51
|
Banerjee P, Crawford L, Samuelson E, Feuer G. Hematopoietic stem cells and retroviral infection. Retrovirology 2010; 7:8. [PMID: 20132553 PMCID: PMC2826343 DOI: 10.1186/1742-4690-7-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.
Collapse
Affiliation(s)
- Prabal Banerjee
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lindsey Crawford
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elizabeth Samuelson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Center for Humanized SCID Mice and Stem Cell Processing Laboratory, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
52
|
Rodriguez SM, Golemba MD, Campos RH, Trono K, Jones LR. Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J Gen Virol 2009; 90:2788-2797. [DOI: 10.1099/vir.0.011791-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have classified the env sequences of bovine leukemia virus (BLV) provirus from different locations worldwide into between two and four genetic groupings. These different studies gave unique names to the identified groups and no study has yet integrated all the available sequences. Thus, we hypothesized that many of the different groups previously identified actually correspond to a limited group of genotypes that are unevenly distributed worldwide. To examine this hypothesis, we sequenced the env gene from 28 BLV field strains and compared these sequences to 46 env sequences that represent all the genetic groupings already identified. By using phylogenetic analyses, we recovered six clades, or genotypes, that we have called genotypes 1, 2, 3, 4, 5 and 6. Genotypes 1–5 have counterparts among the sequence groupings identified previously. One env sequence did not cluster with any of the others and was highly divergent when compared with the six genotypes identified here. Thus, an extra genotype, which we named 7, may exist. Similarity comparisons were highly congruent with phylogenetic analyses. Furthermore, our analyses confirmed the existence of geographical clusters.
Collapse
Affiliation(s)
| | | | - Rodolfo H. Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, UBA, Argentina
| | - Karina Trono
- Instituto de Virología, CNIA, INTA-Castelar, Argentina
| | - Leandro R. Jones
- Division of Molecular Biology, Estación de Fotobiología Playa Unión, CC 15, Rawson, Chubut 9103, Argentina
| |
Collapse
|
53
|
Comparative moleculo-immunological analysis of swamp- and riverine-type water buffaloes responses. Cytokine 2009; 46:273-82. [DOI: 10.1016/j.cyto.2009.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/15/2009] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
|
54
|
Ferens WA, Haruna J, Cobbold R, Hovde CJ. Low numbers of intestinal Shiga toxin-producing E. coli correlate with a poor prognosis in sheep infected with bovine leukemia virus. J Vet Sci 2009; 9:375-9. [PMID: 19043312 PMCID: PMC2811778 DOI: 10.4142/jvs.2008.9.4.375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Healthy ruminants carry intestinal Shiga toxin (Stx)-producing Escherichia coli (STEC). Stx has antiviral activities in vitro and STEC numbers correlate with reduced early viremia in sheep experimentally infected with bovine leukemia virus (BLV). This study assessed the impact of intestinal STEC on BLV-induced disease for one year post-BLV-challenge. High STEC scores (CFU/g feces × frequency of STEC-positive samples) correlated with good health, whereas poor weight gain, distress, and tumor development occurred only among animals with low STEC scores. STEC carriage was associated with increased percentages of B cells in peripheral blood.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
55
|
Lavanya M, Kinet S, Montel-Hagen A, Mongellaz C, Battini JL, Sitbon M, Taylor N. Cell Surface Expression of the Bovine Leukemia Virus-Binding Receptor on B and T Lymphocytes Is Induced by Receptor Engagement. THE JOURNAL OF IMMUNOLOGY 2008; 181:891-8. [DOI: 10.4049/jimmunol.181.2.891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
56
|
Florins A, Boxus M, Vandermeers F, Verlaeten O, Bouzar AB, Defoiche J, Hubaux R, Burny A, Kettmann R, Willems L. Emphasis on cell turnover in two hosts infected by bovine leukemia virus: a rationale for host susceptibility to disease. Vet Immunol Immunopathol 2008; 125:1-7. [PMID: 18513803 DOI: 10.1016/j.vetimm.2008.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/28/2022]
Abstract
Bovine leukemia virus (BLV) is a deltaretrovirus that infects and induces accumulation of B-lymphocytes in the peripheral blood and lymphoid tissues of cattle, leading to leukemia/lymphoma. BLV can also be experimentally transmitted to sheep, in which disease appears earlier and at higher frequencies. Abnormal accumulation of leukemic B-lymphocytes results from an alteration of different parameters that include cell proliferation and death as well as migration to lymphoid tissues. Interestingly, B lymphocyte turnover is increased in BLV-infected sheep but reduced in cattle, revealing a potential relationship between cell kinetics and disease progression.
Collapse
Affiliation(s)
- Arnaud Florins
- Gembloux Agricultural University, Cellular and Molecular Biology, Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Camargos MF, Pereda A, Stancek D, Rocha MA, dos Reis JKP, Greiser-Wilke I, Leite RC. Molecular characterization of the env gene from Brazilian field isolates of Bovine Leukemia Virus. Virus Genes 2007; 34:343-50. [PMID: 16917740 DOI: 10.1007/s11262-006-0011-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
Molecular characterization of Bovine leukemia virus (BLV) isolates from Brazil using the env gene sequences revealed a high conservation of this gene. In most cases the substitutions corresponded to silent transitions. In addition, cystein residues, potential glycosylation sites, neutralization domains and other critical residues involved with the envelope structural domains and viral infectivity were conserved. Most of the substitutions found in the aminoacid sequences of the gp51 protein were localized in the G and H epitopes. Using the SIFT software, it was predicted that they should not alter the protein functions. Phylogenetic analyses showed that partial or complete env gene sequences grouped in three or four phylogenetic clusters, respectively. The sequences from the Brazilian isolates had similar mutation rates as compared to samples from other countries, and belonged to at least two phylogenetic clusters.
Collapse
Affiliation(s)
- Marcelo Fernandes Camargos
- Setor de Virologia do Laboratório Nacional Agropecuário de Minas Gerais, Av. Rômulo Joviano s/n Caixa Postal 50, Pedro Leopoldo, MG, Brasil CEP. 33.600-000.
| | | | | | | | | | | | | |
Collapse
|
58
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
59
|
Fulton BE, Portella M, Radke K. Dissemination of bovine leukemia virus-infected cells from a newly infected sheep lymph node. J Virol 2006; 80:7873-84. [PMID: 16873244 PMCID: PMC1563808 DOI: 10.1128/jvi.00529-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the early establishment of bovine leukemia virus (BLV) infection, we injected BLV-infected or mock-infected allogeneic cells into the shoulder of sheep in which an efferent lymphatic duct of the draining prescapular lymph node had been cannulated. Rare mononuclear cells acting as centers of BLV infection in culture were present within 4 to 6 days in efferent lymph and within 6 to 10 days in blood. Soon after BLV injection, immunoglobulin M+ (IgM+) and CD8+ cells increased in efferent lymph and oscillated reciprocally in frequency. CD8+ blasts increased on days 4 to 6, when infectious centers increased 100-fold in lymph. On days 6 and 7, both lymph and blood were enriched with CD8+ cells that were labeled late on day 5 with an intravenous pulse of 5-bromo-2'-deoxyuridine (BrdU). Lymph, but not blood, was enriched with BrdU+ B cells on day 7. Capsid-specific antibodies became detectable in efferent lymph on days 6 to 8 and surface glycoprotein-specific antibodies on day 9, preceding their detection in serum by 9 to 14 days. Systemic dissemination of BLV-infected cells was thus accompanied by an increase in proliferating CD8+ cells and the onset of BLV-specific antibodies in lymph. Infectious centers reached maximum frequencies of 0.2% in lymph by days 11 to 13, and then their frequencies increased by 5- to 40-fold in blood cells, suggesting that many infected blood cells do not recirculate back into lymph. Beginning on days 10 to 13, a subpopulation of B cells having high levels of surface IgM increased sharply in peripheral blood. Such cells were not present in lymph. After a day 16 pulse of BrdU, recently proliferated cells that stained intensely for surface IgM appeared in blood within 15 h. Predominantly B lymphocytes contained the viral capsid protein when lymph and blood cells were cultured briefly to allow BLV expression. However, both early in lymph and later in blood, BrdU+ B cells greatly exceeded productively infected cells, indicating that new BLV infections stimulate proliferation of two different populations of B cells.
