51
|
Rinninger A, Richet C, Pons A, Kohla G, Schauer R, Bauer HC, Zanetta JP, Vlasak R. Localisation and distribution of O-acetylated N-acetylneuraminic acids, the endogenous substrates of the hemagglutinin-esterases of murine coronaviruses, in mouse tissue. Glycoconj J 2006; 23:73-84. [PMID: 16575524 PMCID: PMC7088067 DOI: 10.1007/s10719-006-5439-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infections by mouse hepatitis viruses result in disease of the liver, the gastrointestinal tract, respiratory tract, and the central nervous system. Coronaviruses related to mouse hepatitis virus express a hemagglutinin-esterase surface glycoprotein, which specifically hydrolyses either 5-N-acetyl-4-O-acetyl neuraminic acid (Neu4,5Ac2) or 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Moreover, these sialic acids represent potential cellular receptor determinants for murine coronaviruses. Until now, the distribution of these sialic acids in mouse brain was not thoroughly investigated. Particularly Neu4,5Ac2 was not yet found in mouse brain. Using a sensitive method of gas chromatography coupled to mass spectrometry in the electron impact mode of ionization this manuscript demonstrates the occurrence of 13 different sialic acids varying in their alkyl and acyl substituents in mouse tissues including 5-N-acetyl-4-O-acetyl-9-O-lactyl-neuraminic acid (Neu4,5Ac29Lt), 5-N-acetyl-9-O-lactyl-neuraminic acid (Neu5Ac9Lt), 5-N-acetyl-8-O-methyl-neuraminic acid (Neu5Ac8Me) and the 1,7-lactone (Neu5Ac1,7L) of neuraminic acid. Neu4,5Ac2, relatively abundant in the gut, was present as a minor compound in all tissues, including liver, olfactory lobe, telencephalon, metencephalon and hippocampus. Neu5,9Ac2 was also found in these tissues, except in the liver. It is suggested that these sialic acids represent the endogenous substrate and receptor determinants for murine coronaviruses.
Collapse
Affiliation(s)
- Andreas Rinninger
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | | | - Alexandre Pons
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Guido Kohla
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Hans-Christian Bauer
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| | - Jean-Pierre Zanetta
- CNRS Unité Mixte de Recherche 8576, Laboratoire de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | - Reinhard Vlasak
- Applied Biotechnology, Departments of Cell Biology and Organismic Biology, University Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
52
|
Lebbink RJ, Meyaard L. Non-MHC ligands for inhibitory immune receptors: novel insights and implications for immune regulation. Mol Immunol 2006; 44:2153-64. [PMID: 17188357 DOI: 10.1016/j.molimm.2006.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 11/12/2006] [Indexed: 02/08/2023]
Abstract
Regulation of cellular responses by inhibitory receptors is crucial for proper function of the immune system. The prototype inhibitory immune receptors are major histocompatibility complex (MHC) class I binding killer-Ig like receptors (KIRs) present on effector cells such as natural killer (NK) cells and effector T cells. However, the recent identification of non-MHC class I ligands for inhibitory immune receptors, such as KLRG1, KLRB1 and LAIR-1, indicates that also MHC class I-independent inhibitory immune receptors play crucial roles in inducing peripheral tolerance. The presence of these receptors on many other immune cell types besides effector cells suggests that tight regulation of cell activation is necessary in all facets of the immune response in both normal and diseased tissue. Here, we review novel insights and implications of non-MHC class I ligand binding to inhibitory immune receptors. We give an overview of the known ligand-receptor pairs by grouping the ligands according to their properties and discuss implications of these interactions for the maintenance of immune balance and for the defense against tumors and pathogens.
