51
|
Affiliation(s)
- M L O'Brien
- Department of Pharmacology, University of Pennsylvania, Philadelphia 19111, USA
| | | |
Collapse
|
52
|
Primiano T, Sutter TR, Kensler TW. Antioxidant-inducible genes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 38:293-328. [PMID: 8895814 DOI: 10.1016/s1054-3589(08)60989-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T Primiano
- Department of Environmental Health Sciences, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
53
|
Affiliation(s)
- A Raha
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
54
|
Favreau LV, Pickett CB. The rat quinone reductase antioxidant response element. Identification of the nucleotide sequence required for basal and inducible activity and detection of antioxidant response element-binding proteins in hepatoma and non-hepatoma cell lines. J Biol Chem 1995; 270:24468-74. [PMID: 7592662 DOI: 10.1074/jbc.270.41.24468] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The antioxidant response element (ARE) found in the 5'-flanking region of the rat quinone reductase gene has been further characterized by mutational and deletion analysis. The results indicate that the 31-base pair ARE, which contains a 13-base pair palindromic sequence, can be further separated into three regions, all three of which are required for elevated basal level gene expression. These three regions include the proximal and distal half-sites as well as a 3'-flanking region consisting of 4 adenine nucleotides. Neither the proximal nor the distal half-site alone mediates transcriptional activation by beta-naphthoflavone. However, when placed together the two half-sites restore responsiveness to the inducer. Interestingly, the presence of only 1 of the 4 adenine nucleotides in the 3'-flanking region of the proximal half-site is required for responsiveness to the inducer. Point mutations within the ARE indicate that several nucleotides in both the proximal and distal half-sites are required for basal level gene expression. Electrophoretic mobility shift analysis using the ARE as the probe indicates that enhancers found in the glutathione S-transferase Ya and P genes recognize a similar trans-acting factor(s) found in crude nuclear extracts from human Hep G2 cells. Further, this complex can be detected in nuclear extracts from rat liver and rat hepatoma cells but not in mouse Hepa 1c1c7 cells or in human HeLa cells. The ARE-nucleoprotein complex can also be detected in F9 cells which lack significant levels of Jun/Fos proteins. Although the rat ARE resembles the human quinone reductase ARE which contains a consensus TRE, the 2-nucleotide change in the core sequence (TGACTCA versus TGACTTG) eliminates the high affinity TRE motif in the rat ARE. The rat ARE forms a nucleoprotein complex in Hep G2 and other cells with different properties than AP-1.
Collapse
Affiliation(s)
- L V Favreau
- Department of Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe Claire-Dorval, Quebec, Canada
| | | |
Collapse
|
55
|
Safe SH. Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 1995; 67:247-81. [PMID: 7494865 DOI: 10.1016/0163-7258(95)00017-b] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aryl hydrocarbon (Ah) receptor binds several different structural classes of chemicals, including halogenated aromatics, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polynuclear aromatic and heteropolynuclear aromatic hydrocarbons. TCDD induces expression of several genes including CYP1A1, and molecular biology studies show that the Ah receptor acts as a nuclear ligand-induced transcription factor that interacts with xenobiotic or dioxin responsive elements located in 5'-flanking regions of responsive genes. TCDD also elicits diverse toxic effects, modulates endocrine pathways and inhibits a broad spectrum of estrogen (17 beta-estradiol)-induced responses in rodents and human breast cancer cell lines. Molecular biology studies show that TCDD inhibited 17 beta-estradiol-induced cathepsin D gene expression by targeted interaction of the nuclear Ah receptor with imperfect dioxin responsive elements strategically located within the estrogen receptor-Sp1 enhancer sequence of this gene.