Collapse
Affiliation(s)
- B E Fulton
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616-8521, USA
| | | | | |
Collapse
|
60
|
Konnai S, Usui T, Ikeda M, Kohara J, Hirata TI, Okada K, Ohashi K, Onuma M. Tumor necrosis factor-alpha genetic polymorphism may contribute to progression of bovine leukemia virus-infection. Microbes Infect 2006; 8:2163-71. [PMID: 16839795 DOI: 10.1016/j.micinf.2006.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/30/2006] [Accepted: 04/06/2006] [Indexed: 11/18/2022]
Abstract
In a previous report, we had indicated that in a sheep model, the expression of tumor necrosis factor (TNF)-alpha was closely associated with disease progression in sheep experimentally infected with bovine leukemia virus (BLV). However, individual variabilities are observed in these responses in BLV-infected animals. To attempt to identify genetic factors promoting the progression to BLV-induced lymphoma, we endeavored to determine whether there are any polymorphisms in the TNF-alpha gene among 291 individuals and whether this would affect the level of TNF-alpha expression and concomitant progression of BLV-induced disease or increase in the provirus load in the carriers. We found that the frequency of the TNF-alpha -824G allele, which has been associated with low transcription activity of the promoter/predicted enhancer region of the bovine TNF-alpha gene, was higher in individuals with BLV-induced lymphoma than in asymptomatic carrier individuals. In addition, we observed a tendency for increased BLV-provirus load in cattle with TNF-alpha -824G/G homozygote compared to TNF-alpha -824A/A homozygote or TNF-alpha -824A/G. These data suggest that the observed polymorphism in the promoter region of TNF-alpha gene could at least in part contribute to the progression of lymphoma in BLV-infection.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ferens WA, Cobbold R, Hovde CJ. Intestinal Shiga toxin-producing Escherichia coli bacteria mitigate bovine leukemia virus infection in experimentally infected sheep. Infect Immun 2006; 74:2906-16. [PMID: 16622229 PMCID: PMC1459712 DOI: 10.1128/iai.74.5.2906-2916.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/08/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
Ruminants often carry gastrointestinal Shiga toxin (Stx)-producing Escherichia coli (STEC). Stxs belong to a large family of ribosome-inactivating proteins (RIPs), found in many plants and some bacteria. Plant RIPs, secreted into extracellular spaces, limit the spread of viruses through plant tissues by penetrating and killing virally infected cells. Previously, we showed Stx activity against bovine leukemia virus (BLV)-infected cells in vitro and hypothesized that STEC bacteria have antiviral activity in ruminant hosts. Here, we investigated the impact of STEC on the initial phases of BLV infection in sheep. Sheep were treated with biweekly oral doses of E. coli O157:H7 (an STEC) or an isogenic stx mutant strain. A different group of sheep were similarly treated with five naturally occurring ovine STEC isolates or stx-negative E. coli. Intestinal STEC bacteria were enumerated and identified by standard fecal culture and DNA hybridization. Oral STEC treatment did not always result in carriage of STEC, although many animals consistently presented with >10(4) CFU/g feces. BLV viremia was assessed by spontaneous lymphocyte proliferation (SLP) in cultures of blood mononuclear cells and by syncytium formation in cocultures of the same with F-81 indicator cells. SLP was lower (P < 0.05) and syncytia were fewer (P < 0.05) in STEC-treated sheep than in untreated sheep. Both lower SLP and fewer syncytia positively correlated with fecal STEC numbers. Average weight gain post-BLV challenge was higher in STEC-treated sheep than in untreated sheep (P < 0.05). These results support the hypothesis that in ruminants, intestinal STEC bacteria have antiviral activity and mitigate BLV-induced disease.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
62
|
Monti GE, Frankena K, Engel B, Buist W, Tarabla HD, de Jong MCM. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle. J Vet Diagn Invest 2006; 17:451-7. [PMID: 16312236 DOI: 10.1177/104063870501700507] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to validate a new blocking enzyme-linked immunosorbent assay (ELISA) (designated M108 for milk and S108 for serum samples) for detecting bovine leukemia virus (BLV) infection in dairy cattle. Milk, serum, and ethylenediaminetetraacetic acid-blood samples were collected from 524 adult Holstein cows originating from 6 dairy herds in Central Argentina. The M108 and S108 were compared with agar gel immunodiffusion (AGID), polymerase chain reaction and a commercial ELISA. Because there is currently no reference test capable of serving as a gold standard, the test sensitivity (SE) and specificity (SP) were evaluated by the use of a latent class model. Statistical inference was performed by classical maximum likelihood and by Bayesian techniques. The maximum-likelihood analysis was performed assuming conditional independence of tests, whereas the Bayesian approach allowed for conditional dependence. No clear conclusion could be drawn about conditional dependence of tests. Results with maximum likelihood (under conditional independence) and posterior Bayes (under conditional dependence) were practically the same. Conservative estimates of SE and SP (with 95% confidence intervals) for M108 were 98.6 (96.7; 99.6) and 96.7 (92.9; 98.8) and for S108 99.5 (98.2; 99.9) and 95.4 (90.9; 98.1), respectively. The ELISA 108 using either milk or serum to detect BLV-infected animals had comparable SE and SP with the official AGID and a commercial ELISA test, which are currently the most widely accepted tests for the serological diagnosis of BLV infection. Therefore, ELISA 108 can be used as an alternative test in monitoring and control programs.
Collapse
Affiliation(s)
- Gustavo E Monti
- Universidad Austral de Chile, Instituto de Medicina Preventiva, Facultad de Ciencias Veterinarias, Valdiva, Chile
| | | | | | | | | | | |
Collapse
|
63
|
Konnai S, Usui T, Ikeda M, Kohara J, Hirata TI, Okada K, Ohashi K, Onuma M. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection. Virology 2005; 339:239-48. [PMID: 15993916 DOI: 10.1016/j.virol.2005.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/06/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-alpha and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-alpha-induced responses, in this study we examined the TNF-alpha-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-alpha (rTNF-alpha) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5+ or sIgM+ cells and these cells showed resistance to TNF-alpha-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-alpha-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Amills M, Norimine J, Olmstead CA, Lewin HA. Cytokine mRNA expression in B cells from bovine leukemia virus-infected cattle with persistent lymphocytosis. Cytokine 2005; 28:25-8. [PMID: 15341922 DOI: 10.1016/j.cyto.2004.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 05/07/2004] [Accepted: 06/19/2004] [Indexed: 11/29/2022]
Abstract
We have characterized the expression of six cytokine mRNAs in highly purified B cells from bovine leukemia virus (BLV)-infected cows with persistent lymphocytosis. Selected cytokine mRNAs included those encoding tumor necrosis factor (TNF), lymphotoxin-alpha (LT-alpha), transforming growth factor-beta1 (TGF-beta1), interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and interleukin-10 (IL-10). Fresh B cells from cows with persistent lymphocytosis constitutively transcribed TNF, LT-alpha and TGF-beta1 mRNAs. Although IL-1beta, IL-6 and IL-10 mRNAs were barely detectable in fresh B cells from cows with persistent lymphocytosis, transcripts encoding these cytokines were strongly and rapidly upregulated in B cells after cell culture. Results from this study provide the first evidence that B cells infected with BLV express specific cytokine mRNAs in vivo.
