51
|
Krishnamurthy K, Kanagasabai R, Druhan LJ, Ilangovan G. Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice. J Pharmacol Exp Ther 2012; 341:829-39. [PMID: 22438470 DOI: 10.1124/jpet.112.192245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular heat shock proteins (eHsps) in the circulation have recently been found to activate both apoptotic and protective signaling in the heart. However, the role of eHsps in doxorubicin (Dox)-induced heart failure has not yet been studied. The objective of the present study was to determine how Dox affects circulating eHsp25 in blood plasma and how eHsp25 affects Dox-induced dilated cardiomyopathy. Wild-type mice [HSF-1(+/+)] were pretreated with 100 μl of heterozygous heat shock factor-1 [HSF-1(+/-)] mouse plasma (which contained 4-fold higher eHsp25 compared with wild-type mice), HSF-1(+/+) plasma, or saline, before treatment with Dox (6 mg/kg). After 4 weeks of this treatment protocol, HSF-1(+/-) plasma-pretreated mice showed increased eHsp25 in plasma and improved cardiac function (percentage of fractional shortening 37.3 ± 2.1 versus 26.4 ± 4.0) and better life span (31 ± 2 versus 22 ± 3 days) compared with the HSF-1(+/+) plasma or saline-pretreated mice. Preincubation of isolated adult cardiomyocytes with HSF-1(+/-) plasma or recombinant human Hsp27 (rhHsp27) significantly reduced Dox-induced activation of nuclear factor-κB and cytokine release and delayed cardiomyocyte death. Moreover, when cardiomyocytes were incubated with fluorescence-tagged rhHsp27, a saturation in binding was observed, suggesting that eHsp25 can bind to surface receptors. Competitive assays with a Toll-like receptor 2 (TLR2) antibody reduced the rhHSP27 binding, indicating that Hsp25 interacts with TLR2. In conclusion, transfusion of Hsp25-enriched blood plasma protected the heart from Dox-induced cardiotoxicity. Hsp25 antagonized Dox binding to the TLR2 receptor on cardiomyocytes.
Collapse
Affiliation(s)
- Karthikeyan Krishnamurthy
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
52
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
53
|
Cervantes-Gomez F, Nimmanapalli R, Gandhi V. ATP analog enhances the actions of a heat shock protein 90 inhibitor in multiple myeloma cells. J Pharmacol Exp Ther 2011; 339:545-54. [PMID: 21821695 DOI: 10.1124/jpet.111.184903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein (HSP) 90 regulates client oncoprotein maturation. The chaperone function of HSP90 is blocked by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), although it results in transcription and translation of antiapoptotic HSP proteins. Using three myeloma cell lines, we tested whether inhibition of transcription/translation of HSP or client proteins will enhance 17-AAG-mediated cytotoxicity. 8-Chloro-adenosine (8-Cl-Ado), currently in clinical trials, inhibits bioenergy production, mRNA transcription, and protein translation and was combined with 17-AAG. 17-AAG treatment resulted in HSP transcript and protein level elevation. In the combination, 8-Cl-Ado did not abrogate HSP mRNA and protein induction. HSP90 requires ATP to stabilize client proteins; hence, expression of signal transducer and activator of transcription 3 (STAT3), Raf-1, and Akt was analyzed. 17-AAG alone resulted in <10% change in STAT3, Raf-1, and Akt protein levels, whereas no change was observed for 4E-BP1. In contrast, the combination treatment resulted in a >50% decrease in client protein levels and marked hypophosphorylation of 4E-BP1. 8-Cl-Ado alone resulted in a <30% decrease of client proteins and 4E-BP1 hypophosphorylation. 8-Cl-Ado combined with 17-AAG resulted in more than additive cytotoxicity. In conclusion, 8-Cl-Ado, which targets transcription, translation, and cellular bioenergy, enhanced 17-AAG-mediated cytotoxicity in myeloma cells.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | |
Collapse
|
54
|
Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 2011; 22:3571-83. [PMID: 21813737 PMCID: PMC3183013 DOI: 10.1091/mbc.e11-04-0330] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HSF2 regulates proteostasis capacity against febrile-range thermal stress, which provides temperature-dependent mechanisms of cellular adaptation to thermal stress. Furthermore, HSF2 has a strong impact on disease progression of Huntington's disease R6/2 mice, suggesting that it could be a promising therapeutic target for protein misfolding diseases. Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases.
Collapse
Affiliation(s)
- Toyohide Shinkawa
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Boellmann F, Thomas RS. The identification of protein kinase C iota as a regulator of the Mammalian heat shock response using functional genomic screens. PLoS One 2010; 5:e11850. [PMID: 20686607 PMCID: PMC2912283 DOI: 10.1371/journal.pone.0011850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/02/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The heat shock response is widely used as a surrogate of the general protein quality control system within the cell. This system plays a significant role in aging and many protein folding diseases as well as the responses to other physical and chemical stressors. METHODS/PRINCIPAL FINDINGS In this study, a broad-based functional genomics approach was taken to identify potential regulators of the mammalian heat shock response. In the primary screen, a total of 13724 full-length genes in mammalian expression vectors were individually co-transfected into human embryonic kidney cells together with a human HSP70B promoter driving firefly luciferase. A subset of the full-length genes that showed significant activation in the primary screen were then evaluated for their ability to hyper-activate the HSP70B under heat shock conditions. Based on the results from the secondary assay and gene expression microarray analyses, eight genes were chosen for validation using siRNA knockdown. Of the eight genes, only PRKCI showed a statistically significant reduction in the heat shock response in two independent siRNA duplexes compared to scrambled controls. Knockdown of the PRKCI mRNA was confirmed using quantitative RT-PCR. Additional studies did not show a direct physical interaction between PRKCI and HSF1. CONCLUSIONS/SIGNIFICANCE The results suggest that PRKCI is an indirect co-regulator of HSF1 activity and the heat shock response. Given the underlying role of HSF1 in many human diseases and the response to environmental stressors, PRKCI represents a potentially new candidate for gene-environment interactions and therapeutic intervention.
Collapse
Affiliation(s)
- Frank Boellmann
- Center for Genomic Biology and Bioinformatics, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Russell S. Thomas
- Center for Genomic Biology and Bioinformatics, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
56
|
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545-55. [PMID: 20628411 DOI: 10.1038/nrm2938] [Citation(s) in RCA: 995] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Abo Akademi University, BioCity, 20520 Turku, Finland
| | | | | |
Collapse
|
57
|
Jacobs AT, Marnett LJ. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc Chem Res 2010; 43:673-83. [PMID: 20218676 PMCID: PMC2873822 DOI: 10.1021/ar900286y] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Biological electrophiles result from oxidative metabolism of exogenous compounds or endogenous cellular constituents, and they contribute to pathophysiologies such as toxicity and carcinogenicity. The chemical toxicology of electrophiles is dominated by covalent addition to intracellular nucleophiles. Reaction with DNA leads to the production of adducts that block replication or induce mutations. The chemistry and biology of electrophile−DNA reactions have been extensively studied, providing in many cases a detailed understanding of the relation between adduct structure and mutational consequences. By contrast, the linkage between protein modification and cellular response is poorly understood. In this Account, we describe our efforts to define the chemistry of protein modification and its biological consequences using lipid-derived α,β-unsaturated aldehydes as model electrophiles. In our global approach, two large data sets are analyzed: one represents the identity of proteins modified over a wide range of electrophile concentrations, and the second comprises changes in gene expression observed under similar conditions. Informatics tools show theoretical connections based primarily on transcription factors hypothetically shared between the two data sets, downstream of adducted proteins and upstream of affected genes. This method highlights potential electrophile-sensitive signaling pathways and transcriptional processes for further evaluation. Peroxidation of cellular phospholipids generates a complex mixture of both membrane-bound and diffusible electrophiles. The latter include reactive species such as malondialdehyde, 4-oxononenal, and 4-hydroxynonenal (HNE). Enriching HNE-adducted proteins for proteomic analysis was a technical challenge, solved with click chemistry that generated biotin-tagged protein adducts. For this purpose, HNE analogues bearing terminal azide or alkyne functionalities were synthesized. Cellular lysates were first exposed to a single type of HNE analogue (azido- or alkynyl-HNE), and then click reactions were performed against the cognate alkynyl- and azido-biotin derivative. The resulting biotin-labeled proteins were captured and enriched over a streptavidin matrix for subsequent mass spectrometric analysis. We thereby identified a multitude of HNE targets. Simultaneous microarray analysis of changes in gene expression triggered by HNE also produced an abundance of data. Functional analysis of both data sets generated the hypothesis that an important pathway of cellular response derives from electrophile modification of protein chaperones, resulting in the release of transcription factors that are their clients. Informatic analysis of the protein modification and microarray data sets identified several transcription factors as potential mediators of the cellular response to HNE-adducted proteins. Among these, heat shock factor 1 (HSF1) was confirmed as a sensitive and robust effector of HNE-induced changes in gene expression. Activation of HSF1 appears, in part, to be mediated by the electrophilic adduction of Hsp70 and Hsp90, which normally maintain HSF1 in an inactive cytosolic complex. The identification of HSF1 as a mediator of biological effects downstream of HSF1 has provided new opportunities for research, illustrating the potential of our systems-based approach. Accordingly, we characterized HSF1-mediated gene expression in protecting against electrophile-induced toxicity. Among the genes induced by HSF1, Bcl-2- associated athanogene 3 (BAG3) is notable for its actions in promoting cell survival through stabilization of antiapoptotic Bcl-2 proteins, appearing to have a critical role in mediating cellular protection against electrophile-induced death.
