51
|
Sun M, Dong J, Li L, Lin Q, Sun J, Liu Z, Shen H, Zhang J, Ren T, Zhang C. Recombinant Newcastle disease virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet Microbiol 2018; 218:60-69. [PMID: 29685222 PMCID: PMC7117350 DOI: 10.1016/j.vetmic.2018.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Firstly generated a NDV-vectored Duck Tembusu Virus (DTMUV) bivalent vaccine that expressing the pre-membrane and envelope proteins of DTMUV. Evaluated the efficacy of the NDV-vectored Duck Tembusu Virus bivalent vaccine. Provided a new method for NDV and DTMUV controlling in waterfowl.
The newly emerged Duck Tembusu virus (DTMUV) is responsible for considerable economic loss in waterfowl-raising areas in China since 2010. Meanwhile, the virulent Newcastle disease virus (NDV) has also caused sporadic outbreaks in waterfowl. The individual vaccines against both diseases are available, however, there is no bivalent or combined vaccine for either disease. Here, we constructed a recombinant NDV-vectored vaccine candidate that expresses the pre-membrane (prM) and envelope (E) genes from DTMUV, designated as aGM/prM + E. The foreign prM and E proteins were stably expressed in aGM/prM + E and exhibited similar pathogenicity but higher growth kinetics than those of the parental virus. The aGM/prM + E carries a fusion cleavage site in accordance with avirulent viruses that have been frequently isolated from waterfowl, and induced remarkably (p < 0.001) higher NDV-specific hemagglutination inhibition (HI) titers than commercially available live NDV vaccines (LaSota strain). The aGM/prM + E also elicited significantly higher (p < 0.05) virus neutralization (VN) titers than commercially available DTMUV inactivated vaccines (HB strain). The aGM/prM + E not only provided complete protection against NDV challenge but also reduced the gross lesions on ovarian folliculi and provided 80% protection against DTMUV in ducks. We note that the aGM/prM + E vaccine can prevent challenged ducks from shedding of NDV and DTMUV. Our results suggest that the candidate vaccine aGM/prM + E would help decrease NDV and DTMUV transmissions in waterfowl raising areas in China.
Collapse
Affiliation(s)
- Minhua Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jiawen Dong
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Linlin Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China
| | - Junying Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Zhicheng Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Haiyan Shen
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China.
| | - Chunhong Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
52
|
Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol 2018; 25:13-20. [PMID: 29323278 DOI: 10.1038/s41594-017-0010-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/11/2017] [Indexed: 12/16/2022]
Abstract
Zika virus (ZIKV) is an enveloped, icosahedral flavivirus that has structural and functional similarities to other human flavivirus pathogens such as dengue (DENV), West Nile (WNV) and Japanese encephalitis (JEV) viruses. ZIKV infections have been linked to fetal microcephaly and the paralytic Guillain-Barré syndrome. This review provides a comparative structural analysis of the assembly, maturation and host-cell entry of ZIKV with other flaviviruses, especially DENV. We also discuss the mechanisms of neutralization by antibodies.
Collapse
Affiliation(s)
- S Saif Hasan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
53
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
54
|
Zhao Y, Zhang X, Shu S, Sun Y, Feng X, Zhang S. Yellow Fever: A Re-Emerging Threat. Health (London) 2018. [DOI: 10.4236/health.2018.1010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
55
|
Abstract
Tick-borne encephalitis virus (TBEV) belongs to the Flaviviridae family and Flavivirus genus. TBEV is maintained in transmission cycles between Ixodid ticks and wild mammalian hosts, particularly rodents. A wide range of animal species are also infected with TBEV by the bite of infected ticks, and TBEV infection causes fatal encephalitis in humans. TBEV is endemic widely in the Eurasian continent, and more than 10,000 cases of the disease are reported annually. In Japan, the 1st confirmed case of TBE was reported in the southern area of Hokkaido in 1993, and after 20 years, the 2nd to 4th cases were reported in Hokkaido in 2016 and 2017. Our sero-epizootiological survey indicated endemic foci of TBEV are widely distributed in Hokkaido and that those of TBEV or tick-borne flavivirus outside Hokkaido. In this review, I introduced recent topics of TBEV including newly developed diagnostic methods, epidemiology and pathogenesis of TBEV.