Collapse
Affiliation(s)
- Marcel Amills
- Department of Animal Sciences, Laboratory of Immunogenetics, Edward R. Madigan Laboratory, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
| | | | | | | |
Collapse
|
65
|
Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect 2005; 6:584-95. [PMID: 15158193 DOI: 10.1016/j.micinf.2004.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis (EBL). In a previous report, we found that in a sheep model, only CD5(-) B cells proliferated clonally, while CD5(+) B cells rapidly decreased when the disease progressed to the lymphoma stage. We demonstrate here that, although both CD5(+) and CD5(-) B cells, but not CD4(+) T, CD8(+) T and gammadeltaTCR(+)T cells, are protected from spontaneous ex vivo apoptosis in sheep infected with wild-type and a mutant BLV that encodes a mutant Tax D247G protein with elevated trans-activation activity, only CD5(-) B cells become the main target for ex vivo survival when the disease proceeds to the persistent lymphocytotic stage, which showed an increased expansion of the CD5(-) B cells. In addition, we identified, by four-color flow cytometric analysis, that in CD5(-) B cells, the apoptotic rates of cells that expressed wild-type and mutant BLV were greatly decreased compared with those of BLV-negative cells. There was only a slight reduction in the apoptotic rates in BLV-positive cells from CD5(+) B cells. In addition, supernatants from peripheral blood mononuclear cell (PBMC) cultures from wild-type- and mutant BLV-infected sheep mainly protected CD5(-) B cells from spontaneous apoptosis. Our results suggest that, although BLV can protect both CD5(+) and CD5(-) B cells from ex vivo apoptosis, the mechanisms accounting for the ex vivo survival between these two B-cell subsets differ. Therefore, it appears that the phenotypic changes in cells that express CD5 at the lymphoma stage could result from a difference in susceptibility to apoptosis in CD5(+) and CD5(-) B cells in BLV-infected sheep.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocyte Subsets/physiology
- B-Lymphocyte Subsets/virology
- CD4 Antigens/analysis
- CD5 Antigens/analysis
- CD8 Antigens/analysis
- Cattle
- Cells, Cultured
- Deltaretrovirus Infections/physiopathology
- Deltaretrovirus Infections/virology
- Disease Progression
- Enzootic Bovine Leukosis/virology
- Flow Cytometry
- Genes, pX
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Mutation, Missense
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Sheep
Collapse
Affiliation(s)
- Masahiko Takahashi
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Direct evidence that Escherichia coli Shiga toxin (Stx) acts against bovine leukemia virus (BLV)-expressing cells was obtained. The active A subunit of Stx type 1 (StxA1) targeted a selected population of permeable cells expressing BLV and inhibited BLV replication in a culture of bovine peripheral blood mononuclear cells. Cells were cultured with and without StxA1, and at various times cells expressing BLV were identified by being stained with MW1 monoclonal antibody specific for the BLV protein gp51. Before culture, permeable cells were tagged by uptake of one of the following: acetoxymethyl of 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein (BCECF), BCECF conjugated to 70-kDa dextran, or 70-kDa dextran conjugated to fluorescein. The tagged cells costaining with anti-gp51 were selectively eliminated in StxA1-treated cultures. Electron microscopy analysis of purified B lymphocytes showed sharply reduced numbers of BLV particles in StxA1-treated cultures.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | |
Collapse
|
67
|
Hamilton VT, Stone DM, Cantor GH. Translocation of the B cell receptor to lipid rafts is inhibited in B cells from BLV-infected, persistent lymphocytosis cattle. Virology 2003; 315:135-47. [PMID: 14592766 DOI: 10.1016/s0042-6822(03)00522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine leukemia virus (BLV) infection causes a significant polyclonal expansion of CD5(+), IgM+ B lymphocytes known as persistent lymphocytosis (PL) in approximately 30% of infected cattle. There is evidence that this expanded B cell population has altered signaling, and resistance to apoptosis has been proposed as one mechanism of B cell expansion. In human and murine B cells, antigen binding initiates movement of the B cell receptor (BCR) into membrane microdomains enriched in sphingolipids and cholesterol, termed lipid rafts. Lipid rafts include members of the Src-family kinases and exclude certain phosphatases. Inclusion of the BCR into lipid rafts plays an important role in regulation of early signaling events and subsequent antigen internalization. Viral proteins may also influence signaling events in lipid rafts. Here we demonstrate that the largely CD5(+) B cell population in PL cattle has different mobilization and internalization of the BCR when compared to the largely CD5-negative B cells in BLV-negative cattle. Unlike B cells from BLV-negative cattle, the BCR in B cells of BLV-infected, PL cattle resists movement into lipid rafts upon stimulation and is only weakly internalized. Expression of viral proteins as determined by detection of the BLV transmembrane (TM) envelope glycoprotein gp30 did not alter these events in cells from PL cattle. This exclusion of the BCR from lipid rafts may, in part, explain signaling differences seen between B cells of BLV-infected, PL, and BLV-negative cattle and the resistance to apoptosis speculated to contribute to persistent lymphocytosis.
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
68
|
van den Heuvel M, Portetelle D, Jefferson B, Jacobs RM. Adaptation of a sandwich enzyme-linked immunosorbent assay to determine the concentration of bovine leukemia virus p24 and optimal conditions for p24 expression in short-term cultures of peripheral blood mononuclear cells. J Virol Methods 2003; 111:61-7. [PMID: 12821198 DOI: 10.1016/s0166-0934(03)00148-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bovine leukemia virus (BLV) is a common retroviral infection of cattle. Infection is accompanied by integration of BLV into the host cell genome and is persistent for the life of the individual as is the presence of anti-BLV antibodies. Lymphosarcoma occurs in a small fraction of infected adult individuals but otherwise there is little or no associated disease. Viremia is undetectable, however, BLV is expressed readily once infected cells are cultured in vitro. A sandwich enzyme-linked immunosorbent assay (sELISA) was optimized, using murine monoclonal antibodies, to quantify the major internal structural protein (p24) produced in short-term cultures of peripheral blood mononuclear cells (PBMCs). Optimal production of BLV p24 was achieved utilizing RPMI supplemented with 10% fetal bovine serum (FBS), pH 7, and 5 x 10(6) cells per ml. Cultures were terminated at 24 h. The sELISA was linear between 30 and 900 ng/ml and the limit of detection was 1.2 ng/ml. At three concentrations of p24, intra- and inter-assay coefficients of variation (CV) varied between 9.2 and 13.3 and 5.1 and 12.9%, respectively.
Collapse
Affiliation(s)
- M van den Heuvel
- Department of Pathobiology, University of Guelph, Ont., Guelph, Canada N1G 2W1.
| | | | | | | |
Collapse
|
69
|
Basu I, Ferens WA, Stone DM, Hovde CJ. Antiviral activity of shiga toxin requires enzymatic activity and is associated with increased permeability of the target cells. Infect Immun 2003; 71:327-34. [PMID: 12496182 PMCID: PMC143405 DOI: 10.1128/iai.71.1.327-334.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study expanded our earlier finding that Shiga toxin type 1 (Stx1) has activity against bovine leukemia virus (BLV) (W. A. Ferens and C. J. Hovde, Infect. Immun. 68:4462-4469, 2000). The Stx molecular motifs required for antiviral activity were identified, and a mechanism of Stx action on virally infected cells is suggested. Using inhibition of BLV-dependent spontaneous lymphocyte proliferation as a measure of antiviral activity, we showed that Stx2 had antiviral activity similar to that of Stx1. Enzymatic and antiviral activities of three StxA1 chain mutants deficient in enzymatic activity or aspects of receptor-mediated cytotoxicity were compared. Using protein synthesis inhibition to measure enzymatic activity, the mutant E167D was 300-fold less catalytically active than wild-type StxA1, was minimally active in antiviral assays, and did not inhibit synthesis of viral proteins. Two StxA1 mutants, A231D-G234E and StxA(1)1 (enzymatically active but unable to kill cells via the classical receptor-mediated route), had undiminished antiviral activity. Although binding of radiolabeled StxA1 to bovine blood cells or to free virus was not detected, flow cytometric analysis showed that the number of BLV-expressing cells were specifically reduced in cultures treated with Stx. These unique and rare lymphocytes were highly permeable to 40- and 70-kDa fluorescent dextrans, indicating that direct absorption of toxins by virus-expressing cells is a potential mechanism of target cell intoxication. These results support the hypothesis that Stx-producing Escherichia coli colonization of the gastrointestinal tract may benefit ruminant hosts by the ability of Stxs to exert antiviral activity.
Collapse
Affiliation(s)
- Indira Basu
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
70
|
Kuckleburg CJ, Chase CC, Nelson EA, Marras SAE, Dammen MA, Christopher-Hennings J. Detection of bovine leukemia virus in blood and milk by nested and real-time polymerase chain reactions. J Vet Diagn Invest 2003; 15:72-6. [PMID: 12580302 DOI: 10.1177/104063870301500117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Concerns about retroviruses in livestock and products derived from them have necessitated the development of tests to detect the bovine leukemia virus (BLV) in blood and milk from cattle. Dairy cattle (n = 101) from 5 different geographical areas were used for this study. A nested polymerase chain reaction (PCR) identified 98% of BLV seropositive cattle (n = 80) from blood and 65% from milk, whereas real-time PCR detected 94% of BLV seropositive cattle from blood and 59% from milk. Bovine leukemia virus was also detected by PCR in approximately 10% of seronegative cattle (n = 21), most likely because of early detection before seroconversion.
Collapse
|
71
|
Beyer J, Köllner B, Teifke JP, Starick E, Beier D, Reimann I, Grunwald U, Ziller M. Cattle Infected with Bovine Leukaemia Virus may not only Develop Persistent B-cell Lymphocytosis but also Persistent B-cell Lymphopenia. ACTA ACUST UNITED AC 2002; 49:270-7. [PMID: 12241026 DOI: 10.1046/j.1439-0450.2002.00559.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the distribution of B and T cells in the peripheral blood of haematologically inconspicuous (non-persistent lymphocytotic, PL-) cattle infected with the bovine leukaemia virus (BLV). Flow cytometric data were obtained from six PL- cattle and compared with six age-matched animals with persistent lymphocytosis (PL+) and five non-infected healthy controls (BLV-). In the PL- group, the percentage and number of surface immunoglobulin-positive (sIg+) B cells were significantly reduced. Whereas in BLV-cattle, about 40% of the peripheral blood lymphocytes (PBL) were sIg + and 24% were sIgM + B cells. In the PL- group, less than 20% of the PBL were sIg+ and sIgM+ B cells. Only 5% of the PBL co-expressed sIgM+ and CD5+ versus 16% in BLV-. This decrease was persistent over 3 years and predominantly affected: (i) B cells that did not express sIgM; (ii) sIgM + B cells co-expressing CD5 and CD11b; and (iii) equally both lambda- and K-type light chain B-cell subpopulations. In contrast, the number of all circulating lymphocytes, CD5- and CD11b- sIgM+ B cells and CD2+ T cells did not differ. In PL+ animals, about 75% of the PBL were sIgM+ CD5+ B cells. These cells were of polyclonal origin, as light chains of the lambda- and K-type were expressed in a ratio of 4:1 (57.7% of PBL lambda+, 14% kappa+) as in BLV- animals (33.6% of PBL lambda+, 8.7% kappa+). In PL+ cattle the absolute number of B-cells and, therefore, their relative percentage is significantly increased. For this reason, even in case of absolutely increased T-cell numbers, the relative percentage of T-cells could be lower than in normal controls. The cause for the observed B cell decrease in PL- cattle is unknown, but it can be assumed that cytotoxic T cells are involved in this B-cell lymphopenia.
