51
|
Velilla PA, Hoyos A, Rojas M, Patiño PJ, Vélez LA, Rugeles MT. Apoptosis as a mechanism of natural resistance to HIV-1 infection in an exposed but uninfected population. J Clin Virol 2005; 32:329-35. [PMID: 15780814 DOI: 10.1016/j.jcv.2004.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 08/10/2004] [Accepted: 08/30/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND Apoptosis, also known as programmed cell death, has been reported not only as a pathogenic mechanism, but also as a mechanism of resistance and control of a variety of infections. Particularly during HIV-1 infection, apoptosis is the main mechanism by which infected and uninfected CD4+ lymphocytes are eliminated. However, apoptosis as a mechanism of natural resistance to HIV infection has this far not been explored. OBJECTIVE To determine whether apoptosis could explain, at least in part, the natural resistance to HIV infection observed in some exposed but uninfected individuals (ESN). RESULTS Our data shows that peripheral blood monocytes in the ESN group has a predisposition to undergo spontaneous apoptosis, as well as apoptosis induced by HIV infection in vitro, compared with monocyte population from the control group at low risk of HIV infection. CONCLUSIONS These findings suggest that, in some ESN individuals, monocytes could play an important role in the control of HIV infection by undergoing apoptosis. However, since the variability among individuals is large, studies with larger cohorts focusing in monocyte apoptosis as pathogenic mechanisms are required.
Collapse
Affiliation(s)
- P A Velilla
- Grupo de Inmunovirología, Corporación Biogénesis, Universidad de Antioquia, A.A. 1226, Medellín, Colombia
| | | | | | | | | | | |
Collapse
|
52
|
Huerta L, Gómez-Icazbalceta G, Soto-Ramírez L, Viveros-Rogel M, Rodríguez R, Fuentes L, Lamoyi E, Larralde C. Human immunodeficiency virus 1 (HIV-1) envelope-dependent cell-cell fusion modulation by HIV-positive sera is related to disease progression. J Gen Virol 2005; 86:1961-1966. [PMID: 15958674 DOI: 10.1099/vir.0.80635-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fusion of CD4+ cells by HIV-1 envelope proteins (Env) is a mechanism of virus spread and cell damage. Production of antibodies able to influence cell-cell fusion in vivo may affect the course of the infection. The effect of sera from 49 HIV-1-positive patients was tested on an in vitro fusion assay using Env-expressing and normal Jurkat T cells labelled with DiI and DiO dyes, and flow cytometry for quantification of cell-cell fusion. Sera varied in their activity on fusion: 69.4 % inhibited, 24.5 % had no effect and 6.1 % enhanced cell fusion. Fusion activity correlated positively with the CD4+ T-cell count and inversely with the viral load. Removal of IgG or IgM from sera reduced or eliminated inhibition and enhancing activities, respectively. Antibodies with inhibitory activity predominate in early and intermediate stages of infection, whereas loss of inhibition or enhancement of fusion correlates with progression to AIDS.
Collapse
Affiliation(s)
- L Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Distrito Federal, CP 04510, México
| | - G Gómez-Icazbalceta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Distrito Federal, CP 04510, México
| | - L Soto-Ramírez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Distrito Federal, México
| | - M Viveros-Rogel
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Distrito Federal, México
| | - R Rodríguez
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Distrito Federal, México
| | - L Fuentes
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaría de Salud, Distrito Federal, México
| | - E Lamoyi
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Distrito Federal, CP 04510, México
| | - C Larralde
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Distrito Federal, CP 04510, México
| |
Collapse
|
53
|
Holm GH, Gabuzda D. Distinct mechanisms of CD4+ and CD8+ T-cell activation and bystander apoptosis induced by human immunodeficiency virus type 1 virions. J Virol 2005; 79:6299-311. [PMID: 15858014 PMCID: PMC1091688 DOI: 10.1128/jvi.79.10.6299-6311.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4(+) and CD8(+) T cells. Infection of primary T-cell cultures with ELI6 induced CD4(+) T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4(+) and CD8(+) T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4(+) T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8(+) T cells was triggered by a soluble factor(s) secreted by CD4(+) T cells. HIV-1 virions activated CD4(+) and CD8(+) T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25(+)HLA-DR(+) T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4(+) and CD8(+) T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Dana-Farber Cancer Institute, JFB 816, 44 Binney St., Boston, MA 02115, USA
| | | |
Collapse
|
54
|
Speirs C, van Nimwegen E, Bolton D, Zavolan M, Duvall M, Angleman S, Siegel R, Perelson AS, Lenardo MJ. Analysis of human immunodeficiency virus cytopathicity by using a new method for quantitating viral dynamics in cell culture. J Virol 2005; 79:4025-32. [PMID: 15767404 PMCID: PMC1061548 DOI: 10.1128/jvi.79.7.4025-4032.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) causes complex metabolic changes in infected CD4(+) T cells that lead to cell cycle arrest and cell death by necrosis. To study the viral functions responsible for deleterious effects on the host cell, we quantitated the course of HIV type 1 infection in tissue cultures by using flow cytometry for a virally encoded marker protein, heat-stable antigen (HSA). We found that HSA appeared on the surface of the target cells in two phases: passive acquisition due to association and fusion of virions with target cells, followed by active protein expression from transcription of the integrated provirus. The latter event was necessary for decreased target cell viability. We developed a general mathematical model of viral dynamics in vitro in terms of three effective time-dependent rates: those of cell proliferation, infection, and death. Using this model we show that the predominant contribution to the depletion of viable target cells results from direct cell death rather than cell cycle blockade. This allows us to derive accurate bounds on the time-dependent death rates of infected cells. We infer that the death rate of HIV-infected cells is 80 times greater than that of uninfected cells and that the elimination of the vpr protein reduces the death rate by half. Our approach provides a general method for estimating time-dependent death rates that can be applied to study the dynamics of other viruses.
Collapse
Affiliation(s)
- Christina Speirs
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jin H, Carlile C, Nolan S, Grote E. Prm1 prevents contact-dependent lysis of yeast mating pairs. EUKARYOTIC CELL 2004; 3:1664-73. [PMID: 15590839 PMCID: PMC539027 DOI: 10.1128/ec.3.6.1664-1673.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022]
Abstract
Membrane fusion requires localized destabilization of two phospholipid bilayers, but unrestrained membrane destabilization could result in lysis. prm1 mutant yeast cells have a defect at the plasma membrane fusion stage of mating that typically results in the accumulation of prezygotes that have fingers of membrane-bound cytoplasm projecting from one cell of each pair into its mating partner in the direction of the osmotic gradient between the cells. However, some prm1 mating pairs fuse successfully whereas the two cells in other prm1 mating pairs simultaneously lyse. Lysis only occurs if both mating partners are prm1 mutants. Osmotic stabilization does not protect prm1 mating pairs from lysis, indicating that lysis is not caused by a cell wall defect. prm1 mating pairs without functional mitochondria still lyse, ruling out programmed cell death. No excess lysis was found after pheromone treatment of haploid prm1 cells, and lysis did not occur in mating pairs when prm1 was combined with the fus1 and fus2 mutations to block cell wall remodeling. Furthermore, short (<1 microm) cytoplasmic microfingers indicating the completion of cell wall remodeling appeared immediately before lysis. In combination, these results demonstrate that plasma membrane contact is a prerequisite for lysis. Cytoplasmic microfingers are unlikely to cause lysis since most prm1 mating pairs with microfingers do not lyse, and microfingers were also detected before fusion in some wild-type mating pairs. The lysis of prm1 mutant mating pairs suggests that the Prm1 protein stabilizes the membrane fusion event of yeast mating.
Collapse
Affiliation(s)
- Hui Jin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
56
|
Lelièvre JD, Petit F, Perrin L, Mammano F, Arnoult D, Ameisen JC, Corbeil J, Gervaix A, Estaquier J. The density of coreceptors at the surface of CD4+ T cells contributes to the extent of human immunodeficiency virus type 1 viral replication-mediated T cell death. AIDS Res Hum Retroviruses 2004; 20:1230-43. [PMID: 15588345 DOI: 10.1089/aid.2004.20.1230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokine receptors serve as coreceptors for HIV-1 entry into CD4(+) T cells. Several reports have mentioned that density of CCR5 expression modulates in vitro viral replication and in vivo the course of the disease. Our goal was to investigate the impact of coreceptor density at the surface of a CD4(+) cell line on HIV-1 entry, replication, spreading, and programmed cell death. We engineered a CEM cell line that expresses constitutively CD4 and CXCR4 and CCR5 after transfection. This model allows us to compare the effect of the X4 and R5 strains to induce T cell death in the same T cell host. We show here that the extent of T cell death correlates with the rate of virus replication. X4 induces faster T cell death than R5 that depends at least in part on the higher density of CXCR4 compared to CCR5. Furthermore, sorting CEM populations expressing low, intermediate, and high densities of CCR5 molecules but constant amount of CD4, we found that the capacity to induce T cell death depends at least in part on the level of CCR5 when low amount of virus was used to infect the CEM cells. Moreover, viral transcription, assessed by cell-associated HIV-1 RNA/DNA ratio, was increased in CCR5high as compared to CCR5low cells, while inhibition of replication by zidovudine was more effective in CCR5low cells. Our data indicate that the density of chemokine receptors expressed on CD4(+) T cells may be a critical parameters for the cytopathic effect of HIV strains and may have major impact on CD4 T cell depletion during HAART.
