51
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
52
|
Carlisle FA, Pearson S, Steel KP, Lewis MA. Pitpnm1 is expressed in hair cells during development but is not required for hearing. Neuroscience 2013; 248:620-5. [PMID: 23820044 PMCID: PMC3748349 DOI: 10.1016/j.neuroscience.2013.06.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/14/2013] [Accepted: 06/20/2013] [Indexed: 11/15/2022]
Abstract
We studied the expression of Pitpnm1 in the developing mouse inner ear. We covered several ages between E14.5 and P5, and also looked at adults. Pitpnm1 is expressed in the inner hair cells from before birth to adulthood. Pitpnm1 is expressed transiently in the outer hair cells at early postnatal stages. Mice lacking Pitpnm1 display no obvious auditory defects.
Deafness is a genetically complex disorder with many contributing genes still unknown. Here we describe the expression of Pitpnm1 in the inner ear. It is expressed in the inner hair cells of the organ of Corti from late embryonic stages until adulthood, and transiently in the outer hair cells during early postnatal stages. Despite this specific expression, Pitpnm1 null mice showed no hearing defects, possibly due to redundancy with the paralogous genes Pitpnm2 and Pitpnm3.
Collapse
Affiliation(s)
- F A Carlisle
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, Cambs CB10 1SA, United Kingdom.
| | - S Pearson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, Cambs CB10 1SA, United Kingdom.
| | - K P Steel
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, Cambs CB10 1SA, United Kingdom.
| | - M A Lewis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, Cambs CB10 1SA, United Kingdom.
| |
Collapse
|
53
|
Reinis A, Golovleva I, Köhn L, Sandgren O. Ocular phenotype of CORD5, an autosomal dominant retinal dystrophy associated with PITPNM3 p.Q626H mutation. Acta Ophthalmol 2013; 91:259-66. [PMID: 22405330 DOI: 10.1111/j.1755-3768.2011.02381.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe in detail the phenotype of CORD5 in two families segregating a mutation c.1878G>C (p.Q626H) in the PITPNM3 gene. METHODS The study included 35 individuals from two different families of Swedish origin, all heterozygous for a PITPNM3 p.Q626H mutation. All participants underwent ophthalmological examination including kinetic perimetry, and in selected cases adaptometry, colour vision tests and optical coherence tomography (OCT). Electrophysiological studies were also performed. In some cases, the data were obtained from medical records. RESULTS The majority of patients showed subnormal visual acuity and light sensitivity from childhood. Early signs of macular degeneration were also observed. There was a progressive decrease in visual acuity leading to legal blindness in early adulthood. Electrophysiological testing showed a progressive loss of photoreceptor function restricted mainly to the cones. OCT revealed decreased macular thickness with flattened and enlarged fovea. CONCLUSION Our observations of the PITPNM3 p.Q626H mutation carriers confirm that CORD5 is a disease not to mix with other retinal degenerations mapped to 17p13. The results of our clinical evaluation so far indicate that CORD5 is characterized by predominant cone dysfunction without signs of general involvement of the retinal pigment epithelium. The rod system also seems to be unaffected. In this sense, CORD5 is different from other autosomal dominant CORDs where rod involvement is present to some degree in a late phase of the disease. Some intra- and inter-familial differences regarding the severity of the clinical picture were observed.
Collapse
Affiliation(s)
- Ainars Reinis
- Department of Clinical Sciences/Ophthalmology, University Hospital, Umeå, Sweden
| | | | | | | |
Collapse
|
54
|
Hong R, Shen MH, Xie XH, Ruan SM. Inhibition of breast cancer metastasis via PITPNM3 by pachymic acid. Asian Pac J Cancer Prev 2013; 13:1877-80. [PMID: 22901140 DOI: 10.7314/apjcp.2012.13.5.1877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer metastasis is the most common cause of cancer-related death in women. Thus, seeking targets of breast tumor cells is an attractive goal towards improving clinical treatment. The present study showed that CCL18 from tumor-associated macrophages could promote breast cancer metastasis via PITPNM3. In addition, we found that pachymic acid (PA) could dose-dependently inhibit migration and invasion of MDA-MB-231 cells, with or without rCCL18 stimulation. Furthermore, evidence was obtained that PA could suppress the phosphorylation of PITPNM3 and the combination of CCL18 and PITPNM3. Therefore, we speculate that PA could inhibit breast cancer metastasis via PITPNM3.