Collapse
|
56
|
Montague TG, Schier AF. Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. eLife 2017; 6:28183. [PMID: 29140251 PMCID: PMC5745085 DOI: 10.7554/elife.28183] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/03/2022] Open
Abstract
Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta-related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. All animals begin life as just one cell – a fertilized egg. In order to make a recognizable adult, each embryo needs to make the three types of tissue that will eventually form all of the organs: endoderm, which will form the internal organs; mesoderm, which will form the muscle and bones; and ectoderm, which will generate the skin and nervous system. All vertebrates – animals with backbones like fish and humans – use the so-called Nodal signaling pathway to make the endoderm and mesoderm. Nodal is a signaling molecule that binds to receptors on the surface of cells. If Nodal binds to a receptor on a cell, it instructs that cell to become endoderm or mesoderm. As such, Nodal is critical for vertebrate life. However, there has been a 30-year debate in the field of developmental biology about whether a protein called Vg1, which has a similar molecular structure as Nodal, plays a role in the early development of vertebrates. Zebrafish are often used to study animal development, and Montague and Schier decided to test whether these fish need the gene for Vg1 (also known as Gdf3) by deleting it using a genome editing technique called CRISPR/Cas9. It turns out that female zebrafish can survive without this gene. Yet, when the offspring of these females do not inherit the instructions to make Vg1 from their mothers, they fail to form the endoderm and mesoderm. This means that the embryos do not have hearts, blood or other internal organs, and they die within three days. Two other groups of researchers have independently reported similar results. The findings reveal that Vg1 is critical for the Nodal signaling pathway to work in zebrafish. Montague and Schier then showed that, in this pathway, Nodal does not activate its receptors on its own. Instead, Nodal must interact with Vg1, and it is this Nodal-Vg1 complex that activates receptors, and instructs cells to become endoderm and mesoderm. Scientists currently use the Nodal signaling pathway to induce human embryonic stem cells growing in the laboratory to become mesoderm and endoderm. As such, these new findings could ultimately help researchers to grow tissues and organs for human patients.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States.,Harvard Stem Cell Institute, Cambridge, United States.,FAS Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
57
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
58
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
59
|
Song BH, Yun SI, Woolley M, Lee YM. Zika virus: History, epidemiology, transmission, and clinical presentation. J Neuroimmunol 2017; 308:50-64. [DOI: 10.1016/j.jneuroim.2017.03.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
60
|
Temperature-dependent folding allows stable dimerization of secretory and virus-associated E proteins of Dengue and Zika viruses in mammalian cells. Sci Rep 2017; 7:966. [PMID: 28424472 PMCID: PMC5430527 DOI: 10.1038/s41598-017-01097-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 12/02/2022] Open
Abstract
Dengue and Zika are two of the most important human viral pathogens worldwide. In both cases, the envelope glycoprotein E is the main target of the antibody response. Recently, new complex quaternary epitopes were identified which are the consequence of the arrangement of the antiparallel E dimers on the viral surface. Such epitopes can be exploited to develop more efficient cross-neutralizing vaccines. Here we describe a successful covalent stabilization of E dimers from Dengue and Zika viruses in mammalian cells. Folding and dimerization of secretory E was found to be strongly dependent on temperature but independent of PrM co-expression. In addition, we found that, due to the close relationship between flaviviruses, Dengue and Zika viruses E proteins can form heterodimers and assemble into mosaic viral particles. Finally, we present new virus-free analytical platforms to study and screen antibody responses against Dengue and Zika, which allow for differentiation of epitopes restricted to specific domains, dimers and higher order arrangements of E.
Collapse
|
61
|
Oliveira AFCDS, Teixeira RR, Oliveira ASD, Souza APMD, Silva MLD, Paula SOD. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses. Molecules 2017; 22:E505. [PMID: 28327521 PMCID: PMC6155337 DOI: 10.3390/molecules22030505] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.
Collapse
Affiliation(s)
- Ana Flávia Costa da Silveira Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - André Silva de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas, 39900-000 Almenara, MG, Brazil.
| | - Ana Paula Martins de Souza
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Milene Lopes da Silva
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| | - Sérgio Oliveira de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
62
|
Castelli M, Clementi N, Pfaff J, Sautto GA, Diotti RA, Burioni R, Doranz BJ, Dal Peraro M, Clementi M, Mancini N. A Biologically-validated HCV E1E2 Heterodimer Structural Model. Sci Rep 2017; 7:214. [PMID: 28303031 PMCID: PMC5428263 DOI: 10.1038/s41598-017-00320-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/14/2022] Open
Abstract
The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
Collapse
Affiliation(s)
- Matteo Castelli
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Jennifer Pfaff
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Giuseppe A Sautto
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberta A Diotti
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Benjamin J Doranz
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
63
|
Yun SI, Lee YM. Zika virus: An emerging flavivirus. J Microbiol 2017; 55:204-219. [PMID: 28243937 DOI: 10.1007/s12275-017-7063-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Zika virus (ZIKV) is a previously little-known flavivirus closely related to Japanese encephalitis, West Nile, dengue, and yellow fever viruses, all of which are primarily transmitted by blood-sucking mosquitoes. Since its discovery in Uganda in 1947, ZIKV has continued to expand its geographic range, from equatorial Africa and Asia to the Pacific Islands, then further afield to South and Central America and the Caribbean. Currently, ZIKV is actively circulating not only in much of Latin America and its neighbors but also in parts of the Pacific Islands and Southeast Asia. Although ZIKV infection generally causes only mild symptoms in some infected individuals, it is associated with a range of neuroimmunological disorders, including Guillain-Barré syndrome, meningoencephalitis, and myelitis. Recently, maternal ZIKV infection during pregnancy has been linked to neonatal malformations, resulting in various degrees of congenital abnormalities, microcephaly, and even abortion. Despite its emergence as an important public health problem, however, little is known about ZIKV biology, and neither vaccine nor drug is available to control ZIKV infection. This article provides a brief introduction to ZIKV with a major emphasis on its molecular virology, in order to help facilitate the development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322-4815, USA. .,Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322-4815, USA.
| |
Collapse
|
64
|
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016; 80:989-1010. [PMID: 27784796 DOI: 10.1128/mmbr.00024-15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The antibody response plays a key role in protection against viral infections. While antiviral antibodies may reduce the viral burden via several mechanisms, the ability to directly inhibit (neutralize) infection of cells has been extensively studied. Eliciting a neutralizing-antibody response is a goal of many vaccine development programs and commonly correlates with protection from disease. Considerable insights into the mechanisms of neutralization have been gained from studies of monoclonal antibodies, yet the individual contributions and dynamics of the repertoire of circulating antibody specificities elicited by infection and vaccination are poorly understood on the functional and molecular levels. Neutralizing antibodies with the most protective functionalities may be a rare component of a polyclonal, pathogen-specific antibody response, further complicating efforts to identify the elements of a protective immune response. This review discusses advances in deconstructing polyclonal antibody responses to flavivirus infection or vaccination. Our discussions draw comparisons to HIV-1, a virus with a distinct structure and replication cycle for which the antibody response has been extensively investigated. Progress toward deconstructing and understanding the components of polyclonal antibody responses identifies new targets and challenges for vaccination strategies.