Collapse
Affiliation(s)
- S H Safe
- Texas A&M University, College Station 77843-4466, USA
| |
Collapse
|
56
|
Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30:445-600. [PMID: 8770536 DOI: 10.3109/10409239509083491] [Citation(s) in RCA: 2391] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glutathione S-transferases (GST) represent a major group of detoxification enzymes. All eukaryotic species possess multiple cytosolic and membrane-bound GST isoenzymes, each of which displays distinct catalytic as well as noncatalytic binding properties: the cytosolic enzymes are encoded by at least five distantly related gene families (designated class alpha, mu, pi, sigma, and theta GST), whereas the membrane-bound enzymes, microsomal GST and leukotriene C4 synthetase, are encoded by single genes and both have arisen separately from the soluble GST. Evidence suggests that the level of expression of GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of toxic chemicals. In this article the biochemical functions of GST are described to show how individual isoenzymes contribute to resistance to carcinogens, antitumor drugs, environmental pollutants, and products of oxidative stress. A description of the mechanisms of transcriptional and posttranscriptional regulation of GST isoenzymes is provided to allow identification of factors that may modulate resistance to specific noxious chemicals. The most abundant mammalian GST are the class alpha, mu, and pi enzymes and their regulation has been studied in detail. The biological control of these families is complex as they exhibit sex-, age-, tissue-, species-, and tumor-specific patterns of expression. In addition, GST are regulated by a structurally diverse range of xenobiotics and, to date, at least 100 chemicals have been identified that induce GST; a significant number of these chemical inducers occur naturally and, as they are found as nonnutrient components in vegetables and citrus fruits, it is apparent that humans are likely to be exposed regularly to such compounds. Many inducers, but not all, effect transcriptional activation of GST genes through either the antioxidant-responsive element (ARE), the xenobiotic-responsive element (XRE), the GST P enhancer 1(GPE), or the glucocorticoid-responsive element (GRE). Barbiturates may transcriptionally activate GST through a Barbie box element. The involvement of the Ah-receptor, Maf, Nrl, Jun, Fos, and NF-kappa B in GST induction is discussed. Many of the compounds that induce GST are themselves substrates for these enzymes, or are metabolized (by cytochrome P-450 monooxygenases) to compounds that can serve as GST substrates, suggesting that GST induction represents part of an adaptive response mechanism to chemical stress caused by electrophiles. It also appears probable that GST are regulated in vivo by reactive oxygen species (ROS), because not only are some of the most potent inducers capable of generating free radicals by redox-cycling, but H2O2 has been shown to induce GST in plant and mammalian cells: induction of GST by ROS would appear to represent an adaptive response as these enzymes detoxify some of the toxic carbonyl-, peroxide-, and epoxide-containing metabolites produced within the cell by oxidative stress. Class alpha, mu, and pi GST isoenzymes are overexpressed in rat hepatic preneoplastic nodules and the increased levels of these enzymes are believed to contribute to the multidrug-resistant phenotype observed in these lesions. The majority of human tumors and human tumor cell lines express significant amounts of class pi GST. Cell lines selected in vitro for resistance to anticancer drugs frequently overexpress class pi GST, although overexpression of class alpha and mu isoenzymes is also often observed. The mechanisms responsible for overexpression of GST include transcriptional activation, stabilization of either mRNA or protein, and gene amplification. In humans, marked interindividual differences exist in the expression of class alpha, mu, and theta GST. The molecular basis for the variation in class alpha GST is not known. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J D Hayes
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, U.K
| | | |
Collapse
|
57
|
Sadek C, Allen-Hoffmann B. Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33974-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
58
|
Nguyen T, Rushmore T, Pickett C. Transcriptional regulation of a rat liver glutathione S-transferase Ya subunit gene. Analysis of the antioxidant response element and its activation by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36880-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
59
|
Mason G, Witte A, Whitelaw M, Antonsson C, McGuire J, Wilhelmsson A, Poellinger L, Gustafsson J. Purification of the DNA binding form of dioxin receptor. Role of the Arnt cofactor in regulation of dioxin receptor function. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41799-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
60
|
Kleman M, Poellinger L, Gustafsson J. Regulation of human dioxin receptor function by indolocarbazoles, receptor ligands of dietary origin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37666-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
61
|
Ketterer B, Christodoulides LG. Enzymology of cytosolic glutathione S-transferases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 27:37-69. [PMID: 8068560 DOI: 10.1016/s1054-3589(08)61029-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- B Ketterer
- Department of Biochemistry and Molecular Biology, University College London, United Kingdom
| | | |
Collapse
|
62
|
Simon T, Roth K, Gordon J. Use of transgenic mice to map cis-acting elements in the liver fatty acid-binding protein gene (Fabpl) that regulate its cell lineage-specific, differentiation-dependent, and spatial patterns of expression in the gut epithelium and in the liver acinus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46851-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
63
|
Abstract
The pattern of expression of homeodomain proteins often exceeds their apparent domain of activity. Tissue-specific proteins that modulate the in vivo activity of homeodomain proteins have been proposed to account for this functional restriction. The first identified example of such an accessory protein is DCoH, which confers transcriptional activity to the hepatocyte nuclear factor 1 and provides a model of how other accessory factors might modulate the function of homeodomain proteins.