Collapse
Affiliation(s)
- Ri Hong
- Department of Breast, the First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | | | | | | |
Collapse
|
55
|
Abstract
The transport of lipids from their synthesis site at the endoplasmic reticulum (ER) to different target membranes could be mediated by both vesicular and nonvesicular transport mechanisms. Nonvesicular lipid transport appears to be the major transport route of certain lipid species, and could be mediated by either spontaneous lipid transport or by lipid-transfer proteins (LTPs). Although nonvesicular lipid transport has been extensively studied for more than four decades, its underlying mechanism, advantage and regulation, have not been fully explored. In particular, the function of LTPs and their involvement in intracellular lipid movement remain largely controversial. In this article, we describe the pathways by which lipids are synthesized at the ER and delivered to different cellular membranes, and discuss the role of LTPs in lipid transport both in vitro and in intact cells.
Collapse
Affiliation(s)
- Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
56
|
Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011; 19:541-55. [PMID: 21481794 PMCID: PMC3107500 DOI: 10.1016/j.ccr.2011.02.006] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/08/2010] [Accepted: 02/03/2011] [Indexed: 11/22/2022]
Abstract
Tumor-associated macrophages (TAMs) can influence cancer progression and metastasis, but the mechanism remains unclear. Here, we show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival. CCL18 released by breast TAMs promotes the invasiveness of cancer cells by triggering integrin clustering and enhancing their adherence to extracellular matrix. Furthermore, we identify PITPNM3 as a functional receptor for CCL18 that mediates CCL18 effect and activates intracellular calcium signaling. CCL18 promotes the invasion and metastasis of breast cancer xenografts, whereas suppressing PITPNM3 abrogates these effects. These findings indicate that CCL18 derived from TAMs plays a critical role in promoting breast cancer metastasis via its receptor, PITPNM3.
Collapse
Affiliation(s)
- Jingqi Chen
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical College, Guangzhou 510260, China
| | - Yandan Yao
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Chang Gong
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Fengyan Yu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Shicheng Su
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Bodu Liu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Hui Deng
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Fengsong Wang
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Ling Lin
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Fengxi Su
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | - Karen S. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Liu
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Ewen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei National Laboratory for Physical Sciences at Nanoscale, and University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Erwei Song
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
57
|
Cockcroft S, Garner K. Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit Rev Biochem Mol Biol 2011; 46:89-117. [DOI: 10.3109/10409238.2010.538664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Riggs D, Yang Z, Kloss J, Loftus JC. The Pyk2 FERM regulates Pyk2 complex formation and phosphorylation. Cell Signal 2011; 23:288-96. [PMID: 20849950 PMCID: PMC2956854 DOI: 10.1016/j.cellsig.2010.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/06/2010] [Indexed: 11/25/2022]
Abstract
The focal adhesion kinase Pyk2 integrates signals from cell adhesion receptors, growth factor receptors, and G-protein-coupled receptors leading to the activation of intracellular signaling pathways that regulate cellular phenotypes. The intrinsic mechanism for the activation of Pyk2 activity remains to be fully defined. Previously, we reported that mutations in the N-terminal FERM domain result in loss of Pyk2 activity and expression of the FERM domain as an autonomous fragment inhibits Pyk2 activity. In the present study, we sought to determine the mechanism that underlies these effects. Utilizing differentially epitope-tagged Pyk2 constructs, we observed that Pyk2 forms oligomeric complexes in cells and that complex formation correlates positively with tyrosine phosphorylation. Similarly, when expressed as an autonomous fragment, the Pyk2 FERM domain formed a complex with other Pyk2 FERM domains but not the FAK FERM domain. When co-expressed with full-length Pyk2, the autonomously expressed Pyk2 FERM domain formed a complex with full-length Pyk2 preventing the formation of Pyk2 oligomers and resulting in reduced Pyk2 phosphorylation. Deletion of the FERM domain from Pyk2 enhanced Pyk2 complex formation and phosphorylation. Together, these data indicate that the Pyk2 FERM domain is involved in the regulation of Pyk2 activity by acting to regulate the formation of Pyk2 oligomers that are critical for Pyk2 activity.
Collapse
Affiliation(s)
- Daniel Riggs
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
59
|
Köhn L, Kohl S, Bowne SJ, Sullivan LS, Kellner U, Daiger SP, Sandgren O, Golovleva I. PITPNM3 is an uncommon cause of cone and cone-rod dystrophies. Ophthalmic Genet 2010; 31:139-40. [PMID: 20590364 DOI: 10.3109/13816810.2010.486776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The first mutation in PITPNM3, a human homologue of the Drosophila retinal degeneration (rdgB not not) gene was reported in two large Swedish families with autosomal dominant cone dystrophy. To establish the global impact that PITPNM3 has on retinal degenerations we screened 163 patients from Denmark, Germany, the UK, and USA. Four sequence variants, two missence mutations and two intronic changes were identified in the screen. Thus, mutations in PITPNM3 do not appear to be a major cause of cone or cone-rod dystrophy.