Collapse
|
65
|
Pierson TC, Graham BS. Zika Virus: Immunity and Vaccine Development. Cell 2016; 167:625-631. [PMID: 27693357 DOI: 10.1016/j.cell.2016.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/30/2022]
Abstract
The emergence of Zika virus in the Americas and Caribbean created an urgent need for vaccines to reduce transmission and prevent disease, particularly the devastating neurodevelopmental defects that occur in utero. Rapid advances in Zika immunity and the development of vaccine candidates provide cautious optimism that preventive measures are possible.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Barney S Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
66
|
Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein. Adv Bioinformatics 2016; 2016:1373157. [PMID: 27688753 PMCID: PMC5023840 DOI: 10.1155/2016/1373157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 11/26/2022] Open
Abstract
B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48–55), epitope number 4 of E protein at amino acids 48–55, EP9/E (165–182), EP11/E (218–233), EP20/E (322–349), EP21/E (326–353), EP23/E (356–365), and EP25/E (380–386), showed a high intraserotype conservancy with very low pan-serotype conservancy, demonstrating a potential target as serotype specific diagnostic markers. EP3 (30–41) located in domain-I and EP26/E (393–409), EP27/E (416–435), EP28/E (417–430) located in the stem region of E protein, and EP8/prM (93–112) from the prM protein have a pan-serotype conservancy higher than 70%. These epitopes indicate a potential use as universal vaccine candidates, subjected to verification of their potential in viral neutralization. EP2/E (16–21), EP5/E (62–123), EP6/E (63–89), EP19/E (310–329), and EP24/E (371–402), which have more than 50% pan-serotype conservancies, were found on E protein regions that are important in host cell attachment. Previous studies further show evidence for some of these epitopes to generate cross-reactive neutralizing antibodies, indicating their importance in antiviral strategies for DENV. This study suggests that bioinformatic approaches are attractive first line of screening for identification of linear B-cell epitopes.
Collapse
|
67
|
Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology 2016; 497:33-40. [PMID: 27420797 DOI: 10.1016/j.virol.2016.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022]
Abstract
Flaviviruses are positive-stranded RNA viruses that incorporate envelope (E) and premembrane (prM) proteins into the virion. Furin-mediated cleavage of prM defines a required maturation step in the flavivirus lifecycle. Inefficient prM cleavage results in structurally heterogeneous virions with unique antigenic and functional characteristics. Recent studies with dengue virus suggest that viruses produced in tissue culture cells are less mature than those produced in primary cells. In this study, we describe a Vero cell line that ectopically expresses high levels of human furin (Vero-furin) for use in the production of more homogenous mature flavivirus populations. Laboratory-adapted and clinical dengue virus isolates grow efficiently in Vero-furin cells. Biochemical and structural techniques demonstrate efficient prM cleavage in Vero-furin derived virus preparations. These virions also were less sensitive to neutralization by antibodies that bind efficiently to immature virions. This furin-expressing cell line will be of considerable utility for flavivirus neutralization and structural studies.
Collapse
|
68
|
Inagaki E, Sakai M, Hirano M, Muto M, Kobayashi S, Kariwa H, Yoshii K. Development of a serodiagnostic multi-species ELISA against tick-borne encephalitis virus using subviral particles. Ticks Tick Borne Dis 2016; 7:723-729. [DOI: 10.1016/j.ttbdis.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022]
|
69
|
A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 2016; 535:164-8. [PMID: 27383988 PMCID: PMC4945490 DOI: 10.1038/nature18625] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.
Collapse
|
70
|
Guo LP, Huo H, Wang XL, Bu ZG, Hua RH. Generation and characterization of a monoclonal antibody against prM protein of West Nile virus. Monoclon Antib Immunodiagn Immunother 2016; 33:438-43. [PMID: 25514166 DOI: 10.1089/mab.2014.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV), which is an emerging pathogenic flavivirus with increasing distribution worldwide, is the cause of major human and animal health concerns. The pre-membrane (prM) protein of WNV is cleaved during maturation by the furin protease into the structural protein M and a pr-segment. In this study we generated and characterized a monoclonal antibody (MAb) against the WNV prM protein. Western blot analysis showed that the MAb reacted with WNV prM specifically. Immunohistochemistry assays demonstrated that the MAb recognized native prM protein in transfected BHK-21 cells. Preliminary studies were performed to identify the epitope recognized by the MAb using a set of synthesized overlapping peptides spanning the whole length of the prM protein. The MAb reported here may provide a valuable tool for the further exploration of the biological properties and functions of the prM protein and may also be developed for potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, Heilongjiang, People's Republic of China
| | | | | | | | | |
Collapse
|
71
|
DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 2015; 488:108-19. [PMID: 26629951 DOI: 10.1016/j.virol.2015.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
The skin-resident dendritic cells (DCs) are thought to be the first defender to encounter incoming viruses and likely play a role in Japanese encephalitis virus (JEV) early infection. In the current study, following the demonstration of JEV productive infection in DCs, we revealed that the interaction between JEV envelope glycoprotein (E glycoprotein) and DC-SIGN was important for such infection as evidenced by antibody neutralization and siRNA knockdown experiments. Moreover, the high-mannose N-linked glycan at N154 of E glycoprotein was shown to be crucial for JEV binding to DC-SIGN and subsequent internalization, while mutation of DC-SIGN internalization motif did not affect JEV uptake and internalization. These data together suggest that DC-SIGN functions as an attachment factor rather than an entry receptor for JEV. Our findings highlight the potential significance of DC-SIGN in JEV early infection, providing a basis for further understanding how JEV exploits DC-SIGN to gain access to dendritic cells.