Collapse
Affiliation(s)
- Aaron T. Jacobs
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| | - Lawrence J. Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232-0146
| |
Collapse
|
58
|
A novel transcriptional repressor, Rhit, is involved in heat-inducible and age-dependent expression of Mpv17-like protein, a participant in reactive oxygen species metabolism. Mol Cell Biol 2010; 30:2306-15. [PMID: 20231359 DOI: 10.1128/mcb.01025-09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mpv17-like protein (M-LP) is a protein that has been suggested to be involved in the metabolism of reactive oxygen species. The two M-LP isoforms in mouse, M-LP(S) and M-LP(L), are generated by the alternative usage of promoters. M-LP(S) is expressed exclusively in kidneys after the age of 6 weeks, whereas M-LP(L) is expressed ubiquitously. To elucidate the molecular basis of M-LP(S) expression, we searched for cis-regulatory elements in the promoter region of M-LP(S) and identified heat shock element half-sites as positive elements and a Tramtrack 69K (Ttk 69K) binding site as a negative element. Furthermore, we isolated a novel transcription repressor, Rhit (regulator of heat-induced transcription), that binds to the Ttk 69K binding site within the M-LP(S) promoter by DNA affinity chromatography and confirmed its participation in the transcriptional regulation of M-LP(S) by RNA interference (RNAi). Sequence analysis revealed that Rhit contains a KRAB (Krüppel-associated box) domain and a DNA-binding domain composed of eight C(2)H(2)-type zinc fingers. Interestingly, exposure to heat shock stress resulted in the upregulation of M-LP(S) expression concurrent with the downregulation of Rhit expression. Moreover, the age-dependent expression of M-LP(S) was inversely correlated with that of Rhit. These observations strongly suggest that Rhit acts as a repressor in the heat-induced and age-dependent transcriptional regulation of M-LP(S).
Collapse
|
59
|
HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One 2010; 5:e8568. [PMID: 20052290 PMCID: PMC2797298 DOI: 10.1371/journal.pone.0008568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022] Open
Abstract
Protein stability under changing conditions is of vital importance for the cell and under the control of a fine-tuned network of molecular chaperones. Aging and age-related neurodegenerative diseases are directly associated with enhanced protein instability. Employing C. elegans expressing GFP-tagged luciferase as a reporter for evaluation of protein stability we show that the chaperoning strategy of body wall muscle cells and neurons is significantly different and that both are differently affected by aging. Muscle cells of young worms are largely resistant to heat stress, which is directly mediated by the stress response controlled through Heat Shock Transcription Factor 1. During recovery following heat stress the ability to refold misfolded proteins is missing. Young neurons are highly susceptible to chronic heat stress, but show a high potency to refold or disaggregate proteins during subsequent recovery. The particular proteome instability in neurons results from a delayed induction of the heat shock response. In aged neurons protein stability is increased during heat stress, whereas muscle cells show enhanced protein instability due to a deteriorated heat shock response. An efficient refolding activity is absent in both aged tissues. These results provide molecular insights into the differential protein stabilization capacity in different tissues and during aging.
Collapse
|
60
|
Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP. Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 2009; 106:102-10. [PMID: 19910575 DOI: 10.1161/circresaha.109.210914] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Ca2+/calmodulin-dependent protein kinase (CaMK)II is a multifunctional kinase involved in vital cellular processes such as Ca(2+) handling and cell fate regulation. In mammalian heart, 2 primary CaMKII isoforms, deltaB and deltaC, localize in nuclear and cytosolic compartments, respectively. Although previous studies have established an essential role of CaMKII-deltaC in cardiomyocyte apoptosis, the functional role of the more abundant isoform, CaMKII-deltaB, remains elusive. OBJECTIVE Here, we determined the potential role of CaMKII-deltaB in regulating cardiomyocyte viability and explored the underlying mechanism. METHODS AND RESULTS In cultured neonatal rat cardiomyocytes, the expression of CaMKII-deltaB and CaMKII-deltaC was inversely regulated in response to H2O2-induced oxidative stress with a profound reduction of the former and an increase of the later. Similarly, in vivo ischemia/reperfusion (IR) led to an opposite regulation of these CaMKII isoforms in a rat myocardial IR model. Notably, overexpression of CaMKII-deltaB protected cardiomyocytes against oxidative stress-, hypoxia-, and angiotensin II-induced apoptosis, whereas overexpression of its cytosolic counterpart promoted apoptosis. Using cDNA microarray, real-time PCR and Western blotting, we demonstrated that overexpression of CaMKII-deltaB but not CaMKII-deltaC elevated expression of heat shock protein (HSP)70 family members, including inducible (i)HSP70 and its homolog (Hst70). Moreover, overexpression of CaMKII-deltaB led to phosphorylation and activation of heat shock factor (HSF)1, the primary transcription factor responsible for HSP70 gene regulation. Importantly, gene silencing of iHSP70, but not Hst70, abolished CaMKII-deltaB-mediated protective effect, indicating that only iHSP70 was required for CaMKII-deltaB elicited antiapoptotic signaling. CONCLUSIONS We conclude that cardiac CaMKII-deltaB and CaMKII-deltaC were inversely regulated in response to oxidative stress and IR injury, and that in contrast to CaMKII-deltaC, CaMKII-deltaB serves as a potent suppressor of cardiomyocyte apoptosis triggered by multiple death-inducing stimuli via phosphorylation of HSF1 and subsequent induction of iHSP70, marking both CaMKII-delta isoforms as promising therapeutic targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Wei Peng
- Institute of Molecular Medicine, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
61
|
Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 2009; 21:106-16. [PMID: 19864465 PMCID: PMC2801703 DOI: 10.1091/mbc.e09-07-0639] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
HSF1 is a master regulator of the heat-shock response in mammalian cells, whereas in avian cells, HSF3, which was considered as an avian-specific factor, is required for the expression of classical heat-shock genes. Here, the authors identify mouse HSF3, and demonstrate that it has the potential to activate only nonclassical heat-shock genes. The heat-shock response is characterized by the expression of a set of classical heat-shock genes, and is regulated by heat-shock transcription factor 1 (HSF1) in mammals. However, comprehensive analyses of gene expression have revealed very large numbers of inducible genes in cells exposed to heat shock. It is believed that HSF1 is required for the heat-inducible expression of these genes although HSF2 and HSF4 modulate some of the gene expression. Here, we identified a novel mouse HSF3 (mHSF3) translocated into the nucleus during heat shock. However, mHSF3 did not activate classical heat-shock genes such as Hsp70. Remarkably, overexpression of mHSF3 restored the expression of nonclassical heat-shock genes such as PDZK3 and PROM2 in HSF1-null mouse embryonic fibroblasts (MEFs). Although down-regulation of mHSF3 expression had no effect on gene expression or cell survival in wild-type MEF cells, it abolished the moderate expression of PDZK3 mRNA and reduced cell survival in HSF1-null MEF cells during heat shock. We propose that mHSF3 represents a unique HSF that has the potential to activate only nonclassical heat-shock genes to protect cells from detrimental stresses.
Collapse
Affiliation(s)
- Mitsuaki Fujimoto
- Department of Biochemistry, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Reina CP, Zhong X, Pittman RN. Proteotoxic stress increases nuclear localization of ataxin-3. Hum Mol Genet 2009; 19:235-49. [PMID: 19843543 DOI: 10.1093/hmg/ddp482] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3)/Machado Joseph disease results from expansion of the polyglutamine domain in ataxin-3 (Atx3). Atx3 is a transcriptional co-repressor, as well as a deubiquitinating enzyme that appears to function in cellular pathways involved in protein homeostasis. In this study, we show that interactions of Atx3 with valosin-containing protein and hHR23B are dynamic and modulated by proteotoxic stresses. Heat shock, a general proteotoxic stress, also induced wild-type and pathogenic Atx3 to accumulate in the nucleus. Mapping studies showed that two regions of Atx3, the Josephin domain and the C-terminus, regulated heat shock-induced nuclear localization. Heat shock-induced nuclear localization of Atx3 was not affected by a casein kinase-2 inhibitor or by mutating a predicted nuclear localization signal. However, serine-111 of Atx3 was required for nuclear localization of the Josephin domain and regulated nuclear localization of full-length Atx3. Atx3 null cells were more sensitive to toxic effects of heat shock suggesting that Atx3 had a protective function in the cellular response to heat shock. Importantly, we found that oxidative stress also induced nuclear localization of Atx3; both wild-type and pathogenic Atx3 accumulated in the nucleus of SCA3 patient fibroblasts following oxidative stress. Heat shock and oxidative stress are the first processes identified that increase nuclear localization of Atx3. Observations in this study provide new and important insights for understanding SCA3 pathology as the nucleus is likely a key site for early pathogenesis.