Collapse
Affiliation(s)
- Linda Köhn
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Rajala RVS, Anderson RE. Rhodopsin-regulated insulin receptor signaling pathway in rod photoreceptor neurons. Mol Neurobiol 2010; 42:39-47. [PMID: 20407846 PMCID: PMC2962609 DOI: 10.1007/s12035-010-8130-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
The retina is an integral part of the central nervous system and retinal cells are known to express insulin receptors (IR), although their function is not known. This article describes recent studies that link the photoactivation of rhodopsin to tyrosine phosphorylation of the IR and subsequent activation of phosphoinositide 3-kinase, a neuron survival factor. Our studies suggest that the physiological role of this process is to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. We focus mainly on our recently identified regulation of the IR pathway through the G-protein-coupled receptor rhodopsin. Various mutant and knockout proteins of phototransduction cascade have been used to study the light-induced activation of the retinal IR. Our studies suggest that rhodopsin may have additional previously uncharacterized signaling functions in photoreceptors.
Collapse
Affiliation(s)
- Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.
| | | |
Collapse
|
61
|
Abstract
The phosphoinositide (PI) cycle, discovered over 50 years ago by Mabel and Lowell Hokin, describes a series of biochemical reactions that occur on the inner leaflet of the plasma membrane of cells in response to receptor activation by extracellular stimuli. Studies from our laboratory have shown that the retina and rod outer segments (ROSs) have active PI metabolism. Biochemical studies revealed that the ROSs contain the enzymes necessary for phosphorylation of phosphoinositides. We showed that light stimulates various components of the PI cycle in the vertebrate ROS, including diacylglycerol kinase, PI synthetase, phosphatidylinositol phosphate kinase, phospholipase C, and phosphoinositide 3-kinase (PI3K). This article describes recent studies on the PI3K-generated PI lipid second messengers in the control and regulation of PI-binding proteins in the vertebrate retina.
Collapse
Affiliation(s)
- Raju V S Rajala
- Departments of Ophthalmology and Cell Biology, and Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. r
| |
Collapse
|
62
|
Wyckoff GJ, Solidar A, Yoden MD. Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses. ACTA ACUST UNITED AC 2010; 3:65-77. [PMID: 27429707 DOI: 10.4236/jbise.2010.31010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associated proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.
Collapse
Affiliation(s)
- Gerald J Wyckoff
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, USA
| | | | - Marilyn D Yoden
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, USA.
| |
Collapse
|
63
|
Abstract
IMPORTANCE OF THE FIELD The focal adhesion tyrosine kinases FAK and Pyk2 are uniquely situated to act as critical mediators for the activation of signaling pathways that regulate cell migration, proliferation and survival. By coordinating adhesion and cytoskeletal dynamics with survival and growth signaling, FAK and Pyk2 represent molecular therapeutic targets in cancer as malignant cells often exhibit defects in these processes. AREAS COVERED IN THIS REVIEW This review examines the structure and function of the focal adhesion kinase Pyk2 and intends to provide a rationale for the employment of modulating strategies that include both catalytic and extra-catalytic approaches that have been developed in the last 3 - 5 years. WHAT THE READER WILL GAIN Targeting tyrosine kinases in oncology has focused on the ATP binding pocket as means to inhibit catalytic activity and downregulate pathways involved in tumor invasion. This review discusses the available catalytic inhibitors and compares them to the alternative approach of targeting protein-protein interactions that regulate kinase activity. TAKE HOME MESSAGE Development of specific catalytic inhibitors of the focal adhesion kinases has improved but significant challenges remain. Thus, approaches that inhibit the effector function of Pyk2 by targeting regulatory modules can increase specificity and will be a welcome asset to the therapeutic arena.