Collapse
|
72
|
Abstract
Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins.
Collapse
Affiliation(s)
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore
| |
Collapse
|
73
|
Replacement of pr gene with Japanese encephalitis virus pr using reverse genetics reduces antibody-dependent enhancement of dengue virus 2 infection. Appl Microbiol Biotechnol 2015. [PMID: 26219500 PMCID: PMC4628084 DOI: 10.1007/s00253-015-6819-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe dengue is more likely found during secondary heterologous dengue virus (DENV) infection or primary infection of infants born to dengue-immune mothers and led to the hypothesis of antibody-dependent enhancement (ADE). It has been reported that pre-membrane (prM)-reactive antibodies do not efficiently neutralize DENV infection but instead potently promote ADE infection. Meanwhile, these enhancing anti-prM antibodies mainly react with the precursor (pr) peptide. To evaluate the effect of pr gene substitution on neutralization and ADE of DENV infection, a novel chimeric dengue virus (JEVpr/DENV2) was rationally constructed by replacing the DENV pr gene with Japanese encephalitis virus (JEV) pr gene, based on the full-length infectious complementary DNA (cDNA) clone of DENV2 ZS01/01. We found that chimeric JEVpr/DENV2 showed reduced virulence and good immunogenicity. In addition, anti-JEVpr/DENV2 sera showed broad cross-reactivity and efficient neutralizing activity with all four DENV serotypes and immature DENV2 (ImDENV2). Most importantly, compared with anti-DENV2 sera, anti-JEVpr/DENV2 sera showed significantly reduced enhancing activity of DENV infection in K562 cells. These results suggest that the ADE activities could be reduced by replacing the DENV pr gene with JEV pr gene. These findings may help us better understand the pathogenesis of DENV infection and provide a reference for the development of a vaccine against DENV.
Collapse
|
74
|
Setoh YX, Tan CSE, Prow NA, Hobson-Peters J, Young PR, Khromykh AA, Hall RA. The I22V and L72S substitutions in West Nile virus prM protein promote enhanced prM/E heterodimerisation and nucleocapsid incorporation. Virol J 2015; 12:72. [PMID: 25946997 PMCID: PMC4424586 DOI: 10.1186/s12985-015-0303-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Amino acid substitutions I22V and L72S in the prM protein of West Nile virus Kunjin strain (WNVKUN) were previously shown to enhance virus secretion and virulence, but a mechanism by which this occurred was not determined. Findings Using pulse-chase experiments followed by co-immunoprecipitation with anti-E antibody, we demonstrated that the I22V and L72S substitutions enhanced prM/E heterodimerization for both the E-glycosylated and E-unglycosylated virus. Furthermore, analysis of secreted particles revealed that I22V and L72S substitutions also enhanced nucleocapsid incorporation. Conclusions We have demonstrated mechanistically that improved secretion of virus particles in the presence of I22V and L72S substitutions was contributed by more efficient prM/E heterodimerization.
Collapse
Affiliation(s)
- Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Cindy Si En Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Present Address: Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Herston, QLD, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Present Address: QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
75
|
Kim JK, Kim JM, Song BH, Yun SI, Yun GN, Byun SJ, Lee YM. Profiling of viral proteins expressed from the genomic RNA of Japanese encephalitis virus using a panel of 15 region-specific polyclonal rabbit antisera: implications for viral gene expression. PLoS One 2015; 10:e0124318. [PMID: 25915765 PMCID: PMC4410938 DOI: 10.1371/journal.pone.0124318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is closely related to West Nile (WN), yellow fever (YF), and dengue (DEN) viruses. Its plus-strand genomic RNA carries a single open reading frame encoding a polyprotein that is cleaved into three structural (C, prM/M, and E) and at least seven nonstructural (NS1/NS1', NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins, based on previous work with WNV, YFV, and DENV. Here, we aimed to profile experimentally all the viral proteins found in JEV-infected cells. We generated a collection of 15 JEV-specific polyclonal antisera covering all parts of the viral protein-coding regions, by immunizing rabbits with 14 bacterially expressed glutathione-S-transferase fusion proteins (for all nine viral proteins except NS2B) or with a chemically synthesized oligopeptide (for NS2B). In total lysates of JEV-infected BHK-21 cells, immunoblotting with these antisera revealed: (i) three mature structural proteins (~12-kDa C, ~8-kDa M, and ~53-kDa E), a precursor of M (~24-kDa prM) and three other M-related proteins (~10-14 kDa); (ii) the predicted ~45-kDa NS1 and its frameshift product, ~58-kDa NS1', with no evidence of the predicted ~25-kDa NS2A; (iii) the predicted but hardly detectable ~14-kDa NS2B and an unexpected but predominant ~12-kDa NS2B-related protein; (iv) the predicted ~69-kDa NS3 plus two major cleavage products (~34-kDa NS3N-term and ~35-kDa NS3C-term), together with at least nine minor proteins of ~16-52 kDa; (v) the predicted ~14-kDa NS4A; (vi) two NS4B-related proteins (~27-kDa NS4B and ~25-kDa NS4B'); and (vii) the predicted ~103-kDa NS5 plus at least three other NS5-related proteins (~15 kDa, ~27 kDa, and ~90 kDa). Combining these data with confocal microscopic imaging of the proteins' intracellular localization, our study is the first to provide a solid foundation for the study of JEV gene expression, which is crucial for elucidating the regulatory mechanisms of JEV genome replication and pathobiology.
Collapse
Affiliation(s)
- Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jeong-Min Kim
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sung-June Byun
- Animal Biotechnology Division, Korea National Institute of Animal Science, Suwon, South Korea
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
76
|
Kuhn RJ, Dowd KA, Beth Post C, Pierson TC. Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology 2015; 479-480:508-17. [PMID: 25835729 DOI: 10.1016/j.virol.2015.03.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022]
Abstract
Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses.