Collapse
|
57
|
Holm GH, Zhang C, Gorry PR, Peden K, Schols D, De Clercq E, Gabuzda D. Apoptosis of bystander T cells induced by human immunodeficiency virus type 1 with increased envelope/receptor affinity and coreceptor binding site exposure. J Virol 2004; 78:4541-51. [PMID: 15078935 PMCID: PMC387714 DOI: 10.1128/jvi.78.9.4541-4551.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis of uninfected bystander CD4(+) T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) pathogenesis. The viral and host mechanisms that lead to bystander apoptosis are not well understood. To investigate properties of the viral envelope glycoproteins (Env proteins) that influence the ability of HIV-1 to induce bystander apoptosis, we used molecularly cloned viruses that differ only in specific amino acids in Env. The ability of these strains to induce bystander apoptosis was tested in herpesvirus saimiri-immortalized primary CD4(+) T cells (CD4/HVS), which resemble activated primary T cells. Changes in Env that increase affinity for CD4 or CCR5 or increase coreceptor binding site exposure enhanced the capacity of HIV-1 to induce bystander apoptosis following viral infection or exposure to nonreplicating virions. Apoptosis induced by HIV-1 virions was inhibited by CD4, CXCR4, and CCR5 antibodies or by the CXCR4 inhibitor AMD3100, but not the fusion inhibitor T20. HIV-1 virions with mutant Envs that bind CXCR4 but are defective for CD4 binding or membrane fusion induced apoptosis, whereas CXCR4 binding-defective mutants did not. These results demonstrate that HIV-1 virions induce apoptosis through a CXCR4- or CCR5-dependent pathway that does not require Env/CD4 signaling or membrane fusion and suggest that HIV-1 variants with increased envelope/receptor affinity or coreceptor binding site exposure may promote T-cell depletion in vivo by accelerating bystander cell death.
Collapse
Affiliation(s)
- Geoffrey H Holm
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The control mechanisms that maintain a steady state viral load during chronic HIV-1 infection are critical to understanding the pathophysiology of HIV disease. The conceptual features of the two alternative models of viral control, referred to in this article as target cell limitation and immune control, are compared to the data regarding the viral and cellular dynamics of HIV-1 infection and the pattern of changes induced by effective antiretroviral drug therapy. The available data support the model that an antigen-driven immune response is the primary mechanism that limits viral growth in vivo.
Collapse
Affiliation(s)
- R Pat Bucy
- Department of Pathology, University of Alabama at Birmingham, P220 West Pavilion, 619 South 19th Street, Birmingham, AL 35233, USA.
| |
Collapse
|
59
|
Sáez-Cirión A, Nieva JL, Gallaher WR. The hydrophobic internal region of bovine prion protein shares structural and functional properties with HIV type 1 fusion peptide. AIDS Res Hum Retroviruses 2003; 19:969-78. [PMID: 14678604 DOI: 10.1089/088922203322588323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conserved fusion peptide at the N-terminus of HIV-1 envelope glycoprotein gp41 is involved in the virus-cell fusion reaction and in the cytopathic effects promoted by expression in single cells. The conserved bovine prion protein 121KHVAGAAAAGAVVGGLGGYMLGSAMSR147 transmembrane region (BPrP(tm)) contains a sequence rich in Gly residues [i.e., 130GAVVGGLGGYMLGSAMSR147 (BPrP(mi))] that shows homology with HIV-1 fusion peptide. As in the case of the latter peptide, analysis of the BPrP(mi) interfacial hydrophobicity confirms that this stretch bears an intrinsic tendency to partitioning from the aqueous phase into membranes. Experimental analyses of BPrP(mi)-lipid interactions suggest several similarities between this sequence and HIV-1 fusion peptide. Infrared spectroscopy reveals a conformational plasticity of the membrane-associated prion sequence comparable to that displayed by the viral sequence. The adoption of a mainly alpha-helical structure correlates with the formation of lytic pores. This helical structure can be converted into a beta-sheet conformation by addition of calcium, a process that is accompanied by vesicle membrane fusion. In contrast, transmembrane BPrP(tm) associates with membranes in a nonlytic, mainly helical structure but also containing some random coil. Upon addition of calcium, the random coils disappear while the helical conformation remains. In the absence of membranes both prion and HIV-1 sequences form amyloid-type fibers. It is proposed that during the pathological processes induced by secreted PrPSc and its proteolytic fragments, conformational polymorphism displayed by membrane-inserted BPrP(mi) may play a role at perturbing the general architecture of the membrane lipid bilayer and inducing protein-protein aggregation at membrane surfaces. These findings suggest the existence of common mechanisms underlying cytotoxicity by PrP and HIV-1 gp41.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | |
Collapse
|
60
|
Abstract
Replication of human immunodeficiency virus (HIV) involves obligatory sequential processes. Following viral entry and reverse transcription, the newly synthesized viral DNA integrates into the host chromatin. Integration is mandatory for viral production, yet HIV infection of CD4 T cells in vivo results in high levels of nonintegrated DNA. The biological potential of nonintegrated HIV DNA is unclear; however, prior work has demonstrated a limited transcription of the nef gene by nonintegrated HIV in infected quiescent T-cell populations. In a kinetic analysis of HIV infection of metabolically active transformed and primary CD4 T cells, we find an unexpected transient expression of both early and late message by nonintegrated HIV DNA. However, only the early multiply spliced transcript was measurably translated. This restriction of protein expression was due in part to inadequate Rev function, since expression of Rev in trans resulted in the expression of the late structural gene gag by nonintegrated HIV DNA.
Collapse
Affiliation(s)
- Yuntao Wu
- Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, Maryland 20892-4034, USA
| | | |
Collapse
|
61
|
Abstract
In the absence of antiretroviral treatment, HIV-1 establishes a chronic, progressive infection of the human immune system that invariably, over the course of years, leads to its destruction and fatal immunodeficiency. Paradoxically, while viral replication is extensive throughout the course of infection, deterioration of conventional measures of immunity is slow, including the characteristic loss of CD4(+) T cells that is thought to play a key role in the development of immunodeficiency. This conundrum suggests that CD4(+) T cell-directed viral cytopathicity alone cannot explain the course of disease. Indeed, recent advances now indicate that HIV-1 pathogenesis is likely to result from a complex interplay between the virus and the immune system, particularly the mechanisms responsible for T cell homeostasis and regeneration. We review these data and present a model of HIV-1 pathogenesis in which the protracted loss of CD4(+) T cells results from early viral destruction of selected memory T cell populations, followed by a combination of profound increases in overall memory T cell turnover, damage to the thymus and other lymphoid tissues, and physiological limitations in peripheral CD4(+) T cell renewal.
Collapse
Affiliation(s)
- Daniel C Douek
- Human Immunology Section Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
62
|
Abstract
How HIV replicates and causes destruction of the thymus, and how to restore thymic function, are among the most important questions of HIV-1 pathogenesis and therapy in adult as well as pediatric patients. The thymus appears to function, albeit at reduced levels, throughout the life of adults, to respond to T cell depletion induced by HIV and to be suppressed by HIV. In this review, we summarize recent findings concerning HIV replication and pathogenesis in the human thymus, focusing on mechanistic insights gleaned from studies in the SCID-hu Thy/Liv mouse and human fetal-thymus organ culture (HF-TOC) models. First, we discuss HIV viral determinants and host factors involved in the replication of HIV in the thymus. Second, we consider evidence that both viral factors and host factors contribute to HIV-induced thymocyte depletion. We thus propose that multiple mechanisms, including depletion and suppression of progenitor cells, paracrine and direct lytic depletion of thymocytes, and altered thymocyte selection are involved in HIV-induced pathology in the thymus. With the SCID-hu Thy/Liv mouse and HF-TOC models, it will be important in the coming years to further clarify the virological, cell biological, and immunological mechanisms of HIV replication and pathogenesis in human thymus, and to correlate their significance in HIV disease progression.