Collapse
Affiliation(s)
- J Beyer
- Institute of Infectology, Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Dixon JB, Savage M, Wattret A, Taylor P, Ross G, Carter SD, Kelly DF, Haywood S, Phythian C, Macintyre AR, Bell SC, Knottenbelt DC, Green JR. Discriminant and multiple regression analysis of anemia and opportunistic infection in Fell pony foals. Vet Clin Pathol 2002; 29:84-86. [PMID: 12070803 DOI: 10.1111/j.1939-165x.2000.tb00408.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A condition resembling acquired immunodeficiency with anemia has been described in British Fell pony foals. The pathogenesis is unknown. The present study involved 322 foals of which 164 were of Fell breed and 12 were affected. Discriminant and multiple regression analyses were used to test the results of all clinical pathology parameters from these foals for statistical association with (1) breed origin and (2) presence of disease. Only hematocrit associated significantly with presence of disease. However, significant associations were found with Fell breed origin, including serum albumin concentration and lymphocyte count. The unexpected discovery of sporadic lymphocytosis in the breed indicates the value of this kind of analysis and may be evidence that Fell foal immunodeficiency is associated with retroviral infection.
Collapse
Affiliation(s)
- John B. Dixon
- Department of Veterinary Pathology, University of Liverpool, Liverpool L69 3BX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Licursi M, Inoshima Y, Wu D, Yokoyama T, González ET, Sentsui H. Genetic heterogeneity among bovine leukemia virus genotypes and its relation to humoral responses in hosts. Virus Res 2002; 86:101-10. [PMID: 12076834 DOI: 10.1016/s0168-1702(02)00059-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The existence of bovine leukemia virus (BLV) genotypes was investigated by restriction fragment length polymorphism (RFLP) analysis using bovine peripheral blood leukocytes collected from different geographical areas of Japan. For this purpose a nested polymerase chain reaction (PCR) for a 444 bp fragment of the envelope (env) gene was used because it was previously reported that this region might be responsible for the serological status in the host. The PCR products from 60 samples of BLV-infected cells were digested with endonucleases BamH I, Bgl I, Bcl I, Hae III and Pvu II. RFLP analysis demonstrated that there were six different genotypes of BLV present among cattle in Japan. In some herds PCR-positive animals were infected with only one genotype, but in other herds a few genotypes were found. One genotype was dominant throughout infected cattle and it was also detected in neoplastic cells from three of four animals with lymphosarcoma and three cell lines persistently infected with BLV. Production of antibodies to BLV in each cattle was surveyed by agar gel immunodiffusion and indirect hemagglutination tests, and the results were compared with those obtained from PCR. No genotype related to decreased immunoreactivity was detected. The difference in anti-viral immune responses of each animal appears to be related to the infection stage and other host factors, not to genetic heterogeneity of the envelope gene.
Collapse
Affiliation(s)
- Maria Licursi
- National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Nagy DW, Tyler JW, Stoker A, Kleiboeker SB. Association between the strength of serologic recognition of bovine leukosis virus and lymphocyte count in bovine leukosis virus-infected cows. J Am Vet Med Assoc 2002; 220:1681-4. [PMID: 12051510 DOI: 10.2460/javma.2002.220.1681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether strength of serologic recognition of bovine leukosis virus (BLV) by use of ELISA is associated with blood lymphocyte counts. DESIGN Prospective study. ANIMALS 161 cows with positive results of ELISA for BLV. PROCEDURE Sample-to-positive ratio (S:P), which is the ratio between the test sample and a positive control sample, was compared among lymphocytotic and nonlymphocytotic cows. A regression model was constructed to evaluate the association between blood lymphocyte concentration and S:P, age, and the interaction of these terms. RESULTS Mean S:P differed significantly between lymphocytotic (2.58 +/- 0.36) and nonlymphocytotic (2.38 +/- 0.39) cows. Age and S:P were significantly associated with lymphocyte count. CONCLUSIONS AND CLINICAL RELEVANCE Sample-to-positive ratio and lymphocyte count were related; however, cows with high S:P were not always lymphocytotic. Culling cows on the basis of S:P will reduce the herd load of infectious virus faster than random culling of ELISA-positive cows; however, culling on the basis of lymphocyte count will eliminate a greater proportion of the reservoir of infection.
Collapse
Affiliation(s)
- Dusty W Nagy
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana 61802, USA
| | | | | | | |
Collapse
|
75
|
Abstract
A sensitive non-radioactive microplate hybridization assay for the detection of proviral DNA of bovine leukemia virus (BLV)-specific polymerase chain reaction (PCR) product is described. The PCR products are labeled by adding digoxigenin-dUTP to the nested PCR reaction and are captured by a microtitre plate coated with oligonucleotide probe, which is complementary to the inner region of the amplification product. Captured products are reacted with an anti-DIG Fab fragment conjugated to peroxidase, and detected using a colorimetric reaction. The PCR-enzyme linked immunosorbent assay (ELISA), detecting as low as 10(-4) ng of proviral DNA in a background of 1 microg of BLV-negative DNA, was up to 100-fold more sensitive than ethidium bromide staining, and showed equal sensitivity to Southern blot hybridization. Using this method it was possible to monitor the presence of proviral DNA in four sheep infected experimentally with BLV, over a 10 months postinfection period, as well as in 29 cattle infected naturally. The test is rapid and highly sensitive and is a useful additional tool for the detection of BLV-infected animals.
Collapse
Affiliation(s)
- M Rola
- National Veterinary Research Institute, Al.Partyzantow 57, 24-100, Pulawy, Poland
| | | |
Collapse
|
76
|
Altreuther G, Llames L, Neuenschwander S, Langhans W, Werling D. Morphologic and functional changes in bovine monocytes infected in vitro with the bovine leukaemia virus. Scand J Immunol 2001; 54:459-69. [PMID: 11696197 DOI: 10.1046/j.1365-3083.2001.00994.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments on the host cell spectrum of bovine leukaemia virus (BLV), a retrovirus closely related to the human T-cell leukaemia virus (HTLV), have yielded conflicting data. Currently, BLV is known to infect B cells, whereas its ability to infect other cell types, e.g. monocytes/macrophages, is doubtful. As monocytes/macrophages may have profound effects on the diversity of the T-cell response, we studied the possibility of in vitro infection, using bovine monocytes and SV40-transformed bovine macrophages. Proviral DNA was detected by nested polymerase chain reaction (PCR) from day 1 until the end of the experiments at either day 5 or day 80, depending on the quantity of virus used for infection. In addition, the infection was associated with morphological changes in infected cells as revealed by electron microscopy. The in vitro infection did not significantly change either the expression of surface antigens (CD11b, CD32, and major histocompatibility complex (MHC) class II) or the amounts of cytokine transcripts (interleukin (IL)-1beta, tumour necrosis factor (TNF)-alpha, IL-6 and IL-12p40) with or without lipopolysaccharide (LPS) stimulation. The data suggest that BLV can infect monocytes, but the infection does not seem to influence the function or the phenotype of these cells. Infected monocytes may, however, play a role as a viral reservoir in vivo.
Collapse
Affiliation(s)
- G Altreuther
- Physiology and Animal Husbandry, Institute of Animal Sciences, Swiss Federal Institute of Technology Zürich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
77
|
Van den Broeke A, Cleuter Y, Beskorwayne T, Kerkhofs P, Szynal M, Bagnis C, Burny A, Griebel P. CD154 costimulated ovine primary B cells, a cell culture system that supports productive infection by bovine leukemia virus. J Virol 2001; 75:1095-103. [PMID: 11152482 PMCID: PMC114015 DOI: 10.1128/jvi.75.3.1095-1103.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) is closely associated with the development of B-cell leukemia and lymphoma in cattle. BLV infection has also been studied extensively in an in vivo ovine model that provides a unique system for studying B-cell leukemogenesis. There is no evidence that BLV can directly infect ovine B cells in vitro, and there are no direct data regarding the oncogenic potential of the viral Tax transactivator in B cells. Therefore, we developed ovine B-cell culture systems to study the interaction between BLV and its natural target, the B cell. In this study, we used murine CD154 (CD40 ligand) and gamma-chain-common cytokines to support the growth of B cells isolated from ovine lymphoid tissues. Integrated provirus, extrachromosomal forms, and viral transcripts were detected in BLV-exposed populations of immature, rapidly dividing surface immunoglobulin M-positive B cells from sheep ileal Peyer's patches and also in activated mature B cells isolated from blood. Conclusive evidence of direct B-cell infection by BLV was obtained through the use of cloned B cells derived from sheep jejunal Peyer's patches. Finally, inoculation of sheep with BLV-infected cultures proved that infectious virus was shed from in vitro-infected B cells. Collectively, these data confirm that a variety of ovine B-cell populations can support productive infection by BLV. The development of ovine B-cell cultures permissive for BLV infection provides a controlled system for investigating B-cell leukemogenic processes and the pathogenesis of BLV infection.