Collapse
Affiliation(s)
- Christopher A Lipinski
- Mayo Clinic Collaborative Research Building, Department of Biochemistry and Molecular Biology, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
64
|
Rajala A, Daly RJ, Tanito M, Allen DT, Holt LJ, Lobanova E, Arshavsky VY, Rajala RV. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry 2009; 48:5563-72. [PMID: 19438210 PMCID: PMC2763493 DOI: 10.1021/bi9000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth factor receptor-bound protein 14 (Grb14) is involved in growth factor receptor tyrosine kinase signaling. Here we report that light causes a major redistribution of Grb14 among the individual subcellular compartments of the retinal rod photoreceptor. Grb14 is localized predominantly to the inner segment, nuclear layer, and synapse in dark-adapted rods, whereas in the light-adapted rods, Grb14 redistributed throughout the entire cell, including the outer segment. The translocation of Grb14 requires photoactivation of rhodopsin, but not signaling through the phototransduction cascade, and is not based on direct Grb14-rhodopsin interactions. We previously hypothesized that Grb14 protects light-dependent insulin receptor (IR) activation in rod photoreceptors against dephosphorylation by protein tyrosine phosphatase 1B. Consistent with this hypothesis, we failed to observe light-dependent IR activation in Grb14(-/-) mouse retinas. Our studies suggest that Grb14 translocates to photoreceptor outer segments after photobleaching of rhodopsin and protects IR phosphorylation in rod photoreceptor cells. These results demonstrate that Grb14 can undergo subcellular redistribution upon illumination and suggest that rhodopsin photoexcitation may trigger signaling events alternative to the classical transducin activation.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104
| | - Roger J. Daly
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Masaki Tanito
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104
| | - Dustin T. Allen
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104
| | - Lowenna J. Holt
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ekaterina Lobanova
- Department of Ophthalmology and Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Vadim Y. Arshavsky
- Department of Ophthalmology and Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Raju V.S. Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104
| |
Collapse
|
65
|
Phillips SE, Vincent P, Rizzieri KE, Schaaf G, Bankaitis VA, Gaucher EA. The Diverse Biological Functions of Phosphatidylinositol Transfer Proteins in Eukaryotes. Crit Rev Biochem Mol Biol 2008; 41:21-49. [PMID: 16455519 DOI: 10.1080/10409230500519573] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phosphatidylinositol/phosphatidylcholine transfer proteins (PITPs) remain largely functionally uncharacterized, despite the fact that they are highly conserved and are found in all eukaryotic cells thus far examined by biochemical or sequence analysis approaches. The available data indicate a role for PITPs in regulating specific interfaces between lipid-signaling and cellular function. In this regard, a role for PITPs in controlling specific membrane trafficking events is emerging as a common functional theme. However, the mechanisms by which PITPs regulate lipid-signaling and membrane-trafficking functions remain unresolved. Specific PITP dysfunctions are now linked to neurodegenerative and intestinal malabsorption diseases in mammals, to stress response and developmental regulation in higher plants, and to previously uncharacterized pathways for regulating membrane trafficking in yeast and higher eukaryotes, making it clear that PITPs are integral parts of a highly conserved signal transduction strategy in eukaryotes. Herein, we review recent progress in deciphering the biological functions of PITPs, and discuss some of the open questions that remain.
Collapse
Affiliation(s)
- Scott E Phillips
- Department of Cell and Developmental Biology, School of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
66
|
Behmoaram E, Bijian K, Jie S, Xu Y, Darnel A, Bismar TA, Alaoui-Jamali MA. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1540-50. [PMID: 18832579 DOI: 10.2353/ajpath.2008.080292] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early cancer cell migration and invasion of neighboring tissues are mediated by multiple events, including activation of focal adhesion signaling. Key regulators include the focal adhesion kinase (FAK) and FAK-related proline-rich tyrosine kinase 2 (Pyk2), whose distinct functions in cancer progression remain unclear. Here, we compared Pyk2 and FAK expression in breast cancer and their effects on ErbB-2-induced tumorigenesis and the potential therapeutic utility of targeting Pyk2 compared with FAK in preclinical models of breast cancer. Pyk2 is overexpressed in tissues from early and advanced breast cancers and overexpressed with both FAK and epidermal growth factor receptor-2 (ErbB-2) in a subset of breast cancer cases. Down-regulation of Pyk2 in ErbB-2-positive, FAK-proficient, and FAK-deficient cells reduced cell proliferation, which correlated with reduced mitogen-activated protein kinase (MAPK) activity. In contrast, Pyk2 silencing had little impact on cell migration and invasion. In vivo, Pyk2 down-regulation reduced primary tumor growth induced by a metastatic variant of ErbB-2-positive MDA 231 breast cancer cells but had little effect on lung metastases in contrast to FAK down-regulation. Dual reduction of Pyk2 and FAK expression resulted in strong inhibition of both primary tumor growth and lung metastases. Together, these data support the cooperative function of Pyk2 and FAK in breast cancer progression and suggest that dual inhibition of FAK and Pyk2 is an efficient therapeutic approach for targeting invasive breast cancer.
Collapse
Affiliation(s)
- Emy Behmoaram
- Department of Pathology, Lady Davis Institute of the Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
67
|
Trivedi D, Padinjat R. RdgB proteins: Functions in lipid homeostasis and signal transduction. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:692-9. [PMID: 17543578 DOI: 10.1016/j.bbalip.2007.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/22/2022]
Abstract
The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.
