Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, Wilusz J, Semler BL. Picornavirus modification of a host mRNA decay protein. mBio 2012; 3:e00431-12. [PMID: 23131833 PMCID: PMC3487778 DOI: 10.1128/mbio.00431-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Due to the limited coding capacity of picornavirus genomic RNAs, host RNA binding proteins play essential roles during viral translation and RNA replication. Here we describe experiments suggesting that AUF1, a host RNA binding protein involved in mRNA decay, plays a role in the infectious cycle of picornaviruses such as poliovirus and human rhinovirus. We observed cleavage of AUF1 during poliovirus or human rhinovirus infection, as well as interaction of this protein with the 5' noncoding regions of these viral genomes. Additionally, the picornavirus proteinase 3CD, encoded by poliovirus or human rhinovirus genomic RNAs, was shown to cleave all four isoforms of recombinant AUF1 at a specific N-terminal site in vitro. Finally, endogenous AUF1 was found to relocalize from the nucleus to the cytoplasm in poliovirus-infected HeLa cells to sites adjacent to (but distinct from) putative viral RNA replication complexes. IMPORTANCE This study derives its significance from reporting how picornaviruses like poliovirus and human rhinovirus proteolytically cleave a key player (AUF1) in host mRNA decay pathways during viral infection. Beyond cleavage of AUF1 by the major viral proteinase encoded in picornavirus genomes, infection by poliovirus results in the relocalization of this host cell RNA binding protein from the nucleus to the cytoplasm. The alteration of both the physical state of AUF1 and its cellular location illuminates how small RNA viruses manipulate the activities of host cell RNA binding proteins to ensure a faithful intracellular replication cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Saiprasad Palusa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
75
|
Phalora PK, Sherer NM, Wolinsky SM, Swanson CM, Malim MH. HIV-1 replication and APOBEC3 antiviral activity are not regulated by P bodies. J Virol 2012; 86:11712-24. [PMID: 22915799 PMCID: PMC3486339 DOI: 10.1128/jvi.00595-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022] Open
Abstract
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.
Collapse
Affiliation(s)
- Prabhjeet K. Phalora
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Nathan M. Sherer
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chad M. Swanson
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| |
Collapse
|
76
|
Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA (NEW YORK, N.Y.) 2012; 18:2029-40. [PMID: 23006624 PMCID: PMC3479393 DOI: 10.1261/rna.034330.112] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/17/2012] [Indexed: 05/25/2023]
Abstract
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3' untranslated region during infection due to stalling of the cellular 5'-to-3' exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation.
Collapse
Affiliation(s)
- Stephanie L. Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - John R. Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Yutaro Kumagai
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
77
|
Chahar HS, Chen S, Manjunath N. P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology 2012; 436:1-7. [PMID: 23102969 DOI: 10.1016/j.virol.2012.09.041] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/15/2012] [Accepted: 09/28/2012] [Indexed: 01/26/2023]
Abstract
In mammalian cells, proteins involved in mRNA silencing and degradation localize to discrete cytoplasmic foci called processing or P-bodies. Here we show that microscopically visible P-bodies are greatly diminished following West Nile viral infection, but the component proteins are not depleted. On the other hand, many P-body components including LSM1, GW182, DDX3, DDX6 and XRN1, but not others like DCP1a and EDC4 are recruited to the viral replication sites, as evidenced by their colocalization at perinuclear region with viral NS3. Kinetic studies suggest that the component proteins are first released from P-bodies in response to WNV infection within 12 h post-infection, followed by recruitment to the viral replication sites by 24-36 h post-infection. Silencing of the recruited proteins individually with siRNA interfered with viral replication to varying extents suggesting that the recruited proteins are required for efficient viral replication. Thus, the P-body proteins might provide novel drug targets for inhibiting viral infection.