Collapse
Affiliation(s)
- A Van den Broeke
- Hématologie Expérimentale, Institut J. Bordet, 1000 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Twizere JC, Kerkhofs P, Burny A, Portetelle D, Kettmann R, Willems L. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo. J Virol 2000; 74:9895-902. [PMID: 11024116 PMCID: PMC102026 DOI: 10.1128/jvi.74.21.9895-9902.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.
Collapse
Affiliation(s)
- J C Twizere
- Department of Applied Biochemistry and Biology, Faculty of Agronomy, Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
79
|
Willems L, Burny A, Collete D, Dangoisse O, Dequiedt F, Gatot JS, Kerkhofs P, Lefèbvre L, Merezak C, Peremans T, Portetelle D, Twizere JC, Kettmann R. Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 2000; 16:1787-95. [PMID: 11080828 DOI: 10.1089/08892220050193326] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The understanding of HTLV-induced disease is hampered by the lack of a suitable animal model allowing the study of both viral replication and leukemogenesis in vivo. Although valuable information has been obtained in different species, such as rabbits, mice, rats, and monkeys, none of these systems was able to conciliate topics as different as viral infectivity, propagation within the host, and generation of leukemic cells. An alternate strategy is based on the understanding of diseases induced by viruses closely related to HTLV-1, like bovine leukemia virus (BLV). Both viruses indeed belong to the same subfamily of retroviruses, harbor a similar genomic organization, and infect and transform cells of the hematopoietic system. The main advantage of the BLV system is that it allows direct experimentation in two different species, cattle and sheep.
Collapse
Affiliation(s)
- L Willems
- Department of Applied Biochemistry and Biology, Faculty of Agronomy, B5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ferens WA, Hovde CJ. Antiviral activity of shiga toxin 1: suppression of bovine leukemia virus-related spontaneous lymphocyte proliferation. Infect Immun 2000; 68:4462-9. [PMID: 10899843 PMCID: PMC98349 DOI: 10.1128/iai.68.8.4462-4469.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2000] [Accepted: 05/01/2000] [Indexed: 01/05/2023] Open
Abstract
Human infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemorrhagic colitis. The Stxs belong to a large family of ribosome-inactivating proteins (RIPs) that are found in a variety of higher plants and some bacteria. Many RIPs have potent antiviral activity for the plants that synthesize them. STEC strains, both virulent and nonvirulent to humans, are frequently isolated from healthy cattle. Interestingly, despite intensive investigations, it is not known why cattle carry STEC. We tested the hypothesis that Stx has antiviral properties for bovine viruses by assessing the impact of Stx type 1 (Stx1) on bovine peripheral blood mononuclear cells (PBMC) from cows infected with bovine leukemia virus (BLV). PBMC from BLV-positive animals invariably displayed spontaneous lymphocyte proliferation (SLP) in vitro. Stx1 or the toxin A subunit (Stx1A) strongly inhibited SLP. Toxin only weakly reduced the pokeweed mitogen- or interleukin-2-induced proliferation of PBMC from normal (BLV-negative) cows and had no effect on concanavalin A-induced proliferation. The toxin activity in PBMC from BLV-positive cattle was selective for viral SLP and did not abrogate cell response to pokeweed mitogen- or interleukin-2-induced proliferation. Antibody to virus or Stx1A was most effective at inhibiting SLP if administered at the start of cell culture, indicating that both reagents likely interfere with BLV-dependent initiation of SLP. Stx1A inhibited expression of BLV p24 protein by PBMC. A well-defined mutant Stx1A (E167D) that has decreased catalytic activity was not effective at inhibiting SLP, suggesting the inhibition of protein synthesis is likely the mechanism of toxin antiviral activity. Our data suggest that Stx has potent antiviral activity and may serve an important role in BLV-infected cattle by inhibiting BLV replication and thus slowing the progression of infection to its malignant end stage.
Collapse
Affiliation(s)
- W A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844, USA
| | | |
Collapse
|
81
|
Pyeon D, Diaz FJ, Splitter GA. Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus. J Virol 2000; 74:5740-5. [PMID: 10823885 PMCID: PMC112065 DOI: 10.1128/jvi.74.12.5740-5745.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)), produced by macrophages, has important immune regulatory functions, suppressing a type 1 immune response and stimulating a type 2 immune response. Type 1 cytokines (interleukin-2 [IL-2], IL-12, and gamma interferon) increase in freshly isolated peripheral blood mononuclear cells (PBMCs) of animals with an early disease stage of bovine leukemia virus (BLV) infection, while IL-10 increases in animals with a late disease stage. Although IL-10 has an immunosuppressive role in the host immune system, IL-10 also inhibits BLV tax and pol mRNA levels in vitro. In contrast, IL-2 stimulates BLV tax and pol mRNA and p24 protein expression in cultured PBMCs. The inhibitory effect of IL-10 on BLV expression depends on soluble factors secreted by macrophages. Thus, we hypothesized that PGE(2), a cyclooxygenase 2 (COX-2) product of macrophages, may regulate BLV expression. Here, we show that the level of COX-2 mRNA was decreased in PBMCs treated with IL-10, while IL-2 enhanced the level of COX-2 mRNA. Addition of PGE(2) stimulated BLV tax and pol mRNA levels and reversed the IL-10 inhibition of BLV mRNA. In addition, the specific COX-2 inhibitor, NS-398, inhibited the amount of BLV mRNA detected. Addition of PGE(2) increased BLV tax mRNA regardless of NS-398 addition. PGE(2) inhibited antigen-specific PBMC stimulation, suggesting that stimulation of BLV tax and pol mRNA levels by PGE(2) is independent of cell proliferation. These findings suggest that macrophage-derived COX-2 products, such as PGE(2), regulate virus expression and disease progression in BLV infection.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Cattle
- Cell Division/drug effects
- Cells, Cultured
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprostone/pharmacology
- Gene Expression Regulation, Viral/drug effects
- Gene Products, pol/genetics
- Gene Products, tax/genetics
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/pharmacology
- Interleukin-2/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Isoenzymes/pharmacology
- Leukemia Virus, Bovine/drug effects
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/immunology
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Lymphocyte Activation/drug effects
- Models, Biological
- Nitrobenzenes/pharmacology
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Prostaglandin-Endoperoxide Synthases/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- D Pyeon
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
82
|
Stone DM, Norton LK, Davis WC. Spontaneously proliferating lymphocytes from bovine leukaemia virus-infected, lymphocytotic cattle are not the virus-expressing lymphocytes, as these cells are delayed in G(0)/G(1) of the cell cycle and are spared from apoptosis. J Gen Virol 2000; 81:971-81. [PMID: 10725423 DOI: 10.1099/0022-1317-81-4-971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine leukaemia virus (BLV) is in the family of oncogenic retroviruses which includes human T cell leukaemia virus (HTLV). BLV infects B lymphocytes and induces a non-neoplastic persistent lymphocytosis (PL) of B lymphocytes in cattle. A characteristic of BLV- and HTLV-induced disease is spontaneous lymphocyte proliferation of cultured peripheral blood mononuclear cells (PBMC). To investigate the role of virus expression on lymphocyte survival and proliferation, we evaluated cell cycle position, apoptosis and virus expression on a single-cell basis of cultured PBMC from BLV-infected PL cattle, BLV-infected non-PL cattle and uninfected cattle. Results demonstrated that the majority of bovine B lymphocytes spontaneously entered G(2)/M of the cell cycle and died by apoptosis by 24 h post-culture, regardless of BLV infection or PL status. The spontaneous proliferation that characterizes PL cattle was primarily due to a small population of surviving B lymphocytes, but T lymphocytes also contributed. Viral protein expression was detectable in only 5-15% of cultured PBMC from PL cattle and the majority of these lymphocytes were delayed in cell cycle and spared from apoptosis. Unexpectedly, we determined that only 3% of the spontaneously proliferating lymphocytes expressed viral proteins. Previous reports show that spontaneous proliferation decreases when virus expression is suppressed. Together with our results, this suggests that virus expression by one population of B lymphocytes promotes proliferation of another population of B lymphocytes that does not express virus. This may be due to an effect of virus on CD4 T lymphocytes, as depletion of CD4 T lymphocytes significantly decreased spontaneous proliferation.