Collapse
Affiliation(s)
- Deepti Trivedi
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
68
|
Köhn L, Kadzhaev K, Burstedt MSI, Haraldsson S, Hallberg B, Sandgren O, Golovleva I. Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet 2007; 15:664-71. [PMID: 17377520 DOI: 10.1038/sj.ejhg.5201817] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant cone dystrophy (CORD5) (MIM 600977) is a rare disease predominantly affecting cone photoreceptors. Here we refine the CORD5 locus previously mapped to 17p13 from 27 to 14.3 cM and identified a missense mutation, Q626H in the phosphatidylinositol transfer (PIT) membrane-associated protein (PITPNM3) (MIM 608921) in two Swedish families. PITPNM3, known as a human homologue of the Drosophila retinal degeneration B (rdgB), lacks the N-terminal PIT domain needed for transport of phospholipids, renewal of photoreceptors membrane and providing the electroretinogram (ERG) response to light. In our study, the mutation causing CORD5 is located in the C-terminal region interacting with a member of nonreceptor protein tyrosine kinases, PYK2. Our finding on the first mutation in the human homologue of Drosophila rdgB indicates novel pathways and a potential important role of the PITPNM3 in mammalian phototransduction.
Collapse
Affiliation(s)
- Linda Köhn
- Medical and Clinical Genetics, Department of Medical Biosciences, Umeå University, SE 901 85 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
69
|
Rajala A, Anderson RE, Ma JX, Lem J, Al-Ubaidi MR, Rajala RVS. G-protein-coupled receptor rhodopsin regulates the phosphorylation of retinal insulin receptor. J Biol Chem 2007; 282:9865-9873. [PMID: 17272282 DOI: 10.1074/jbc.m608845200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that phosphoinositide 3-kinase in the retina is activated in vivo through light-induced tyrosine phosphorylation of the insulin receptor (IR). The light effect is localized to photoreceptor neurons and is independent of insulin secretion (Rajala, R. V., McClellan, M. E., Ash, J. D., and Anderson, R. E. (2002) J. Biol. Chem. 277, 43319-43326). These results suggest that there exists a cross-talk between phototransduction and other signal transduction pathways. In this study, we examined the stage of phototransduction that is coupled to the activation of the IR. We studied IR phosphorylation in mice lacking the rod-specific alpha-subunit of transducin to determine if phototransduction events are required for IR activation. To confirm that light-induced tyrosine phosphorylation of the IR is signaled through bleachable rhodopsin, we examined IR activation in retinas from RPE65(-/-) mice that are deficient in opsin chromophore. We observed that IR phosphorylation requires the photobleaching of rhodopsin but not transducin signaling. To determine whether the light-dependent activation of IR is mediated through the rod or cone transduction pathway, we studied the IR activation in mice lacking opsin, a mouse model of pure cone function. No light-dependent activation of the IR was found in the retinas of these mice. We provide evidence for the existence of a light-mediated IR pathway in the retina that is different from the known insulin-mediated pathway in nonneuronal tissues. These results suggest that IR phosphorylation in rod photoreceptors is signaled through the G-protein-coupled receptor rhodopsin. This is the first study demonstrating that rhodopsin can initiate signaling pathway(s) in addition to its classical phototransduction.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Robert E Anderson
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jian-Xing Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Janis Lem
- Department of Ophthalmology, New England Medical Center and Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Muayyad R Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
70
|
Abstract
In the trans-Golgi network (TGN), proteins are sorted for transport to the endosomes, plasma membrane, preceding Golgi cisternae, and endoplasmic reticulum. The formation of clathrin-coated vesicles for transport to the endosomes and of COP-I-coated vesicles for retrograde trafficking is fairly well characterized at the molecular level. We describe our current understanding of the TGN-to-cell-surface carriers, with a specific focus on the components involved in membrane fission. Inhibiting the fission machinery promotes growth of transport carriers into large tubules that remain attached to the TGN. Overactivating this machinery, on the other hand, vesiculates the TGN. To understand how membrane fission is regulated by cargo to form transport carriers yet prevents complete vesiculation of the TGN remains a daunting challenge. We discuss these issues with regard to TGN-to-cell-surface transport carriers.
Collapse
Affiliation(s)
- Frédéric Bard
- Cell and Developmental Biology Department, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
71
|
Wirtz KWA. Phospholipid transfer proteins in perspective. FEBS Lett 2006; 580:5436-41. [PMID: 16828756 DOI: 10.1016/j.febslet.2006.06.065] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 01/07/2023]
Abstract
Since their discovery and subsequent purification from mammalian tissues more than 30 years ago an impressive number of studies have been carried out to characterize and elucidate the biological functions of phosphatidylcholine transfer protein (PC-TP), phosphatidylinositol transfer protein (PI-TP) and non-specific lipid transfer protein, more commonly known as sterol carrier protein 2 (SCP-2). Here I will present information to show that these soluble, low-molecular weight proteins constitute domain structures in StArR-related lipid transfer (START) proteins (i.e. PC-TP), in retinal degeneration protein, type B (RdgB)-related PI-TPs (e.g. Dm RdgB, Nir2, Nir3) and in peroxisomal beta-oxidation enzyme-related SCP-2 (i.e. 3-oxoacyl-CoA thiolase, also denoted as SCP-X and the 80-kDa D-bifunctional protein). Further I will summarize the most recent studies pertaining to the physiological function of these soluble phospholipid transfer proteins in metazoa.