Collapse
Affiliation(s)
- Harendra S Chahar
- Center of Excellence in Infectious Disease Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | |
Collapse
|
78
|
|
79
|
Valiente-Echeverría F, Melnychuk L, Mouland AJ. Viral modulation of stress granules. Virus Res 2012; 169:430-7. [PMID: 22705970 PMCID: PMC7114395 DOI: 10.1016/j.virusres.2012.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 12/14/2022]
Abstract
Following viral infection, the host responds by mounting a robust anti-viral response with the aim of creating an unfavorable environment for viral replication. As a countermeasure, viruses have elaborated mechanisms to subvert the host response in order to maintain viral protein synthesis and production. In the last decade, several reports have shown that viruses modulate the assembly of stress granules (SGs), which are translationally silent ribonucleoproteins (RNPs) and sites of RNA triage. This review discusses recent advances in our understanding of the interactions between viruses and the host response and how virus-induced modulations in SG abundance play fundamental roles in dictating the success of viral replication.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
80
|
Hepatitis C virus infection alters P-body composition but is independent of P-body granules. J Virol 2012; 86:8740-9. [PMID: 22674998 DOI: 10.1128/jvi.07167-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.
Collapse
|
81
|
Moon SL, Barnhart MD, Wilusz J. Inhibition and avoidance of mRNA degradation by RNA viruses. Curr Opin Microbiol 2012; 15:500-5. [PMID: 22626865 DOI: 10.1016/j.mib.2012.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/27/2012] [Indexed: 11/27/2022]
Abstract
The cellular mRNA decay machinery plays a major role in regulating the quality and quantity of gene expression in cells. This machinery involves multiple enzymes and pathways that converge to promote the exonucleolytic decay of mRNAs. The transcripts made by RNA viruses are susceptible to degradation by this machinery and, in fact, can be actively targeted. Thus, to maintain gene expression and replication, RNA viruses have evolved a number of strategies to avoid and/or inactivate aspects of the cellular mRNA decay machinery. Recent work uncovering the mechanisms used by RNA viruses to maintain the stability of their transcripts is described below.
Collapse
Affiliation(s)
- Stephanie L Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | | | | |
Collapse
|
82
|
White JP, Lloyd RE. Regulation of stress granules in virus systems. Trends Microbiol 2012; 20:175-83. [PMID: 22405519 PMCID: PMC3322245 DOI: 10.1016/j.tim.2012.02.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/22/2012] [Accepted: 02/03/2012] [Indexed: 01/01/2023]
Abstract
Virus infection initiates a number of cellular stress responses that modulate gene regulation and compartmentalization of RNA. Viruses must control host gene expression and the localization of viral RNAs to be successful parasites. RNA granules such as stress granules and processing bodies (PBs) contain translationally silenced messenger ribonucleoproteins (mRNPs) and serve as extensions of translation regulation in cells, storing transiently repressed mRNAs. New reports show a growing number of virus families modulate RNA granule function to maximize replication efficiency. This review summarizes recent advances in understanding the relationship between viruses and mRNA stress granules in animal cells and will discuss important questions that remain in this emerging field.
Collapse
Affiliation(s)
- James P White
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
83
|
Piñeiro D, Ramajo J, Bradrick SS, Martínez-Salas E. Gemin5 proteolysis reveals a novel motif to identify L protease targets. Nucleic Acids Res 2012; 40:4942-53. [PMID: 22362733 PMCID: PMC3367203 DOI: 10.1093/nar/gks172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Translation of picornavirus RNA is governed by the internal ribosome entry site (IRES) element, directing the synthesis of a single polyprotein. Processing of the polyprotein is performed by viral proteases that also recognize as substrates host factors. Among these substrates are translation initiation factors and RNA-binding proteins whose cleavage is responsible for inactivation of cellular gene expression. Foot-and-mouth disease virus (FMDV) encodes two proteases, Lpro and 3Cpro. Widespread definition of Lpro targets suffers from the lack of a sufficient number of characterized substrates. Here, we report the proteolysis of the IRES-binding protein Gemin5 in FMDV-infected cells, but not in cells infected by other picornaviruses. Proteolysis was specifically associated with expression of Lpro, yielding two stable products, p85 and p57. In silico search of putative L targets within Gemin5 identified two sequences whose potential recognition was in agreement with proteolysis products observed in infected cells. Mutational analysis revealed a novel Lpro target sequence that included the RKAR motif. Confirming this result, the Fas-ligand Daxx, was proteolysed in FMDV-infected and Lpro-expressing cells. This protein carries a RRLR motif whose substitution to EELR abrogated Lpro recognition. Thus, the sequence (R)(R/K)(L/A)(R) defines a novel motif to identify putative targets of Lpro in host factors.
