51
|
Hussain MK, Ahmed S, Khan A, Siddiqui AJ, Khatoon S, Jahan S. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. Eur J Med Chem 2023; 246:115010. [PMID: 36566630 PMCID: PMC9734071 DOI: 10.1016/j.ejmech.2022.115010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Mucormycosis is a fungal infection which got worsens with time if not diagnosed and treated. The current COVID-19 pandemic has association with fungal infection specifically with mucormycosis. Already immunocompromised patients are easy target for COVID-19 and mucormycosis as well. COVID-19 infection imparts in weak immune system so chances of infection is comparatively high in COVID-19 patients. Furthermore, diabetes, corticosteroid medicines, and a weakened immune system are the most prevalent risk factors for this infection as we discussed in case studies here. The steroid therapy for COVID-19 patients sometimes have negative impact on the patient health and this state encounters many infections including mucormycosis. There are treatments available but less promising and less effective. So, researchers are focusing on the promising agents against mucormycosis. It is reported that early treatment with liposomal amphotericin B (AmB), manogepix, echinocandins isavuconazole, posacanazole and other promising therapeutic agents have overcome the burden of mucormycosis. Lipid formulations of AmB have become the standard treatment for mucormycosis due to their greater safety and efficacy. In this review article, we have discussed case studies with the infection of mucormycosis in COVID-19 patients. Furthermore, we focused on anti-mucormycosis agents with mechanism of action of various therapeutics, including coverage of new antifungal agents being investigated as part of the urgent global response to control and combat this lethal infection, especially those with established risk factors.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza PG College, Rampur, 244901, India,M.J.P. Rohil Khand University, Bareilly, India
| | - Shaista Ahmed
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia,Corresponding author
| |
Collapse
|
52
|
Ciamponi FE, Procópio DP, Murad NF, Franco TT, Basso TO, Brandão MM. Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 2022; 12:22466. [PMID: 36577778 PMCID: PMC9797568 DOI: 10.1038/s41598-022-26843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.
Collapse
Affiliation(s)
- F. E. Ciamponi
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - D. P. Procópio
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - N. F. Murad
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - T. T. Franco
- grid.411087.b0000 0001 0723 2494School of Chemical Engineering (FEQ), State University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP 13083-852 Brazil
| | - T. O. Basso
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - M. M. Brandão
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
53
|
Mathematical Modeling of Fluconazole Resistance in the Ergosterol Pathway of Candida albicans. mSystems 2022; 7:e0069122. [PMID: 36383015 PMCID: PMC9765018 DOI: 10.1128/msystems.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candidiasis is reported to be the most common fungal infection in the critical care setting. The causative agent of this infection is a commensal pathogen belonging to the genus Candida, the most common species of which is Candida albicans. The ergosterol pathway in yeast is a common target by many antifungal agents, as ergosterol is an essential component of the cell membrane. The current antifungal agent of choice for the treatment of candidiasis is fluconazole, which is classified under the azole antifungals. In recent years, the significant increase of fluconazole-resistant C. albicans in clinical samples has revealed the need for a search for other possible drug targets. In this study, we constructed a mathematical model of the ergosterol pathway of C. albicans using ordinary differential equations with mass action kinetics. From the model simulations, we found the following results: (i) a partial inhibition of the sterol-methyltransferase enzyme yields a fair amount of fluconazole resistance; (ii) the overexpression of the ERG6 gene, which leads to an increased sterol-methyltransferase enzyme, is a good target of antifungals as an adjunct to fluconazole; (iii) a partial inhibition of lanosterol yields a fair amount of fluconazole resistance; (iv) the C5-desaturase enzyme is not a good target of antifungals as an adjunct to fluconazole; (v) the C14α-demethylase enzyme is confirmed to be a good target of fluconazole; and (vi) the dose-dependent effect of fluconazole is confirmed. This study hopes to aid experimenters in narrowing down possible drug targets prior to costly and time-consuming experiments and serve as a cross-validation tool for experimental data. IMPORTANCE Candidiasis is reported to be the most common fungal infection in the critical care setting, and it is caused by a commensal pathogen belonging to the genus Candida, the most common species of which is Candida albicans. The current antifungal agent of choice for the treatment of candidiasis is fluconazole, which is classified under the azole antifungals. There has been a significant increase in fluconazole-resistant C. albicans in recent years, which has revealed the need for a search for other possible drug targets. We constructed a mathematical model of the ergosterol pathway in C. albicans using ordinary differential equations with mass action kinetics. In our simulations, we found that by increasing the amount of the sterol-methyltransferase enzyme, C. albicans becomes more susceptible to fluconazole. This study hopes to aid experimenters in narrowing down the possible drug targets prior to costly and time-consuming experiments and to serve as a cross-validation tool for experimental data.
Collapse
|
54
|
Zheng ZY, Feng CH, Xie G, Liu WL, Zhu XL. Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on Saccharomyces cerevisiae: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis. Foods 2022; 11:3883. [PMID: 36496692 PMCID: PMC9735630 DOI: 10.3390/foods11233883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Protein corona (PC) adsorbed on the surface of nanoparticles brings new research perspectives on the interaction between nanoparticles and fermentative microorganisms. Herein, the proteolysis of wheat PC adsorbed on a nano-Se surface using cell-free protease extract from S. cerevisiae was conducted. The proteolysis caused monotonic changes of ζ-potentials and surface hydrophobicity of PC. Notably, the innermost PC layer was difficult to be proteolyzed. Furthermore, when S. cerevisiae was stimulated by ultrasound + 0.1 mg/mL nano-Se@PC, the proportion of lethal and sublethal injured cells increased as a function of the proteolysis time of PC. The transcriptomics analysis revealed that 34 differentially expressed genes which varied monotonically were related to the plasma membrane, fatty acid metabolism, glycerolipid metabolism, etc. Significant declines in the membrane potential and proton motive force disruption of membrane were found with the prolonged proteolysis time; meanwhile, higher membrane permeability, membrane oxidative stress levels, membrane lipid fluidity, and micro-viscosity were triggered.
Collapse
Affiliation(s)
- Zi-Yi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
| | | | | | | | | |
Collapse
|
55
|
James JE, Santhanam J, Cannon RD, Lamping E. Voriconazole Treatment Induces a Conserved Sterol/Pleiotropic Drug Resistance Regulatory Network, including an Alternative Ergosterol Biosynthesis Pathway, in the Clinically Important FSSC Species, Fusarium keratoplasticum. J Fungi (Basel) 2022; 8:jof8101070. [PMID: 36294635 PMCID: PMC9605146 DOI: 10.3390/jof8101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| |
Collapse
|
56
|
Bhakt P, Raney M, Kaur R. The SET-domain protein CgSet4 negatively regulates antifungal drug resistance via the ergosterol biosynthesis transcriptional regulator CgUpc2a. J Biol Chem 2022; 298:102485. [PMID: 36108742 PMCID: PMC9576903 DOI: 10.1016/j.jbc.2022.102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Mayur Raney
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
57
|
Artemisinin Targets Transcription Factor PDR1 and Impairs Candida glabrata Mitochondrial Function. Antioxidants (Basel) 2022; 11:antiox11101855. [PMID: 36290580 PMCID: PMC9598568 DOI: 10.3390/antiox11101855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
A limited number of antifungal drugs, the side-effect of clinical drugs and the emergence of resistance create an urgent need for new antifungal treatment agents. High-throughput drug screening and in-depth drug action mechanism analyzation are needed to address this problem. In this study, we identified that artemisinin and its derivatives possessed antifungal activity through a high-throughput screening of the FDA-approved drug library. Subsequently, drug-resistant strains construction, a molecular dynamics simulation and a transcription level analysis were used to investigate artemisinin’s action mechanism in Candida glabrata. Transcription factor pleiotropic drug resistance 1 (PDR1) was an important determinant of artemisinin’s sensitivity by regulating the drug efflux pump and ergosterol biosynthesis pathway, leading to mitochondrial dysfunction. This dysfunction was shown by a depolarization of the mitochondrial membrane potential, an enhancement of the mitochondrial membrane viscosity and an upregulation of the intracellular ROS level in fungi. The discovery shed new light on the development of antifungal agents and understanding artemisinin’s action mechanism.