Collapse
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Section of Lipid Biochemistry, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
72
|
Wirtz KWA, Schouten A, Gros P. Phosphatidylinositol transfer proteins: From closed for transport to open for exchange. ACTA ACUST UNITED AC 2006; 46:301-11. [PMID: 16854452 DOI: 10.1016/j.advenzreg.2006.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Karel W A Wirtz
- Bijvoet Center for Biomolecular Research, Department of Lipid Biochemistry, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
73
|
Inglis-Broadgate SL, Ocaka L, Banerjee R, Gaasenbeek M, Chapple JP, Cheetham ME, Clark BJ, Hunt DM, Halford S. Isolation and characterization of murine Cds (CDP-diacylglycerol synthase) 1 and 2. Gene 2005; 356:19-31. [PMID: 16023307 DOI: 10.1016/j.gene.2005.04.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/14/2005] [Accepted: 04/13/2005] [Indexed: 11/19/2022]
Abstract
Phototransduction in Drosophila is a phosphoinositide-mediated signalling pathway. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in this process, and its levels are tightly regulated. A photoreceptor-specific form of the enzyme CDP-diacylglycerol synthase (CDS), which catalyzes the formation of CDP-diacylglycerol from phosphatidic acid, is a key regulator of the amount of PIP2 available for signalling. cds mutants develop light-induced retinal degeneration. We report here the isolation and characterization of two murine genes encoding this enzyme, Cds1 and Cds2. The genes encode proteins that are 73% identical and 92% similar but exhibit very different expression patterns. Cds1 shows a very restricted expression pattern but is expressed in the inner segments of the photoreceptors whilst Cds2 shows a ubiquitous pattern of expression. Using fluorescent in situ hybridization we have mapped Cds1 and Cds2 to chromosomes 5E3 and 2G1 respectively. These are regions of synteny with the corresponding human gene localization (4q21 and 20p13). Transient transfection experiments with epitope tagged proteins have also demonstrated that both are associated with the endoplasmic reticulum.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- CHO Cells
- Chromosome Mapping
- Chromosomes, Mammalian/genetics
- Cricetinae
- Cricetulus
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Diacylglycerol Cholinephosphotransferase/genetics
- Diacylglycerol Cholinephosphotransferase/metabolism
- Endoplasmic Reticulum/metabolism
- Exons
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- In Situ Hybridization, Fluorescence
- Introns
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plasmids/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transfection
Collapse
|
74
|
Levine T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol 2005; 14:483-90. [PMID: 15350976 DOI: 10.1016/j.tcb.2004.07.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracellular trafficking is not mediated exclusively by vesicles. Additional, non-vesicular mechanisms transport material, in particular small molecules such as lipids and Ca(2+) ions, from one organelle to another. This transport occurs at narrow cytoplasmic gaps called membrane contact sites (MCSs), at which two organelles come into close apposition. Despite the conservation of these structures throughout evolution, little is known about this transport, largely because of a lack of knowledge of almost all molecular components of MCSs. Recently, this situation has started to change because the structural proteins that bridge an MCS are now known in a single case, and proteins implicated in lipid trafficking have been localized to MCSs. In the light of these advances, I hypothesize that the endoplasmic reticulum has a central role in the trafficking of lipids and ions by forming a network of MCSs with most other intracellular organelles.
Collapse
Affiliation(s)
- Tim Levine
- Division of Cell Biology, Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
75
|
Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6:56-68. [PMID: 15688067 DOI: 10.1038/nrm1549] [Citation(s) in RCA: 1968] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.
Collapse
Affiliation(s)
- Satyajit K Mitra
- The Scripps Research Institute, Department of Immunology, IMM21 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
76
|
Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 2005; 7:225-34. [PMID: 15723057 DOI: 10.1038/ncb1221] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/19/2005] [Indexed: 01/05/2023]
Abstract
The level of diacylglycerol (DAG) in the Golgi apparatus is crucial for protein transport to the plasma membrane. Studies in budding yeast indicate that Sec14p, a phosphatidylinositol (PI)-transfer protein, is involved in regulating DAG homeostasis in the Golgi complex. Here, we show that Nir2, a peripheral Golgi protein containing a PI-transfer domain, is essential for maintaining the structural and functional integrity of the Golgi apparatus in mammalian cells. Depletion of Nir2 by RNAi leads to substantial inhibition of protein transport from the trans-Golgi network to the plasma membrane, and causes a reduction in the DAG level in the Golgi apparatus. Remarkably, inactivation of cytidine [corrected] 5'-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis restores both effects. These results indicate that Nir2 is involved in maintaining a critical DAG pool in the Golgi apparatus by regulating its consumption via the CDP-choline pathway, demonstrating the interface between secretion from the Golgi and lipid homeostasis.