Collapse
Affiliation(s)
- L P Hansen
- Beckman Center for Molecular and Genetic Medicine, Stanford University Medical School, CA 94305
| | | |
Collapse
|
64
|
Nonresponsiveness of normal human fibroblasts to dioxin correlates with the presence of a constitutive xenobiotic response element-binding factor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53580-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
65
|
Abstract
The current knowledge about the structure of GST genes and the molecular mechanisms involved in regulation of their expression are reviewed. Information derived from the study of rat and mouse GST Alpha-class, Ya genes, and a rat GST Pi-class gene seems to indicate that a single cis-regulatory element, composed of two adjacent AP-1-like binding sites in the 5'-flanking region of these GST genes, is responsible for their basal and xenobiotic-inducible activity. The identification of Fos/Jun (AP-1) complex as the trans-acting factor that binds to this element and mediates the basal and inducible expression of GST genes offers a basis for an understanding of the molecular processes involved in GST regulation. The induction of expression of Fos and Jun transcriptional regulatory proteins by a variety of extracellular stimuli is known to mediate the activation of target genes via the AP-1 binding sites. The modulation of the AP-1 activity may account for the changes induced by growth factors, hormones, chemical carcinogens, transforming oncogenes, and cellular stress-inducing agents in the pattern of GST expression. Recent observations implying reactive oxygen as the transduction signal that mediates activation of c-fos and c-jun genes are presently considered to provide an explanation for the induction of GST gene expression by chemical agents of diverse structure. The possibility that these agents may all induce conditions of oxidative stress by various pathways to activate expression of GST genes that are regulated by the AP-1 complex is discussed.
Collapse
Affiliation(s)
- V Daniel
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
66
|
Bock KW. Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol 1993; 125:1-42. [PMID: 7984872 DOI: 10.1007/bfb0030908] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The AhR represents a ligand-activated transcription factor. Receptor agonists include planar aromatic compounds, a variety of heterocyclic plant constituents, and PCDD/PCDF. The latter lead to persistent activation of the receptor due to their strong binding affinity and long biologic half-life of over 10 years in human blood and fat. Practically every person on earth is exposed to these compounds via the diet (> 90%) and by high concentrations in mother's milk. PCDD/PCDF produced toxic responses in exposed people (primarily chloracne and immunosuppression) in the past. However, the present PCDD/PCDF levels (basal levels) in the general population are below those warranting toxicologic concern. 2. The AhR has been characterized as a helix-loop-helix transcription factor related to the Drosophila developmental genes sim and per. The cytosolic form of the receptor is present as an inactive complex with two subunits of HSP90. After ligand binding HSP90 is released and the receptor enters the nucleus as a heterodimer together with a related protein ARNT. It binds with high affinity to certain enhancer elements in the upstream region of several genes such as cytochrome P4501A1 (CYP1A1). The AhR transcriptionally activates several drug-metabolizing enzymes and proteins involved in growth/differentiation, such as the plasminogen activator inhibitor PAI-2 and IL-1 beta. In addition, it modulates the action of a number of other nuclear transcription factors such as receptors of the steroid hormone receptor superfamily and of cell surface receptors such as EGF. With the exception of CYP1A1 induction, little is known about the mechanism of transcriptional activation of the AhR-controlled genes. Many AhR-modulated biologic responses (such as modulation of the estrogen and EGF receptor) appear to be indirect. 3. Persistent activation of the AhR is probably responsible for toxic responses in experimental animals and humans. They are markedly tissue and species specific. In rodents a wasting syndrome, immunosuppression, teratogenicity, chloracne, and carcinogenicity/tumor promotion have been well studied. There is good evidence for an involvement for the AhR in these responses. However, the chain of events from receptor activation to the diverse toxic endpoints is largely unknown. Alteration of growth and differentiation of epithelial tissues may underlie most of the toxic responses. A lot has already been achieved, mostly by characterizing the AhR and transcriptional activation of CYP1A1. Still more work lies ahead of us, for example, elucidation of the physiologic roles of the AhR and of the chains of events from receptor activation to the various biologic and toxic endpoints.