Collapse
|
58
|
3,5-Dinitrobenzoate and 3,5-Dinitrobenzamide Derivatives: Mechanistic, Antifungal, and In Silico Studies. J CHEM-NY 2022. [DOI: 10.1155/2022/2336175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal infections, including those caused by Candida spp., are recognized in immunocompromised individuals for their high rates of morbidity and mortality. Microorganism resistance to conventional drugs compromises treatment effectiveness and yet also reveals the need to develop new drugs. In many compounds, nitro groups contribute to antimicrobial activity; thus, the inhibitory activity of a collection of twenty esters and amides (derived from 3,5-dinitrobenzoic acid) against Candida spp. was elucidated using microdilution methods to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicide Concentration (MFC), as well as probable mechanisms of action. The structures of the synthesized compounds were characterized by FTIR spectroscopy, 1H-NMR, 13C NMR, and HRMS. Of the tested derivatives, ten presented fungicidal activity against at least one of the tested strains. Ethyl 3,5-dinitrobenzoate (2) exhibited the most potent antifungal activity against Candida albicans (MIC = 125 µg/mL; 0.52 mM), Candida krusei (MIC = 100 µg/mL; 4.16 mM), and Candida tropicalis (MIC = 500 µg/ml; 2.08 mM). The structure of the second most potent derivative (propyl 3,5-dinitrobenzoate (3) reveals that esters with short alkyl side chains exhibit better biological activity profiles. Compounds 2 and 3 presented a mechanism of action involving the fungal cell membrane. Though compound 2 modeling against C. albicans revealed a multitarget antifungal mechanism of action, involving various cellular processes, interference in the synthesis of ergosterol was observed. Our results demonstrate that certain ester derivatives containing aromatic ring nitro groups may be useful in the search for new antifungal drugs.
Collapse
|
59
|
Jayasekara LACB, Poonsawad A, Watchaputi K, Wattanachaisaereekul S, Soontorngun N. Media optimization of antimicrobial activity production and beta-glucan content of endophytic fungi Xylaria sp. BCC 1067. BIOTECHNOLOGY REPORTS 2022; 35:e00742. [PMID: 35677324 PMCID: PMC9168064 DOI: 10.1016/j.btre.2022.e00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Xylaria is an untapped resource for natural product discovery. Xylaria mycelial extract contains antimicrobials and immunomodulator beta-glucan. Achieved high mycelial biomass and antifungal activity using media-type selection. Media replacement approach lowers cultivation time and enhances bioactivity. Additive effect of mycelial extract and salicylic or citric acid against P. acne.
Fungi is a notable asset for drug discovery and production of pharmaceuticals; however, slow growth and poor product yields have hindered industrial utilization. Here, the mycelial biomass of Xylaria sp. BCC 1067 was examined in parallel with the assessment of antimicrobial properties by using media-type selection. To enhance both mycelial content and antifungal activity, the media replacement approach was successfully applied to stimulate fungal growth and successively switched to poorer malt-peptone extract media for metabolite production. This simple optimization reduced fungal cultivation time by 7 days and yielded 4-fold increased mycelial mass (32.59 g/L), with approximately 3-fold increased antifungal activity against the model yeast Saccharomyces cerevisiae strain. A high level of β-glucan (115.84 mg/g of cell dry weight) and additive antibacterial effect against Propionibacterium acnes were also reported. This simple strategy of culture media optimization allows for investigation of novel and rich source of health-promoting substances for effective microbial utilization.
Collapse
Affiliation(s)
- L. A. Channa Bhathiya Jayasekara
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Attaporn Poonsawad
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Kwanrutai Watchaputi
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | | | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
- Corresponding author.
| |
Collapse
|
60
|
Song N, Xia H, Yang Q, Zhang X, Yao L, Yang S, Chen X, Dai J. Differential analysis of ergosterol function in response to high salt and sugar stress in Zygosaccharomyces rouxii. FEMS Yeast Res 2022; 22:6657072. [PMID: 35932192 DOI: 10.1093/femsyr/foac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 11/14/2022] Open
Abstract
Zygosaccharomyces rouxii is an osmotolerant and halotolerant yeast that can participate in fermentation. To understand the mechanisms of salt and sugar tolerance, the transcription levels of Z. rouxii M 2013310 under 180 g/L NaCl stress and 600 g/L glucose stress were measured. The transcriptome analysis showed that 2227 differentially expressed genes (DEGs) were identified under 180 g/L NaCl stress, 1530 DEGs were identified under 600 g/L glucose stress, and 1278 DEGs were identified under both stress conditions. Then, KEGG enrichment analyses of these genes indicated that 53.3% of the upregulated genes were involved in the ergosterol synthesis pathway. Subsequently, quantitative PCR was used to verify the results, which showed that the genes of the ergosterol synthesis pathway were significantly upregulated under 180 g/L NaCl stress. Finally, further quantitative testing of ergosterol and spotting assays revealed that Z. rouxii M 2013310 increased the amount of ergosterol in response to high salt stress. These results highlighted the functional differences in ergosterol under sugar stress and salt stress, which contributes to our understanding of the tolerance mechanisms of salt and sugar in Z. rouxii.
Collapse
Affiliation(s)
- Na Song
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, P.R. China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, P.R. China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaoling Zhang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, P.R. China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, China, 430062
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, P.R. China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan 430068, P.R. China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, China, 430062S
| |
Collapse
|
61
|
Li X, Li M, Liu X, Jiang Y, Zhao D, Gao J, Wang Z, Jiang Y, Chen C. RNA-Seq Provides Insights into the Mechanisms Underlying Ilyonectria robusta Responding to Secondary Metabolites of Bacillus methylotrophicus NJ13. J Fungi (Basel) 2022; 8:779. [PMID: 35893148 PMCID: PMC9332032 DOI: 10.3390/jof8080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
(1) Background: Ilyonectria robusta can cause ginseng to suffer from rusty root rot. Secondary metabolites (SMs) produced by Bacillus methylotrophicus NJ13 can inhibit the mycelial growth of I. robusta. However, the molecular mechanism of the inhibition and response remains unclear. (2) Methods: Through an in vitro trial, the effect of B. methylotrophicus NJ13’s SMs on the hyphae and conidia of I. robusta was determined. The change in the physiological function of I. robusta was evaluated in response to NJ13’s SMs by measuring the electrical conductivity, malondialdehyde (MDA) content, and glucose content. The molecular interaction mechanism of I. robusta’s response to NJ13’s SMs was analyzed by using transcriptome sequencing. (3) Results: NJ13’s SMs exhibited antifungal activity against I. robusta: namely, the hyphae swelled and branched abnormally, and their inclusions leaked out due to changes in the cell membrane permeability and the peroxidation level; the EC50 value was 1.21% (v/v). In transcripts at 4 dpi and 7 dpi, the number of differentially expressed genes (DEGs) (|log2(fold change)| > 1, p adj ≤ 0.05) was 1960 and 354, respectively. NJ13’s SMs affected the glucose metabolism pathway, and the sugar-transporter-related genes were downregulated, which are utilized by I. robusta for energy production. The cell wall structure of I. robusta was disrupted, and chitin-synthase-related genes were downregulated. (4) Conclusions: A new dataset of functional responses of the ginseng pathogenic fungus I. robusta was obtained. The results will benefit the development of targeted biological fungicides for I. robusta and the study of the molecular mechanisms of interaction between biocontrol bacteria and phytopathogenic fungi.
Collapse
Affiliation(s)
- Xiang Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Mengtao Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Xiangkai Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Yilin Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Dongfang Zhao
- Jilin Provincial Agro-Tech Extension Center, Changchun 130031, China;
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| | - Zhenhui Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Yun Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Changqing Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (M.L.); (X.L.); (Y.J.); (J.G.)