Collapse
Affiliation(s)
- Eric G Meissner
- Department of Microbiology and Immunology, The Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
63
|
LaBonte JA, Madani N, Sodroski J. Cytolysis by CCR5-using human immunodeficiency virus type 1 envelope glycoproteins is dependent on membrane fusion and can be inhibited by high levels of CD4 expression. J Virol 2003; 77:6645-59. [PMID: 12767984 PMCID: PMC156190 DOI: 10.1128/jvi.77.12.6645-6659.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.
Collapse
Affiliation(s)
- Jason A LaBonte
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
64
|
Kalia V, Sarkar S, Gupta P, Montelaro RC. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J Virol 2003; 77:3634-46. [PMID: 12610139 PMCID: PMC149489 DOI: 10.1128/jvi.77.6.3634-3646.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.
Collapse
Affiliation(s)
- Vandana Kalia
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
65
|
Blanco J, Barretina J, Ferri KF, Jacotot E, Gutiérrez A, Armand-Ugón M, Cabrera C, Kroemer G, Clotet B, Esté JA. Cell-surface-expressed HIV-1 envelope induces the death of CD4 T cells during GP41-mediated hemifusion-like events. Virology 2003; 305:318-29. [PMID: 12573577 DOI: 10.1006/viro.2002.1764] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells expressing the HIV-1 envelope glycoprotein complex (gp120/gp41, Env) induce the death of target cells either after cell-to-cell fusion or after cell-to-cell contact in a fusion-independent fashion. Here, we demonstrate that Env-induced death of single cells (including primary CD4 T cells) required gp120 and gp41 function. The gp41 peptide C34, which blocked syncytium formation, completely inhibited the death of single target cells by specifically acting on gp41 function. Moreover, Env-induced single cell death was exclusively observed in CD4 cells and was associated with specific gp41-mediated transfer of lipids from the membrane of Env-expressing cells to the target cell but not with detectable cytoplasm mixing (complete fusion). We conclude that after gp120 function, gp41 mediates close cell-to-cell contacts, thereby triggering cell death in single uninfected cells in the absence of detectable cell-to-cell fusion.
Collapse
Affiliation(s)
- Julià Blanco
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biologia Molecular Severo Ochoa Consejo Superior Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
67
|
Somasundaran M, Sharkey M, Brichacek B, Luzuriaga K, Emerman M, Sullivan JL, Stevenson M. Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc Natl Acad Sci U S A 2002; 99:9503-8. [PMID: 12093916 PMCID: PMC123170 DOI: 10.1073/pnas.142313699] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIV-1 is cytopathic for CD4(+) T lymphocytes in vitro and this property of HIV-1 is generally considered to account for some of its in vivo cytopathogenicity. Thus, the extent of lymphocyte depletion correlates with the level of viremia whereas low levels of viral replication are typically associated with stable lymphocyte levels and asymptomatic infection such as is observed in non-progressors. Here, we describe a non-progressor who did not fit this general pattern in that CD4(+) T lymphocyte homeostasis was maintained in the face of high-level viral replication. Biological viral isolates from this patient replicated in primary lymphocytes without inducing cytopathicity. Because this phenotype is reminiscent of Vpr-deleted viruses, we examined the contribution of the Vpr gene to the viral phenotype. Vpr alleles derived from this patient contained both premature stop codons and an unusual Q3R polymorphism. Insertion of patient-derived Vpr alleles or a Q3R substitution into a cytopathic HIV-1 clone resulted in a marked impairment of cytopathicity without affecting viral replication efficiency. The effect of Vpr on cytopathicity was unrelated to reported activities of Vpr including virion association, interaction with uracil DNA glycosylase, G(2) arrest, or enhancement of macrophage infection but correlated with the ability of Vpr to induce host cell apoptosis. This study suggests the presence of a determinant of in vivo cytopathogenicity within HIV-1 Vpr and further indicates that viral replication can be uncoupled from cytopathicity in vitro and in vivo.
Collapse
Affiliation(s)
- Mohan Somasundaran
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Gallo RC. Human retroviruses after 20 years: a perspective from the past and prospects for their future control. Immunol Rev 2002; 185:236-65. [PMID: 12190935 DOI: 10.1034/j.1600-065x.2002.18520.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among viruses the human retroviruses may be of special interest to immunologists, because they target cells of the immune system, particularly mature CD4+ T cells, impair their function and cause them to grow abnormally (human T-cell leukemia virus, HTLV) or to die (human immunodeficiency virus, HIV). Human retroviruses cause disease ranging from neurological disorders and leukemias (HTLV-1) to AIDS (acquired immunodeficiency virus) (HIV) and promote development of several types of malignancies (HIV). They share many common features, but their contrasts are greater, especially the far greater replication and variation of HIV associated with its greater genomic complexity. Both have evolved striking redundancy for mechanisms which promote their survival. Thus, HTLV has redundant mechanisms for promoting growth of provirus containing T cells needed for virus continuity, because it is chiefly through its cellular DNA provirus that HTLV replicates and not through production of virions. Conversely, HIV has redundancy in its mechanisms for promoting virion replication and escape from the host immune system. It is via these redundant mechanisms that they produce disease: leukemias from mechanisms promoting T-cell proliferation (HTLV-1) and AIDS from mechanisms promoting virus replication and T-cell death (HIV). The practical challenges for the future are clear. For HTLV-1, education and control of breastfeeding. For HIV, the formidable tasks now ahead in part demand new kinds of talent, talents that will foster greater insights into the development of therapy for the developing countries, new forms of less toxic therapies for all infected persons, a continued and expanded commitment to education, and a persistent 'never say die' commitment to the development of a truly preventive vaccine with all the scientific and nonscientific challenges that these objectives face.
Collapse
Affiliation(s)
- Robert C Gallo
- Institute of Human Virology, Department of Microbiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
69
|
Etemad-Moghadam B, Rhone D, Steenbeke T, Sun Y, Manola J, Gelman R, Fanton JW, Racz P, Tenner-Racz K, Axthelm MK, Letvin NL, Sodroski J. Understanding the basis of CD4(+) T-cell depletion in macaques infected by a simian-human immunodeficiency virus. Vaccine 2002; 20:1934-7. [PMID: 11983249 DOI: 10.1016/s0264-410x(02)00072-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficacy of candidate AIDS vaccines to mediate protection against viral infection and pathogenesis is evaluated, at a preclinical stage, in animal models. One model that is favored because the infecting virus is closely related to HIV-1 and because of the rapidity of pathogenic outcomes is the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae. We investigated the basis for the depletion of CD4(+) T lymphocytes in a SHIV-macaque model. Molecularly cloned SHIVs, SHIV-89.6 and SHIV-KB9, differ in the ability to cause CD4(+) T-cell loss at a given level of virus replication in monkeys. The envelope glycoproteins of the pathogenic SHIV-KB9 mediate membrane-fusion in cultured T lymphocytes more efficiently than the envelope glycoproteins of the non-pathogenic SHIV-89.6. The minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity was sufficient to convert SHIV-89.6 into a virus that causes profound CD4(+) T-cell depletion in monkeys. Conversely, two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins also attenuated the CD4(+) T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4(+) T lymphocytes in vivo.
Collapse
Affiliation(s)
- Bijan Etemad-Moghadam
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bolton DL, Hahn BI, Park EA, Lehnhoff LL, Hornung F, Lenardo MJ. Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 2002; 76:5094-107. [PMID: 11967325 PMCID: PMC136143 DOI: 10.1128/jvi.76.10.5094-5107.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 02/08/2002] [Indexed: 11/20/2022] Open
Abstract
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.