Collapse
Affiliation(s)
- David Piñeiro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
84
|
West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response. J Virol 2012; 86:3647-57. [PMID: 22258263 DOI: 10.1128/jvi.06549-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.
Collapse
|
85
|
Abstract
Although viruses encode many of the functions that are required for viral replication, they are completely reliant on the protein synthesis machinery that is present in their host cells. Recruiting cellular ribosomes to translate viral mRNAs represents a crucial step in the replication of all viruses. To ensure translation of their mRNAs, viruses use a diverse collection of strategies (probably pirated from their cellular hosts) to commandeer key translation factors that are required for the initiation, elongation and termination steps of translation. Viruses also neutralize host defences that seek to incapacitate the translation machinery in infected cells.
Viruses rely on the translation machinery of the host cell to produce the proteins that are essential for their replication. Here, Walsh and Mohr discuss the diverse strategies by which viruses subvert the host protein synthesis machinery and regulate the translation of viral mRNAs. Viruses are fully reliant on the translation machinery of their host cells to produce the polypeptides that are essential for viral replication. Consequently, viruses recruit host ribosomes to translate viral mRNAs, typically using virally encoded functions to seize control of cellular translation factors and the host signalling pathways that regulate their activity. This not only ensures that viral proteins will be produced, but also stifles innate host defences that are aimed at inhibiting the capacity of infected cells for protein synthesis. Remarkably, nearly every step of the translation process can be targeted by virally encoded functions. This Review discusses the diverse strategies that viruses use to subvert host protein synthesis functions and regulate mRNA translation in infected cells.
Collapse
|
86
|
Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol 2011; 83:185-92. [PMID: 21889497 DOI: 10.1016/j.bcp.2011.08.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Enteroviruses form an important genus within the large family of Picornaviridae. They are small, non-enveloped (+)RNA viruses, many of which are important pathogens in human and veterinary science. Despite their huge medical and socio-economical impact, there is still no approved antiviral therapy at hand for the treatment of these infections. Three capsid-targeting molecules (pleconaril, BTA-798 and V-073) are in clinical development. Pleconaril and BTA-798 are in phase II clinical trials for the treatment of enterovirus-induced sepsis syndrome and rhinovirus-induced aggravation of pre-existing asthma or COPD respectively. V-073 is in preclinical development for the treatment of poliovirus infections in the context of the worldwide polio eradication program. The capsid binding molecules have shown good in vitro potency against a number of enterovirus species, but lack activity against others. Another potential drawback of capsid inhibitors in the clinical setting could be the rapid emergence of drug resistance. It will therefore be important to develop inhibitors that affect other stages in the viral replication cycle. Several viral proteins, such as the viral 3C protease, the putative 2C helicase and the 3D RNA-dependent RNA polymerase may be/are excellent targets for inhibition of viral replication. Also host cell factors that are crucial in viral replication may be considered as potential targets for an antiviral approach. Unraveling these complex virus-host interactions will also provide better insights into the replication of enteroviruses. This review aims to summarize and discuss known inhibitors and potential viral and cellular targets for antiviral therapy against enteroviruses.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
87
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|
88
|
Abstract
Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins.
Collapse
|
89
|
Eulalio A, Fröhlich KS, Mano M, Giacca M, Vogel J. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PLoS One 2011; 6:e17296. [PMID: 21390246 PMCID: PMC3046968 DOI: 10.1371/journal.pone.0017296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/28/2011] [Indexed: 01/11/2023] Open
Abstract
P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
Collapse
Affiliation(s)
- Ana Eulalio
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (JV); (AE)
| | - Kathrin S. Fröhlich
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jörg Vogel
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
- * E-mail: (JV); (AE)
| |
Collapse
|