Collapse
Affiliation(s)
- Richard J Kuhn
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carol Beth Post
- Departments of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
77
|
Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol 2015; 96:1551-69. [PMID: 25711963 DOI: 10.1099/vir.0.000097] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Justin A Roby
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Yin Xiang Setoh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Roy A Hall
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Alexander A Khromykh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| |
Collapse
|
78
|
Du R, Yin F, Wang M, Hu Z, Wang H, Deng F. Glycoprotein E of the Japanese encephalitis virus forms virus-like particles and induces syncytia when expressed by a baculovirus. J Gen Virol 2015; 96:1006-1014. [PMID: 25593161 DOI: 10.1099/vir.0.000052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
The prM glycoprotein is thought to be a chaperone for the proper folding, membrane association and assembly of the envelope protein (E) of flaviviruses. The prM-E and E proteins of the Japanese encephalitis virus (JEV) were expressed in insect cells using both the baculovirus-expression system and the transient expression method. Protein expression was analysed by Western blotting and the cytopathic effect was observed by microscopy. In the baculovirus-expression system the E protein, with or without the prM protein, induced syncytial formation in Sf9 cells. Transient expression of prM-E also induced syncytia in Sf9 cells. Immunofluorescence revealed that in presence of prM, E proteins were endoplasmic reticulum-like in distribution, while in the absence of prM, E proteins were located on the cell surface. Sucrose gradient sedimentation and Western blot analysis indicated that the E protein expressed with or without the prM protein was secreted into the culture medium in particulate form. The formation of virus-like particles (VLPs) in the medium was confirmed by electron microscopy and immunoelectron microscopy. The results suggest that the E protein of JEV in the absence of prM, retained its fusion ability, by either cell surface expression or formation of VLPs. Moreover, based on the observation that co-expression of prM-E in Sf9 cells induced considerable syncytial formation, a novel, safe and simple antiviral screening approach is proposed for studying inhibitory antibodies, peptides or small molecules targeting the JEV E protein.
Collapse
Affiliation(s)
- Ruikun Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Feifei Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
79
|
Hsieh SC, Wu YC, Zou G, Nerurkar VR, Shi PY, Wang WK. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem 2014; 289:33149-60. [PMID: 25326389 DOI: 10.1074/jbc.m114.610428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The envelope and precursor membrane (prM) proteins of dengue virus (DENV) are present on the surface of immature virions. During maturation, prM protein is cleaved by furin protease into pr peptide and membrane (M) protein. Although previous studies mainly focusing on the pr region have identified several residues important for DENV replication, the functional role of M protein, particularly the α-helical domain (MH), which is predicted to undergo a large conformational change during maturation, remains largely unknown. In this study, we investigated the role of nine highly conserved MH domain residues in the replication cycle of DENV by site-directed mutagenesis in a DENV1 prME expression construct and found that alanine substitutions introduced to four highly conserved residues at the C terminus and one at the N terminus of the MH domain greatly affect the production of both virus-like particles and replicon particles. Eight of the nine alanine mutants affected the entry of replicon particles, which correlated with the impairment in prM cleavage. Moreover, seven mutants were found to have reduced prM-E interaction at low pH, which may inhibit the formation of smooth immature particles and exposure of prM cleavage site during maturation, thus contributing to inefficient prM cleavage. Taken together, these results are the first report showing that highly conserved MH domain residues, located at 20-38 amino acids downstream from the prM cleavage site, can modulate the prM cleavage, maturation of particles, and virus entry. The highly conserved nature of these residues suggests potential targets of antiviral strategy.
Collapse
Affiliation(s)
- Szu-Chia Hsieh
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Yi-Chieh Wu
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Gang Zou
- the Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Vivek R Nerurkar
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Pei-Yong Shi
- the Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Wei-Kung Wang
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| |
Collapse
|
80
|
Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv Virol 2014; 2014:259382. [PMID: 25309597 PMCID: PMC4182009 DOI: 10.1155/2014/259382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022] Open
Abstract
Arthropod borne viruses have developed a complex life cycle adapted to alternate between insect and vertebrate hosts. These arthropod-borne viruses belong mainly to the families Togaviridae, Flaviviridae, and Bunyaviridae. This group of viruses contains many pathogens that cause febrile, hemorrhagic, and encephalitic disease or arthritic symptoms which can be persistent. It has been appreciated for many years that these viruses were evolutionarily adapted to function in the highly divergent cellular environments of both insect and mammalian phyla. These viruses are hybrid in nature, containing viral-encoded RNA and proteins which are glycosylated by the host and encapsulate viral nucleocapsids in the context of a host-derived membrane. From a structural perspective, these virus particles are macromolecular machines adapted in design to assemble into a packaging and delivery system for the virus genome and, only when associated with the conditions appropriate for a productive infection, to disassemble and deliver the RNA cargo. It was initially assumed that the structures of the virus from both hosts were equivalent. New evidence that alphaviruses and flaviviruses can exist in more than one conformation postenvelopment will be discussed in this review. The data are limited but should refocus the field of structural biology on the metastable nature of these viruses.