Collapse
Affiliation(s)
- D M Stone
- Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
83
|
Doménech A, Goyache J, Llames L, Jesús Payá M, Suárez G, Gómez-Lucía E. In vitro infection of cells of the monocytic/macrophage lineage with bovine leukaemia virus. J Gen Virol 2000; 81:109-18. [PMID: 10640548 DOI: 10.1099/0022-1317-81-1-109] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oncogenic retrovirus bovine leukaemia virus (BLV) primarily infects B cells. Most infected animals remain asymptomatic for long periods of time before an increase in circulating B cells or localized tumours can be observed. This long clinical latency period may be explained by cells of the monocyte/macrophage lineage (M/M) becoming infected and acting as a reservoir for the virus, as shown for other retroviruses (human immunodeficiency virus-1, feline immunodeficiency virus). M/M cells in different stages of differentiation (HL-60, THP-1, U-937, J774, BGM, PM2, primary macrophages of sheep and cows) were cultured with BLV produced by permanently infected donor cells (FLKBLV and BLV-bat(2)). Donor cells were inhibited from multiplying by either irradiation or treatment with mitomycin C. In other experiments, supernatant from donor cells containing virus was used. In co-culture with the donor cells, the less differentiated monocytic cells showed severe cellular changes such as differentiation, vacuolization, cell lysis and membrane blebbing; apoptosis was a frequent phenomenon. Budding and extracellular viruses were also observed. The more differentiated macrophage cells, although they showed less signs of infection by microscopy, had a complete BLV protein profile, as seen by Western blotting; bands corresponding to p24CA (Gag) and its precursors were clearly seen. In addition, gp51SU was identified by syncytia formation assays. It is concluded that M/M cells may be infected by BLV, the consequences of the infection differing according to the type of cell.
Collapse
Affiliation(s)
- A Doménech
- Dpto Patología Animal I, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
84
|
Kucerova L, Altanerova V, Altaner C, Boris-Lawrie K. Bovine leukemia virus structural gene vectors are immunogenic and lack pathogenicity in a rabbit model. J Virol 1999; 73:8160-6. [PMID: 10482566 PMCID: PMC112833 DOI: 10.1128/jvi.73.10.8160-8166.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV.
Collapse
Affiliation(s)
- L Kucerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | | | | | | |
Collapse
|
85
|
Abstract
Reverse transcriptase PCR (RT-PCR) consistently detected bovine leukemia virus transcripts in fresh cells, and competitive RT-PCR enumerated these transcripts. The detection of transcripts in limited numbers of tumor cells indicated that expression occurs in a minority of cells. The data suggest that individual cells contain hundreds of copies of the tax/rex transcript in vivo.
Collapse
Affiliation(s)
- J Rovnak
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
86
|
Abstract
Recently, particular cytokines have been identified to affect progression of a variety of diseases and retrovirus infections. Previously, we demonstrated that interleukin-2 (IL-2), IL-12, and gamma interferon increased in peripheral blood mononuclear cells (PBMCs) from animals with early disease and decreased in PBMCs from animals with late disease stages of bovine leukemia virus (BLV) infection. In contrast, IL-10 increased with disease progression. To examine the effects of these cytokines on BLV expression, BLV tax and pol mRNA and p24 protein were quantified by competitive PCR and immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA levels in BLV-infected PBMCs; however, the inhibitory effect of IL-10 was prevented in PBMCs depleted of monocytes and/or macrophages (monocyte/macrophages). To determine whether these factors were secreted or monocyte/macrophage associated, monocyte/macrophage-depleted PBMCs were cultured with isolated monocyte/macrophages in transwells where contact between monocyte/macrophages and nonadherent PBMCs was blocked. BLV tax and pol mRNA levels increased in transwell cultures similar to cultures containing nonseparated cells, and IL-10 addition inhibited the increase of BLV tax and pol mRNA. These results suggest that monocyte/macrophages secrete soluble factor(s) that increases BLV mRNA levels and that secretion of these soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA and p24 protein production. Thus, IL-10 production by BLV-infected animals with late stage disease may serve to control BLV mRNA levels, while IL-2 may increase BLV mRNA in the early disease stage. To determine a correlation between cell proliferation and BLV expression, the effect of IL-2 and IL-10 on PBMC proliferation was tested. As anticipated, IL-2 stimulated while IL-10 suppressed antigen-specific PBMC proliferation. The present study, combined with our previous findings, suggests that increased IL-10 production in late disease stages suppresses BLV mRNA levels, while IL-2-activated immune responses stimulate BLV expression by BLV-infected B cells.
Collapse
Affiliation(s)
- D Pyeon
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
87
|
Gonzalez E, Oliva G, Norimine J, Cid de la Paz V, Echeverría M. Evaluation of western blotting for the diagnosis of enzootic bovine leukemia. ARQ BRAS MED VET ZOO 1999. [DOI: 10.1590/s0102-09351999000400002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A western blotting (WB) procedure has been developed for detecting antibodies to bovine leukosis virus (BLV) in cattle sera. Two hundred and thirty three serum samples from naturally infected cattle with BLV virus and serial bleedings from experimentally BLV infected cows were used. An agar gel immunodiffusion test (AGID) was used for comparing with the results obtained by WB. The AGID positive sera showed a different degree of reactivity by WB test against the two most important viral antigens (gp51 and p24), or against one of them. Other proteins (gp30, p15, p12 and p10) were not detected with any AGID positive sera, being observed occasionally three bands corresponding to the p24 protein. Using sera obtained by BLV experimental inoculation, the antibodies directed to p24 appeared early (between the 2nd and 4th week post inoculation) and thereafter antibodies to gp51were detected in some animals. The analysis of field serum samples by AGID as compared to WB showed an agreement of 90.9%. Only 1.7% of sera were negative by AGID and positive by WB and 7.2% that were not conclusive by AGID and were defined by WB (4.2% as positive and 3.0% as negative).
Collapse
Affiliation(s)
| | - G.A. Oliva
- Universidad Nacional de La Plata, Argentina
| | - J. Norimine
- Plant and Animal Biotechnology Laboratory, USA
| | | | | |
Collapse
|
88
|
González ET, Norimine J, Valera AR, Travería G, Oliva GA, Etcheverrigaray ME. A rapid and sensitive diagnosis of bovine leukaemia virus infection using the nested shuttle polymerase chain reaction. PESQUISA VETERINARIA BRASILEIRA 1999. [DOI: 10.1590/s0100-736x1999000200002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). In Argentina, where a program to eradicate EBL has been introduced, sensitive and reliable diagnosis has attained high priority. Although the importance of the agar gel immunodiffusion test remains unchanged for routine work, an additional diagnostic technique is necessary to confirm cases of sera with equivocal results or of calves carrying maternal antibodies.Utilizing a nested shuttle polymerase chain reaction, the proviral DNA was detected from cows experimentally infected with as little as 5 ml of whole blood from BLV seropositive cows that were nonetheless normal in haematological terms. It proved to be a very sensitive technique, since it rapidly revealed the presence of the provirus, frequently at 2 weeks postinoculation and using a two-round procedure of nested PCR taking only 3 hours. Additionally, the primers used flanked a portion of the viral genome often employed to differentiate BLV type applying BamHI digestion. It is concluded that this method might offer a highly promising diagnostic tool for BLV infection.
Collapse
|
89
|
Kabeya H, Ohashi K, Sugimoto C, Onuma M. Bovine leukaemia virus envelope peptides cause immunomodulation in BALB/c mice. Vet Immunol Immunopathol 1999; 68:39-48. [PMID: 10231950 DOI: 10.1016/s0165-2427(99)00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunomodulatory activity of two bovine leukaemia virus envelope (BLVEnv) derived peptides were examined in BALB/c mice. One is peptide homologous to CKS-17 which is known as a 17-amino acid peptide derived from p15E of feline leukaemia virus (CKS-17/BLV), and the other is an 18-amino acid synthetic peptide of BLV Env 61-78 (pep61). Priming with CKS-17/BLV in vitro, as well as CKS-17, significantly suppressed the mitogen-induced proliferative responses of spleen cells in naive BALB/c mice. In addition, priming of spleen cells with pep61 in vitro and in vivo resulted in suppression of lipopolysaccaride-induced B-cell proliferative response. This suppression was partially due to the basic amino acid sequence in the peptide because if the pep61-derived peptide lacking Arg was used, this inhibitory activity was partially restored. In contrast, pep61 enhanced both concanavalin A-stimulated proliferative response and IL-2 production. These findings showed that pep61 may contribute to the modification of the host immune responses in the course of BLV infection.