| |
Collapse
|
62
|
Jin X, Yang H, Chen M, Coldea TE, Zhao H. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides. Appl Microbiol Biotechnol 2022; 106:4995-5006. [PMID: 35819513 DOI: 10.1007/s00253-022-12073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
The influences of three wheat gluten peptides (WGP-LL, WGP-LML, and WGP-LLL) on the osmotic stress tolerance and membrane lipid component in brewer's yeast were investigated. The results demonstrated that the growth and survival of yeast under osmotic stress were enhanced by WGP supplementation. The addition of WGP upregulated the expressions of OLE1 (encoded the delta-9 fatty acid desaturase) and ERG1 (encoded squalene epoxidase) genes under osmotic stress. At the same time, WGP addition enhanced palmitoleic acid (C16:1) content, unsaturated fatty acids/saturated fatty acids ratio, and the amount of ergosterol in yeast cells under osmotic stress. Furthermore, yeast cells in WGP-LL and WGP-LLL groups were more resistant to osmotic stress. WGP-LL and WGP-LLL addition caused 25.08% and 27.02% increase in membrane fluidity, 22.36% and 29.54% reduction in membrane permeability, 18.38% and 14.26% rise in membrane integrity in yeast cells, respectively. In addition, scanning electron microscopy analysis revealed that the addition of WGP was capable of maintaining yeast cell morphology and reducing cell membrane damage under osmotic stress. Thus, alteration of membrane lipid component by WGP was an effective approach for increasing the growth and survival of yeast cells under osmotic stress. KEY POINTS: •WGP addition enhanced cell growth and survival of yeast under osmotic stress. •WGP addition increased unsaturated fatty acids and ergosterol contents in yeast. •WGP supplementation improved membrane homeostasis in yeast at osmotic stress.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
63
|
Oliveira NK, Bhattacharya S, Gambhir R, Joshi M, Fries BC. Novel ABC Transporter Associated with Fluconazole Resistance in Aging of Cryptococcus neoformans. J Fungi (Basel) 2022; 8:677. [PMID: 35887434 PMCID: PMC9320417 DOI: 10.3390/jof8070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Cryptococcus neoformans causes meningoencephalitis in immunocompromised individuals, which is treated with fluconazole (FLC) monotherapy when resources are limited. This can lead to azole resistance, which can be mediated by overexpression of ABC transporters, a class of efflux pumps. ABC pump-mediated efflux of FLC is also augmented in 10-generation old C. neoformans cells. Here, we describe a new ABC transporter Afr3 (CNAG_06909), which is overexpressed in C. neoformans cells of advanced generational age that accumulate during chronic infection. The Δafr3 mutant strain showed higher FLC susceptibility by FLC E-Test strip testing and also by a killing test that measured survival after 3 h FLC exposure. Furthermore, Δafr3 cells exhibited lower Rhodamine 6G efflux compared to the H99 wild-type cells. Afr3 was expressed in the Saccharomyces cerevisiae ADΔ strain, which lacks several drug transporters, thus reducing background transport. The ADΔ + Afr3 strain demonstrated a higher efflux with both Rhodamine 6G and Nile red, and a higher FLC resistance. Afr3-GFP localized in the plasma membrane of the ADΔ + Afr3 strain, further highlighting its importance as an efflux pump. Characterization of the Δafr3 mutant revealed unattenuated growth but a prolongation (29%) of the replicative life span. In addition, Δafr3 exhibited decreased resistance to macrophage killing and attenuated virulence in the Galleria mellonella infection model. In summary, our data indicate that a novel ABC pump Afr3, which is upregulated in C. neoformans cells of advanced age, may contribute to their enhanced FLC tolerance, by promoting drug efflux. Lastly, its role in macrophage resistance may also contribute to the selection of older C. neoformans cells during chronic infection.
Collapse
Affiliation(s)
- Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rina Gambhir
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (R.G.); (M.J.)
| | - Manav Joshi
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (R.G.); (M.J.)
| | - Bettina C. Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
64
|
Dhandapani K, Sivarajan K, Ravindhiran R, Sekar JN. Fungal Infections as an Uprising Threat to Human Health: Chemosensitization of Fungal Pathogens With AFP From Aspergillus giganteus. Front Cell Infect Microbiol 2022; 12:887971. [PMID: 35694549 PMCID: PMC9174459 DOI: 10.3389/fcimb.2022.887971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Occurrence and intensity of systemic invasive fungal infections have significantly risen in recent decades with large amount of mortality and morbidity rates at global level. Treatment therapy lies on the current antifungal interventions and are often limited due to the emergence of resistance to antifungal agents. Chemosensitization of fungal strains to the conventional antimycotic drugs are of growing concern. Current antifungal drugs often have been reported with poor activity and side effects to the host and have a few number of targets to manifest their efficacy on the pathogens. Indiscriminately, the aforementioned issues have been easily resolved by the development of new intervention strategies. One such approach is to employ combinational therapy that has exhibited a great level of inhibitions than that of a single compound. Chemosensitization of pathogenic mycoses to commercial antifungal drugs could be drastically enhanced by co-application of chemosensitizers along with the conventional drugs. Chemosensitizers could address the resistance mechanisms evolved in the pathogenic fungi and targeting the system to make the organism susceptible to commercially and clinically proven antifungal drugs. However, this strategy has not been overreached to the greater level, but it needs much attention to fight against not only with the pathogen but combat the resistance mechanisms of pathogens to drugs. Natural compounds including plant compounds and microbial proteins act as potential chemosensitizers to break the resistance in mycoses. Aspergillus giganteus, a filamentous fungus, is known to produce a cysteine rich extracellular protein called as antifungal protein (AFP). AFP has shown enhanced efficacy against several filamentous and non-filamentous fungal pathogens. On the basis of the reported studies on its targeted potential against pathogenic mycoses, AFP would be fabricated as a good chemosensitizer to augment the fungicidal efficacy of commercial antimycotic drugs. This paper reviews on breakthrough in the discovery of antifungal drugs along with the resistance patterns of mycoses to commercial drugs followed by the current intervention strategies applied to augment the fungicidal potential of drugs.
Collapse
|
65
|
Qian W, Li X, Liu Q, Lu J, Wang T, Zhang Q. Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising Candida albicans and/or Cryptococcus neoformans. Front Cell Infect Microbiol 2022; 12:884793. [PMID: 35669114 PMCID: PMC9163411 DOI: 10.3389/fcimb.2022.884793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal populations are commonly found in natural environments and present enormous health care challenges, due to increased resistance to antifungal agents. Paeonol exhibits antifungal activities; nevertheless, the antifungal and antibiofilm activities of paeonol against Candida albicans and Cryptococcus neoformans remain largely unexplored. Here, we aimed to evaluate the antifungal and antibiofilm activities of paeonol against C. albicans and/or C. neoformans (i.e., against mono- or dual-species). The minimum inhibitory concentrations (MICs) of paeonol for mono-species comprising C. albicans or C. neoformans were 250 μg ml−1, whereas the MIC values of paeonol for dual-species were 500 μg ml−1. Paeonol disrupted cell membrane integrity and increased the influx of gatifloxacin into cells of mono- and dual-species cells, indicating an antifungal mode of action. Moreover, paeonol at 8 times the MIC damaged mono- and dual-species cells within C. albicans and C. neoformans biofilms, as it did planktonic cells. In particular, at 4 and 8 mg ml−1, paeonol efficiently dispersed preformed 48-h biofilms formed by mono- and dual-species cells, respectively. Paeonol inhibited effectively the yeast-to-hyphal-form transition of C. albicans and impaired capsule and melanin production of C. neoformans. The addition of 10 MIC paeonol to the medium did not shorten the lifespan of C. elegans, and 2 MIC paeonol could effectively protect the growth of C. albicans and C. neoformans-infected C. elegans. Furthermore, RNA sequencing was employed to examine the transcript profiling of C. albicans and C. neoformans biofilm cells in response to 1/2 MIC paeonol. RNA sequencing data revealed that paeonol treatment impaired biofilm formation of C. albicans by presumably downregulating the expression level of initial filamentation, adhesion, and growth-related genes, as well as biofilm biosynthesis genes, whereas paeonol inhibited biofilm formation of C. neoformans by presumably upregulating the expression level of ergosterol biosynthesis-related genes. Together, the findings of this study indicate that paeonol can be explored as a candidate antifungal agent for combating serious single and mixed infections caused by C. albicans and C. neoformans.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| |
Collapse
|
66
|
Rao KH, Roy K, Ghosh S. Srg1, a putative protein phosphatase from the HAD-family, is involved in stress adaptation in Candida albicans. Biochim Biophys Acta Gen Subj 2022; 1866:130164. [PMID: 35523365 DOI: 10.1016/j.bbagen.2022.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The cell stress response plays an important role in the survival of organisms. Studies have revealed that the pathogenic yeast Candida albicans that constantly encounters various environmental insults inside the host has emerged as an ideal system to understand the molecular mechanism (s) of stress response. In this study, we characterize a stress-inducible gene SRG1 which is a Halo Acid Dehalogenase (HAD) family member from C. albicans. METHODS We used confocal microscopy, site-directed mutagenesis, gene deletion techniques, and tandem-affinity purification and co-immunoprecipitation studies to functionally characterize SRG1. RESULTS The sub-cellular localization of Srg1 is predominantly cytoplasmic and includes punctate mitochondrial staining in the presence of salt. Protein purification studies coupled with LC-MS analysis showed that Srg1 is a phosphoprotein. The Srg1 mutant carrying S47A and S49A mutations failed to migrate to mitochondria in the presence of salt but retained its phosphatase activity. Srg1 migrates to the nucleus in ∆hog1 mutant cells indicating an unorthodox role for HAD family proteins in stress-mediated transcriptional response. Srg1 also interacts with Erg13, a component involved in the mitochondrial membrane lipid biosynthesis pathway. CONCLUSIONS A multistep relay mechanism that includes a positive modulation by the MAP kinase Hog1 and a negative modulation by the global repressor Tup1 controls SRG1 expression. GENERAL SIGNIFICANCE Taken together, our work contributes towards gaining a functional insight into a class of phosphatases that probably have evolved with novel specificities in the pathogenic yeast C. albicans to counteract stressful conditions.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi, India; Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India.