Collapse
Affiliation(s)
- Christopher P Reina
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084, USA
| | | | | |
Collapse
|
63
|
Krivoruchko A, Storey KB. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans. J Comp Physiol B 2009; 180:403-14. [PMID: 19834715 DOI: 10.1007/s00360-009-0414-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.
Collapse
Affiliation(s)
- Anastasia Krivoruchko
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | | |
Collapse
|
64
|
Cervantes-Gomez F, Nimmanapalli R, Gandhi V. Transcription inhibition of heat shock proteins: a strategy for combination of 17-allylamino-17-demethoxygeldanamycin and actinomycin d. Cancer Res 2009; 69:3947-54. [PMID: 19383903 DOI: 10.1158/0008-5472.can-08-4406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heat shock protein (HSP) 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) is currently in clinical trials because of its unique mechanism of action and antitumor activity. However, 17-AAG triggers the transcription and elevation of antiapoptotic HSP90, HSP70, and HSP27, which lead to chemoresistance in tumor cells. We hypothesized that inhibiting HSP90, HSP70, and HSP27 transcription may enhance 17-AAG-induced cell death in multiple myeloma cell lines. Actinomycin D (Act D), a clinically used agent and transcription inhibitor, was combined with 17-AAG. The concentrations for 17-AAG and Act D were selected based on the target actions and plasma levels during therapy. Inducible and constitutive HSP27, HSP70, and HSP90 mRNA and protein levels were measured by real-time reverse transcription-PCR and immunoblot assays. Compared with no treatment, Act D alone decreased HSP mRNA levels in MM.1S and RPMI-8226 cell lines. Combining Act D with 17-AAG did not attenuate 17-AAG-mediated increases in transcript levels of inducible HSP70; however, constitutive HSP mRNA levels were decreased. In contrast to its effect on mRNA levels, Act D was able to abrogate 17-AAG-mediated increases in all HSP protein levels. The cytotoxicity of combined Act D and 17-AAG was assessed. Treatment with Act D alone caused <40% cell death, whereas the combination of 17-AAG and Act D resulted in an increase of cell death in both multiple myeloma cell lines. In conclusion, these results indicate that 17-AAG-mediated induction of HSP70 and HSP27 expression can be attenuated by Act D and therefore can potentially improve the clinical treatment of multiple myeloma.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
65
|
Hou Y, Zou J. Delivery of HSF1(+) protein using HIV-1 TAT protein transduction domain. Mol Biol Rep 2009; 36:2271-7. [PMID: 19190998 DOI: 10.1007/s11033-008-9444-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
HSF1 is the major transcription factor of HSPs (heat shock proteins) in response to various stresses. Wild type HSF1 (heat shock transcriptional factor 1) is normally inactive, while a constitutively active form of HSF1 (HSF1(+)) can activate downstream HSP expression in the absence of stresses. Here we generated the eukaryotic vectors that expresses HSF1(+) fusion proteins, and found that HSF1(+)-TAT fusion protein was expressed and activated HSP expression. TAT, as a trans-acting factor of HIV-1, has been demonstrated to deliver functional cargo protein into living cells. HSF1(+)-TAT fusion protein was expressed in E. coli, purified, incubated with A549 cells for 8 h, Western blot analysis and luciferase reporter assay showed that HSF1(+) fusion protein was delivered into A549 cells successfully, and the accumulation of HSF1(+)-TAT fusion protein in A549 cells up-regulated HSP70 expression.
Collapse
Affiliation(s)
- Yonghui Hou
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, 510663 Guangzhou, China
| | | |
Collapse
|
66
|
Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Brain Res 2008; 1249:191-201. [PMID: 19014914 DOI: 10.1016/j.brainres.2008.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/25/2008] [Accepted: 10/17/2008] [Indexed: 11/21/2022]
Abstract
The molecular events mediating the complex interaction between exercise and cognition are not well-understood. Although many aspects of the signal transduction pathways mediate exercise induced improvement in cognition are elucidated, little is known about the molecular events interrelating physiological stress with synaptic proteins, following physical exercise. Small heat shock proteins (sHSP), HSP27 and alpha-B-crystallin are co-localized to synapses and astrocytes, but their role in the brain is not well-understood. We investigated whether their levels in the hippocampus were modulated by exercise, using a well characterized voluntary exercise paradigm. Since sHSP are known to be regulated by many intracellular signaling molecules in other cells types outside the brain, we investigated whether similar regulation may serve a role in the brain by measuring protein kinase B (PKB/Akt), pGSK3 and the mitogen activated protein (MAP) kinases, p38, phospho-extracellular signal-regulated kinase (pERK) and phospho-c-Jun kinase (pJNK). Results demonstrated exercise-dependent increases in HSP27 and alpha-B-crystallin levels. We observed that increases in sHSP coincided with robust elevations in the presynaptic protein, SNAP25 and the post-synaptic proteins NR2b and PSD95. Exercise had a differential impact on kinases, significantly reducing pAkt and pERK, while increasing p38 MAPK. In conclusion, we demonstrate four early novel hippocampal responses to exercise that have not been identified previously: the induction of (1) sHSPs (2) the synaptic proteins SNAP-25, NR2b, and PSD-95, (3) the MAP kinase p38 and (4) the immediate early gene product MKP1. We speculate that sHSP may play a role in synaptic plasticity in response to exercise.
Collapse
|
67
|
Taleb M, Brandon CS, Lee FS, Lomax MI, Dillmann WH, Cunningham LL. Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J Assoc Res Otolaryngol 2008; 9:277-89. [PMID: 18512096 PMCID: PMC2538150 DOI: 10.1007/s10162-008-0122-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/17/2008] [Indexed: 01/14/2023] Open
Abstract
Sensory hair cells of the inner ear are sensitive to death from aging, noise trauma, and ototoxic drugs. Ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic agent cisplatin. Exposure to aminoglycosides results in hair cell death that is mediated by specific apoptotic proteins, including c-Jun N-terminal kinase (JNK) and caspases. Induction of heat shock proteins (Hsps) is a highly conserved stress response that can inhibit JNK- and caspase-dependent apoptosis in a variety of systems. We have previously shown that heat shock results in a robust upregulation of Hsps in the hair cells of the adult mouse utricle in vitro. In addition, heat shock results in significant inhibition of both cisplatin- and aminoglycoside-induced hair cell death. In our system, Hsp70 is the most strongly induced Hsp, which is upregulated over 250-fold at the level of mRNA 2 h after heat shock. Therefore, we have begun to examine the role of Hsp70 in mediating the protective effect of heat shock. To determine whether Hsp70 is necessary for the protective effect of heat shock against aminoglycoside-induced hair cell death, we utilized utricles from Hsp70.1/3 (-/-) mice. While heat shock inhibited gentamicin-induced hair cell death in wild-type utricles, utricles from Hsp70.1/3 (-/-) mice were not protected. In addition, we have examined the role of the major heat shock transcription factor, Hsf1, in mediating the protective effect of heat shock. Utricles from Hsf1 (-/-) mice and wild-type littermates were exposed to heat shock followed by gentamicin. The protective effect of heat shock on aminoglycoside-induced hair cell death was only observed in wild-type mice and not in Hsf1 (-/-) mice. To determine whether Hsp70 is sufficient to protect hair cells, we have utilized transgenic mice that constitutively overexpress Hsp70. Utricles from Hsp70-overexpressing mice and wild-type littermates were cultured in the presence of varying neomycin concentrations for 24 h. The Hsp70-overexpressing utricles were significantly protected against neomycin-induced hair cell death at moderate to high doses of neomycin. This protective effect was achieved without a heat shock. Taken together, these data indicate that Hsp70 and Hsf1 are each necessary for the protective effect of heat shock against aminoglycoside-induced death. Furthermore, overexpression of Hsp70 alone significantly inhibits aminoglycoside-induced hair cell death.