Collapse
Affiliation(s)
- Diane L Bolton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | |
Collapse
|
71
|
Lenardo MJ, Angleman SB, Bounkeua V, Dimas J, Duvall MG, Graubard MB, Hornung F, Selkirk MC, Speirs CK, Trageser C, Orenstein JO, Bolton DL. Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 2002; 76:5082-93. [PMID: 11967324 PMCID: PMC136142 DOI: 10.1128/jvi.76.10.5082-5093.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An important unresolved issue of AIDS pathogenesis is the mechanism of human immunodeficiency virus (HIV)-induced CD4(+) T-lymphocyte destruction. We show here that HIV type 1 (HIV-1) exerts a profound cytopathic effect upon peripheral blood CD4(+) T lymphocytes that resembles necrosis rather than apoptosis. Necrotic cytopathology was found with both laboratory-adapted strains and primary isolates of HIV-1. We carefully investigated the role of env, which has been previously implicated in HIV cytopathicity. HIV-1 stocks with equivalent infectivity were prepared from constructs with either an intact or mutated env coding region and pseudotyped with the glycoprotein of vesicular stomatitis virus (VSV-G) so that the HIV envelope was not rate-limiting for infection. Infected Jurkat T cells died whether or not env was intact; however, the expression of env accelerated death significantly. The accelerated death was blocked by protease inhibitors, indicating that it was due to reinfection by newly produced virus in env(+) cultures. Accordingly, we found no disparity in kinetics in CD4(lo) Jurkat cells. In highly infected peripheral blood T cells, profound necrosis occurred equivalently with both env(+) and env(-) stocks of HIV-1. We also found that HIV-1 cytopathicity was undiminished by the absence of nef. However, viral stocks made by complementation or packaging of HIV-1 genomes with the natural protein-coding sequences replaced by the green fluorescent protein were highly infectious but not cytopathic. Thus, env can accelerate cell death chiefly as an entry function, but one or more viral functions other than env or nef is essential for necrosis of CD4(+) T cells induced by HIV-1.
Collapse
Affiliation(s)
- Michael J Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Huerta L, Lamoyi E, Báez-Saldaña A, Larralde C. Human immunodeficiency virus envelope-dependent cell-cell fusion: a quantitative fluorescence cytometric assay. CYTOMETRY 2002; 47:100-6. [PMID: 11813199 DOI: 10.1002/cyto.10051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In vitro fusion of transfected cells expressing the human immunodeficiency virus (HIV) envelope proteins gp120/gp41, with target cells expressing CD4, and a suitable chemokine coreceptor is used widely to investigate the mechanisms of molecular recognition and membrane fusion involved in the entry of the HIV genome into cells and in syncytia formation. METHODS We developed an assay that uses two different fluorescent lipophilic probes to single label each reacting cell population and flow cytometry to quantify the extent of cellular fusion after coculture. RESULTS Fused cells are detected as double-fluorescent particles in this assay, therefore permitting measurement of their proportion in the total cell population. The time course and extent of HIV-glycoprotein-related cellular fusion, the optimal cell ratio, the size and cell composition of the fusion products, and the inhibition of fusion caused by soluble CD4 and anti-CXCR4 antibody 12G5 were determined. The assay was applied to measure fusion between gp120/gp41 and CD4-expressing cells growing as monolayers (HeLa/CHO fusion), as well as to suspension lymphocyte cultures (Jurkat/Jurkat fusion). CONCLUSIONS The method's simple technical and minimal cell-invasive procedures, as well as its non-ambiguous automatic numerical quantification should be useful for the study of factors influencing cell-cell fusion.
Collapse
Affiliation(s)
- Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | | | | | | |
Collapse
|
73
|
Wang JJ, Sandefur S, Spearman P, Chiou CT, Chiang PH, Ratner L. Tracking the assembly pathway of human immunodeficiency virus type 1 Gag deletion mutants by immunogold labeling. Appl Immunohistochem Mol Morphol 2001; 9:371-9. [PMID: 11759066 DOI: 10.1097/00129039-200112000-00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Pr55gag gene product of human immunodeficiency virus type 1 (HIV-1) is sufficient to direct the formation of retrovirus-like particles (RVLPs). Recent biochemical evidence has indicated the presence of Gag intermediates in the cytoplasm; however, the Gag assembly process into RVLPs remains incompletely defined. The authors present here the subcellular localization of Gag mutant proteins in BSC40 and Jurkat cells by immunoelectron microscopy (IEM). The full Gag/Pol and Gag precursors, a C-terminal deletion mutant lacking a portion of nucleocapsid (NC), and all p6Gag gave rise to similar levels of RVLPs at the cell surface. A C-terminal deletion of all NC and p6Gag abrogated particle formation, whereas p24 was found in patches at the cell surface. Deletion of matrix (MA) sequences from Gag resulted in intracellular particles, and myristylation was not required for particle formation in the context of the MA deletion. Matrix expression was enhanced with Gag/Pol or Env coexpression as determined by semiquantitative IEM. p24 protein was targeted at vacuolar and mitochondrial membranes, but not at Golgi cisternae. In addition, aggregations of Gag intermediates and RVLPs in the cytoplasm, rough endoplasmic reticulum, cisternae, and mitochondria were noted. These results provide defined in situ evidence that HIV-1 particle assembly occurs in the cytosol in addition to budding at most intracellular membranes.
Collapse
Affiliation(s)
- J J Wang
- Department and Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
74
|
Joliot V, Goujon C, Dumonceaux J, Renard A, Briand P, Hazan U. A human immunodeficiency virus Env inducible transcription system to examine consequences of gp120 expression. J Virol Methods 2001; 98:145-51. [PMID: 11576641 DOI: 10.1016/s0166-0934(01)00373-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
According to several studies, the HIV-1 envelope gp120 protein and the co-receptor CXCR4 play an essential role in HIV-1 induced cell toxicity. Characterisation of the CD4-independent m7NDK isolate provided the opportunity of studying the effects of direct interactions between m7NDK gp120 and CXCR4. Therefore, an inducible expression system was designed enabling synthesis of HIV-1 Env proteins upon doxycycline induction. Analysis of the expression of the env gene of the m7NDK HIV-1 isolate revealed, unexpectedly, that even long-term expression of m7NDK gp120 did not result in cytotoxycity in CXCR4-positive or -negative cell lines. This is the first report of a CD4-independent HIV-1-protein inducible expression regulated through the Tet-On system and by an alternative splicing. Env inducible expression cell lines could constitute a useful cellular tool to undertake analysis of HIV Env protein expression.
Collapse
Affiliation(s)
- V Joliot
- INSERM Unité 380, Laboratoire de Génétique et Pathologie Expérimentales, Institut Cochin de Génétique Moléculaire, 22 Rue Méchain, 75014, Paris, France
| | | | | | | | | | | |
Collapse
|
75
|
Etemad-Moghadam B, Rhone D, Steenbeke T, Sun Y, Manola J, Gelman R, Fanton JW, Racz P, Tenner-Racz K, Axthelm MK, Letvin NL, Sodroski J. Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J Virol 2001; 75:5646-55. [PMID: 11356972 PMCID: PMC114277 DOI: 10.1128/jvi.75.12.5646-5655.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159-1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.
Collapse
Affiliation(s)
- B Etemad-Moghadam
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
The control mechanisms that maintain a steady-state viral load during chronic HIV-1 infection are critical to understanding the pathophysiology of HIV disease. This paper compares the conceptual features of the two alternative models of viral control, target cell limitation and immune control, with available data on the viral and cellular dynamics of HIV-1 infection and the pattern of changes induced by effective antiretroviral drug therapy. These data suggest that an antigen-driven immune response is the primary control mechanism for in vivo viral growth.
Collapse
Affiliation(s)
- R. Pat Bucy
- Department of Pathology, University of Alabama at Birmingham, 619 S. 19th Street, Birmingham, AL 35249, USA. E-mail:
| |
Collapse
|
77
|
Barsov EV, Payne WS, Hughes SH. Adaptation of chimeric retroviruses in vitro and in vivo: isolation of avian retroviral vectors with extended host range. J Virol 2001; 75:4973-83. [PMID: 11333876 PMCID: PMC114900 DOI: 10.1128/jvi.75.11.4973-4983.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing the env-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 x 10(6) CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery.
Collapse
Affiliation(s)
- E V Barsov
- HIV Drug Resistance Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
78
|
Abstract
The size and composition of the CD4+ T-cell population is regulated by balanced proliferation of progenitor cells and death of mature progeny. After infection with the human immunodeficiency virus, this homeostasis is often disturbed and CD4+ T cells are instead depleted. Such depletion cannot result simply from accelerated destruction of mature CD4+ T cells - sources of T-cell production must also fail. Ironically, this failure may be precipitated by physiological mechanisms designed to maintain homeostasis in the face of accelerated T-cell loss.