| | - Kasturi Roy
- Dept. of Molecular Biology and Biotechnology, University of Kalyani., Kalyani, West Bengal, India
| | - Swagata Ghosh
- Dept. of Molecular Biology and Biotechnology, University of Kalyani., Kalyani, West Bengal, India.
| |
Collapse
|
67
|
Computational Strategy for Minimizing Mycotoxins in Cereal Crops: Assessment of the Biological Activity of Compounds Resulting from Virtual Screening. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082582. [PMID: 35458779 PMCID: PMC9025057 DOI: 10.3390/molecules27082582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Cereal crops are frequently affected by toxigenic Fusarium species, among which the most common and worrying in Europe are Fusarium graminearum and Fusarium culmorum. These species are the causal agents of grain contamination with type B trichothecene (TCTB) mycotoxins. To help reduce the use of synthetic fungicides while guaranteeing low mycotoxin levels, there is an urgent need to develop new, efficient and environmentally-friendly plant protection solutions. Previously, F. graminearum proteins that could serve as putative targets to block the fungal spread and toxin production were identified and a virtual screening undertaken. Here, two selected compounds, M1 and M2, predicted, respectively, as the top compounds acting on the trichodiene synthase, a key enzyme of TCTB biosynthesis, and the 24-sterol-C-methyltransferase, a protein involved in ergosterol biosynthesis, were submitted for biological tests. Corroborating in silico predictions, M1 was shown to significantly inhibit TCTB yield by a panel of strains. Results were less obvious with M2 that induced only a slight reduction in fungal biomass. To go further, seven M1 analogs were assessed, which allowed evidencing of the physicochemical properties crucial for the anti-mycotoxin activity. Altogether, our results provide the first evidence of the promising potential of computational approaches to discover new anti-mycotoxin solutions
Collapse
|
68
|
Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responsible for plasma membrane structure maintenance in eukaryotic organisms, sterols are essential for yeast development. The role of two sterol sources in Saccharomyces cerevisiae during wine fermentation is highlighted in this review: ergosterol (yeast sterol produced by yeast cells under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts in the absence of oxygen). These compounds are responsible for the maintenance of yeast cell viability during white wine fermentation under stress conditions, such as ethanol stress and sterol starvation, to avoid sluggish and stuck fermentations.
Collapse
|
69
|
Synthetic biology: a new frontier in food production. Trends Biotechnol 2022; 40:781-803. [PMID: 35120749 DOI: 10.1016/j.tibtech.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Concerns regarding food security arise from population growth, global warming, and reduction in arable land. With advances in synthetic biology, food production by microbes is considered to be a promising alternative that would allow rapid food production in an environmentally friendly manner. Moreover, synthetic biology can be adopted to the production of healthier or specifically designed food ingredients (e.g., high-value proteins, lipids, and vitamins) and broaden the utilization of feedstocks (e.g., methanol and CO2), thereby offering potential solutions to high-quality food and the greenhouse effect. We first present how synthetic biology can facilitate the microbial production of various food components, and then discuss feedstock availability enabled by synthetic biology. Finally, we illustrate trends and key challenges in synthetic biology-driven food production.
Collapse
|
70
|
Balkrishna A, Rastogi S, Kharayat B, Tomer M, Varshney Y, Singh K, Kumari P, Dev R, Srivastava J, Haldar S, Varshney A. Anu taila, an herbal nasal-drop, suppresses mucormycosis by regulating host TNF-α response and fungal ergosterol biosynthesis. J Appl Microbiol 2022; 132:3355-3374. [PMID: 35025137 DOI: 10.1111/jam.15451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
AIM The intractable, mucormycosis, caused by Mucorales primarily targets immunocompromised individuals. The first-line therapy, intravenous liposomal Amphotericin B and surgical debridement of necrotic tissue, is contraindicative in individuals with compromised kidneys. This invokes a pressing need to identify safer treatment options. METHODS AND RESULTS Antifungal effect of the classical nasal drop, Anu taila, against Mucor spp. was investigated through microbiological, cytological, analytical chemical (HPLC and GS/MS/MS) and field emission scanning electron microscopic (FE-SEM) approaches. Anu taila pre-treated spores germinated late, resulting in reduced infectivity, observed as milder monocytic immune response. Conversely, Anu taila pre-treated THP-1 cells exhibited an improved immune response, through TNF-α, against Mucor spores. Repeated Anu taila application abolished fungal microarchitectures faster than Amphotericin B, evident from rapid replacement of hyphae, sporangiophores and sporangia with fused biomass, in the FESEM images. Anu taila downregulated sterol-C5-desaturase-coding ERG3 gene, crucial for ergosterol biosynthesis and resultant structural integrity, in Mucor spp. CONCLUSION Taken together, Anu taila was found effective against Mucor spp., with both prophylactic and curative implications, attributable to its phytochemical composition. SIGNIFICANCE Potential remedial effects of a classical nasal drop against an obdurate and challenging fungal infection are identified.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
| | - Shubhangi Rastogi
- Department of Microbiology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Bhawana Kharayat
- Department of Microbiology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Meenu Tomer
- Department of Chemistry, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Yash Varshney
- Department of Chemistry, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Kanchan Singh
- Department of Microbiology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Priya Kumari
- Department of Biology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Department of Biology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Jyotish Srivastava
- Department of Chemistry, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Microbiology, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
71
|
Duanis‐Assaf D, Galsurker O, Davydov O, Maurer D, Feygenberg O, Sagi M, Poverenov E, Fluhr R, Alkan N. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:226-237. [PMID: 34520611 PMCID: PMC8710829 DOI: 10.1111/pbi.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 06/01/2023]
Abstract
Pathogenic fungi cause major postharvest losses. During storage and ripening, fruit becomes highly susceptible to fungi that cause postharvest disease. Fungicides are effective treatments to limit disease. However, due to increased public concern for their possible side effects, there is a need to develop new strategies to control postharvest fungal pathogens. Botrytis cinerea, a common postharvest pathogen, was shown to uptake small double-stranded RNA (dsRNA) molecules from the host plant. Such dsRNA can regulate gene expression through the RNA interference system. This work aimed to develop a synthetic dsRNA simultaneously targeting three essential transcripts active in the fungal ergosterol biosynthesis pathway (dsRNA-ERG). Our results show initial uptake of dsRNA in the emergence zone of the germination tube that spreads throughout the fungus and results in down-regulation of all three targeted transcripts. Application of dsRNA-ERG decreased B. cinerea germination and growth in in vitro conditions and various fruits, leading to reduce grey-mould decay. The inhibition of growth or decay was reversed by the addition of ergosterol. While dual treatment with dsRNA-ERG and ergosterol-inhibitor fungicide reduced by 100-fold the required amount of fungicide to achieve the same protection rate. The application of dsRNA-ERG induced systemic protection as shown by decreased decay development at inoculation points distant from the treatment point in tomato and pepper fruits. Overall, this study suggests that dsRNA-ERG can effectively control B. cinerea growth and grey-mould development suggesting its efficacy as a future method for postharvest control of fungal pathogens.
Collapse
Affiliation(s)
- Danielle Duanis‐Assaf
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
- Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Ortal Galsurker
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Olga Davydov
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Dalia Maurer
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Moshe Sagi
- French Associates Institute for Agricultural and Biotechnology of DrylandsBlaustein Institutes for Desert ResearchBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Elena Poverenov
- Department of Food Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Robert Fluhr
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Noam Alkan
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
72
|
Dohn R, Xie B, Back R, Selewa A, Eckart H, Rao RP, Basu A. mDrop-Seq: Massively Parallel Single-Cell RNA-Seq of Saccharomyces cerevisiae and Candida albicans. Vaccines (Basel) 2021; 10:vaccines10010030. [PMID: 35062691 PMCID: PMC8779198 DOI: 10.3390/vaccines10010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.
Collapse
Affiliation(s)
- Ryan Dohn
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Rebecca Back
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Alan Selewa
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
| | - Reeta Prusty Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; (B.X.); (R.B.); (A.S.); (H.E.); (A.B.)
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
73
|
Loss-of-Function ROX1 Mutations Suppress the Fluconazole Susceptibility of upc2AΔ Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis. mSphere 2021; 6:e0083021. [PMID: 34935446 PMCID: PMC8694151 DOI: 10.1128/msphere.00830-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss-of-function mutations in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3β, 6α-diol, relative to the upc2AΔ mutant. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata. IMPORTANCECandida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol (ERG) biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of ERG genes, additional positive regulators of this pathway must exist.