Collapse
Affiliation(s)
- Mona Taleb
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| | - Carlene S. Brandon
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| | - Fu-Shing Lee
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Margaret I. Lomax
- Kresge Hearing Research Institute and Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Wolfgang H. Dillmann
- Department of Endocrinology, School of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Lisa L. Cunningham
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403 USA
| |
Collapse
|
68
|
Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T. Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 2008; 283:26188-97. [PMID: 18632670 DOI: 10.1074/jbc.m710521200] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many neurodegenerative diseases including Alzheimer, Parkinson, and polyglutamine (polyQ) diseases are thought to be caused by protein misfolding. The polyQ diseases, including Huntington disease and spinocerebellar ataxias (SCAs), are caused by abnormal expansions of the polyQ stretch in disease-causing proteins, which trigger misfolding of these proteins, resulting in their deposition as inclusion bodies in affected neurons. Although genetic expression of molecular chaperones has been shown to suppress polyQ protein misfolding and neurodegeneration, toward developing a therapy, it is ideal to induce endogenous molecular chaperones by chemical administration. In this study, we assessed the therapeutic effects of heat shock transcription factor 1 (HSF1)-activating compounds, which induce multiple molecular chaperones, on polyQ-induced neurodegeneration in vivo. We found that oral administration of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) markedly suppresses compound eye degeneration and inclusion body formation in a Drosophila model of SCA. 17-AAG also dramatically rescued the lethality of the SCA model (74.1% rescue) and suppressed neurodegeneration in a Huntington disease model (46.3% rescue), indicating that 17-AAG is widely effective against various polyQ diseases. 17-AAG induced Hsp70, Hsp40, and Hsp90 expression in a dose-dependent manner, and the expression levels correlated with its therapeutic effects. Furthermore, knockdown of HSF1 abolished the induction of molecular chaperones and the therapeutic effect of 17-AAG, indicating that its therapeutic effects depend on HSF1 activation. Our study indicates that induction of multiple molecular chaperones by 17-AAG treatment is a promising therapeutic approach for a wide range of polyQ diseases and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nobuhiro Fujikake
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Dokladny K, Ye D, Kennedy JC, Moseley PL, Ma TY. Cellular and molecular mechanisms of heat stress-induced up-regulation of occludin protein expression: regulatory role of heat shock factor-1. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:659-70. [PMID: 18276783 DOI: 10.2353/ajpath.2008.070522] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The heat stress (HS)-induced increase in occludin protein expression has been postulated to be a protective response against HS-induced disruption of the intestinal epithelial tight junction barrier. The aim of this study was to elucidate the cellular and molecular processes that mediate the HS-induced up-regulation of occludin expression in Caco-2 cells. Exposure to HS (39 degrees C or 41 degrees C) resulted in increased expression of occludin protein; this was preceded by an increase in occludin mRNA transcription and promoter activity. HS-induced activation of heat shock factor-1 (HSF-1) resulted in cytoplasmic-to-nuclear translocation of HSF-1 and binding to its binding motif in the occludin promoter region. HSF-1 activation was associated with an increase in occludin promoter activity, mRNA transcription, and protein expression; which were abolished by the HSF-1 inhibitor quercetin. Targeted HSF-1 knock-down by siRNA transfection inhibited the HSF-1-induced increase in occulin expression and junctional localization of occulin protein. Site-directed mutagenesis of the HSF-1 binding motif in the occludin promoter region inhibited HS-induced binding of HSF-1 to the occludin promoter region and subsequent promoter activity. In conclusion, our data show for the first time that the HS-induced increase in occludin protein expression is mediated by HSF-1 activation and subsequent binding of HSF-1 to the occludin promoter, which initiates a series of molecular and cellular events culminating in increased junctional localization of occludin protein.
Collapse
Affiliation(s)
- Karol Dokladny
- Internal Medicine-Gastroenterology and Hepatology, MSC10 5550, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | | | | | |
Collapse
|
70
|
Zhang YQ, Sarge KD. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J Mol Med (Berl) 2007; 85:1421-8. [PMID: 17943263 PMCID: PMC2262918 DOI: 10.1007/s00109-007-0251-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 11/27/2022]
Abstract
Heat shock proteins (hsps) are protective against the harmful effects of mutant expanded polyglutamine repeat proteins that occur in diseases such as Huntington's, prompting the search for pharmacologic compounds that increase hsp expression in cells as potential treatments for this and related diseases. In this paper, we show that celastrol, a compound recently shown to up-regulate hsp gene expression, significantly decreases killing of cells expressing mutant polyglutamine protein. This effect requires the presence of the transcription factor responsible for mediating inducible hsp gene expression, HSF1, and is correlated with decreased amounts and increased sodium dodecyl sulfate (SDS) solubility of polyglutamine aggregates. These results suggest the potential of celastrol as a therapeutic agent in the treatment of human polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Yu-Qian Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| | - Kevin D. Sarge
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
71
|
Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med 2007; 42:1-14. [PMID: 17157189 PMCID: PMC1790871 DOI: 10.1016/j.freeradbiomed.2006.08.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022]
Abstract
All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e., exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury.
Collapse
Affiliation(s)
- Derek S. Wheeler
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
72
|
Stanhill A, Levin V, Hendel A, Shachar I, Kazanov D, Arber N, Kaminski N, Engelberg D. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells. Oncogene 2006; 25:1485-95. [PMID: 16278678 DOI: 10.1038/sj.onc.1209193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.
Collapse
Affiliation(s)
- A Stanhill
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Tchénio T, Havard M, Martinez LA, Dautry F. Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 2006; 26:580-91. [PMID: 16382149 PMCID: PMC1346900 DOI: 10.1128/mcb.26.2.580-591.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the constitutive activation of the multidrug resistance gene 1 (MDR-1). This drug resistance phenotype does not correlate with an increased expression of heat shock-responsive genes (heat shock protein genes, or HSPs). In addition, HSF1 mutants lacking HSP gene activation are also capable of conferring multidrug resistance, and only hypophosphorylated HSF1 complexes accumulate in transduced cells. Our results indicate that HSF1 can activate MDR-1 expression in a stress-independent manner that differs from the canonical heat shock-activated mechanism involved in HSP induction. We further provide evidence that the induction of MDR-1 expression occurs at a posttranscriptional level, revealing a novel undocumented role for hypophosphorylated HSF1 in posttranscriptional gene regulation.
Collapse
Affiliation(s)
- Thierry Tchénio
- Unité de Génétique Moléculaire et Intégrations des Fonctions Cellulaires, CNRS-UPR1983, 7 rue Guy Moquet, BP8, 94801 Villejuif Cedex, France.
| | | | | | | |
Collapse
|
74
|
Liu J, Yang WJ, Zhu XJ, Karouna-Renier NK, Rao RK. Molecular cloning and expression of two HSP70 genes in the prawn, Macrobrachium rosenbergii. Cell Stress Chaperones 2005; 9:313-23. [PMID: 15544169 PMCID: PMC1065290 DOI: 10.1379/csc-40r.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Two complementary deoxyribonucleic acid (cDNA) clones encoding 2 different 70-kDa heat shock proteins (HSPs) were isolated from the prawn Macrobrachium rosenbergii. The cDNA clones were 2448 and 2173 bp in length and contained 1950- and 1734-bp open reading frames (ORFs), respectively. The ORFs encoded 649- and 577-amino acid polypeptides, which were named Mar-HSC70 and Mar-HSP70, respectively, according to the sequence identities with other known HSC70s and HSP70s and based on their inducibility in response to heat shock stress (at 35 degrees C). Genomic DNA sequence analysis revealed no introns in either gene. The major structural differences between the 2 proteins were a 60-amino acid segment and a 14-amino acid segment present in the N-terminal and C-terminal, respectively, of Mar-HSC70 that were not found in Mar-HSP70. Northern blotting and semiquantitative reverse transcription-polymerase chain reaction analyses indicated that the Mar-HSP70 gene was expressed under heat shock (35 degrees C) stress in a non-tissue-specific manner. In contrast, Mar-HSC70 messenger ribonucleic acid was constitutively expressed in every tissue except muscle, and its expression in response to heat shock (at 35 degrees C) changed only in muscle.
Collapse
Affiliation(s)
- Jun Liu
- College of Life Sciences, Zhejiang University, 232 Wensan Road, Hangzhou, Zhejiang 310012, People's Republic China
| | | | | | | | | |
Collapse
|
75
|
Rieger TR, Morimoto RI, Hatzimanikatis V. Mathematical modeling of the eukaryotic heat-shock response: dynamics of the hsp70 promoter. Biophys J 2004; 88:1646-58. [PMID: 15626701 PMCID: PMC1305221 DOI: 10.1529/biophysj.104.055301] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heat-shock response in humans and other eukaryotes is a highly conserved genetic network that coordinates the cellular response to protein damage and is essential for adaptation and survival of the stressed cell. It involves an immediate and transient activation of heat-shock transcription factor-1 (HSF1) which results in the elevated expression of genes encoding proteins important for protein homeostasis including molecular chaperones and components of the protein degradative machinery. We have developed a mathematical model of the critical steps in the regulation of HSF1 activity to understand how chronic exposure to a stress signal is converted into specific molecular events for activation and feedback regulated attenuation of HSF1. The model is utilized to identify the most sensitive steps in HSF1 activation and to evaluate how these steps affect the expression of molecular chaperones. This analysis allows the formulation of hypotheses about the differences between the heat-shock responses in yeast and humans and generates a model with predictive abilities relevant to diseases associated with the accumulation of damaged and aggregated proteins including cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Theodore R Rieger
- Department of Chemical and Biological Engineering, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
76
|
Gough MJ, Melcher AA, Crittenden MR, Sanchez-Perez L, Voellmy R, Vile RG. Induction of cell stress through gene transfer of an engineered heat shock transcription factor enhances tumor immunogenicity. Gene Ther 2004; 11:1099-104. [PMID: 15103319 DOI: 10.1038/sj.gt.3302274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein expression and release is closely associated with immunogenic forms of cell death. We show that activation of the stress response within tumor cells during cell death, using an engineered form of the heat shock transcription factor, leads to an immunogenic death. Cells dying through 'stressful death' show decreased phagocytosis by macrophages in vitro. Moreover, cells expressing heat shock proteins during cell death are significantly more protective against subsequent tumor challenge. These data demonstrate the utility of activating cellular stress programs over the course of cytotoxic therapies to enhance immune responses to dying cells.