Collapse
Affiliation(s)
- Robert Jan Lebbink
- Department of Immunology, University Medical Center Utrecht, Rm KC02.085.2, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | |
Collapse
|
53
|
Zhou H, Perlman S. Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA. J Virol 2006; 81:568-74. [PMID: 17079305 PMCID: PMC1797428 DOI: 10.1128/jvi.01512-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse hepatitis virus (MHV) does not induce interferon (IFN) production in fibroblasts or bone marrow-derived dendritic cells. In this report, we show that the essential IFN-beta transcription factors NF-kappaB and IFN regulatory factor 3 are not activated for nuclear translocation and gene induction during infection. However, MHV was unable to inhibit the activation of these factors and subsequent IFN-beta production induced by poly(I:C). Further, MHV infection did not inhibit IFN-beta production mediated by known host pattern recognition receptors (PRRs) (RIG-I, Mda-5, and TLR3). These results are consistent with the notion that double-stranded RNA, produced during MHV infection, is not accessible to cellular PRRs.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Microbiology, University of Iowa, Bowen Science Building 3-730, Iowa City, IA 52242, USA
| | | |
Collapse
|
54
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
55
|
Kuespert K, Pils S, Hauck CR. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol 2006; 18:565-71. [PMID: 16919437 PMCID: PMC7127089 DOI: 10.1016/j.ceb.2006.08.008] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/03/2006] [Indexed: 12/24/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) belong to a group of mammalian immunoglobulin-related glycoproteins. They are involved in cell–cell recognition and modulate cellular processes that range from the shaping of tissue architecture and neovascularization to the regulation of insulin homeostasis and T-cell proliferation. CEACAMs have also been identified as receptors for host-specific viruses and bacteria in mice and humans, respectively, making these proteins an interesting example of pathogen–host co-evolution. Forward and reverse genetics in the mouse now provide powerful novel models to elucidate the action of CEACAM family members in vivo.
Collapse
|
56
|
Kielczewska A, Vidal SM. Enemy at the gates: forward genetics of the mouse antiviral response. Curr Opin Immunol 2006; 18:617-26. [PMID: 16879955 DOI: 10.1016/j.coi.2006.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 01/20/2023]
Abstract
The environment and the genetic constitution of both the pathogen and the host influence the severity and the outcome of viral infections. Whereas identification of the host component in humans remains challenging, recent progress in defining genes through analysis of mouse models of infection presenting natural or chemically induced variation in host susceptibility mark a fruitful period of gene discovery. This includes recognition that UNC93B1, which encodes an endocytic protein, is a susceptibility gene, providing an unexpected entry point to our understanding of the response against herpesvirus infection. By contrast, elucidation of alternative mechanisms of host resistance against mouse cytomegalovirus in inbred mouse strains has led to new insights regarding molecular recognition of the infected cells by natural killer cell MHC class I receptors. In addition, the conservation of genetic and functional aspects between mouse and human is enabling a rational pursuit of potential cures. With the continuous development of resources for experimental investigation of the genome, the production of new mutant alleles, and the phenotypic characterization of new models of infection, we predict that mouse genetic models will make an increasing contribution to our understanding of the genetic puzzle of host response to virus infection.
Collapse
Affiliation(s)
- Agnieszka Kielczewska
- McGill Centre for the Study of Host Resistance, Department of Human Genetics, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | |
Collapse
|
57
|
Nagaishi T, Iijima H, Nakajima A, Chen D, Blumberg RS. Role of CEACAM1 as a Regulator of T Cells. Ann N Y Acad Sci 2006; 1072:155-75. [PMID: 17057197 DOI: 10.1196/annals.1326.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major immunological attribute of inflammatory bowel disease (IBD) is the presence of unrestrained activation of T cells that produce a variety of inflammatory cytokines and other mediators. Gaining an understanding of T cell regulation is therefore of major importance to IBD. Carcinoembryonic antigen-related cell adhesion molecule 1 CEACAM1) is a novel protein that has been recently recognized as being expressed by immune cells and T lymphocytes, in particular; this protein appears to function as a coinhibitory receptor after T cell activation. Ligation of CEACAM1 on T cells induces a signal cascade that leads inhibition of T cell cytokine production and IBD. CEACAM1 is thus a novel potential therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|
59
|
Leung N, Turbide C, Olson M, Marcus V, Jothy S, Beauchemin N. Deletion of the carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1) gene contributes to colon tumor progression in a murine model of carcinogenesis. Oncogene 2006; 25:5527-36. [PMID: 16619040 DOI: 10.1038/sj.onc.1209541] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein that is part of the carcinoembryonic antigen and the immunoglobulin superfamilies. We have shown that it functions as a tumor suppressor and that this function depends upon the presence of the longer CEACAM1 cytoplasmic domain. In this report, we describe the generation of a Ceacam1-/- mouse. The Ceacam1-/- colon exhibits increased in vivo proliferation relative to the wild-type counterpart with a corresponding decreased expression of the p21(Cip1) and p27(Kip1) Cyclin D kinase inhibitors. The colonic villi undergo decreased apoptosis. Out of 35 litters of mice, no spontaneous tumors in any tissues normally expressing CEACAM1 were found over the lifespan of the animals, suggesting that CEACAM1 may not be involved in initiation of tumor development. However, when mice are treated with azoxymethane to induce colonic tumors, we find that Ceacam1-/- mice developed a significantly greater number of tumors than their littermate controls. Moreover, the tumor size was greater in the knockout mice relative to that in the wild-type mice. These results indicate that deletion of CEACAM1 favors progression of colon tumorigenesis.