Collapse
Affiliation(s)
- H Kabeya
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
90
|
Lewin HA, Russell GC, Glass EJ. Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev 1999; 167:145-58. [PMID: 10319257 DOI: 10.1111/j.1600-065x.1999.tb01388.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on recent advances in research on the bovine major histocompatibility complex (BoLA), with specific reference to the genetic organization, polymorphism and function of the class II genes. The BoLA region is unlike the MHC of humans and mice in that a large inversion has moved several class II genes, including the TAP/LMP cluster, close to the centromere of bovine chromosome 23. Therefore, close linkage of MHC genes and other genes associated with the MHC in humans and mice does not appear to be required for normal immunological function. In cattle, polymorphism in the class IIa genes influences both the magnitude and the epitope specificity of antigen-specific T-cell responses to foot-and-mouth disease virus peptides. Disease association studies have demonstrated that BoLA alleles affect the subclinical progression of bovine leukemia virus (BLV) infection. This association is strongly correlated with the presence of specific amino acid motifs within the DRB3 antigen-binding domain. In addition to the practical significance of these findings, the association between BoLA and BLV provides a unique model to study host resistance to retrovirus infection in a non-inbred species. These studies contribute to our understanding of the evolution of the MHC in mammals, to the development of broadly effective vaccines, and to breeding strategies aimed at improving resistance to infectious diseases.
Collapse
Affiliation(s)
- H A Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign 61801, USA.
| | | | | |
Collapse
|
91
|
Ungar-Waron H, Paz R, Brenner J, Yakobson B, Partosh N, Trainin Z. Experimental infection of calves with bovine leukemia virus (BLV): an applicable model of a retroviral infection. Vet Immunol Immunopathol 1999; 67:195-201. [PMID: 10077425 DOI: 10.1016/s0165-2427(98)00221-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An experimental model of chronic infection with bovine leukemia virus (BLV) was established in young calves within a relatively short time. In the sera of all infected calves, precipitating antibodies were detected within 5 weeks after infection but upon disease progression pattern of cellular profiles varied. Three calves exhibited transient lymphocytosis 3-5 weeks after infection, two became persistent lymphocytotic (PL+) by that time and one stayed non-lymphocytotic (PL-) for 11 weeks and became PL+ after 4.5 months. Eventually all infected calves became PL+ by the end of the experiment, 6-12 months after infection. Increase of total counts of peripheral blood mononuclear cells (PBMC) related to polyclonal expansion of B-cells. The latter was assessed in all infected calves where the expansion of CD5-bearing cells (B+ CD5+) correlated with increase or decrease of total PBMC counts. Other cell populations such as CD4 and CD8 were also affected. Percentages decreased by 5 weeks after experimental infection to about half their original values though actual cell numbers stayed relatively stable. The experimental model we established compared well with field cases of naturally BLV-infected cattle and thus permitted the investigation of the disease at early stages of infection.
Collapse
Affiliation(s)
- H Ungar-Waron
- Department of Immunology, Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | | | | | | |
Collapse
|
92
|
Chevallier N, Berthelemy M, Le Rhun D, Lainé V, Levy D, Schwartz-Cornil I. Bovine leukemia virus-induced lymphocytosis and increased cell survival mainly involve the CD11b+ B-lymphocyte subset in sheep. J Virol 1998; 72:4413-20. [PMID: 9557733 PMCID: PMC109673 DOI: 10.1128/jvi.72.5.4413-4420.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, we show that bovine leukemia virus (BLV)-induced persistent lymphocytosis (PL) results from the in vivo expansion of the CD11b+ B-lymphocyte population. This subset shares phenotypic characteristics with murine and human B-1 cells. BLV interactions with the sheep B-1-like subset were explored. We found that B-1- and B-2-like cells are initially infected to similar extents. However, in long-term-infected sheep, the viral load is higher in B-1-like cells and only B-1- and not B-2-like cells show increased ex vivo survival compared to that in uninfected sheep. Ex vivo viral expression was found in both B-1- and B-2-like cells, indicating that both cell types support viral replication. Finally, cycloheximide and a protein kinase C inhibitor (H7) that blocks the ex vivo activation of viral expression did not affect the increased survival in B-1-like cells, suggesting that resistance to apoptosis is acquired in vivo. Collectively, these results indicate a peculiar susceptibility of sheep B-1-like cells to BLV transforming effects and further support the involvement of increased survival in BLV pathogenesis.
Collapse
Affiliation(s)
- N Chevallier
- URA INRA-DGER d'Immunopathologie Cellulaire et Moléculaire, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | | | | | | | | |
Collapse
|
93
|
Natale VA, McCullough KC. Macrophage culture: influence of species-specific incubation temperature. J Immunol Methods 1998; 214:165-74. [PMID: 9692868 DOI: 10.1016/s0022-1759(98)00055-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cultured mammalian cells are traditionally maintained at 37 degrees C, despite the fact that core body temperatures differ considerably among mammals. Considering the body temperature of the adult pig, comparison was made of porcine macrophage cultures maintained at 37 degrees C and 39.2 degrees C. Examination of the cells showed that granularity was higher in macrophages maintained at 39.2 degrees C, although no differences in cell size were observed. The density of MHC Class I and II expression was higher on cells maintained at 39.2 degrees C, as was the percentage of MHC Class II positive cells. In contrast, expression of CD44 and CD11a/18 remained unchanged. Following stimulation with lipopolysaccharide, only cells maintained at 39.2 degrees C produced detectable levels of TNF-alpha. As a final reference criterion, replication of the macrophage tropic African swine fever virus was monitored. At 39.2 degrees C, virus antigen production was less efficient, and virus isolate-related differences in the replication kinetics were observed. Infectious virus production was not different at the two temperatures, implying that virus maturation may have been more efficient at the higher temperature. These results indicate that incubation of cultured cells at the temperature of their donor species has an important influence on their characteristics.
Collapse
Affiliation(s)
- V A Natale
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, Switzerland
| | | |
Collapse
|
94
|
Trueblood ES, Brown WC, Palmer GH, Davis WC, Stone DM, McElwain TF. B-lymphocyte proliferation during bovine leukemia virus-induced persistent lymphocytosis is enhanced by T-lymphocyte-derived interleukin-2. J Virol 1998; 72:3169-77. [PMID: 9525643 PMCID: PMC109775 DOI: 10.1128/jvi.72.4.3169-3177.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine leukemia virus (BLV)-induced persistent lymphocytosis is characterized by a polyclonal expansion of CD5+ B lymphocytes. To examine the role of the cytokine microenvironment in this virus-induced B-lymphocyte expansion, the expression of interleukin-2 (IL-2), IL-4, IL-10, and gamma interferon (IFN-gamma) mRNA, was measured in stimulated peripheral blood mononuclear cells from persistently lymphocytotic BLV-infected cows, nonlymphocytotic BLV-infected cows, and uninfected cows. IL-2 and IL-10 mRNA expression and IL-2 functional activity were significantly increased when peripheral blood mononuclear cells from persistently lymphocytotic cows were stimulated with concanavalin A (ConA). Additionally, during persistent lymphocytosis, peak IL-2 and IL-10 mRNA expression was delayed, and elevated expression was prolonged. To determine the potential biologic importance of increased IL-2 and IL-10 expression, the response of isolated B lymphocytes from persistently lymphocytotic cows to human recombinant cytokines and to cytokine-containing supernatants from isolated T lymphocytes was examined. While recombinant human IL-10 (rhIL-10) did not consistently induce detectable changes, rhIL-2 increased viral protein (p24) and IL-2 receptor expression in isolated B lymphocytes from persistently lymphocytotic cows. Additionally, rhIL-2 and supernatant from ConA-stimulated T lymphocytes enhanced B-lymphocyte proliferation. The stimulatory activity of the T-lymphocyte supernatant could be completely inhibited with a polyclonal anti-rhIL-2 antibody. Finally, polyclonal anti-rhIL-2 antibody, as well as anti-BLV antibody, inhibited spontaneous proliferation of peripheral blood mononuclear cells from persistently lymphocytotic cows, demonstrating that the spontaneous lymphoproliferation characteristic of BLV-induced persistent lymphocytosis is IL-2 dependent and antigen dependent. Collectively, these findings strongly suggest that increased T-lymphocyte expression of IL-2 in BLV-infected cows contributes to development and/or maintenance of persistent B lymphocytosis.
Collapse
Affiliation(s)
- E S Trueblood
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Reyes RA, Cockerell GL. Increased ratio of bcl-2/bax expression is associated with bovine leukemia virus-induced leukemogenesis in cattle. Virology 1998; 242:184-92. [PMID: 9501056 DOI: 10.1006/viro.1998.9029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further investigate the molecular basis underlying the dysregulation of B cell homeostasis associated with bovine leukemia virus disease progression in cattle, bovine bax was cDNA cloned and sequenced. The predicted amino acid sequence of bovine Bax revealed a 192-amino-acid protein having extensive identity with the human (97%), murine (93%), and rat (94%) homologues. Because the ratio of Bcl-2 to Bax is believed to predetermine the susceptibility to a given apoptotic stimulus, the relative expression of the genes encoding these oncoproteins was evaluated in cattle naturally infected with BLV. In BLV-infected cattle an increase in the ratios of bcl-2/bax mRNA and protein expression correlated with advancing stages of disease. These findings suggest that in addition to the maintenance of BLV-associated hematopoietic malignancies, the reciprocal expression of Bcl-2/Bax may modulate the induction of B cell expansion typical of BLV disease progression.