Collapse
Affiliation(s)
- M J Gough
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
77
|
Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004; 9:122-33. [PMID: 15497499 PMCID: PMC1065292 DOI: 10.1379/csc-14r.1] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 03/29/2004] [Indexed: 12/31/2022] Open
Abstract
Heat shock factor Hsf in nonvertebrate animals and homologous heat shock factor Hsf1 in vertebrate animals are key transcriptional regulators of the stress protein response. Hsf/Hsf1 is constitutively present in cells but is, typically, only active during periods during which cells are experiencing a physical or chemical proteotoxic stress. It has become increasingly clear that regulation of Hsf/Hsf1 activity occurs at multiple levels: the oligomeric status of Hsf/Hsf1, its DNA-binding ability, posttranslational modification, transcriptional competence, nuclear/ subnuclear localization, as well as its interactions with regulatory cofactors or other transcription factors all appear to be carefully controlled. This review emphasizes work reported over the past several years suggesting that regulation at several of these levels is mediated by repressive interactions of Hsp90-containing multichaperone complexes and/or individual chaperones and Hsf/Hsf1.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Gautier Building, Room 403, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
78
|
Wang X, Grammatikakis N, Siganou A, Calderwood SK. Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 2003; 23:6013-26. [PMID: 12917326 PMCID: PMC180972 DOI: 10.1128/mcb.23.17.6013-6026.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Revised: 02/04/2003] [Accepted: 05/13/2003] [Indexed: 11/20/2022] Open
Abstract
Heat shock factor 1 (HSF1) regulates the transcription of molecular chaperone hsp genes. However, the cellular control mechanisms that regulate HSF1 activity are not well understood. In this study, we have demonstrated for the first time that human HSF1 binds to the essential cell signaling protein 14-3-3 epsilon. Binding of HSF1 to 14-3-3 epsilon occurs in cells in which extracellular signal regulated kinase (ERK) is activated and blockade of the ERK pathway by treatment with the specific ERK pathway inhibitor PD98059 in vivo strongly suppresses the binding. We previously showed that ERK1 phosphorylates HSF1 on serine 307 and leads to secondary phosphorylation by glycogen synthase kinase 3 (GSK3) on serine 303 within the regulatory domain and that these phosphorylation events repress HSF1. We show here that HSF1 binding to 14-3-3 epsilon requires HSF1 phosphorylation on serines 303 and 307. Furthermore, the serine phosphorylation-dependent binding of HSF1 to 14-3-3 epsilon results in the transcriptional repression of HSF1 and its sequestration in the cytoplasm. Leptomycin B, a specific inhibitor of nuclear export receptor CRM1, was found to reverse the cytoplasmic sequestration of HSF1 mediated by 14-3-3 epsilon, suggesting that CRM1/14-3-3 epsilon directed nuclear export plays a major role in repression of HSF1 by the ERK/GSK3/14-3-3 epsilon pathway. Our experiments indicate a novel pathway for HSF1 regulation and suggest a mechanism for suppression of its activity during cellular proliferation.
Collapse
Affiliation(s)
- XiaoZhe Wang
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
79
|
Inouye S, Katsuki K, Izu H, Fujimoto M, Sugahara K, Yamada SI, Shinkai Y, Oka Y, Katoh Y, Nakai A. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures. Mol Cell Biol 2003; 23:5882-95. [PMID: 12897157 PMCID: PMC166333 DOI: 10.1128/mcb.23.16.5882-5895.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock response, which is characterized by the induction of a set of heat shock proteins, is essential for induced thermotolerance and is regulated by heat shock transcription factors (HSFs). Curiously, HSF1 is essential for heat shock response in mammals, whereas in avian HSF3, an avian-specific factor is required for the burst activation of heat shock genes. Amino acid sequences of chicken HSF1 are highly conserved with human HSF1, but those of HSF3 diverge significantly. Here, we demonstrated that chicken HSF1 lost the ability to activate heat shock genes through the amino-terminal domain containing an alanine-rich sequence and a DNA-binding domain. Surprisingly, chicken and human HSF1 but not HSF3 possess a novel function that protects against a single exposure to mild heat shock, which is not mediated through the activation of heat shock genes. Overexpression of HSF1 mutants that could not bind to DNA did not restore the susceptibility to cell death in HSF1-null cells, suggesting that the new protective role of HSF1 is mediated through regulation of unknown target genes other than heat shock genes. These results uncover a novel role of vertebrate HSF1, which has been masked under the roles of heat shock proteins.
Collapse
Affiliation(s)
- Sachiye Inouye
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Farinha CM, Nogueira P, Mendes F, Penque D, Amaral MD. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70. Biochem J 2002; 366:797-806. [PMID: 12069690 PMCID: PMC1222832 DOI: 10.1042/bj20011717] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Revised: 06/10/2002] [Accepted: 06/17/2002] [Indexed: 11/17/2022]
Abstract
The CFTR (cystic fibrosis transmembrane conductance regulator) gene, defective in cystic fibrosis, codes for a polytopic apical membrane protein functioning as a chloride channel. Wild-type (wt) CFTR matures inefficiently and CFTR with a deletion of Phe-508 (F508del), the most frequent mutation, is substantially retained as a core-glycosylated intermediate in the endoplasmic reticulum (ER), probably due to misfolding that is recognized by the cellular quality control machinery involving molecular chaperones. Here, we overexpressed the heat-shock protein (Hsp) 70 chaperone in vivo and observed no changes in degradation rate of the core-glycosylated form, nor in the efficiency of its conversion into the fully glycosylated form, for either wt- or F508del-CFTR, contrary to previous in vitro studies on the affect of heat-shock cognate (Hsc) 70 on part of the first nucleotide-binding domain of CFTR. Co-transfection of Hsp70 with its co-chaperone human DnaJ homologue (Hdj)-1/Hsp40, however, stabilizes the immature form of wt-CFTR, but not of F508del-CFTR, suggesting that these chaperones act on a wt-specific conformation. As the efficiency of conversion into the fully glycosylated form is not increased under Hsp70/Hdj-1 overexpression, the lack of these two chaperones does not seem to be critical for CFTR maturation and ER retention. The effects of 4-phenylbutyrate and deoxyspergualin, described previously to interfere with Hsp70 binding, were also tested upon CFTR degradation and processing. The sole effect observed was destabilization of F508del-CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
81
|
Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI. Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 2001; 21:7163-71. [PMID: 11585899 PMCID: PMC99891 DOI: 10.1128/mcb.21.21.7163-7171.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate cells express a family of heat shock transcription factors (HSF1 to HSF4) that coordinate the inducible regulation of heat shock genes in response to diverse signals. HSF1 is potent and activated rapidly though transiently by heat shock, whereas HSF2 is a less active transcriptional regulator but can retain its DNA binding properties for extended periods. Consequently, the differential activation of HSF1 and HSF2 by various stresses may be critical for cells to survive repeated and diverse stress challenges and to provide a mechanism for more precise regulation of heat shock gene expression. Here we show, using a novel DNA binding and detection assay, that HSF1 and HSF2 are coactivated to different levels in response to a range of conditions that cause cell stress. Above a low basal activity of both HSFs, heat shock preferentially activates HSF1, whereas the amino acid analogue azetidine or the proteasome inhibitor MG132 coactivates both HSFs to different levels and hemin preferentially induces HSF2. Unexpectedly, we also found that heat shock has dramatic adverse effects on HSF2 that lead to its reversible inactivation coincident with relocalization from the nucleus. The reversible inactivation of HSF2 is specific to heat shock and does not occur with other stressors or in cells expressing high levels of heat shock proteins. These results reveal that HSF2 activity is negatively regulated by heat and suggest a role for heat shock proteins in the positive regulation of HSF2.
Collapse
Affiliation(s)
- A Mathew
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
82
|
Molina A, Di Martino E, Martial JA, Muller M. Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element. Biochem J 2001; 356:353-9. [PMID: 11368761 PMCID: PMC1221845 DOI: 10.1042/0264-6021:3560353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We reported previously that a tilapia (Oreochromis mossambicus) heat shock protein 70 (HSP70) promoter is able to confer heat shock response on a reporter gene after transient expression both in cell culture and in microinjected zebrafish embryos. Here we present the first functional analysis of a fish HSP70 promoter, the tiHSP70 promoter. Using transient expression experiments in carp EPC (epithelioma papulosum cyprini) cells and in microinjected zebrafish embryos, we show that a distal heat shock response element (HSE1) at approx. -800 is predominantly responsible for the heat shock response of the tiHSP70 promoter. This element specifically binds an inducible transcription factor, most probably heat shock factor, and a constitutive factor. The constitutive complex is not observed with the non-functional, proximal HSE3 sequence, suggesting that both factors are required for the heat shock response mediated by HSE1.
Collapse
Affiliation(s)
- A Molina
- Laboratoire de Biologie Moléculaire et Génie Génétique, Université de Liège, Institut de Chimie B6, B-4000 Sart-Tilman, Belgium
| | | | | | | |
Collapse
|
83
|
Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 2001; 20:3800-10. [PMID: 11447121 PMCID: PMC125548 DOI: 10.1093/emboj/20.14.3800] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a serine-rich constitutively phosphorylated mediator of the stress response. Upon stress, HSF1 forms DNA-binding trimers, relocalizes to nuclear granules, undergoes inducible phosphorylation and acquires the properties of a transactivator. HSF1 is phosphorylated on multiple sites, but the sites and their function have remained an enigma. Here, we have analyzed sites of endogenous phosphorylation on human HSF1 and developed a phosphopeptide antibody to identify Ser230 as a novel in vivo phosphorylation site. Ser230 is located in the regulatory domain of HSF1, and promotes the magnitude of the inducible transcriptional activity. Ser230 lies within a consensus site for calcium/calmodulin-dependent protein kinase II (CaMKII), and CaMKII overexpression enhances both the level of in vivo Ser230 phosphorylation and transactivation of HSF1. The importance of Ser230 was further established by the S230A HSF1 mutant showing markedly reduced activity relative to wild-type HSF1 when expressed in hsf1(-/-) cells. Our study provides the first evidence that phosphorylation is essential for the transcriptional activity of HSF1, and hence for induction of the heat shock response.