Collapse
Affiliation(s)
- Vladimir Litvak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
77
|
Amarilio R, Ramachandran S, Sabanay H, Lev S. Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. J Biol Chem 2004; 280:5934-44. [PMID: 15545272 DOI: 10.1074/jbc.m409566200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) exhibits a characteristic tubular structure that is dynamically rearranged in response to specific physiological demands. However, the mechanisms by which the ER maintains its characteristic structure are largely unknown. Here we show that the integral ER-membrane protein VAP-B causes a striking rearrangement of the ER through interaction with the Nir2 and Nir3 proteins. We provide evidence that Nir (Nir1, Nir2, and Nir3)-VAP-B interactions are mediated through the conserved FFAT (two phenylalanines (FF) in acidic tract) motif present in Nir proteins. However, each interaction affects the structural integrity of the ER differently. Whereas the Nir2-VAP-B interaction induces the formation of stacked ER membrane arrays, the Nir3-VAP-B interaction leads to a gross remodeling of the ER and the bundling of thick microtubules along the altered ER membranes. In contrast, the Nir1-VAP-B interaction has no apparent effect on ER structure. We also show that the Nir2-VAP-B interaction attenuates protein export from the ER. These results demonstrate new mechanisms for the regulation of ER structure, all of which are mediated through interaction with an identical integral ER-membrane protein.
Collapse
Affiliation(s)
- Roy Amarilio
- Neurobiology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
78
|
Snoek GT, Van Tiel CM, Egmond MR. Structure–function relationships of phosphatidylinositol transfer proteins: involvement of phosphorylation sites. Biochimie 2004; 86:857-64. [DOI: 10.1016/j.biochi.2004.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 09/27/2004] [Indexed: 11/15/2022]
|
79
|
Lev S. The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling. Exp Cell Res 2004; 297:1-10. [PMID: 15194420 DOI: 10.1016/j.yexcr.2004.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 02/17/2004] [Indexed: 10/26/2022]
Abstract
The Nir/rdgB family of proteins has been identified in a variety of eukaryotic organisms, ranging from worms to mammals. The Drosophila retinal degeneration B (rdgB), a protein that is required for photoreceptor cell viability and light response, was the first to be identified. It consists an amino-terminal phosphatidylinositol (PI)-transfer domain and was proposed to play an essential role in photoreceptor membrane renewal and biogenesis. The other Nir/rdgB family members are functionally and structurally related to the Drosophila homolog and are implicated in regulation of lipid trafficking, metabolism, and signaling. Recent advances have revealed that Nir/rdgB proteins are also involved in regulation of cytoskeletal elements. Thus, these family members exert a broad spectrum of cellular functions and are involved in multiple cellular processes. The physiological functions of these closely related proteins are described in this review.
Collapse
Affiliation(s)
- Sima Lev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
80
|
Litvak V, Argov R, Dahan N, Ramachandran S, Amarilio R, Shainskaya A, Lev S. Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. Mol Cell 2004; 14:319-30. [PMID: 15125835 DOI: 10.1016/s1097-2765(04)00214-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 04/04/2004] [Accepted: 04/08/2004] [Indexed: 01/19/2023]
Abstract
The rearrangement of the Golgi apparatus during mitosis is regulated by several protein kinases, including Cdk1 and Plk1. Several peripheral Golgi proteins that dissociate from the Golgi during mitosis are implicated in regulation of cytokinesis or chromosome segregation, thereby coordinating mitotic and cytokinetic events to Golgi rearrangement. Here we show that, at the onset of mitosis, Cdk1 phosphorylates the peripheral Golgi protein Nir2 at multiple sites; of these, S382 is the most prominent. Phosphorylation of Nir2 by Cdk1 facilitates its dissociation from the Golgi apparatus, and phospho-Nir2(pS382) is localized in the cleavage furrow and midbody during cytokinesis. Mitotic phosphorylation of Nir2 is required for docking of the phospho-Ser/Thr binding module, the Polo box domain of Plk1, and overexpression of a Nir2 mutant, which fails to interact with Plk1, affects the completion of cytokinesis. These results demonstrate a mechanism for coordinating mitotic and cytokinetic events with Golgi rearrangement during cell division.