Collapse
Affiliation(s)
- J M McCune
- Gladstone Institute of Virology and Immunology, Departments of Medicine and Microbiology and Immunology, University of California at San Francisco, 94141-9100, USA.
| |
Collapse
|
79
|
Scheller C, Jassoy C. Syncytium formation amplifies apoptotic signals: a new view on apoptosis in HIV infection in vitro. Virology 2001; 282:48-55. [PMID: 11259189 DOI: 10.1006/viro.2000.0811] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection of CD4+ cells with HIV in vitro causes extensive cytopathology. The mechanism that underlies this process is unclear and conflicting data exist regarding whether cytotoxicity is due to necrosis or apoptosis. It was previously reported and is shown here that the coculture of HIV glycoprotein-expressing cells with CD4+ cells results in apoptosis within several hours. This study demonstrates that apoptosis did not occur in single cells and was mediated neither by CD4 nor by coreceptor signaling, indicating that apoptosis was not induced by intra- or intercellular glycoprotein-receptor interaction. Detection of apoptosis required cell-to-cell fusion and undetectable levels of apoptotic cell death were substantially amplified upon syncytium formation. Similar results were obtained with syncytium-forming cultures of measles virus glycoprotein-expressing cells. These findings indicate that the apoptotic cell death observed in cultures of HIV and other syncytium-forming viruses is primarily due to amplification of background apoptosis in the wake of cell-to-cell fusion.
Collapse
Affiliation(s)
- C Scheller
- Institute for Virology and Immunobiology, Julius Maximilians University, Würzburg, 97078, Germany
| | | |
Collapse
|
80
|
Ferri KF, Jacotot E, Blanco J, Esté JA, Kroemer G. Mitochondrial control of cell death induced by HIV-1-encoded proteins. Ann N Y Acad Sci 2001; 926:149-64. [PMID: 11193032 DOI: 10.1111/j.1749-6632.2000.tb05609.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In most examples of physiological or pathological cell death, mitochondrial membrane permeabilization (MMP) constitutes an early critical event of the lethal process. Signs of MMP that precede nuclear apoptosis include the translocation of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to an extra-mitochondrial localization, as well as the dissipation of the mitochondrial transmembrane potential. MMP also occurs in HIV-1-induced apoptosis. Different HIV-1 encoded proteins (Env, Vpr, Tat, PR) can directly or indirectly trigger MMP, thereby causing cell death. The gp120/gp41 Env complex constitutes an example for an indirect MMP inducer. Env expressed on the plasma membrane of HIV-1 infected (or Env-transfected) cells mediates cell fusion with CD4/CXCR4-expressing uninfected cells. After a cell type-dependent latency period, syncytia then undergo MMP and apoptosis. Vpr exemplifies a direct MMP inducer. Vpr binds to the adenine nucleotide translocator (ANT), a mitochondrial inner membrane protein which also interacts with apoptosis-regulatory proteins from the Bcl-2/Bax family. Binding of Vpr to ANT favors formation of a non-specific pore leading to MMP. The structural motifs of the Vpr protein involved in MMP are conserved among most pathogenic HIV-1 isolates and determine the cytotoxic effect of Vpr. These data suggest the possibility that viruses employ multiple strategies to regulate host cell apoptosis by targeting mitochondria.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | |
Collapse
|
81
|
Selliah N, Finkel TH. Biochemical mechanisms of HIV induced T cell apoptosis. Cell Death Differ 2001; 8:127-36. [PMID: 11313714 DOI: 10.1038/sj.cdd.4400822] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Accepted: 12/04/2000] [Indexed: 02/01/2023] Open
Affiliation(s)
- N Selliah
- Division of Rheumatology, The Children's Hospital of Philadelphia, PA 19104, USA
| | | |
Collapse
|
82
|
LaBonte JA, Patel T, Hofmann W, Sodroski J. Importance of membrane fusion mediated by human immunodeficiency virus envelope glycoproteins for lysis of primary CD4-positive T cells. J Virol 2000; 74:10690-8. [PMID: 11044113 PMCID: PMC110943 DOI: 10.1128/jvi.74.22.10690-10698.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In established T-cell lines, the membrane-fusing capacity of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins mediates cytopathic effects, both syncytium formation and single-cell lysis. Furthermore, changes in the HIV-1 envelope glycoproteins are responsible for the increased CD4(+) T-cell-depleting ability observed in infected monkeys upon in vivo passage of simian-human immunodeficiency virus (SHIV) chimeras. In this study, a panel of SHIV envelope glycoproteins and their mutant counterparts defective in membrane-fusing capacity were expressed in primary human CD4(+) T cells. Compared with controls, all of the functional HIV-1 envelope glycoproteins induced cell death in primary CD4(+) T-cell cultures, whereas the membrane fusion-defective mutants did not. Death occurred almost exclusively in envelope glycoprotein-expressing cells and not in bystander cells. Under standard culture conditions, most dying cells underwent lysis as single cells. When the cells were cultured at high density to promote syncytium formation, the envelope glycoproteins of the passaged, pathogenic SHIVs induced more syncytia than those of the respective parental SHIV. These results demonstrate that the HIV-1 envelope glycoproteins induce the death of primary CD4(+) T lymphocytes by membrane fusion-dependent processes.
Collapse
Affiliation(s)
- J A LaBonte
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
83
|
Li X, Multon MC, Henin Y, Schweighoffer F, Venot C, LaVecchio J, Josef J, Stuckert P, Mhashilkar A, Tocqué B, Marasco WA. Upregulation of the apoptosis-associated protein Grb3-3 in HIV-1-infected human CD4(+) lymphocytes. Biochem Biophys Res Commun 2000; 276:362-70. [PMID: 11006130 DOI: 10.1006/bbrc.2000.3415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism(s) by which HIV-1 infection contributes to depletion of CD4(+) T cell is not well understood. In this report, we investigated whether a recently identified isoform of growth factor receptor bound protein (Grb2), named Grb3-3, a signaling molecule that is associated with the MAP kinase pathway and with apoptosis could be involved. We find that Grb3-3 is markedly up-regulated following HIV-1 infection of CD4(+) peripheral blood mononuclear cells undergoing apoptosis. Although IL-2 deprived CD4(+) cells also undergo apoptosis to a similar extent, Grb3-3 upregulation is not detected under these experimental conditions. Transient overexpression of Grb3-3 in Jurkat T-cells also causes apoptosis. Upon staurosporine stimulation, Grb3-3 predisposes Sup-T1 cell to apoptosis. Finally, analysis of the HIV-1 genes responsible for Grb3-3 expression demonstrates that Tat and Nef can independently induces its expression, suggesting these two earliest viral gene products of HIV-1 may share some common pathway(s) in up-regulating Grb3-3 expression.
Collapse
Affiliation(s)
- X Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Stocker H, Scheller C, Jassoy C. Destruction of primary CD4(+) T cells by cell-cell interaction in human immunodeficiency virus type 1 infection in vitro. J Gen Virol 2000; 81:1907-1911. [PMID: 10900027 DOI: 10.1099/0022-1317-81-8-1907] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of CD4(+) T lymphocytes with human immunodeficiency virus (HIV) in vitro is accompanied by extensive cytopathicity. The mechanism of cell death is unclear, but may be related to expression of the viral envelope glycoprotein. Here, it is demonstrated that T cell destruction in primary T cells occurs upon contact of infected with uninfected lymphocytes. Cell death was due to the interaction of the envelope glycoprotein with CD4 and subsequent fusion of the cells. Agents that interfered with cell-to-cell fusion such as a monoclonal antibody to CD4 and the peptide T20 prevented T cell death and depletion. In contrast, single-cell lysis due to expression and intracellular processing of the envelope glycoprotein was insignificant. These results suggest that cell-to-cell fusion and concomitant rapid cell death promote the depletion of T cells in HIV-infected individuals.