Collapse
Affiliation(s)
- Carina I. Holmberg
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Ville Hietakangas
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Andrey Mikhailov
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Jouni O. Rantanen
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Marko Kallio
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Annika Meinander
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Jukka Hellman
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Nick Morrice
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Carol MacKintosh
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Richard I. Morimoto
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - John E. Eriksson
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| |
Collapse
|
84
|
Nakai A, Ishikawa T. Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. EMBO J 2001; 20:2885-95. [PMID: 11387221 PMCID: PMC125499 DOI: 10.1093/emboj/20.11.2885] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The roles of heat shock transcription factors (HSFs) under physiological conditions have recently become the focus of intense study. We generated avian cells lacking two heat-inducible HSFs, HSF1 and HSF3. In addition to complete loss of activation of heat shock genes under stress conditions, these cells exhibited a marked reduction in Hsp90alpha expression under normal growth conditions. Reduction in Hsp90alpha expression caused instability of a cyclin-dependent kinase, Cdc2, and cell cycle progression was blocked mainly at the G2 phase, but also at G1 phase even at mild heat shock temperatures. Restoration of Hsp90alpha expression rescued the temperature sensitivity without induction of HSPS: We demonstrated for the first time a molecular target affected by heat shock in vivo that causes cell cycle arrest in vertebrates and a novel mechanism of stress resistance controlled by vertebrate HSFS:
Collapse
Affiliation(s)
- A Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minamikogushi 1-1-1, Ube 775-8505, Japan.
| | | |
Collapse
|
85
|
Lee S, Carlson T, Christian N, Lea K, Kedzie J, Reilly JP, Bonner JJ. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 2000; 11:1753-64. [PMID: 10793149 PMCID: PMC14881 DOI: 10.1091/mbc.11.5.1753] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In vitro DNA-binding assays demonstrate that the heat shock transcription factor (HSF) from the yeast Saccharomyces cerevisiae can adopt an altered conformation when stressed. This conformation, reflected in a change in electrophoretic mobility, requires that two HSF trimers be bound to DNA. Single trimers do not show this change, which appears to represent an alteration in the cooperative interactions between trimers. HSF isolated from stressed cells displays a higher propensity to adopt this altered conformation. Purified HSF can be stimulated in vitro to undergo the conformational change by elevating the temperature or by exposing HSF to superoxide anion. Mutational analysis maps a region critical for this conformational change to the flexible loop between the minimal DNA-binding domain and the flexible linker that joins the DNA-binding domain to the trimerization domain. The significance of these findings is discussed in the context of the induction of the heat shock response by ischemic stroke, hypoxia, and recovery from anoxia, all known to stimulate the production of superoxide.
Collapse
Affiliation(s)
- S Lee
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana 47405-3700, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Nakai A, Suzuki M, Tanabe M. Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J 2000; 19:1545-54. [PMID: 10747023 PMCID: PMC310224 DOI: 10.1093/emboj/19.7.1545] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammals, testicular temperature is lower than core body temperature, and the vulnerable nature of spermatogenesis to thermal insult has been known for a century. However, the primary target affected by increases in temperature is not yet clear. We report here that male mice expressing an active form of heat shock transcription factor 1 (HSF1) in the testis are infertile due to a block in spermatogenesis. The germ cells entered meiotic prophase and were arrested at pachytene stage, and there was a significant increase in the number of apoptotic germ cells in these mice. In wild-type mice, a single heat exposure caused the activation of HSF1 and similar histological changes such as a stage-specific apoptosis of pachytene spermatocytes. These results suggest that male infertility caused by thermal insult is at least partly due to the activation of HSF1, which induces the primary spermatocytes to undergo apoptosis.
Collapse
Affiliation(s)
- A Nakai
- Department of Molecular and Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8397, USA.
| | | | | |
Collapse
|
87
|
Pirkkala L, Alastalo TP, Zuo X, Benjamin IJ, Sistonen L. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol Cell Biol 2000; 20:2670-5. [PMID: 10733569 PMCID: PMC85482 DOI: 10.1128/mcb.20.8.2670-2675.2000] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 01/13/2000] [Indexed: 11/20/2022] Open
Abstract
Inhibition of proteasome-mediated protein degradation machinery is a potent stress stimulus that causes accumulation of ubiquitinated proteins and increased expression of heat shock proteins (Hsps). Hsps play pivotal roles in homeostasis and protection in a cell, through their well-recognized properties as molecular chaperones. The inducible Hsp expression is regulated by the heat shock transcription factors (HSFs). Among mammalian HSFs, HSF1 has been shown to be important for regulation of the heat-induced stress gene expression, whereas the function of HSF2 in stress response is unclear. Recent reports have suggested that both HSF1 and HSF2 are affected during down-regulation of ubiquitin-proteasome pathway (Y. Kawazoe et al., Eur. J. Biochem. 255:356-362, 1998; A. Mathew et al., Mol. Cell. Biol. 18:5091-5098, 1998; D. Kim et al., Biochem. Biophys. Res. Commun. 254:264-268, 1999). To date, however, no unambiguous evidence has been presented as to whether a single specific HSF or multiple members of the HSF family are required for transcriptional induction of heat shock genes when proteasome activity is down-regulated. Therefore, by using loss-of-function and gain-of-function strategies, we investigated the specific roles of mammalian HSFs in regulation of the ubiquitin-proteasome-mediated stress response. Here we demonstrate that HSF1, but not HSF2, is essential and sufficient for up-regulation of Hsp70 expression during down-regulation of the ubiquitin proteolytic pathway. We propose that specificity of HSF1 could be an important therapeutic target during disease pathogenesis associated with abnormal ubiquitin-dependent proteasome function.
Collapse
Affiliation(s)
- L Pirkkala
- Turku Centre for Biotechnology, University of Turku, Abo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | |
Collapse
|
88
|
Jolly C, Usson Y, Morimoto RI. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci U S A 1999; 96:6769-74. [PMID: 10359787 PMCID: PMC21990 DOI: 10.1073/pnas.96.12.6769] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heat shock factor 1 (HSF1) is essential for the stress-induced expression of heat shock genes. On exposure to heat shock, HSF1 localizes within seconds to discrete nuclear granules. On recovery from heat shock, HSF1 rapidly dissipates from these stress granules to a diffuse nucleoplasmic distribution, typical of unstressed cells. Subsequent reexposure to heat shock results in the rapid relocalization of HSF1 to the same stress granules with identical kinetics. Although the appearance of HSF1 stress granules corresponds to the hyperphosphorylated, trimeric DNA-binding state of HSF1 and correlates temporally with the inducible transcription of heat shock genes, they are also present in heat-shocked mitotic cells that are devoid of transcription. This finding suggests a role for HSF1 stress granules as a nuclear compartment for the temporal regulation and spatial organization of HSF1 activity and reveals new features of the dynamics of nuclear organization.
Collapse
Affiliation(s)
- C Jolly
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 North Campus Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
89
|
He B, Meng YH, Mivechi NF. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol 1998; 18:6624-33. [PMID: 9774677 PMCID: PMC109247 DOI: 10.1128/mcb.18.11.6624] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1998] [Accepted: 07/30/1998] [Indexed: 11/20/2022] Open
Abstract
Heat shock transcription factor 1 (HSF-1) activates the transcription of heat shock genes in eukaryotes. Under normal physiological growth conditions, HSF-1 is a monomer. Its transcriptional activity is repressed by constitutive phosphorylation. Upon activation, HSF-1 forms trimers, acquires DNA binding activity, increases transcriptional activity, and appears as punctate granules in the nucleus. In this study, using bromouridine incorporation and confocal laser microscopy, we demonstrated that newly synthesized pre-mRNAs colocalize to the HSF-1 punctate granules after heat shock, suggesting that these granules are sites of transcription. We further present evidence that glycogen synthase kinase 3beta (GSK-3beta) and extracellular signal-regulated kinase mitogen-activated protein kinase (ERK MAPK) participate in the down regulation of HSF-1 transcriptional activity. Transient increases in the expression of GSK-3beta facilitate the disappearance of HSF-1 punctate granules and reduce hsp-70 transcription after heat shock. We have also shown that ERK is the priming kinase for GSK-3beta. Taken together, these results indicate that GSK-3beta and ERK MAPK facilitate the inactivation of activated HSF-1 after heat shock by dispersing HSF-1 from the sites of transcription.