Collapse
|
81
|
Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. Antibody response to dengue virus. Microbes Infect 2014; 16:711-20. [PMID: 25124542 DOI: 10.1016/j.micinf.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, 20892 MD, USA
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales #800, Col. Lomas de Virreyes, 11000, Mexico
| | - Benito Gutiérrez-Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
82
|
Yun SI, Song BH, Kim JK, Yun GN, Lee EY, Li L, Kuhn RJ, Rossmann MG, Morrey JD, Lee YM. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog 2014; 10:e1004290. [PMID: 25077483 PMCID: PMC4117607 DOI: 10.1371/journal.ppat.1004290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 06/18/2014] [Indexed: 01/12/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecular basis of its neurovirulence remains unknown. Here, we constructed an infectious cDNA of the most widely used live-attenuated JE vaccine, SA14-14-2, and rescued from the cDNA a molecularly cloned virus, SA14-14-2MCV, which displayed in vitro growth properties and in vivo attenuation phenotypes identical to those of its parent, SA14-14-2. To elucidate the molecular mechanism of neurovirulence, we selected three independent, highly neurovirulent variants (LD50, <1.5 PFU) from SA14-14-2MCV (LD50, >1.5×105 PFU) by serial intracerebral passage in mice. Complete genome sequence comparison revealed a total of eight point mutations, with a common single G1708→A substitution replacing a Gly with Glu at position 244 of the viral E glycoprotein. Using our infectious SA14-14-2 cDNA technology, we showed that this single Gly-to-Glu change at E-244 is sufficient to confer lethal neurovirulence in mice, including rapid development of viral spread and tissue inflammation in the central nervous system. Comprehensive site-directed mutagenesis of E-244, coupled with homology-based structure modeling, demonstrated a novel essential regulatory role in JEV neurovirulence for E-244, within the ij hairpin of the E dimerization domain. In both mouse and human neuronal cells, we further showed that the E-244 mutation altered JEV infectivity in vitro, in direct correlation with the level of neurovirulence in vivo, but had no significant impact on viral RNA replication. Our results provide a crucial step toward developing novel therapeutic and preventive strategies against JEV and possibly other encephalitic flaviviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/genetics
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Female
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Nervous System/virology
- Protein Conformation
- Sequence Homology, Amino Acid
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virulence/genetics
- Virus Replication
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jin-Kyoung Kim
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Gil-Nam Yun
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eun-Young Lee
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Long Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - John D. Morrey
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
83
|
Abstract
Enveloped viruses infect host cells by a membrane fusion reaction that takes place at the cell surface or in intracellular compartments following virus uptake. Fusion is mediated by the membrane interactions and conformational changes of specialized virus envelope proteins termed membrane fusion proteins. This article discusses the structures and refolding reactions of specific fusion proteins and the methods for their study and highlights outstanding questions in the field.
Collapse
Affiliation(s)
- Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461;
| |
Collapse
|
84
|
Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein. PLoS One 2014; 9:e100641. [PMID: 24950216 PMCID: PMC4065094 DOI: 10.1371/journal.pone.0100641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/29/2014] [Indexed: 01/08/2023] Open
Abstract
Background The envelope (E) of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM) protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs) suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown. Methodology/Principal Findings In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride. Conclusions/Significance Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.
Collapse
|
85
|
Ghosh Roy S, Sadigh B, Datan E, Lockshin RA, Zakeri Z. Regulation of cell survival and death during Flavivirus infections. World J Biol Chem 2014; 5:93-105. [PMID: 24921001 PMCID: PMC4050121 DOI: 10.4331/wjbc.v5.i2.93] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/27/2014] [Accepted: 04/29/2014] [Indexed: 02/05/2023] Open
Abstract
Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic (Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause.
Collapse
|
86
|
Zheng A, Yuan F, Kleinfelter LM, Kielian M. A toggle switch controls the low pH-triggered rearrangement and maturation of the dengue virus envelope proteins. Nat Commun 2014; 5:3877. [PMID: 24846574 PMCID: PMC4063126 DOI: 10.1038/ncomms4877] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/14/2014] [Indexed: 11/09/2022] Open
Abstract
Immature dengue virus particles undergo a dramatic conformational change upon exposure to the acidic environment of the late secretory pathway. The interactions of the E fusion proteins and prM chaperone proteins on the virus envelope are reorganized to permit prM processing by a host protease, furin, thus priming virus for fusion and infection. Here we identify a pH-dependent toggle switch that controls this key conformational change during virus maturation. Our data show that the M region of prM interacts with E at neutral pH but is released at acidic pH, while the pr region interacts with E at acidic pH but is released at neutral pH. Alanine substitution of the conserved residue H98 in prM disrupts the switch by inhibiting dissociation of M from E at low pH, resulting in impaired prM processing and decreased virus infectivity. Thus, release of M-E interaction at low pH promotes formation of a furin-accessible intermediate.
Collapse
Affiliation(s)
- Aihua Zheng
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Fei Yuan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lara M Kleinfelter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
87
|
Mlera L, Melik W, Bloom ME. The role of viral persistence in flavivirus biology. Pathog Dis 2014; 71:137-63. [PMID: 24737600 PMCID: PMC4154581 DOI: 10.1111/2049-632x.12178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022] Open
Abstract
In nature, vector borne flaviviruses are persistently cycled between either the tick or mosquito vector and small mammals such as rodents, skunks, and swine. These viruses account for considerable human morbidity and mortality worldwide. Increasing and substantial evidence of viral persistence in humans, which includes the isolation of RNA by RT PCR and infectious virus by culture, continues to be reported. Viral persistence can also be established in vitro in various human, animal, arachnid, and insect cell lines in culture. Although some research has focused on the potential roles of defective virus particles, evasion of the immune response through the manipulation of autophagy and/or apoptosis, the precise mechanism of flavivirus persistence is still not well understood. We propose additional research for further understanding of how viral persistence is established in different systems. Avenues for additional studies include determining whether the multifunctional flavivirus protein NS5 has a role in viral persistence, the development of relevant animal models of viral persistence, and investigating the host responses that allow vector borne flavivirus replication without detrimental effects on infected cells. Such studies might shed more light on the viral–host relationships and could be used to unravel the mechanisms for establishment of persistence. Persistent infections by vector borne flaviviruses are an important, but inadequately studied topic.