Collapse
Affiliation(s)
- N Leung
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
60
|
Hauck CR, Agerer F, Muenzner P, Schmitter T. Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 2006; 85:235-42. [PMID: 16546567 DOI: 10.1016/j.ejcb.2005.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.
Collapse
Affiliation(s)
- Christof R Hauck
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | |
Collapse
|
61
|
Zhou H, Perlman S. Preferential infection of mature dendritic cells by mouse hepatitis virus strain JHM. J Virol 2006; 80:2506-14. [PMID: 16474157 PMCID: PMC1395395 DOI: 10.1128/jvi.80.5.2506-2514.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse hepatitis virus strain JHM (MHV-JHM) causes acute encephalitis and acute and chronic demyelinating diseases in mice. Dendritic cells (DCs) are key cells in the initiation of innate and adaptive immune responses, and infection of these cells could potentially contribute to a dysregulated immune response; consistent with this, recent results suggest that DCs are readily infected by another strain of mouse hepatitis virus, the A59 strain (MHV-A59). Herein, we show that the JHM strain also productively infected DCs. Moreover, mature DCs were at least 10 times more susceptible than immature DCs to infection with MHV-JHM. DC function was impaired after MHV-JHM infection, resulting in decreased stimulation of CD8 T cells in vitro. Preferential infection of mature DCs was not due to differential expression of the MHV-JHM receptor CEACAM-1a on mature or immature cells or to differences in apoptosis. Although we could not detect infected DCs in vivo, both CD8(+) and CD11b(+) splenic DCs were susceptible to infection with MHV-JHM directly ex vivo. This preferential infection of mature DCs may inhibit the development of an efficient immune response to the virus.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Pediatrics, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
62
|
Würdinger T, Verheije MH, Broen K, Bosch BJ, Haijema BJ, de Haan CAM, van Beusechem VW, Gerritsen WR, Rottier PJM. Soluble receptor-mediated targeting of mouse hepatitis coronavirus to the human epidermal growth factor receptor. J Virol 2006; 79:15314-22. [PMID: 16306602 PMCID: PMC1316040 DOI: 10.1128/jvi.79.24.15314-15322.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mouse hepatitis coronavirus (MHV) infects murine cells by binding of its spike (S) protein to murine CEACAM1a. The N-terminal part of this cellular receptor (soR) is sufficient for S binding and for subsequent induction of the conformational changes required for virus-cell membrane fusion. Here we analyzed whether these characteristics can be used to redirect MHV to human cancer cells. To this end, the soR domain was coupled to single-chain monoclonal antibody 425, which is directed against the human epidermal growth factor receptor (EGFR), resulting in a bispecific adapter protein (soR-425). The soR and soR-425 proteins, both produced with the vaccinia virus system, were able to neutralize MHV infection of murine LR7 cells. However, only soR-425 was able to target MHV to human EGFR-expressing cancer cells. Interestingly, the targeted infections induced syncytium formation. Furthermore, the soR-425-mediated infections were blocked by heptad repeat-mimicking peptides, indicating that virus entry requires the regular S protein fusion process. We conclude that the specific spike-binding property of the CEACAM1a N-terminal fragment can be exploited to direct the virus to selected cells by linking it to a moiety able to bind a receptor on those cells. This approach might be useful in the development of tumor-targeted coronaviruses.