Collapse
Affiliation(s)
- B He
- Institute of Molecular Medicine and Genetics, Department of Radiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
90
|
Ali A, Bharadwaj S, O'Carroll R, Ovsenek N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 1998; 18:4949-60. [PMID: 9710578 PMCID: PMC109079 DOI: 10.1128/mcb.18.9.4949] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of heat shock genes is a reversible and multistep process involving conversion of inactive heat shock factor 1 (HSF1) monomers into heat shock element (HSE)-binding homotrimers, hyperphosphorylation, and further modifications that induce full transcriptional competence. HSF1 is controlled by multiple regulatory mechanisms, including suppression by additional cellular factors, physical interactions with HSP70, and integration into different cellular signaling cascades. However, the signaling mechanisms by which cells respond to stress and control the HSF1 activation-deactivation pathway are not known. Here we demonstrate that HSP90, a cellular chaperone known to regulate several signal transduction molecules and transcription factors, functions in the regulation of HSF1. The existence of HSF1-HSP90 heterocomplexes was shown by coimmunoprecipitation of HSP90 with HSF1 from unshocked and heat-shocked nuclear extracts, recognition of HSF1-HSE complexes in vitro by using HSP90 antibodies (Abs), and recognition of HSF1 in vivo by HSP90 Abs microinjected directly into oocyte nuclei. The functional impact of HSP90-HSF1 interactions was analyzed by using two strategies: direct nuclear injection of HSP90 Abs and treatment of cells with geldanamycin (GA), an agent that specifically blocks the chaperoning activity of HSP90. Both HSP90 Abs and GA delayed the disassembly of HSF1 trimers during recovery from heat shock and specifically inhibited heat-induced transcription from a chloramphenicol acetyltransferase reporter construct under control of the hsp70 promoter. HSP90 Abs activated HSE binding in the absence of heat shock, an effect that could be reversed by subsequent injection of purified HSP90. GA did not activate HSE binding under nonshock conditions but increased the quantity of HSE binding induced by heat shock. On the basis of these findings and the known properties of HSP90, we propose a new regulatory model in which HSP90 participates in modulating HSF1 at different points along the activation-deactivation pathway, influencing the interconversion between monomeric and trimeric conformations as well as transcriptional activation. We also put forth the hypothesis that HSP90 links HSF1 to cellular signaling molecules coordinating the stress response.
Collapse
Affiliation(s)
- A Ali
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
91
|
Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 1998; 12:1962-74. [PMID: 9649501 PMCID: PMC316975 DOI: 10.1101/gad.12.13.1962] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 04/28/1998] [Indexed: 11/24/2022]
Abstract
In response to stress, heat shock factor 1 (HSF1) acquires rapid DNA binding and transient transcriptional activity while undergoing conformational transition from an inert non-DNA-binding monomer to active functional trimers. Attenuation of the inducible transcriptional response occurs during heat shock or upon recovery at non-stress conditions and involves dissociation of the HSF1 trimer and loss of activity. We have used the hydrophobic repeats of the HSF1 trimerization domain in the yeast two-hybrid protein interaction assay to identify heat shock factor binding protein 1 (HSBP1), a novel, conserved, 76-amino-acid protein that contains two extended arrays of hydrophobic repeats that interact with the HSF1 heptad repeats. HSBP1 is nuclear-localized and interacts in vivo with the active trimeric state of HSF1 that appears during heat shock. During attenuation of HSF1 to the inert monomer, HSBP1 associates with Hsp70. HSBP1 negatively affects HSF1 DNA-binding activity, and overexpression of HSBP1 in mammalian cells represses the transactivation activity of HSF1. To establish a biological role for HSBP1, the homologous Caenorhabditis elegans protein was overexpressed in body wall muscle cells and was shown to block activation of the heat shock response from a heat shock promoter-reporter construct. Alteration in the level of HSBP1 expression in C. elegans has severe effects on survival of the animals after thermal and chemical stress, consistent with a role for HSBP1 as a negative regulator of the heat shock response.
Collapse
Affiliation(s)
- S H Satyal
- Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208 USA
| | | | | | | | | |
Collapse
|
92
|
Yoshima T, Yura T, Yanagi H. Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment. Nucleic Acids Res 1998; 26:2580-5. [PMID: 9592140 PMCID: PMC147601 DOI: 10.1093/nar/26.11.2580] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA binding of heat shock factor 2 (HSF2) is induced during hemin-induced differentiation of human erythroleukemia cell line K562. To identify the transcriptional activation and the regulatory domains of HSF2, we constructed a series of deletion derivatives fused to the yeast GAL4 DNA binding domain and analyzed their transactivation activity. A minimal transactivation domain of HSF2 was localized to the C-terminus (residues 472-536), as in HSF1, although amino acid sequence similarity for these regions was rather limited and the potential transactivation ability was about 25% that of HSF1. The transactivation mediated by this region of HSF2 was found to be negatively regulated by the adjacent 18 amino acid segment (residues 428-445) under normal conditions. Furthermore, the latter segment, when fused to the GAL4 activation domain, markedly inhibited GAL4 activity. Extract containing most derivatives of HSF2 retaining this segment exhibited doublet or triplet bands in gel mobility shift assays with heat shock element-containing DNA, suggesting possible involvement of some factors interacting with that segment in the negative regulation. Another putative transactivation domain and two negative regulatory regions were also localized within the internal region.
Collapse
Affiliation(s)
- T Yoshima
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan
| | | | | |
Collapse
|
93
|
Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 1998; 18:2240-51. [PMID: 9528795 PMCID: PMC121470 DOI: 10.1128/mcb.18.4.2240] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 01/12/1998] [Indexed: 02/07/2023] Open
Abstract
In heat-stressed (HS) tomato (Lycopersicon peruvianum) cell cultures, the constitutively expressed HS transcription factor HsfA1 is complemented by two HS-inducible forms, HsfA2 and HsfB1. Because of its stability, HsfA2 accumulates to fairly high levels in the course of a prolonged HS and recovery regimen. Using immunofluorescence and cell fractionation experiments, we identified three states of HsfA2: (i) a soluble, cytoplasmic form in preinduced cultures maintained at 25 degrees C, (ii) a salt-resistant, nuclear form found in HS cells, and (iii) a stored form of HsfA2 in cytoplasmic HS granules. The efficient nuclear transport of HsfA2 evidently requires interaction with HsfA1. When expressed in tobacco protoplasts by use of a transient-expression system, HsfA2 is mainly retained in the cytoplasm unless it is coexpressed with HsfA1. The essential parts for the interaction and nuclear cotransport of the two Hsfs are the homologous oligomerization domain (HR-A/B region of the A-type Hsfs) and functional nuclear localization signal motifs of both partners. Direct physical interaction of the two Hsfs with formation of relatively stabile hetero-oligomers was shown by a two-hybrid test in Saccharomyces cerevisiae as well as by coimmunoprecipitation using tomato and tobacco whole-cell lysates.
Collapse
Affiliation(s)
- K D Scharf
- Department of Molecular Cell Biology, Goethe University Frankfurt, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Tanabe M, Kawazoe Y, Takeda S, Morimoto RI, Nagata K, Nakai A. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J 1998; 17:1750-8. [PMID: 9501096 PMCID: PMC1170522 DOI: 10.1093/emboj/17.6.1750] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vertebrate genome encodes a family of heat shock factors (HSFs 1-4) of which the DNA-binding and transcriptional activities of HSF1 and HSF3 are activated upon heat shock. HSF1 has the properties of a classical HSF and exhibits rapid activation of DNA-binding and transcriptional activity upon exposure to conditions of heat shock and other stresses, whereas HSF3 typically is activated at higher temperatures and with distinct delayed kinetics. To address the role of HSF3 in the heat shock response, null cells lacking the HSF3 gene were constructed by disruption of the resident gene by somatic recombination in an avian lymphoid cell line. Null cells lacking HSF3, yet expressing normal levels of HSF1, exhibited a severe reduction in the heat shock response, as measured by inducible expression of heat shock genes, and did not exhibit thermotolerance. At intermediate heat shock temperatures, where HSF1 oligomerizes to an active trimer in wild-type cells, HSF1 remained as an inert monomer in the HSF3 null cell line. HSF3 null cells were restored to a nearly normal heat shock-responsive state by reintroduction of an exogenous HSF3 gene. These results reveal that HSF3 has a dominant role in the regulation of the heat shock response and directly influences HSF1 activity.
Collapse
Affiliation(s)
- M Tanabe
- Department of Cell Biology, Chest Disease Research Institute, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan
| | | | | | | | | | | |
Collapse
|
95
|
Kaarniranta K, Elo M, Sironen R, Lammi MJ, Goldring MB, Eriksson JE, Sistonen L, Helminen HJ. Hsp70 accumulation in chondrocytic cells exposed to high continuous hydrostatic pressure coincides with mRNA stabilization rather than transcriptional activation. Proc Natl Acad Sci U S A 1998; 95:2319-24. [PMID: 9482883 PMCID: PMC19331 DOI: 10.1073/pnas.95.5.2319] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In response to various stress stimuli, heat shock genes are induced to express heat shock proteins (Hsps). Previous studies have revealed that expression of heat shock genes is regulated both at transcriptional and posttranscriptional level, and the rapid transcriptional induction of heat shock genes involves activation of the specific transcription factor, heat shock factor 1 (HSF1). Furthermore, the transcriptional induction can vary in intensity and kinetics in a signal- and cell-type-dependent manner. In this study, we demonstrate that mechanical loading in the form of hydrostatic pressure increases heat shock gene expression in human chondrocyte-like cells. The response to continuous high hydrostatic pressure was characterized by elevated mRNA and protein levels of Hsp70, without activation of HSF1 and transcriptional induction of hsp70 gene. The increased expression of Hsp70 was mediated through stabilization of hsp70 mRNA molecules. Interestingly, in contrast to static pressurization, cyclic hydrostatic loading did not result in the induction of heat shock genes. Our findings show that hsp70 gene expression is regulated posttranscriptionally without transcriptional induction in chondrocyte-like cells upon exposure to high continuous hydrostatic pressure. We suggest that the posttranscriptional regulation in the form of hsp70 mRNA stabilization provides an additional mode of heat shock gene regulation that is likely to be of significant importance in certain forms of stress.