Collapse
Affiliation(s)
- Hartmut Stocker
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany1
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany1
| | - Christian Jassoy
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Strasse 7, 97078 Würzburg, Germany1
| |
Collapse
|
85
|
Pierson T, McArthur J, Siliciano RF. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 2000; 18:665-708. [PMID: 10837072 DOI: 10.1146/annurev.immunol.18.1.665] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of combination antiretroviral therapy for HIV-1 infection has generated interest in mechanisms by which the virus can persist in the body despite the presence of drugs that effectively inhibit key steps in the virus life cycle. It is becoming clear that viral reservoirs established early in the infection not only prevent sterilizing immunity but also represent a major obstacle to curing the infection with the potent antiretroviral drugs currently in use. Mechanisms of viral persistence are best considered in the context of the dynamics of viral replication in vivo. Virus production in infected individuals is largely the result of a dynamic process involving continuous rounds of de novo infection of and replication in activated CD4(+) T cells with rapid turnover of both free virus and virus-producing cells. This process is largely, but not completely, interrupted by effective antiretroviral therapy. After a few months of therapy, plasma virus levels become undetectable in many patients. Analysis of viral decay rates initially suggested that eradication of the infection might be possible. However, there are several potential cellular and anatomical reservoirs for HIV-1 that may contribute to long-term persistence of HIV-1. These include infected cell in the central nervous system and the male urogenital tract. However, the most worrisome reservoir consists of latently infected resting memory CD4(+) T cells carrying integrated HIV-1 DNA. Definitive demonstration of the presence of this form of latency required development of methods for isolating extremely pure populations of resting CD4(+) T cells and for demonstrating that a small fraction of these cells contain integrated HIV-1 DNA that is competent for replication if the cells undergo antigen-driven activation. Most of the latent virus in resting CD4(+) T cells is found in cells of the memory phenotype. The half-life of this latent reservoir is extremely long (44 months). At this rate, eradication of this reservoir would require over 60 years of treatment. Thus, latently infected resting CD4(+) T cells provide a mechanism for life-long persistence of replication-competent forms of HIV-1, rendering unrealistic hopes of virus eradication with current antiretroviral regimens. The extraordinary stability of the reservoir may reflect gradual reseeding by a very low level of ongoing viral replication and/or mechanisms that contribute to the intrinsic stability of the memory T cell compartment. Given the substantial long-term toxicities of current combination therapy regimens, novel approaches to eradicating this latent reservoir are urgently needed.
Collapse
Affiliation(s)
- T Pierson
- Department of Medicine and Neurology, Johns Hopkins University School of Medicine Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
86
|
Etemad-Moghadam B, Sun Y, Nicholson EK, Fernandes M, Liou K, Gomila R, Lee J, Sodroski J. Envelope glycoprotein determinants of increased fusogenicity in a pathogenic simian-human immunodeficiency virus (SHIV-KB9) passaged in vivo. J Virol 2000; 74:4433-40. [PMID: 10756060 PMCID: PMC111962 DOI: 10.1128/jvi.74.9.4433-4440.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in the envelope glycoprotein ectodomains of a nonpathogenic simian-human immunodeficiency virus (SHIV-89.6) that was serially passaged in vivo have been shown to be responsible for the increased pathogenicity of the resulting virus, SHIV-KB9 (G. B. Karlsson, et al., J. Exp. Med. 188:1159-1171, 1998). The 12 amino acid changes in the envelope glycoprotein ectodomains resulted in increased chemokine receptor-binding and syncytium-forming abilities. Here we identify the envelope glycoprotein determinants of these properties. A single amino acid change in the gp120 third variable (V3) loop was both necessary and sufficient for the observed increase in the binding of the SHIV-KB9 gp120 glycoprotein to the CCR5 chemokine receptor. The increased syncytium-forming ability of SHIV-KB9 involved, in addition to the V3 loop change, changes in the second conserved (C2) region of gp120 (residue 225) and in the gp41 ectodomain (residues 564 and 567). The C2 and gp41 ectodomain changes influenced syncytium formation in a cooperative manner. Changes in the V1/V2 gp120 variable loops exerted a negative effect on syncytium formation and chemokine receptor binding, supporting a previously described role of these changes in immune evasion. The definition of the passage-associated changes that determine the efficiency of chemokine receptor binding and membrane fusogenicity will allow evaluation of the contribution of these properties to in vivo CD4-positive lymphocyte depletion.
Collapse
Affiliation(s)
- B Etemad-Moghadam
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Costa LJ, Munerato P, Diaz RS, Tanuri A. Generation of intersubtype human immunodeficiency virus type 1 recombinants in env gene in vitro: influences in the biological behavior and in the establishment of productive infections. Virology 2000; 268:440-51. [PMID: 10704352 DOI: 10.1006/viro.1999.0133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The occurrence of human immunodeficiency virus type 1 (HIV-1) recombinant genomes belonging to different subtypes is a common event in regions where more than two subtypes cocirculate. Although there are accumulating data toward an increase in the number of intersubtype recombinants, little has been addressed about the biological behavior of such mosaic genomes. This work reports the biological characterization of engineered in vitro HIV-1 intersubtype recombinants in the gp120 region. The recombinants possess the entire gp120 of B or F Brazilian isolates in the Z6 (subtype D) backbone. Here we show that this type of recombinant structure results in profound impairment to the establishment of productive infections in CD4-positive cells. The characterization of biological properties of those recombinant viruses demonstrated viral production occurring only during a transient peak early on infection and that they are not able to down-regulate the expression of CD4 receptor on the cell surface. We also report the phenotype reversion of one recombinant virus studied here, after 62 days in culture. Two amino acid substitutions in highly constant gp120 regions (C1 and C4) were identified in the revertant virus. The mutation occurring in the C4 region is localized near two amino acid residues critical for gp120/CD4 interaction. Based on these data, we suggest that failure in CD4 down-modulation by recombinant viruses can be due to a structural dysfunction of gp160 protein unable to block CD4 at the endoplasmic reticule. The possibilities that the establishment of latent infections can be directly related to the continuous expression of CD4 on the infected cell surface and that the occurrence of mutations in amino acid nearby residues critical for gp120/CD4 interaction can restore the fully productive infectious process are discussed.
Collapse
Affiliation(s)
- L J Costa
- Laboratory of Molecular Virology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
88
|
Forte SE, Somasundaran M, Sullivan JL. Attenuation of human immunodeficiency virus type 1 cytopathic effects by replacing a 424-bp region of envelope from a noncytopathic biological clone. AIDS Res Hum Retroviruses 2000; 16:125-37. [PMID: 10659052 DOI: 10.1089/088922200309476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed the env genes of cytopathic and noncytopathic biological clones derived from two HIV-1-infected children with discordant clinical courses. Chimeric viruses were constructed by switching env regions from V2 through V3 of the biological clones with the corresponding region from the molecular clone NL4-3. These HIV-1 chimeric viruses exhibited similar replication kinetics as well as syncytium-inducing abilities. The chimeric virus containing the env region of noncytopathic biological clone, GC6 8-4, was noncytopathic in an in vitro cell-killing assay, while the chimeric virus containing the env region of cytopathic biological clone, HC4, was cytopathic in the in vitro cell-killing assay. These studies suggest the presence of a cytopathicity determinant that maps to the envelope sequences contained within the downstream region of V2 and within the V3 region (nucleotide position 6822 to nucleotide position 7250, based on NL4-3 sequence).
Collapse
Affiliation(s)
- S E Forte
- Department of Pediatrics and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | |
Collapse
|
89
|
Wang JK, Kiyokawa E, Verdin E, Trono D. The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci U S A 2000; 97:394-9. [PMID: 10618429 PMCID: PMC26674 DOI: 10.1073/pnas.97.1.394] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Nef protein is an important virulence factor of primate lentiviruses, yet the mechanisms by which it exerts this influence are imperfectly understood. Here, using an inducible system, we demonstrate that Nef increases IL-2 secretion from T cells stimulated via CD3 or CD28. This effect requires the conservation of the Nef myristoylation signal and SH3-binding proline-based motif. Together with several proteins involved in the initiation and propagation of T cell signaling, Nef associates with membrane microdomains known as rafts. The Nef-mediated superinduction of IL-2 reflects the activation of both NFAT and NFkappaB. Accordingly, Nef also enhances HIV-1 transcription in response to CD3 or CD28 stimulation. Nef-induced IL-2 hyperresponsiveness is also observed in primary CD4 lymphocytes. Overall, these data suggest that Nef acts at the level of rafts to prime T cells for activation. Likely consequences of this effect are the promotion of HIV-1 replication and the facilitation of virus spread.
Collapse
Affiliation(s)
- J K Wang
- Department of Genetics and Microbiology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
90
|
Plymale DR, Comardelle AM, Fermi CD, Martin DS, Costin JM, Norris CH, Tencza SB, Mietzner TA, Montelaro RC, Garry RF. Concentration-dependent differential induction of necrosis or apoptosis by HIV-1 lytic peptide 1. Peptides 1999; 20:1275-83. [PMID: 10612441 DOI: 10.1016/s0196-9781(99)00132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism by which human immunodeficiency virus type 1 induces depletion of CD4+ T-lymphocytes remains controversial, but may involve cytotoxic viral proteins. Synthetic peptides (lentivirus lytic peptide type 1) corresponding to the carboxyl terminus of the human immunodeficiency virus type 1 transmembrane glycoprotein induce cytopathology at concentrations of 100 nM and above. At these concentrations lentivirus lytic peptide type 1 disrupts mitochondrial integrity of CD4+ T-lymphoblastoid cells and induces other changes characteristic of necrosis. In contrast, at concentrations of 20 nM, lentivirus lytic peptide type 1 potently induces apoptosis. Thus, the mechanism by which human immunodeficiency virus type 1 mediates cell death, necrosis or apoptosis, may depend, in part, on the tissue concentration of transmembrane glycoprotein.