Collapse
|
74
|
Tiwari A, Singh G, Singh U, Sapra L, Rana V, Sharma V, Srivastava RK, Sharma S. Edible mushrooms: The potential game changer in alleviating vitamin D deficiency and improving human health. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Abhay Tiwari
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Garima Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Umesh Singh
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| | - Leena Sapra
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Vikrant Rana
- Department of Applied Agriculture School of Basic and Applied Sciences Central University of Punjab Bathinda Punjab India
| | - Vasudha Sharma
- Department of Food Technology Jamia Hamdard New Delhi India
| | - Rupesh K. Srivastava
- Department of Biotechnology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Satyawati Sharma
- Centre for Rural Development & Technology Indian Institute of Technology (IIT) New Delhi India
| |
Collapse
|
75
|
Jordá T, Rozès N, Puig S. Sterol Composition Modulates the Response of Saccharomyces cerevisiae to Iron Deficiency. J Fungi (Basel) 2021; 7:jof7110901. [PMID: 34829190 PMCID: PMC8620032 DOI: 10.3390/jof7110901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Iron is a vital micronutrient that functions as an essential cofactor in multiple biological processes, including oxygen transport, cellular respiration, and metabolic pathways, such as sterol biosynthesis. However, its low bioavailability at physiological pH frequently leads to nutritional iron deficiency. The yeast Saccharomyces cerevisiae is extensively used to study iron and lipid metabolisms, as well as in multiple biotechnological applications. Despite iron being indispensable for yeast ergosterol biosynthesis and growth, little is known about their interconnections. Here, we used lipid composition analyses to determine that changes in the pattern of sterols impair the response to iron deprivation of yeast cells. Yeast mutants defective in ergosterol biosynthesis display defects in the transcriptional activation of the iron-acquisition machinery and growth defects in iron-depleted conditions. The transcriptional activation function of the iron-sensing Aft1 factor is interrupted due to its mislocalization to the vacuole. These data uncover novel links between iron and sterol metabolisms that need to be considered when producing yeast-derived foods or when treating fungal infections with drugs that target the ergosterol biosynthesis pathway.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain;
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d’Enologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain;
- Correspondence:
| |
Collapse
|
76
|
Structural Insights into the Azole Resistance of the Candida albicans Darlington Strain Using Saccharomyces cerevisiae Lanosterol 14α-Demethylase as a Surrogate. J Fungi (Basel) 2021; 7:jof7110897. [PMID: 34829185 PMCID: PMC8621857 DOI: 10.3390/jof7110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Target-based azole resistance in Candida albicans involves overexpression of the ERG11 gene encoding lanosterol 14α-demethylase (LDM), and/or the presence of single or multiple mutations in this enzyme. Overexpression of Candida albicans LDM (CaLDM) Y132H I471T by the Darlington strain strongly increased resistance to the short-tailed azoles fluconazole and voriconazole, and weakly increased resistance to the longer-tailed azoles VT-1161, itraconazole and posaconazole. We have used, as surrogates, structurally aligned mutations in recombinant hexahistidine-tagged full-length Saccharomyces cerevisiae LDM6×His (ScLDM6×His) to elucidate how differential susceptibility to azole drugs is conferred by LDM of the C. albicans Darlington strain. The mutations Y140H and I471T were introduced, either alone or in combination, into ScLDM6×His via overexpression of the recombinant enzyme from the PDR5 locus of an azole hypersensitive strain of S. cerevisiae. Phenotypes and high-resolution X-ray crystal structures were determined for the surrogate enzymes in complex with representative short-tailed (voriconazole) and long-tailed (itraconazole) triazoles. The preferential high-level resistance to short-tailed azoles conferred by the ScLDM Y140H I471T mutant required both mutations, despite the I471T mutation conferring only a slight increase in resistance. Crystal structures did not detect changes in the position/tilt of the heme co-factor of wild-type ScLDM, I471T and Y140H single mutants, or the Y140H I471T double-mutant. The mutant threonine sidechain in the Darlington strain CaLDM perturbs the environment of the neighboring C-helix, affects the electronic environment of the heme, and may, via differences in closure of the neck of the substrate entry channel, increase preferential competition between lanosterol and short-tailed azole drugs.
Collapse
|
77
|
The Effects of Tormentic Acid and Extracts from Callistemon citrinus on Candida albicans and Candida tropicalis Growth and Inhibition of Ergosterol Biosynthesis in Candida albicans. ScientificWorldJournal 2021; 2021:8856147. [PMID: 34594161 PMCID: PMC8478599 DOI: 10.1155/2021/8856147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/18/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Candida albicans and Candida tropicalis are the leading causes of human fungal infections worldwide. There is an increase in resistance of Candida pathogens to existing antifungal drugs leading to a need to find new sources of antifungal agents. Tormentic acid has been isolated from different plants including Callistemon citrinus and has been found to possess antimicrobial properties, including antifungal activity. The study aimed to determine the effects of tormentic and extracts from C. citrinus on C. albicans and C. tropicalis and a possible mode of action. The extracts and tormentic acid were screened for antifungal activity using the broth microdilution method. The growth of both species was inhibited by the extracts, and C. albicans was more susceptible to the extract compared to C. tropicalis. The growth of C. albicans was inhibited by 80% at 100 μg/ml of both the DCM: methanol extract and the ethanol: water extract. Tormentic acid reduced the growth of C. albicans by 72% at 100 μg/ml. The effects of the extracts and tormentic acid on ergosterol content in C. albicans were determined using a UV/Vis scanning spectrophotometer. At concentrations of tormentic acid of 25 μg/ml, 50 μg/ml, 100 μg/ml, and 200 μg/ml, the content of ergosterol was decreased by 22%, 36%, 48%, and 78%, respectively. Similarly, the DCM: methanol extract at 100 μg/ml and 200 μg/ml decreased the content by 78% and 88%, respectively. A dose-dependent decrease in ergosterol content was observed in cells exposed to miconazole with a 25 μg/ml concentration causing a 100% decrease in ergosterol content. Therefore, tormentic acid inhibits the synthesis of ergosterol in C. albicans. Modifications of the structure of tormentic acid to increase its antifungal potency may be explored in further studies.
Collapse
|
78
|
Kern AF, Yang GX, Khosla NM, Ang RML, Snyder MP, Fraser HB. Divergent patterns of selection on metabolite levels and gene expression. BMC Ecol Evol 2021; 21:185. [PMID: 34587900 PMCID: PMC8482673 DOI: 10.1186/s12862-021-01915-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Background Natural selection can act on multiple genes in the same pathway, leading to polygenic adaptation. For example, adaptive changes were found to down-regulate six genes involved in ergosterol biosynthesis—an essential pathway targeted by many antifungal drugs—in some strains of the yeast Saccharomyces cerevisiae. However, the impact of this polygenic adaptation on metabolite levels was unknown. Here, we performed targeted mass spectrometry to measure the levels of eight metabolites in this pathway in 74 yeast strains from a genetic cross. Results Through quantitative trait locus (QTL) mapping we identified 19 loci affecting ergosterol pathway metabolite levels, many of which overlap loci that also impact gene expression within the pathway. We then used the recently developed v-test, which identified selection acting upon three metabolite levels within the pathway, none of which were predictable from the gene expression adaptation. Conclusions These data showed that effects of selection on metabolite levels were complex and not predictable from gene expression data. This suggests that a deeper understanding of metabolism is necessary before we can understand the impacts of even relatively straightforward gene expression adaptations on metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01915-5.