Collapse
Affiliation(s)
- Luwanika Mlera
- Rocky Mountain Laboratories, Laboratory of Virology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | |
Collapse
|
88
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
89
|
Abstract
Dengue transmission has increased considerably in the past 20 years. Currently, it can only be reduced by mosquito control; however, the application of vector-control methods are labor intensive, require discipline and diligence, and are hard to sustain. In this context, a safe dengue vaccine that confers long-lasting protection against infection with the four dengue viruses is urgently required. This review will discuss the requirements of a dengue vaccine, problems, and advances that have been made. Finally, new targets for research will be presented.
Collapse
Affiliation(s)
- María G Guzmán
- Pedro Kourí Tropical Medicine Institute, Autopista Novia del Mediodía, Km 6 1\2 P.O. Box Marianao 13, C. Habana, Cuba.
| | | | | |
Collapse
|
90
|
Wu Y, Zhang F, Ma W, Song J, Huang Q, Zhang H. A Plasmid Encoding Japanese Encephalitis Virus PrM and E Proteins Elicits Protective Immunity in Suckling Mice. Microbiol Immunol 2013; 48:585-90. [PMID: 15322338 DOI: 10.1111/j.1348-0421.2004.tb03555.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Antibodies, Viral/blood
- Encephalitis Virus, Japanese/genetics
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Immunization
- Japanese Encephalitis Vaccines/administration & dosage
- Japanese Encephalitis Vaccines/genetics
- Japanese Encephalitis Vaccines/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Yushui Wu
- Department of Microbiology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
91
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
92
|
A review of vaccine approaches for West Nile virus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4200-23. [PMID: 24025396 PMCID: PMC3799512 DOI: 10.3390/ijerph10094200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 01/19/2023]
Abstract
The West Nile virus (WNC) first appeared in North America in 1999. The North American lineages of WNV were characterized by the presence of neuroinvasive and neurovirulent strains causing disease and death in humans, birds and horses. The 2012 WNV season in the United States saw a massive spike in the number of neuroinvasive cases and deaths similar to what was seen in the 2002–2003 season, according to the West Nile virus disease cases and deaths reported to the CDC by year and clinical presentation, 1999–2012, by ArboNET (Arboviral Diseases Branch, Centers for Disease Control and Prevention). In addition, the establishment and recent spread of lineage II WNV virus strains into Western Europe and the presence of neurovirulent and neuroinvasive strains among them is a cause of major concern. This review discusses the advances in the development of vaccines and biologicals to combat human and veterinary West Nile disease.
Collapse
|
93
|
Luo YY, Feng JJ, Zhou JM, Yu ZZ, Fang DY, Yan HJ, Zeng GC, Jiang LF. Identification of a novel infection-enhancing epitope on dengue prM using a dengue cross-reacting monoclonal antibody. BMC Microbiol 2013; 13:194. [PMID: 23987307 PMCID: PMC3765915 DOI: 10.1186/1471-2180-13-194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/26/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is the most important arthropod- borne viral disease in human, but antiviral therapy and approved vaccines remain unavailable due to antibody-dependent enhancement (ADE) phenomenon. Many studies showed that pre-membrane (prM)-specific antibodies do not efficiently neutralize DENV infection but potently promote ADE infection. However, most of the binding epitopes of these antibodies remain unknown. RESULTS In the present study, we characterized a DENV cross-reactive monoclonal antibody (mAb), 4D10, that neutralized poorly but potently enhanced infection of four standard DENV serotypes and immature DENV (imDENV) over a broad range of concentration. In addition, the epitope of 4D10 was successfully mapped to amino acid residues 14 to18 of DENV1-4 prM protein using a phage-displayed peptide library and comprehensive bioinformatics analysis. We found that the epitope was DENV serocomplex cross-reactive and showed to be highly immunogenic in Balb/c mice. Furthermore, antibody against epitope peptide PL10, like 4D10, showed broad cross-reactivity and weak neutralizing activtity with four standard DENV serotypes and imDENV but significantly promoted ADE infection. These results suggested 4D10 and anti-PL10 sera were infection-enhancing antibodies and PL10 was infection-enhancing epitope. CONCLUSIONS We mapped the epitope of 4D10 to amino acid residues 14 to18 of DENV1-4 prM and found that this epitope was infection-enhancing. These findings may provide significant implications for future vaccine design and facilitate understanding the pathogenesis of DENV infection.
Collapse
Affiliation(s)
- Ya-Yan Luo
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Jie Feng
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun-Mei Zhou
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Zhun Yu
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan-Yun Fang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Jun Yan
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Gu-Cheng Zeng
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Fang Jiang
- Key Laboratory for Tropic Diseases Control, Ministry of Education of China, Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
94
|
Abstract
Alphaviruses are small enveloped viruses whose surface is covered by spikes composed of trimers of E2/E1 glycoprotein heterodimers. During virus entry, the E2/E1 dimer dissociates within the acidic endosomal environment, freeing the E1 protein to mediate fusion of the viral and endosome membranes. E2 is synthesized as a precursor, p62, which is cleaved by furin in the late secretory pathway to produce mature E2 and a small peripheral glycoprotein, E3. The immature p62/E1 dimer is acid resistant, but since p62 is cleaved before exit from the acidic secretory pathway, low pH-dependent binding of E3 to the spike complex is believed to prevent premature fusion. Based on analysis of the structure of the Chikungunya virus E3/E2/E1 complex, we hypothesized that interactions of E3 residues Y47 and Y48 with E2 are important in this binding. We then directly tested the in vivo role of E3 in pH protection by alanine substitutions of E3 Y47 and Y48 (Y47/48A) in Semliki Forest virus. The mutant was nonviable and was blocked in E1 transport to the plasma membrane and virus production. Although the Y47/48A mutant initially formed the p62/E1 heterodimer, the dimer dissociated during transport through the secretory pathway. Neutralization of the pH in the secretory pathway successfully rescued dimer association, E1 transport, and infectious particle production. Further mutagenesis identified the critical contact as the cation-π interaction of E3 Y47 with E2. Thus, E3 mediates pH protection of E1 during virus biogenesis via interactions strongly dependent on Y47 at the E3-E2 interface.