Collapse
Affiliation(s)
- D R Plymale
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Das AT, Land A, Braakman I, Klaver B, Berkhout B. HIV-1 evolves into a nonsyncytium-inducing virus upon prolonged culture in vitro. Virology 1999; 263:55-69. [PMID: 10544082 DOI: 10.1006/viro.1999.9898] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 LAI is a syncytium-inducing (SI) virus with a broad host cell range. We previously isolated a LAI variant that improved replication in the SupT1 T cell line due to mutations within the C1 and C4 constant regions of the Env protein. We now report that this variant exhibits a severely restricted host cell range, as replication in other T cell lines and primary cells was abolished. Several Env-mediated functions were analyzed to provide a mechanistic explanation for this selective adaptation. The change in host cell tropism was not caused by a switch to a SupT1-specific coreceptor. Biosynthesis of the variant Env glycoprotein was not improved in SupT1 cells, and in fact a small defect in intracellular Env processing was observed. SupT1 infection assays did not reveal an improved Env function either, and a dramatic loss of infectivity was measured with other cell types. The Env-mutated HIV-1 reached an approximately fivefold higher level of virus production in SupT1 cells at the peak of infection. Unlike the LAI virus, the variant did not trigger the formation of syncytia. Our combined results suggest that the HIV-1 variant allows the infected host cell to survive longer, thus producing more viral progeny. The intricate virus-cell interaction results in a balance between optimal virus replication and host cell survival, causing a cytopathic SI isolate to evolve toward a nonsyncytium-inducing (NSI) phenotype in cell culture. These findings may help explain the absence of SI variants in the initial phase of HIV-1 infection, and the results dispute the notion that HIV-1 evolution should always go from the NSI to SI phenotype.
Collapse
Affiliation(s)
- A T Das
- Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands
| | | | | | | | | |
Collapse
|
92
|
Plymale DR, Tang DS, Comardelle AM, Fermin CD, Lewis DE, Garry RF. Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells. AIDS 1999; 13:1827-39. [PMID: 10513640 DOI: 10.1097/00002030-199910010-00004] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Data currently available on HIV-1-induced cytopathology is unclear regarding the mechanism of cell killing. OBJECTIVE To clarify the extent to which apoptosis or necrosis is involved in HIV-1-induced cell death in view of conflicting existing data. METHODS T lymphoblastoid cells or peripheral blood mononuclear cells were infected by various strains of HIV-1 and the numbers of apoptotic or necrotic cells were quantified at various times after infection using video-image analysis techniques; the results were compared with the amount of fragmented DNA using a quantitative method. Measurement of mitochondrial transmembrane potential (deltapsi(m)) and intracellular calcium concentrations [Ca2+]i was performed with fluorescent probes and fluorescence concentration analysis (FCA). RESULTS Although lymphoblastoid and monocytoid cells acutely infected by HIV-1 had increased levels of fragmented DNA, a marker of apoptotic cell death, few (<12%) had condensed chromatin and fragmented nuclei, the morphological features of apoptosis. The predominant alterations in acutely infected cells were distended endoplasmic reticulum and abnormal mitochondria; these ultrastructural changes are consistent with necrosis, although some infected cells simultaneously displayed features of both necrosis and apoptosis. Viability of cells persistently infected by HIV-1 was only minimally reduced from that of uninfected cells. This reduction was accounted for by an increased propensity of the persistently infected cells to die by apoptosis. Alterations in [Ca2+]i and deltapsi(m) occurred in both acutely and persistently infected cells. CONCLUSION Both necrosis and apoptosis contribute to HIV-1-induced killing of CD4 cells.
Collapse
Affiliation(s)
- D R Plymale
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
93
|
An DS, Morizono K, Li QX, Mao SH, Lu S, Chen IS. An inducible human immunodeficiency virus type 1 (HIV-1) vector which effectively suppresses HIV-1 replication. J Virol 1999; 73:7671-7. [PMID: 10438857 PMCID: PMC104294 DOI: 10.1128/jvi.73.9.7671-7677.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, gene therapy vectors based upon the human immunodeficiency virus type 1 (HIV-1) genome have been developed. Here, we create an HIV-1 vector which is defective for all HIV-1 genes, but which maintains cis-acting elements required for efficient packaging, infection, and expression. In T cells transduced by this vector, vector expression is low but efficiently induced following HIV-1 infection. Remarkably, although the HIV-1 vector does not contain specific anti-HIV-1 therapeutic genes, the presence of the vector alone is sufficient to inhibit the spread of HIV-1 infection. The mechanism of inhibition is likely to be at the level of competition for limiting substrates required for either efficient packaging or reverse transcription, thereby selecting against propagation of wild-type HIV-1. These results provide proof of a concept for potential application of a novel HIV-1 vector in HIV-1 disease.
Collapse
Affiliation(s)
- D S An
- Departments of Microbiology & Immunology and Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
94
|
Kovalev G, Duus K, Wang L, Lee R, Bonyhadi M, Ho D, McCune JM, Kaneshima H, Su L. Induction of MHC Class I Expression on Immature Thymocytes in HIV-1-Infected SCID-hu Thy/Liv Mice: Evidence of Indirect Mechanisms. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The SCID-hu Thy/Liv mouse and human fetal thymic organ culture (HF-TOC) models have been used to explore the pathophysiologic mechanisms of HIV-1 infection in the thymus. We report here that HIV-1 infection of the SCID-hu Thy/Liv mouse leads to the induction of MHC class I (MHCI) expression on CD4+CD8+ (DP) thymocytes, which normally express low levels of MHCI. Induction of MHCI on DP thymocytes in HIV-1-infected Thy/Liv organs precedes their depletion and correlates with the pathogenic activity of the HIV-1 isolates. Both MHCI protein and mRNA are induced in thymocytes from HIV-1-infected Thy/Liv organs, indicating induction of MHCI gene expression. Indirect mechanisms are involved, because only a fraction (<10%) of the DP thymocytes were directly infected by HIV-1, although the majority of DP thymocytes are induced to express high levels of MHCI. We further demonstrate that IL-10 is induced in HIV-1-infected thymus organs. Similar HIV-1-mediated induction of MHCI expression was observed in HF-TOC assays. Exogenous IL-10 in HF-TOC induces MHCI expression on DP thymocytes. Therefore, HIV-1 infection of the thymus organ leads to induction of MHCI expression on immature thymocytes via indirect mechanisms involving IL-10. Overexpression of MHCI on DP thymocytes can interfere with thymocyte maturation and may contribute to HIV-1-induced thymocyte depletion.
Collapse
Affiliation(s)
- Grigoriy Kovalev
- *Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Karen Duus
- *Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Liping Wang
- *Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Robert Lee
- †SyStemix, Inc., Palo Alto, CA 94304; and
| | | | - David Ho
- ‡Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016
| | | | | | - Lishan Su
- *Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
95
|
Kovalev G, Duus K, Wang L, Lee R, Bonyhadi M, Ho D, McCune JM, Kaneshima H, Su L. Induction of MHC class I expression on immature thymocytes in HIV-1-infected SCID-hu Thy/Liv mice: evidence of indirect mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 1999; 162:7555-62. [PMID: 10358212 PMCID: PMC4435947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The SCID-hu Thy/Liv mouse and human fetal thymic organ culture (HF-TOC) models have been used to explore the pathophysiologic mechanisms of HIV-1 infection in the thymus. We report here that HIV-1 infection of the SCID-hu Thy/Liv mouse leads to the induction of MHC class I (MHCI) expression on CD4+CD8+ (DP) thymocytes, which normally express low levels of MHCI. Induction of MHCI on DP thymocytes in HIV-1-infected Thy/Liv organs precedes their depletion and correlates with the pathogenic activity of the HIV-1 isolates. Both MHCI protein and mRNA are induced in thymocytes from HIV-1-infected Thy/Liv organs, indicating induction of MHCI gene expression. Indirect mechanisms are involved, because only a fraction (<10%) of the DP thymocytes were directly infected by HIV-1, although the majority of DP thymocytes are induced to express high levels of MHCI. We further demonstrate that IL-10 is induced in HIV-1-infected thymus organs. Similar HIV-1-mediated induction of MHCI expression was observed in HF-TOC assays. Exogenous IL-10 in HF-TOC induces MHCI expression on DP thymocytes. Therefore, HIV-1 infection of the thymus organ leads to induction of MHCI expression on immature thymocytes via indirect mechanisms involving IL-10. Overexpression of MHCI on DP thymocytes can interfere with thymocyte maturation and may contribute to HIV-1-induced thymocyte depletion.