Collapse
Affiliation(s)
| | | | - Neil M Khosla
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Roy Moh Lik Ang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
79
|
Metabolic Regulation of Sugar Assimilation for Lipid Production in Aspergillus oryzae BCC7051 through Comparative Transcriptome Perspective. BIOLOGY 2021; 10:biology10090885. [PMID: 34571762 PMCID: PMC8467706 DOI: 10.3390/biology10090885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Oleaginous fungi are a promising candidate to produce microbial lipids as alternative sources for industrial applications. As lipids are intracellular metabolites with dynamic traits, the fungal ability in utilizing carbon sources for biomass and lipid production is significant in terms of production yield and economic feasibility. This study aimed to explore the metabolic regulation in lipogenesis of oleaginous Aspergillus oryzae BCC7051 at the transcriptional level. Through comparative transcriptome analysis, a set of differentially expressed genes (DEGs) between the xylose- and glucose-grown cultures (C5 and C6 cultures) at fast-growing and lipid-accumulating stages were identified and functionally categorized into transporter proteins and cellular processes. Combining with the growth and lipid phenotypes, the transcriptome results pointed to a crucial link between sugar assimilation, energy, lipid, and other metabolisms in A. oryzae for leveraging the metabolic flux from xylose to fatty acid and lipid biosynthesis in render the oleaginous features. This study provides a remarkable insight in guiding strain optimization and bioprocess development using renewable feedstocks from agroindustrial residues. Abstract Microbial lipid production with cost effectiveness is a prerequisite for the oleochemical sector. In this work, genome-wide transcriptional responses on the utilization of xylose and glucose in oleaginous Aspergillus oryzae were studied with relation to growth and lipid phenotypic traits. Comparative analysis of the active growth (t1) and lipid-accumulating (t2) stages showed that the C5 cultures efficiently consumed carbon sources for biomass and lipid production comparable to the C6 cultures. By pairwise comparison, 599 and 917 differentially expressed genes (DEGs) were identified in the t1 and t2 groups, respectively, in which the consensus DEGs were categorized into polysaccharide-degrading enzymes, membrane transports, and cellular processes. A discrimination in transcriptional responses of DEGs set was also found in various metabolic genes, mostly in carbohydrate, amino acid, lipid, cofactors, and vitamin metabolisms. Although central carbohydrate metabolism was shared among the C5 and C6 cultures, the metabolic functions in acetyl-CoA and NADPH generation, and biosynthesis of terpenoid backbone, fatty acid, sterol, and amino acids were allocated for leveraging biomass and lipid production through at least transcriptional control. This study revealed robust metabolic networks in the oleaginicity of A. oryzae governing glucose/xylose flux toward lipid biosynthesis that provides meaningful hints for further process developments of microbial lipid production using cellulosic sugar feedstocks.
Collapse
|
80
|
Stravoravdis S, Marra RE, LeBlanc NR, Crouch JA, Hulvey JP. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. Int J Mol Sci 2021; 22:ijms22179255. [PMID: 34502161 PMCID: PMC8430531 DOI: 10.3390/ijms22179255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to reduced azole sensitivity when compared to Cps. RNA-Seq and bioinformatic analyses found that following azole treatment, 55 genes in Cps, belonging to diverse pathways, displayed a significant decrease in expression. Putative xenobiotic detoxification genes overexpressed in tetraconazole-treated Che encoded predicted monooxygenase and oxidoreductase enzymes. In summary, expression of a functional CYP51A gene and overexpression of predicted xenobiotic detoxification genes appear likely to contribute to differential fungicide sensitivity in these two sister taxa.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA;
| | - Nicholas R. LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
| | - Jonathan P. Hulvey
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
- Correspondence:
| |
Collapse
|
81
|
Encinar Del Dedo J, Fernández-Golbano IM, Pastor L, Meler P, Ferrer-Orta C, Rebollo E, Geli MI. Coupled sterol synthesis and transport machineries at ER-endocytic contact sites. J Cell Biol 2021; 220:212484. [PMID: 34283201 PMCID: PMC8294947 DOI: 10.1083/jcb.202010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/27/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.
Collapse
Affiliation(s)
| | | | - Laura Pastor
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Paula Meler
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Cristina Ferrer-Orta
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| | - Maria Isabel Geli
- Institute for Molecular Biology of Barcelona, Spanish Research Council, Barcelona, Spain
| |
Collapse
|
82
|
Bhattacharya S, Oliveira NK, Savitt AG, Silva VKA, Krausert RB, Ghebrehiwet B, Fries BC. Low Glucose Mediated Fluconazole Tolerance in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7060489. [PMID: 34207384 PMCID: PMC8233753 DOI: 10.3390/jof7060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic meningoencephalitis is caused by Cryptococcus neoformans and is treated in many parts of the world with fluconazole (FLC) monotherapy, which is associated with treatment failure and poor outcome. In the host, C. neoformans propagates predominantly under low glucose growth conditions. We investigated whether low glucose, mimicked by growing in synthetic media (SM) with 0.05% glucose (SMlowglu), affects FLC-resistance. A > 4-fold increase in FLC tolerance was observed in seven C. neoformans strains when minimum inhibitory concentration (MIC) was determined in SMlowglu compared to MIC in SM with normal (2%) glucose (SMnlglu). In SMlowglu, C. neoformans cells exhibited upregulation of efflux pump genes AFR1 (8.7-fold) and AFR2 (2.5-fold), as well as decreased accumulation (2.6-fold) of Nile Red, an efflux pump substrate. Elevated intracellular ATP levels (3.2-fold and 3.4-fold), as well as decreased mitochondrial reactive oxygen species levels (12.8-fold and 17-fold), were found in the presence and absence of FLC, indicating that low glucose altered mitochondrial function. Fluorescence microscopy revealed that mitochondria of C. neoformans grown in SMlowglu were fragmented, whereas normal glucose promoted a reticular network of mitochondria. Although mitochondrial membrane potential (MMP) was not markedly affected in SMlowglu, it significantly decreased in the presence of FLC (12.5-fold) in SMnlglu, but remained stable in SMlowglu-growing C. neoformans cells. Our data demonstrate that increased FLC tolerance in low glucose-growing C. neoformans is the result of increased efflux pump activities and altered mitochondrial function, which is more preserved in SMlowglu. This mechanism of resistance is different from FLC heteroresistance, which is associated with aneuploidy of chromosome 1 (Chr1).
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.B.); (V.K.A.S.)
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (N.K.O.); (A.G.S.); (R.B.K.)
| | - Anne G. Savitt
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (N.K.O.); (A.G.S.); (R.B.K.)
| | - Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.B.); (V.K.A.S.)
| | - Rachel B. Krausert
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (N.K.O.); (A.G.S.); (R.B.K.)
| | - Berhane Ghebrehiwet
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (S.B.); (V.K.A.S.)
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (N.K.O.); (A.G.S.); (R.B.K.)
- Veterans Administration Medical Center, Northport, NY 11768, USA
- Correspondence:
| |
Collapse
|
83
|
Jin X, Yang H, Coldea TE, Xu Y, Zhao H. Metabonomic analysis reveals enhanced growth and ethanol production of brewer's yeast by wheat gluten hydrolysates and potassium supplementation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
84
|
OuYang Q, Liu Y, Oketch OR, Zhang M, Shao X, Tao N. Citronellal Exerts Its Antifungal Activity by Targeting Ergosterol Biosynthesis in Penicillium digitatum. J Fungi (Basel) 2021; 7:jof7060432. [PMID: 34072578 PMCID: PMC8229684 DOI: 10.3390/jof7060432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
Ergosterol (ERG) is a potential target for the development of antifungal agents against Penicillium digitatum, the pathogen of green mold in citrus fruits. This study examined the mechanism by which citronellal, a typical terpenoid of Cymbopogon nardus essential oil, acts on ergosterol to exhibit its antifungal activity against P. digitatum. We previously reported that citronellal inhibited the growth of P. digitatum with minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 1.36 and 2.72 mg/mL, respectively. In citronellal-treated cells, the membrane integrity and ergosterol contents significantly decreased, whereas lanosterol, which serves as a precursor for ergosterol biosynthesis, massively accumulated. Addition of 150 mg/L of exogenous ergosterol decreased the inhibitory rate of citronellal, restoring the ergosterol content and hence the membrane structure to normal levels, and triggered expression of nearly all ERG genes. Based on our findings, we deduce that citronellal damages the cell membrane integrity of P. digitatum by down-regulating the ERG genes responsible for conversion of lanosterol to ergosterol, the key downregulated gene being ERG3, due to the observed accumulation of ergosta-7,22-dienol.
Collapse
Affiliation(s)
- Qiuli OuYang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Yangmei Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Okwong Reymick Oketch
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Miaoling Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (Q.O.); (Y.L.); (O.R.O.); (M.Z.)
- Correspondence: ; Tel.: +86-731-5829-2456; Fax: +86-731-5829-3549
| |
Collapse
|
85
|
Pezzotti G, Asai T, Adachi T, Ohgitani E, Yamamoto T, Kanamura N, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ, Makimura K, Mazda O, Nishimura I. Antifungal activity of polymethyl methacrylate/Si 3N 4 composites against Candida albicans. Acta Biomater 2021; 126:259-276. [PMID: 33727194 DOI: 10.1016/j.actbio.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.