Collapse
Affiliation(s)
- R A Reyes
- Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523-1671, USA
| | | |
Collapse
|
96
|
Dequiedt F, Willems L, Kerkhofs P, Burny A, Kettmann R. Lack of mutation in the WAF1/CIP1 gene during bovine leukemia virus-induced leukemogenesis. Vet Immunol Immunopathol 1997; 59:311-22. [PMID: 9477480 DOI: 10.1016/s0165-2427(97)00081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a cyclin-dependent kinases (Cdks) inhibitor (CDI), the protein p21WAF1/CIP1 is able to interfere with cell cycle progression. Its expression is upregulated by wild-type p53, and the p21WAF1/CIP1 protein appears to be a potent effector of the p53-dependent cell cycle regulatory pathway. We have previously reported that p53 mutations frequently occur during bovine leukemia virus (BLV)-induced leukemogenesis in cattle but not in sheep. Therefore, we have investigated the involvement of p21WAF1/CIP1 mutations in the tumorigenic process associated with BLV. We first cloned the bovine and ovine WAF1 genes and determined the complete nucleotide sequences of their second coding exons. These sequences share respectively 79% and 80% homology with those of the human counterpart exon. In order to screen for mutations that could be associated with BLV-induced pathogenicity, we performed single strand conformation polymorphism (SSCP) assays on the WAF1 genes from BLV-induced tumors. No WAF1 mutations were detected in any of the ten BLV-induced bovine tumor samples. Among eleven sheep tumors and three ovine cell lines, only one sample revealed a single mutation in the WAF1 coding sequence, but this mutation was silent at the translational level. We concluded that mutations of the WAF1 gene are not involved in the development of the tumors during BLV-induced leukemogenesis.
Collapse
Affiliation(s)
- F Dequiedt
- Department of Molecular Biology and Animal Physiology, Faculty of Agronomy, Gembloux, Belgium
| | | | | | | | | |
Collapse
|
97
|
Fechner H, Blankenstein P, Looman AC, Elwert J, Geue L, Albrecht C, Kurg A, Beier D, Marquardt O, Ebner D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 1997; 237:261-9. [PMID: 9356338 DOI: 10.1006/viro.1997.8784] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of cattle with the bovine leukemia virus (BLV) results in a strong permanent antibody response to the BLV antigens some weeks after infection. However, cattle may carry provirus and not have detectable antibody titers. To prove the occurrence of different BLV provirus variants in German cattle and to study the influence of special BLV variants on the immunoreaction, a 444-bp fragment of the env gene of 35 naturally BLV infected animals was analyzed. Seven different groups of BLV provirus variants were found on the basis of restriction fragment length polymorphism. Three BLV provirus variant groups and five additionally sequenced BLV isolates showed a high similarity to BLV provirus isolates from other geographical areas. The variation in nucleotide sequence of the five BLV isolates compared with nine previously sequenced BLV isolates ranged up to 5. 3%. While BLV provirus variant groups A, C, D, E, F, and G were clearly related to agar-gel immunodiffusion test (AGID)- and enzyme-linked immunosorbent assay (ELISA)-positive animals, BLV provirus variant group B was solely found in permanent AGID- and ELISA-negative or in transient ELISA-positive animals. Altogether, these results indicate that special BLV provirus variants may be responsible for atypical forms of BLV infection in cattle.
Collapse
Affiliation(s)
- H Fechner
- Faculty of Veterinary Medicine, Free University of Berlin, Luisenstrasse 56, Berlin D-10117, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Meirom R, Moss S, Brenner J. Bovine leukemia virus-gp51 antigen expression is associated with CD5 and IgM markers on infected lymphocytes. Vet Immunol Immunopathol 1997; 59:113-9. [PMID: 9437829 DOI: 10.1016/s0165-2427(97)00056-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cows that develop a persistent lymphocytosis (PL) as a result of bovine leukemia virus (BLV) infection develop massive proliferation of B-lymphocytes expressing both IgM and CD5 markers. The association of these two markers on peripheral blood mononuclear cells (PBMC) derived from BLV-infected cows and also expressing BLV-gp51 antigen marker on these cells was determined by three-color cytometric analysis. After in vitro cultivation of PBMC in the presence of PHA for 24 h, the mean percentages of marker-reactive cells of five PL+ cows were as follows; 43% +/- 4.5 of the PBMC expressed BLV-gp51 antigen; 90% +/- 1.6 of these cells expressed both IgM and CD5 at the same time, whereas but 7.5% +/- 1.9 expressed only IgM and 2.9% +/- 0.4 expressed only CD5. The PBMC, IgM positive cells accounted for 77.8% +/- 6.8, while both CD5 and BLV-gp51 were detected simultaneously on 52.0% +/- 2.4 of the IgM+ cells, while the CD5 marker and BLV-gp51 antigen were detected independently on 35.0% +/- 1.9 and in 9.0% +/- 3.1, respectively of the IgM+ cells. Of the CD5+ cells (equivalent to 75.5% +/- 9.0 of the PBMC), 54.7% +/- 4.7 expressed simultaneously IgM and BLV-gp51, while BLV-gp51 and IgM were expressed separately by 3.0% +/- 0.5 and 37.8% +/- 3.3, respectively. An association between the B-cell phenotype and BLV tropism might exist. It is also possible that cells bearing both IgM and CD5 markers are the main target cells for BLV infection.
Collapse
Affiliation(s)
- R Meirom
- Division of Virology, Kimron Veterinary Institute, Bet-Dagan, Israel
| | | | | |
Collapse
|
99
|
Doménech A, Llames L, Goyache J, Suárez G, Gómez-Lucía E. Macrophages infected with bovine leukaemia virus (BLV) induce humoral response in rabbits. Vet Immunol Immunopathol 1997; 58:309-20. [PMID: 9436274 DOI: 10.1016/s0165-2427(97)00043-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BLV is a lymphotropic retrovirus which infects mainly B-cells. However, the possible infection of cells of the monocyte/macrophage lineage (M/M) might explain some aspects of the disease such as latency or disease progression. We infected sheep M/M with BLV either by culturing M/M with supernatant containing virus, or coculturing M/M with persistently infected cell lines. These BLV-infected M/M were inoculated into rabbits and the serological response was followed for two years. ELISA results using adsorbed sera showed a persistent production of specific antibodies from as early as the first week post inoculation. Two tests were used to detect the response against envelope glycoprotein gp51: Agar gel immunodiffusion (AGID) and a virus neutralization test read as syncytia inhibition (SI). Sera were positive by AGID after the second or third inoculation. Neutralizing titres (SI) were higher than those seen in control rabbits inoculated with persistently infected cell lines, suggesting that the virus may be expressed better in M/M. Gag-related proteins were analyzed by Western Blot (WB). Sera from rabbits inoculated with BLV-infected M/M recognized as many viral proteins as sera from BLV immunized control rabbits or infected cows, and this profile did not change with repeated inoculations. All these results suggest that BLV may infect M/M, where viral proteins are actively expressed to the point that they induce a humoral immune response in animals, and that animals get persistently infected.
Collapse
Affiliation(s)
- A Doménech
- Dpto. Patología Animal I, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
100
|
Evermann JF, Jackson MK. Laboratory diagnostic tests for retroviral infections in dairy and beef cattle. Vet Clin North Am Food Anim Pract 1997; 13:87-106. [PMID: 9071748 DOI: 10.1016/s0749-0720(15)30366-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Detection of bovine retroviruses stretches our diagnostic creativity to its limits. The nucleic acid-based, PCR-amplified assays are finding increased clinical use as the veterinary and livestock industry seek earlier detection of infection for eventual corrective management decisions. We are evolving from a point of disease diagnosis by tumor identification through conventional histopathology, to molecular diagnostics for early identification of retroviral nucleic acid (provirus). The clinical use of antibody-based assays lies in the simplicity of testing large numbers of animals, the relative sensitivity of the assays, and the low cost of testing. Although the pathogenicity of bovine leukemia virus (BLV) for cattle has been well documented, the disease potential for bovine immunodeficiency-like virus (BIV) for cattle is still being determined. Nevertheless, pressure to test for retroviral infections of livestock and, when feasible, removal of these infected animals from the herd will be increased.
Collapse
Affiliation(s)
- J F Evermann
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, USA
| | | |
Collapse
|