Collapse
Affiliation(s)
- G Kovalev
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Blanco J, Jacotot E, Cabrera C, Cardona A, Clotet B, De Clercq E, Esté JA. The implication of the chemokine receptor CXCR4 in HIV-1 envelope protein-induced apoptosis is independent of the G protein-mediated signalling. AIDS 1999; 13:909-17. [PMID: 10371171 DOI: 10.1097/00002030-199905280-00006] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The envelope glycoprotein complex (gp120/gp41)n of HIV-1 is one of the viral products responsible for increased apoptosis in HIV infection. Here the role of the chemokine receptor CXCR4 in HIV-1 envelope protein-induced apoptosis was investigated. METHODS Apoptosis occurring in cocultures of chronically HIV-1 IIIB-infected cells with CD4 target cells expressing the CXCR4 receptor was quantified by terminal deoxinucleotidyl transferase dUTP nick end labeling (TUNEL) or propidium iodide staining followed by fluorescent antibody cell sorting, which allows the evaluation of single-cell killing. Moreover global (single cell- and syncytium-associated) apoptosis was quantified by a new radioactive TUNEL-derived assay. RESULTS By using these different techniques it was shown that single and syncytium-forming CD4 T cells die by apoptosis upon contact with envelope protein expressing cells independently of viral replication. Moreover, both the CXCR4 agonist SDF-1alpha, and the antagonist AMD3100, showed inhibitory effects on HIV-1 envelope protein-induced apoptosis in the CD4 T-cell subset of peripheral blood mononuclear cells and CD4 cell lines. CXCR4 signalling-induced by HIV-1 envelope proteins in CD4 T cells was not detected. Furthermore, it was shown that envelope protein-induced apoptosis can occur after treating target cells with the Gi-protein inhibitor pertussis toxin. CONCLUSIONS Evidence is provided for a role of CXCR4 in the mechanisms of HIV envelope protein-induced pathogenesis, contributing to selective CD4 cell killing. The results suggest that CXCR4 is involved in HIV-1-induced apoptosis; however, this role does not appear to involve G-protein-mediated CXCR4 signalling.
Collapse
Affiliation(s)
- J Blanco
- Institut de Recerca de la SIDA-Caixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
97
|
Lewis DE, Ng Tang DS, Wang X, Kozinetz C. Costimulatory pathways mediate monocyte-dependent lymphocyte apoptosis in HIV. Clin Immunol 1999; 90:302-12. [PMID: 10075859 DOI: 10.1006/clim.1998.4663] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Examination of annexin V binding, an indicator of early apoptosis, on lymphocytes from HIV+ people immediately after isolation showed that both CD4(+) and CD8(+) T cells were apoptotic, whereas B cell apoptosis was induced mainly after incubation. CD8(+) T cell apoptosis correlated with fewer CD4(+) T cells, but not the level of viremia. To determine potential mechanisms for apoptosis, we examined FasL expression, which was dramatically elevated on CD14(+) monocytes; however, antibody to FasL did not reproducibly inhibit apoptosis. Rather, CD8(+) T cell apoptosis was caused by antigen-presenting cells because removal of monocytes or addition of antibodies to CD80 and CD86 reduced apoptosis. B cell apoptosis also involved costimulatory signals delivered by T cells but not monocytes. A unique CD8(bright)CD28(dim) T cell population died after costimulation by monocytes. Because this population was increased in patients with undetectable viremia, abnormal antigen-presenting cells may contribute to continued CD8(+) T cell exhaustion by inducing apoptosis.
Collapse
Affiliation(s)
- D E Lewis
- Department of Microbiology and Immunology, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
98
|
Rao PV, Gallagher TM. Mouse hepatitis virus receptor levels influence virus-induced cytopathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:549-55. [PMID: 9782328 DOI: 10.1007/978-1-4615-5331-1_71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We developed human (HeLa) cell lines in which mouse hepatitis virus receptor (MHVR) levels could be regulated by addition of tetracycline. We used these cell lines to determine whether MHVR levels impact the degree of cytopathology induced by infection with the lytic MHV A59 strain. Two cultures were studied; HeLa-MHVRlo (less than 3,000 molecules per cell) and HeLa-MHVRhi (300,000 molecules per cell). Both supported synthesis of infective A59 virus. However, the MHVRlo cells showed no virus-induced cytopathology while the MHVRhi cells uniformly died within 14 hours after infection. This cell death was not related to virus-induced syncytium formation as it occurred even in subconfluent cells overlaid with fusion-blocking antiviral antibodies. MHV A59 spike proteins produced by vaccinia vectors also killed the MHVRhi cells within 12 hours postinfection--MHVRlo cells infected in parallel were intact as judged by trypan blue exclusion. Our current hypothesis is that the accumulation of intracellular complexes composed of spike and MHVR proteins leads to acute single cell lysis.
Collapse
Affiliation(s)
- P V Rao
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
99
|
Kort JJ. Impairment of excitatory amino acid transport in astroglial cells infected with the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1998; 14:1329-39. [PMID: 9788674 DOI: 10.1089/aid.1998.14.1329] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perturbation of astrocyte functions by HIV-1 infection may contribute to the pathogenesis of AIDS dementia complex (ADC). The present study investigated the possibility that astroglial transport of glutamate and aspartate, the major excitatory amino acids (EAAs) in the mammalian central nervous system (CNS), is altered by HIV-1 infection. Human U251 glioma cells were infected with the brain isolate SF162 of HIV-1. HIV-1 persisted in glial cells over several months. This nonproductive infection of glial cells was characterized by persistent expression of Nef over the time of the infection, and the transient presence of structural viral proteins, including the viral transmembrane glycoprotein gp41, which was detected during the initial 2 weeks following HIV-1 infection. The presence of gp41 in acutely HIV-1-infected glial cells coincided with a 36% decrease in D-[3H]aspartate uptake, owing to a reduction in the maximal transport capacity (vmax) for D-aspartate. The expression of typical astrocytic glutamate transporters EAAT1 and EAAT2 in U251 glioma cells was not altered by HIV-1 infection. To determine whether viral protein gp120, gp41, or Nef was involved in the impairment of EAA transport in acutely HIV-1-infected glial cells, effects of lentiviral lytic peptide type 1 (LLP-1) (corresponding to the carboxy terminus of gp41), recombinant SF2 gp120, and recombinant LAI Nef on D-[3H]aspartate uptake and the release of glutamate in glial cells were investigated. Only LLP-1 reduced D-[3H]aspartate uptake and facilitated the release of glutamate from glial cells in a concentration-dependent manner. These results suggest that the carboxy terminus of gp41 impairs EAA transport in glial cells, which may contribute to excitotoxic damage to neurons in HIV-1 infection of the CNS.
Collapse
Affiliation(s)
- J J Kort
- Department of Medicine, Albany Medical College, New York 12208, USA
| |
Collapse
|
100
|
Karlsson GB, Halloran M, Schenten D, Lee J, Racz P, Tenner-Racz K, Manola J, Gelman R, Etemad-Moghadam B, Desjardins E, Wyatt R, Gerard NP, Marcon L, Margolin D, Fanton J, Axthelm MK, Letvin NL, Sodroski J. The envelope glycoprotein ectodomains determine the efficiency of CD4+ T lymphocyte depletion in simian-human immunodeficiency virus-infected macaques. J Exp Med 1998; 188:1159-71. [PMID: 9743534 PMCID: PMC2212530 DOI: 10.1084/jem.188.6.1159] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Revised: 07/02/1998] [Indexed: 11/04/2022] Open
Abstract
CD4+ T lymphocyte depletion in human immunodeficiency virus type 1 (HIV-1)-infected humans underlies the development of acquired immune deficiency syndrome. Using a model in which rhesus macaques were infected with chimeric simian-human immunodeficiency viruses (SHIVs), we show that both the level of viremia and the structure of the HIV-1 envelope glycoprotein ectodomains individually contributed to the efficiency with which CD4(+) T lymphocytes were depleted. The envelope glycoproteins of recombinant SHIVs that efficiently caused loss of CD4(+) T lymphocytes exhibited increased chemokine receptor binding and membrane-fusing capacity compared with those of less pathogenic viruses. These studies identify the HIV-1 envelope glycoprotein ectodomains as determinants of CD4(+) T lymphocyte loss in vivo and provide a foundation for studying pathogenic mechanisms.
Collapse
Affiliation(s)
- G B Karlsson
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|