Collapse
|
86
|
Bosch C, Bhana Z, Toplis B, Volschenk H, Botha A. Transcriptomic response of Cryptococcus neoformans to ecologically relevant nitrogen concentrations. FEMS Yeast Res 2021; 21:6249451. [PMID: 33893798 DOI: 10.1093/femsyr/foab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Nitrogen availability is vital for the growth and survival of Cryptococcus neoformans in the natural environment. Two major ecological reservoirs were previously described for C. neoformans, namely, pigeon guano and the woody debris of various tree species. In contrast to the abundance of available nitrogen in guano, C. neoformans must adapt to severely limited nitrogen conditions within arboreal ecological niches. Previously, we demonstrated the role of nitrogen limitation in the production of cryptococcal virulence factors and drug tolerance. The genetic response underlying this adaptation to nitrogen deficiency, however, remains to be determined. Therefore, in the present study we investigated the transcriptomic response of C. neoformans to ecologically relevant nitrogen concentrations using RNA-sequencing. Our data revealed that low nitrogen conditions modulate the expression of numerous virulence genes in C. neoformans. Among these were, CTR4 and CGP1, which showed highly significant modulation under low nitrogen conditions. Furthermore, data analysis revealed the upregulation of antifungal tolerance-related genes in low nitrogen conditions, including genes involved in ergosterol biosynthetic processes and cell wall integrity. Overall, our findings provide insight into the survival of C. neoformans in nitrogen-poor ecological niches and suggest that pre-adaptation to these conditions may influence the pathobiology of this yeast.
Collapse
Affiliation(s)
- Caylin Bosch
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Zoë Bhana
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Barbra Toplis
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Heinrich Volschenk
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| |
Collapse
|
87
|
Hunsaker EW, Yu CHA, Franz KJ. Copper Availability Influences the Transcriptomic Response of Candida albicans to Fluconazole Stress. G3-GENES GENOMES GENETICS 2021; 11:6162163. [PMID: 33693623 PMCID: PMC8049437 DOI: 10.1093/g3journal/jkab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| | | | - Katherine J Franz
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|
88
|
Watchaputi K, Somboon P, Phromma-in N, Ratanakhanokchai K, Soontorngun N. Actin cytoskeletal inhibitor 19,20-epoxycytochalasin Q sensitizes yeast cells lacking ERG6 through actin-targeting and secondarily through disruption of lipid homeostasis. Sci Rep 2021; 11:7779. [PMID: 33833332 PMCID: PMC8032726 DOI: 10.1038/s41598-021-87342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Repetitive uses of antifungals result in a worldwide crisis of drug resistance; therefore, natural fungicides with minimal side-effects are currently sought after. This study aimed to investigate antifungal property of 19, 20-epoxycytochalasin Q (ECQ), derived from medicinal mushroom Xylaria sp. BCC 1067 of tropical forests. In a model yeast Saccharomyces cerevisiae, ECQ is more toxic in the erg6∆ strain, which has previously been shown to allow higher uptake of many hydrophilic toxins. We selected one pathway to study the effects of ECQ at very high levels on transcription: the ergosterol biosynthesis pathway, which is unlikely to be the primary target of ECQ. Ergosterol serves many functions that cholesterol does in human cells. ECQ's transcriptional effects were correlated with altered sterol and triacylglycerol levels. In the ECQ-treated Δerg6 strain, which presumably takes up far more ECQ than the wild-type strain, there was cell rupture. Increased actin aggregation and lipid droplets assembly were also found in the erg6∆ mutant. Thereby, ECQ is suggested to sensitize yeast cells lacking ERG6 through actin-targeting and consequently but not primarily led to disruption of lipid homeostasis. Investigation of cytochalasins may provide valuable insight with potential biopharmaceutical applications in treatments of fungal infection, cancer or metabolic disorder.
Collapse
Affiliation(s)
- Kwanrutai Watchaputi
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Pichayada Somboon
- grid.419784.70000 0001 0816 7508Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, 10520 Thailand
| | - Nipatthra Phromma-in
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Khanok Ratanakhanokchai
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| | - Nitnipa Soontorngun
- grid.412151.20000 0000 8921 9789Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10150 Thailand
| |
Collapse
|
89
|
Elsadek LA, Matthews JH, Nishimura S, Nakatani T, Ito A, Gu T, Luo D, Salvador-Reyes LA, Paul VJ, Kakeya H, Luesch H. Genomic and Targeted Approaches Unveil the Cell Membrane as a Major Target of the Antifungal Cytotoxin Amantelide A. Chembiochem 2021; 22:1790-1799. [PMID: 33527693 DOI: 10.1002/cbic.202000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Amantelide A, a polyhydroxylated macrolide isolated from a marine cyanobacterium, displays broad-spectrum activity against mammalian cells, bacterial pathogens, and marine fungi. We conducted comprehensive mechanistic studies to identify the molecular targets and pathways affected by amantelide A. Our investigations relied on chemical structure similarities with compounds of known mechanisms, yeast knockout mutants, yeast chemogenomic profiling, and direct biochemical and biophysical methods. We established that amantelide A exerts its antifungal action by binding to ergosterol-containing membranes followed by pore formation and cell death, a mechanism partially shared with polyene antifungals. Binding assays demonstrated that amantelide A also binds to membranes containing epicholesterol or mammalian cholesterol, thus suggesting that the cytotoxicity to mammalian cells might be due to its affinity to cholesterol-containing membranes. However, membrane interactions were not completely dependent on sterols. Yeast chemogenomic profiling suggested additional direct or indirect effects on actin. Accordingly, we performed actin polymerization assays, which suggested that amantelide A also promotes actin polymerization in cell-free systems. However, the C-33 acetoxy derivative amantelide B showed a similar effect on actin dynamics in vitro but no significant activity against yeast. Overall, these studies suggest that the membrane effects are the most functionally relevant for amantelide A mechanism of action.
Collapse
Affiliation(s)
- Lobna A Elsadek
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahiro Nakatani
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Airi Ito
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, 1100, Philippines
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Ft., Pierce, FL 34949, USA
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
90
|
Sayari M, van der Nest MA, Steenkamp ET, Rahimlou S, Hammerbacher A, Wingfield BD. Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae. J Fungi (Basel) 2021; 7:237. [PMID: 33809900 PMCID: PMC8004197 DOI: 10.3390/jof7030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Magrieta A. van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
- Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa
| | - Emma T. Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| | - Saleh Rahimlou
- Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia;
| | - Almuth Hammerbacher
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; (M.A.v.d.N.); (E.T.S.); (A.H.); (B.D.W.)
| |
Collapse
|
91
|
Fletcher E, Mercurio K, Walden EA, Baetz K. A yeast chemogenomic screen identifies pathways that modulate adipic acid toxicity. iScience 2021; 24:102327. [PMID: 33889823 PMCID: PMC8050732 DOI: 10.1016/j.isci.2021.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adipic acid production by yeast fermentation is gaining attention as a renewable source of platform chemicals for making nylon products. However, adipic acid toxicity inhibits yeast growth and fermentation. Here, we performed a chemogenomic screen in Saccharomyces cerevisiae to understand the cellular basis of adipic acid toxicity. Our screen revealed that KGD1 (a key gene in the tricarboxylic acid cycle) deletion improved tolerance to adipic acid and its toxic precursor, catechol. Conversely, disrupting ergosterol biosynthesis as well as protein trafficking and vacuolar transport resulted in adipic acid hypersensitivity. Notably, we show that adipic acid disrupts the Membrane Compartment of Can1 (MCC) on the plasma membrane and impacts endocytosis. This was evidenced by the rapid internalization of Can1 for vacuolar degradation. As ergosterol is an essential component of the MCC and protein trafficking mechanisms are required for endocytosis, we highlight the importance of these cellular processes in modulating adipic acid toxicity. Deletion of the TCA cycle gene KGD1 improves tolerance to adipic acid and catechol Ergosterol and Pdr12 play non-overlapping roles protecting cell from adipic acid Adipic acid-induced plasma membrane localization of Pdr12 is independent of ergosterol Adipic acid disrupts the Membrane Compartment of Can1 (MCC) and induces endocytosis
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Elizabeth A. Walden
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Corresponding author
| |
Collapse
|
92
|
Lee S, Nam M, Lee AR, Lee J, Woo J, Kang NS, Balupuri A, Lee M, Kim SY, Ro H, Choi YW, Kim DU, Hoe KL. Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast. Biomol Ther (Seoul) 2021; 29:234-247. [PMID: 33223513 PMCID: PMC7921855 DOI: 10.4062/biomolther.2020.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022] Open
Abstract
We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.