Collapse
Affiliation(s)
- K Kaarniranta
- Department of Anatomy, University of Kuopio, P. O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Farkas T, Kutskova YA, Zimarino V. Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol 1998; 18:906-18. [PMID: 9447987 PMCID: PMC108802 DOI: 10.1128/mcb.18.2.906] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathway leading to transcriptional activation of heat shock genes involves a step of heat shock factor 1 (HSF1) trimerization required for high-affinity binding of this activator protein to heat shock elements (HSEs) in the promoters. Previous studies have shown that in vivo the trimerization is negatively regulated at physiological temperatures by a mechanism that requires multiple hydrophobic heptad repeats (HRs) which may form a coiled coil in the monomer. To investigate the minimal requirements for negative regulation, in this work we have examined mouse HSF1 translated in rabbit reticulocyte lysate or extracted from Escherichia coli after limited expression. We show that under these conditions HSF1 behaves as a monomer which can be induced by increases in temperature to form active HSE-binding trimers and that mutations of either HR region cause activation in both systems. Furthermore, temperature elevations and acidic buffers activate purified HSF1, and mild proteolysis excises fragments which form HSE-binding oligomers. These results suggest that oligomerization can be repressed in the monomer, as previously proposed, and that repression can be relieved in the apparent absence of regulatory proteins. An intramolecular mechanism may be central for the regulation of this transcription factor in mammalian cells, although not necessarily sufficient.
Collapse
Affiliation(s)
- T Farkas
- Biological and Technological Research Department (DIBIT), San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
97
|
Caruccio L, Bae S, Liu AY, Chen KY. The heat-shock transcription factor HSF1 is rapidly activated by either hyper- or hypo-osmotic stress in mammalian cells. Biochem J 1997; 327 ( Pt 2):341-7. [PMID: 9359399 PMCID: PMC1218799 DOI: 10.1042/bj3270341] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osmoregulation, the cellular response to environmental changes of osmolarity and ionic strength, is important for the survival of living organisms. We have demonstrated previously that an exposure of mammalian cells to hypo-osmotic stress, either in growth medium (30% growth medium and 70% water) or in binary solution containing sorbitol and water, prominently induced the DNA-binding activity of the heat-shock transcription factor (HSF1) [Huang, Caruccio, Liu and Chen (1995) Biochem. J. 307, 347-352]. Since hyperosmotic and hypo-osmotic stress usually elicit opposite biological responses, we wondered what would be the effect of hyperosmotic stress on HSF activation. In this study we have examined the HSF DNA-binding activity in HeLa cells maintained in the sorbitol/water binary solution over a wide concentration range (0.1-0.9 M) and in Dulbecco's medium supplemented with sorbitol or NaCl. We found that HSF-binding activity could be induced prominently under both hypo-osmotic (0.1-0.25 M) and hyperosmotic conditions (0.50-0.90 M). In both cases, HSF activation was observed within 5 min after changing the osmotic pressure. The activation was accompanied by both HSF trimerization and nuclear translocation, and appeared to be independent of protein synthesis. The effects of hypo- or hyper-osmotic stress on HSF activation could be reversed once the cells were returned to iso-osmotic conditions (0.30M) with a half-life (t12) of 25 min or less. This rapid turnover of the osmotic-stress-induced HSF-binding activity was inhibited by cycloheximide, a potent inhibitor of protein synthesis. Unlike heat shock, activation of HSF by either hypo- or hyper-osmotic stress did not lead to an accumulation of heat-shock protein 70 (HSP70) mRNA in HeLa cells. We propose that HSF activation during osmotic stress may serve physiological functions independent of the synthesis of heat-shock proteins.
Collapse
Affiliation(s)
- L Caruccio
- Graduate Program in Biochemistry, Rutgers-The State University of New Jersey, Piscataway, NJ 08855-0939, USA
| | | | | | | |
Collapse
|
98
|
Pujol A, Deleu L, Nüesch JP, Cziepluch C, Jauniaux JC, Rommelaere J. Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1. J Virol 1997; 71:7393-403. [PMID: 9311818 PMCID: PMC192085 DOI: 10.1128/jvi.71.10.7393-7403.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The large nonstructural protein NS1 of the minute virus of mice and other parvoviruses is involved in essential steps of the viral life cycle, such as DNA replication and transcriptional regulation, and is a major contributor to the toxic effect on host cells. Various biochemical functions, such as ATP binding, ATPase, site-specific DNA binding and nicking, and helicase activities, have been assigned to NS1. Homo-oligomerization is a prerequisite for a number of proteins to be fully functional. In particular, helicases generally act as homo-oligomers. Indirect evidence of NS1 self-association has been recently obtained by a nuclear cotransport assay (J. P. Nüesch and P. Tattersall, Virology 196:637-651, 1993). In order to demonstrate the oligomerizing property of NS1 in a direct way and localize the protein region(s) involved, the yeast two-hybrid system was used in combination with deletion mutagenesis across the whole NS1 molecule, followed by high-resolution mapping of the homo-oligomerization domain by a peptide enzyme-linked immunosorbent assay method. This study led to the identification of a distinct NS1 peptide that contains a bipartite domain involved in NS1 oligomerization. Furthermore, this isolated peptide was found to act as a specific competitive inhibitor and suppress NS1 helicase activity in vitro and parvovirus DNA replication in vivo, arguing for the involvement of NS1 oligomerization in these processes. Our results point to drug targeting of oligomerization motifs of viral regulatory proteins as a potentially useful antiviral strategy.
Collapse
Affiliation(s)
- A Pujol
- Applied Tumor Virology Unit, and Institut National de la Santé et de la Recherche Medicale U 375, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
99
|
Kline MP, Morimoto RI. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 1997; 17:2107-15. [PMID: 9121459 PMCID: PMC232058 DOI: 10.1128/mcb.17.4.2107] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heat shock transcription factor 1 (HSF1) is constitutively expressed in mammalian cells and negatively regulated for DNA binding and transcriptional activity. Upon exposure to heat shock and other forms of chemical and physiological stress, these activities of HSF1 are rapidly induced. In this report, we demonstrate that constitutive phosphorylation of HSF1 at serine residues distal to the transcriptional activation domain functions to repress transactivation. Tryptic phosphopeptide analysis of a collection of chimeric GAL4-HSF1 deletion and point mutants identified a region of constitutive phosphorylation encompassing serine residues 303 and 307. The significance of phosphorylation at serines 303 and 307 in the regulation of HSF1 transcriptional activity was demonstrated by transient transfection and assay of a chloramphenicol acetyltransferase reporter construct. Whereas the transfected wild-type GAL4-HSF1 chimera is repressed for transcriptional activity and derepressed by heat shock, mutation of serines 303 and 307 to alanine results in derepression to a high level of constitutive activity. Similar results were obtained with mutation of these serine residues in the context of full-length HSF1. These data reveal that constitutive phosphorylation of serines 303 and 307 has an important role in the negative regulation of HSF1 transcriptional activity at control temperatures.
Collapse
Affiliation(s)
- M P Kline
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
100
|
Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 1997; 17:469-81. [PMID: 8972228 PMCID: PMC231772 DOI: 10.1128/mcb.17.1.469] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heat shock transcription factors (HSFs) mediate the inducible transcriptional response of genes that encode heat shock proteins and molecular chaperones. In vertebrates, three related HSF genes (HSF1 to -3) and the respective gene products (HSFs) have been characterized. We report the cloning and characterization of human HSF4 (hHSF4), a novel member of the hHSF family that shares properties with other members of the HSF family yet appears to be functionally distinct. hHSF4 lacks the carboxyl-terminal hydrophobic repeat which is shared among all vertebrate HSFs and has been suggested to be involved in the negative regulation of DNA binding activity. hHSF4 is preferentially expressed in the human heart, brain, skeletal muscle, and pancreas. Transient transfection of hHSF4 in HeLa cells, which do not express hHSF4, results in a constitutively active DNA binding trimer which, unlike other members of the HSF family, lacks the properties of a transcriptional activator. Constitutive overexpression of hHSF4 in HeLa cells results in reduced expression of the endogenous hsp70, hsp90, and hsp27 genes. hHSF4 represents a novel hHSF that exhibits tissue-specific expression and functions to repress the expression of genes encoding heat shock proteins and molecular chaperones.
Collapse
Affiliation(s)
- A Nakai
- Department of Cell Biology, Kyoto University, Japan.
| | | | | | | | | | | |
Collapse
|