Collapse
Affiliation(s)
- K W Bock
- Institute of Toxicology, University of Tübingen, Germany
| |
Collapse
|
67
|
Meyer DJ, Coles B, Harris J, Gilmore KS, Raney K, Harris TM, Guengerich FP, Kensler TW, Ketterer B. Induction of rat liver GSH transferases by 1,2-dithiole-3-thione illustrates both anticarcinogenic and tumor-promoting properties. BASIC LIFE SCIENCES 1993; 61:171-9. [PMID: 8304929 DOI: 10.1007/978-1-4615-2984-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D J Meyer
- Department of Biochemistry and Molecular Biology, University College and Middlesex School of Medicine, London, England
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Numerous liver specific genes are transcriptionally activated by the binding to their promoter or enhancer of Hepatic Nuclear Factor 1 (HNF1). HNF1 contains a variant homeo-domain and binds to DNA as either a homodimer or a heterodimer with the vHNF1 protein. Surprisingly, HNF1 is not restricted to hepatocytes but is expressed in epithelial cells of several endoderm derived organs and in mesoderm derived kidney tubules. Hence, HNF1 alone can not account for the differentiated state of the hepatic cells. In fact, several other liver-enriched transcription factors have been cloned. The hepatic phenotype could result from the combinatorial expression of these regulators. Possible involvement of these trans-acting factors in liver organogenesis and hepatic differentiation is discussed.
Collapse
Affiliation(s)
- F Tronche
- Département des Biotechnologies, Institut Pasteur, France
| | | |
Collapse
|
69
|
Pongratz I, Mason G, Poellinger L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42274-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
70
|
Regulation of rat glutathione S-transferase Ya subunit gene expression. DNA-protein interaction at the antioxidant responsive element. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42244-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
71
|
Poellinger L, Göttlicher M, Gustafsson JA. The dioxin and peroxisome proliferator-activated receptors: nuclear receptors in search of endogenous ligands. Trends Pharmacol Sci 1992; 13:241-5. [PMID: 1321524 DOI: 10.1016/0165-6147(92)90076-i] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dioxins and peroxisome proliferators represent two diverse classes of xenobiotic compounds that induce transcription of specific genes encoding cytochrome P-450 drug-metabolizing enzymes. Signal transduction by these chemicals is mediated by two distinct nuclear receptors, one of which has recently been demonstrated to be a member of the steroid hormone receptor superfamily of ligand-activated transcription factors. However, no endogenous ligand has so far been identified for either of these nuclear receptors. Lorenz Poellinger, Martin Göttlicher and Jan-Ake Gustafsson review properties of both these xenobiotic receptor systems and discuss how the molecular details in the receptor activation pathways compare with those of nuclear hormone receptors.
Collapse
Affiliation(s)
- L Poellinger
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
72
|
Abstract
The glutathione transferases, a family of multifunctional proteins, catalyze the glutathione conjugation reaction with electrophilic compounds biotransformed from xenobiotics, including carcinogens. In preneoplastic cells as well as neoplastic cells, specific molecular forms of glutathione transferase are known to be expressed and have been known to participate in the mechanisms of their resistance to drugs. In this article, following a brief description of recently identified molecular forms, we review new findings regarding the respective molecular forms involved in carcinogenesis and anticancer drug resistance, with particular emphasis on Pi class forms in preneoplastic tissues. The rat Pi class form, GST-P (GST 7-7), is strongly expressed not only in hepatic foci and hepatomas, but also in initiated cells that occur at the very early stages of chemical hepatocarcinogenesis, and is regarded as one of the most reliable markers for preneoplastic lesions in the rat liver. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-responsive element-like sequences have been identified in upstream regions of the GST-P gene, and oncogene products c-jun and c-fos are suggested to activate the gene. The Pi-class forms possess unique enzymatic properties, including broad substrate specificity, glutathione peroxidase activity toward lipid hydroperoxides, low sensitivity to organic anion inhibitors, and high sensitivity to active oxygen species. The possible functions of Pi class glutathione transferases in neoplastic tissues and drug-resistant cells are discussed.
Collapse
Affiliation(s)
- S Tsuchida
- Second Department of Biochemistry, Hirosaki University School of Medicine, Japan
| | | |
Collapse
|
73
|
Pongratz I, Strömstedt P, Mason G, Poellinger L. Inhibition of the specific DNA binding activity of the dioxin receptor by phosphatase treatment. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55374-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
74
|
The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99004-6] [Citation(s) in RCA: 1069] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
75
|
|
76
|
Rushmore TH, Pickett CB. Xenobiotic responsive elements controlling inducible expression by planar aromatic compounds and phenolic antioxidants. Methods Enzymol 1991; 206:409-20. [PMID: 1784226 DOI: 10.1016/0076-6879(91)06110-o] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
77
|
Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77351-1] [Citation(s) in RCA: 397] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|