Collapse
Affiliation(s)
- T Würdinger
- Virology Division, Department of Infectious Diseases & Immunology, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2006; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 752] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
64
|
|
65
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
66
|
Najjar SM, Yang Y, Fernström MA, Lee SJ, Deangelis AM, Rjaily GAA, Al-Share QY, Dai T, Miller TA, Ratnam S, Ruch RJ, Smith S, Lin SH, Beauchemin N, Oyarce AM. Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab 2005; 2:43-53. [PMID: 16054098 DOI: 10.1016/j.cmet.2005.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 04/06/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Insulin is viewed as a positive regulator of fatty acid synthesis by increasing fatty acid synthase (FAS) mRNA transcription. We uncover a new mechanism by which insulin acutely reduces hepatic FAS activity by inducing phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its interaction with FAS. Ceacam1 null mice (Cc1(-/-)) show loss of insulin's ability to acutely decrease hepatic FAS activity. Moreover, adenoviral delivery of wild-type, but not the phosphorylation-defective Ceacam1 mutant, restores the acute effect of insulin on FAS activity in Cc1(-/-) primary hepatocytes. Failure of insulin to acutely reduce hepatic FAS activity in hyperinsulinemic mice, including L-SACC1 transgenics with liver inactivation of CEACAM1, and Ob/Ob obese mice, suggests that the acute effect of insulin on FAS activity depends on the prior insulinemic state. We propose that this mechanism acts to reduce hepatic lipogenesis incurred by insulin pulses during refeeding.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Pharmacology, Cardiovascular Biology and Metabolic Diseases, The Medical University of Ohio, 3035 Arlington Avenue, HSci Building, Room 270, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Navas-Martin S, Hingley ST, Weiss SR. Murine coronavirus evolution in vivo: functional compensation of a detrimental amino acid substitution in the receptor binding domain of the spike glycoprotein. J Virol 2005; 79:7629-40. [PMID: 15919915 PMCID: PMC1143675 DOI: 10.1128/jvi.79.12.7629-7640.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine coronavirus A59 strain causes mild to moderate hepatitis in mice. We have previously shown that mutants of A59, unable to induce hepatitis, may be selected by persistent infection of primary glial cells in vitro. These in vitro isolated mutants encoded two amino acids substitutions in the spike (S) gene: Q159L lies in the putative receptor binding domain of S, and H716D, within the cleavage signal of S. Here, we show that hepatotropic revertant variants may be selected from these in vitro isolated mutants (Q159L-H716D) by multiple passages in the mouse liver. One of these mutants, hr2, was chosen for more in-depth study based on a more hepatovirulent phenotype. The S gene of hr2 (Q159L-R654H-H716D-E1035D) differed from the in vitro isolates (Q159L-H716D) in only 2 amino acids (R654H and E1035D). Using targeted RNA recombination, we have constructed isogenic recombinant MHV-A59 viruses differing only in these specific amino acids in S (Q159L-R654H-H716D-E1035D). We demonstrate that specific amino acid substitutions within the spike gene of the hr2 isolate determine the ability of the virus to cause lethal hepatitis and replicate to significantly higher titers in the liver compared to wild-type A59. Our results provide compelling evidence of the ability of coronaviruses to rapidly evolve in vivo to highly virulent phenotypes by functional compensation of a detrimental amino acid substitution in the receptor binding domain of the spike glycoprotein.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Coronavirus Infections/pathology
- Coronavirus Infections/physiopathology
- Coronavirus Infections/virology
- Evolution, Molecular
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/physiopathology
- Hepatitis, Viral, Animal/virology
- Liver/pathology
- Liver/virology
- Male
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Murine hepatitis virus/genetics
- Murine hepatitis virus/pathogenicity
- Receptors, Virus/metabolism
- Recombination, Genetic
- Specific Pathogen-Free Organisms
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
- Virulence
Collapse
Affiliation(s)
- Sonia Navas-Martin
- Department of Microbiology, University of Pennsylvania, School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA.
| | | | | |
Collapse
|
68
|
Thackray LB, Turner BC, Holmes KV. Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHV-A59. Virology 2005; 334:98-110. [PMID: 15749126 PMCID: PMC7111733 DOI: 10.1016/j.virol.2005.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 11/15/2004] [Accepted: 01/12/2005] [Indexed: 01/17/2023]
Abstract
The host range of the murine coronavirus (MHV) is limited to susceptible mice and murine cell lines by interactions of the spike glycoprotein (S) with its receptor, mCEACAM1a. We identified five residues in S (S33, L79, T82, Y162 and K183) that are conserved in the receptor-binding domain of MHV strains, but not in related coronaviruses. We used targeted RNA recombination to generate isogenic viruses that differ from MHV-A59 by amino acid substitutions in S. Viruses with S33R and K183R substitutions had wild type growth, while L79A/T82A viruses formed small plaques. Viruses with S33G, L79M/T82M or K183G substitutions could only be recovered from cells that over-expressed a mutant mCEACAM1a. Viruses with Y162H or Y162Q substitutions were never recovered, while Y162A viruses formed minute plaques. However, viruses with Y162F substitutions had wild type growth, suggesting that Y162 may comprise part of a hydrophobic domain that contacts the MHV-binding site of mCEACAM1a.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Base Sequence
- Binding Sites/genetics
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Cell Line
- Conserved Sequence
- Coronavirus/genetics
- Coronavirus/growth & development
- Coronavirus/metabolism
- Coronavirus/pathogenicity
- Cricetinae
- DNA, Complementary/genetics
- DNA, Viral/genetics
- Green Fluorescent Proteins/genetics
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Rats
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombination, Genetic
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/metabolism
Collapse
|