Collapse
|
95
|
Park SY, Choi E, Jeong YS. Integrative effect of defective interfering RNA accumulation and helper virus attenuation is responsible for the persistent infection of Japanese encephalitis virus in BHK-21 cells. J Med Virol 2013; 85:1990-2000. [PMID: 23861255 DOI: 10.1002/jmv.23665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 11/10/2022]
Abstract
Persistence of RNA viruses is often, but not always, associated with the production of defective interfering (DI) particles. To investigate possible roles of DI particles and helper viruses in RNA virus persistence, persistent infection with Japanese encephalitis virus (JEV) was established in baby hamster kidney (BHK-21) cells. At the 6th and 7th serial undiluted passages of JEV on BHK-21 cells, viral persistence was established spontaneously with DI RNA generation. Seven cell clones exhibiting persistent infection were obtained from the initial BHK-21 cell batches exhibiting JEV persistence, and maintained for over 400 days. Most cell clones produced infectious particles (10(1) -10(5) PFU/ml) continuously, expressed viral proteins, and resisted homologous superinfection. Two helper viruses, chvBS6-3 and chvBS7-1, were isolated from two of the seven cell clones, and characterized to investigate their roles in JEV persistence. While chvBS6-3 was restored to its full cytopathicity in the absence of DI RNA, chvBS7-1 exhibited almost no cytopathicity, regardless of DI RNA co-replication. Attenuation of chvBS7-1 did not appear to be due to inadequate adsorption or genome replication, but due to inefficient egress of the assembled progeny virions, suggesting altered helper virus emergence during JEV persistence in BHK-21 cells. These observations suggest that at least two mechanisms are involved in JEV persistence; a DI RNA-dependent mechanism, where DI RNA co-replication nullifies the helper virus's cytopathicity, or a DI RNA-independent mechanism, where the helper virus is self-attenuated. This study provides a useful in vitro tool for understanding the mechanisms underlying RNA virus persistent infections.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | | | | |
Collapse
|
96
|
Yost SA, Marcotrigiano J. Viral precursor polyproteins: keys of regulation from replication to maturation. Curr Opin Virol 2013; 3:137-42. [PMID: 23602469 PMCID: PMC3660988 DOI: 10.1016/j.coviro.2013.03.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/25/2022]
Abstract
Viral polyproteins are cleaved in a spatially and temporally regulated manner. Access to the cleavage site is highly regulated through various mechanisms. Cleavage can result in structural rearrangement of the termini.
Many viruses use a replication strategy involving the translation of a large polyprotein, which is cleaved by viral and/or cellular proteases. Several of these viruses severely impact human health around the globe, including HIV, HCV, Dengue virus, and West Nile virus. This method of genome organization has many benefits to the virus such as condensation of genetic material, as well as temporal and spatial regulation of protein activity depending on polyprotein cleavage state. The study of polyprotein precursors is necessary to fully understand viral infection, and identify possible new drug targets; however, few atomic structures are currently available. Presented here are structures of four recent polyprotein precursors from viruses with a positive sense RNA genome.
Collapse
Affiliation(s)
- Samantha A Yost
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, 679 Hoes Lane West, Piscataway, NJ 08854, United States
| | | |
Collapse
|
97
|
Trindade GF, Santana MGVD, Santos JRD, Galler R, Bonaldo MC. Retention of a recombinant GFP protein expressed by the yellow fever 17D virus in the E/NS1 intergenic region in the endoplasmic reticulum. Mem Inst Oswaldo Cruz 2013; 107:262-72. [PMID: 22415267 DOI: 10.1590/s0074-02762012000200017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023] Open
Abstract
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.
Collapse
Affiliation(s)
- Gisela Freitas Trindade
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | | | | |
Collapse
|
98
|
Abstract
Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored.
Collapse
|
99
|
C-terminal helical domains of dengue virus type 4 E protein affect the expression/stability of prM protein and conformation of prM and E proteins. PLoS One 2012; 7:e52600. [PMID: 23300717 PMCID: PMC3530441 DOI: 10.1371/journal.pone.0052600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/19/2012] [Indexed: 01/18/2023] Open
Abstract
Background The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. Methodology/Principal Findings In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. Conclusions/Significance A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response.
Collapse
|
100
|
Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat Struct Mol Biol 2012; 20:105-10. [PMID: 23241927 PMCID: PMC3593067 DOI: 10.1038/nsmb.2463] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023]
Abstract
Regulated by pH, membrane-anchored proteins E and M play a series of roles during dengue virus maturation and membrane fusion. Our atomic model of the whole virion from cryo electron microscopy at 3.5Å resolution reveals that in the mature virus at neutral extracellular pH, the N-terminal 20-amino acid segment of M (involving three pH-sensing histidines) latches and thereby prevents spring-loaded E fusion protein from prematurely exposing its fusion peptide. This M latch was fastened at an earlier stage, during maturation at acid pH in the trans-Golgi network. At a later stage, to initiate infection in response to acid pH in the late endosome, M releases the latch and exposes the fusion peptide. Thus, M serves as a multistep chaperone of E to control the conformational changes accompanying maturation and infection. These pH-sensitive interactions could serve as targets for drug discovery.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles-UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|