Collapse
Affiliation(s)
- Sol Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ah-Reum Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewoong Lee
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihye Woo
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nam Sook Kang
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anand Balupuri
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minho Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyunju Ro
- Department of Biological Science, College of Bioscience & Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
93
|
Oliveira LN, Lima PDS, Araújo DS, Portis IG, Santos Júnior ADCMD, Coelho ASG, de Sousa MV, Ricart CAO, Fontes W, Soares CMDA. iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia. Microbiol Res 2021; 247:126730. [PMID: 33662850 DOI: 10.1016/j.micres.2021.126730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Aerobic organisms require oxygen for energy. In the course of the infection, adaptation to hypoxia is crucial for survival of human pathogenic fungi. Members of the Paracoccidioides complex face decreased oxygen tensions during the life cycle stages. In Paracoccidioides brasiliensis proteomic responses to hypoxia have not been investigated and the regulation of the adaptive process is still unknown, and this approach allowed the identification of 216 differentially expressed proteins in hypoxia using iTRAQ-labelling. Data suggest that P. brasiliensis reprograms its metabolism when submitted to hypoxia. The fungus reduces its basal metabolism and general transport proteins. Energy and general metabolism were more representative and up regulated. Glucose is apparently directed towards glycolysis or the production of cell wall polymers. Plasma membrane/cell wall are modulated by increasing ergosterol and glucan, respectively. In addition, molecules such as ethanol and acetate are produced by this fungus indicating that alternative carbon sources probably are activated to obtain energy. Also, detoxification mechanisms are activated. The results were compared with label free proteomics data from Paracoccidioides lutzii. Biochemical pathways involved with acetyl-CoA, pyruvate and ergosterol synthesis were up-regulated in both fungi. On the other hand, proteins from TCA, transcription, protein fate/degradation, cellular transport, signal transduction and cell defense/virulence processes presented different profiles between species. Particularly, proteins related to methylcitrate cycle and those involved with acetate and ethanol synthesis were increased in P. brasiliensis proteome, whereas GABA shunt were accumulated only in P. lutzii. The results emphasize metabolic adaptation processes for distinct Paracoccidioides species.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Igor Godinho Portis
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | | | | | - Marcelo Valle de Sousa
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Carlos André Ornelas Ricart
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Wagner Fontes
- Departmento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
94
|
Lan Q, Li Y, Wang F, Li Z, Gao Y, Lu H, Wang Y, Zhao Z, Deng Z, He F, Wu J, Xu P. Deubiquitinase Ubp3 enhances the proteasomal degradation of key enzymes in sterol homeostasis. J Biol Chem 2021; 296:100348. [PMID: 33524398 PMCID: PMC8027567 DOI: 10.1016/j.jbc.2021.100348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Sterol homeostasis is tightly controlled by molecules that are highly conserved from yeast to humans, the dysregulation of which plays critical roles in the development of antifungal resistance and various cardiovascular diseases. Previous studies have shown that sterol homeostasis is regulated by the ubiquitin–proteasome system. Two E3 ubiquitin ligases, Hrd1 and Doa10, are known to mediate the proteasomal degradation of 3-hydroxy-3-methylglutaryl-CoA reductase Hmg2 and squalene epoxidase Erg1 with accumulation of the toxic sterols in cells, but the deubiquitinases (DUBs) involved are unclear. Here, we screened for DUBs responsible for sterol homeostasis using yeast strains from a DUB-deletion library. The defective growth observed in ubp3-deleted (ubp3Δ) yeast upon fluconazole treatment suggests that lack of Ubp3 disrupts sterol homeostasis. Deep-coverage quantitative proteomics reveals that ergosterol biosynthesis is rerouted into a sterol pathway that generates toxic products in the absence of Ubp3. Further genetic and biochemical analysis indicated that Ubp3 enhances the proteasome's ability to degrade the ergosterol biosynthetic enzymes Erg1 and Erg3. The retardation of ergosterol enzyme degradation in the ubp3Δ strain resulted in the severe accumulation of the intermediate lanosterol and a branched toxic sterol, and ultimately disrupted sterol homeostasis and led to the fluconazole susceptibility. Our findings uncover a role for Ubp3 in sterol homeostasis and highlight its potential as a new antifungal target.
Collapse
Affiliation(s)
- Qiuyan Lan
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China.
| | - Fuqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Zhaodi Li
- Department of Cell Biology and Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zixin Deng
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Junzhu Wu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Ping Xu
- School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China; Medical School of Guizhou University, Guiyang, China.
| |
Collapse
|
95
|
Balarezo-Cisneros LN, Parker S, Fraczek MG, Timouma S, Wang P, O’Keefe RT, Millar CB, Delneri D. Functional and transcriptional profiling of non-coding RNAs in yeast reveal context-dependent phenotypes and in trans effects on the protein regulatory network. PLoS Genet 2021; 17:e1008761. [PMID: 33493158 PMCID: PMC7886133 DOI: 10.1371/journal.pgen.1008761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/16/2021] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response to different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT053, SUT468) or rRNA processing (SUT075 and snR30). Overall, these data capture and integrate the regulatory and phenotypic network of ncRNAs and protein-coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis. A quarter of the yeast genome comprises non-coding RNA molecules (ncRNAs), which do not translate into proteins but are involved in the regulation of gene expression. ncRNAs can affect nearby genes by physically interfering with their transcription (cis mode of action), or they interact with DNA, proteins or other RNAs to regulate the expression of distant genes (trans mode of action). Examples of cis-acting ncRNAs have been broadly described, however, genome-wide studies to identify functional trans-acting ncRNAs involved in global gene regulation are still lacking. Here, we used a ncRNA yeast deletion collection to score ncRNA impact on cellular function in different environmental conditions. A group of 20 ncRNA deletion mutants with broad fitness diversity were selected to investigate the ncRNA effect on the protein and ncRNA expression network. We showed a high correlation between altered phenotypes and global transcriptional changes, in an environmental dependent manner. We confirmed the trans acting regulation of ncRNAs in the genome and their role in altering the expression of transcription factors. These findings support the notion of the involvement of ncRNAs in fine tuning cellular expression via regulation of transcription factors, as an advantageous RNA-mediated mechanism that can be fast and cost-effective for the cells.
Collapse
Affiliation(s)
- Laura Natalia Balarezo-Cisneros
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Steven Parker
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marcin G. Fraczek
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ping Wang
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Catherine B. Millar
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail: (CM); (DD)
| |
Collapse
|
96
|
Advances in Fusarium drug resistance research. J Glob Antimicrob Resist 2021; 24:215-219. [PMID: 33460843 DOI: 10.1016/j.jgar.2020.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Fusarium species cause many diseases in plants and humans, which results in a great number of economic losses every year. The management of plant diseases and related human diseases caused by Fusarium is challenging as many kinds of Fusarium may be intrinsically resistant to antifungal drugs, not to mention the fact that they can acquire drug resistance, which is common in clinical practice. To date, the drug resistance of Fusarium is mainly related to target alterations, drug efflux and biofilm formation. This article reviews recent studies related to the mechanism of Fusarium resistance, and summarizes the key molecules affecting resistance.
Collapse
|
97
|
Sun L, Liao K. The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans. J Microbiol Biotechnol 2020; 30:1835-1842. [PMID: 33263334 PMCID: PMC9728367 DOI: 10.4014/jmb.2008.08019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing 20009, P.R. China,Corresponding authors L.Sun Phone: +86-25-83272525 E-mail:
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing 10009, P.R. China,K.Liao E-mail:
| |
Collapse
|
98
|
Experimental Evolution Identifies Adaptive Aneuploidy as a Mechanism of Fluconazole Resistance in Candida auris. Antimicrob Agents Chemother 2020; 65:AAC.01466-20. [PMID: 33077664 DOI: 10.1128/aac.01466-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
Candida auris is a newly emerging fungal pathogen of humans and has attracted considerable attention from both the clinical and basic research communities. Clinical isolates of C. auris are often resistant to one or more antifungal agents. To explore how antifungal resistance develops, we performed experimental evolution assays using a fluconazole-susceptible isolate of C. auris (BJCA001). After a series of passages through medium containing increasing concentrations of fluconazole, fungal cells acquired resistance. By sequencing and comparing the genomes of the parental fluconazole-susceptible strain and 26 experimentally evolved strains of C. auris, we found that a portion of fluconazole-resistant strains carried one extra copy of chromosome V. In the absence of fluconazole, C. auris cells rapidly became susceptible and lost the extra copy of chromosome V. Genomic and transcriptome sequencing (RNA-Seq) analyses indicate that this chromosome carries a number of drug resistance-related genes, which were transcriptionally upregulated in the resistant, aneuploid strains. Moreover, missense mutations were identified in the genes TAC1B, RRP6, and SFT2 in all experimentally evolved strains. Our findings suggest that the gain of an extra copy of chromosome V is associated with the rapid acquisition of fluconazole resistance and may represent an important evolutionary mechanism of antifungal resistance in C. auris.
Collapse
|
99
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
100
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|