Collapse
Affiliation(s)
- Vladimir Litvak
- Neurobiology Department and Mass Spectrometry Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
81
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:943-947. [DOI: 10.11569/wcjd.v12.i4.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
82
|
Takahashi T, Yamashita H, Nagano Y, Nakamura T, Ohmori H, Avraham H, Avraham S, Yasuda M, Matsumoto M. Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem 2003; 278:42225-33. [PMID: 12893833 DOI: 10.1074/jbc.m213217200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Synuclein is a presynaptic protein involved in the pathogenesis of several neurodegenerative diseases, such as Parkinson's disease. Pyk2/related adhesion focal tyrosine kinase (RAFTK) tyrosine kinase is an upstream regulator of Src family kinases in the central nervous system that is involved in alpha-synuclein phosphorylation. The present study reports the cloning and characterization of a novel adaptor protein, Pyk2/RAFTK-associated protein (PRAP), that specifically binds to Pyk2/RAFTK and inhibits alpha-synuclein tyrosine phosphorylation. PRAP contains a coiled-coil domain, a pleckstrin homology domain, and a SH3 domain; the SH3 domain binds to the proline-rich domain of Pyk2/RAFTK. PRAP was observed to be present throughout the brain, including substantia nigra dopaminergic neurons, in which it localized to the cytoplasm. PRAP was found to function as a substrate for Src family kinases, such as c-Src or Fyn, but not for Pyk2/RAFTK. Hyperosmotic stress induced phosphorylation of tyrosine 125 of alpha-synuclein via Pyk2/RAFTK, which acted through Src family kinases. Such phosphorylation was inhibited by PRAP expression, suggesting that PRAP negatively regulates alpha-synuclein phosphorylation following cell stress. In conclusion, PRAP functions as a downstream target for Pyk2/RAFTK and plays a role in alpha-synuclein phosphorylation.
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Hiroshima, Japan 734-8551
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Okigaki M, Davis C, Falasca M, Harroch S, Felsenfeld DP, Sheetz MP, Schlessinger J. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc Natl Acad Sci U S A 2003; 100:10740-5. [PMID: 12960403 PMCID: PMC196873 DOI: 10.1073/pnas.1834348100] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological role of the protein tyrosine kinase, Pyk2, was explored by targeting the Pyk2 gene by homologous recombination. Pyk2-/- mice are viable and fertile, without overt impairment in development or behavior. However, the morphology and behavior of Pyk2-/- macrophages were impaired. Macrophages isolated from mutant mice failed to become polarized, to undergo membrane ruffling, and to migrate in response to chemokine stimulation. Moreover, the contractile activity in the lamellipodia of Pyk2-/- macrophages was impaired, as revealed by measuring the rearward movement toward the nucleus of fibronectin-coated beads on the lamellipodia in opposition to an immobilizing force generated by optical tweezers. Consistently, the infiltration of macrophages into a carageenan-induced inflammatory region was strongly inhibited in Pyk2-/- mice. In addition, chemokine stimulation of inositol (1, 4, 5) triphosphate production and Ca2+ release, as well as integrin-induced activation of Rho and phosphatidyl inositol 3 kinase, were compromised in Pyk2-/- macrophages. These experiments reveal a role for Pyk2 in cell signaling in macrophages essential for cell migration and function.
Collapse
Affiliation(s)
- M Okigaki
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Evolutionarily conserved in eukaryotes, formin homology (FH) proteins, or formins, exert their effects on the actin and microtubule (MT) networks during meiosis, mitosis, the maintenance of cell polarity, vesicular trafficking, signaling to the nucleus and embryonic development. Once thought to be only molecular scaffolds that indirectly affected cellular functions through the binding of other proteins, recent in vitro studies have illustrated that they can function as actin nucleators in the formation of new filaments. The connection between formins and MTs is less well understood. In yeast, the MT effects appear to be dependent on the ability of formins to generate polarized actin cables whereas, in mammalian cells, formin signals that cause MT stabilization and polarization might be more direct. A subclass of formins, the Diaphanous-related formins (Drfs), can act as effectors for Rho small GTPases, yet it is not clear what GTPase binding contributes to formin function.
Collapse
Affiliation(s)
- Bradley J Wallar
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA
| | | |
Collapse
|
85
|
Minke B. The TRP calcium channel and retinal degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:601-22. [PMID: 12596945 DOI: 10.1007/978-1-4615-0121-3_34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Drosophila light activated channel TRP is the founding member of a large and diverse family of channel proteins that is conserved throughout evolution. These channels are Ca2+ permeable and have been implicated as important component of cellular Ca2+ homeostasis in neuronal and non-neuronal cells. The power of the molecular genetics of Drosophila has yielded several mutants in which constitutive activity of TRP leads to a rapid retinal degeneration in the dark. Metabolic stress activates rapidly and reversibly the TRP channels in the dark in a constitutive manner by a still unknown mechanism. The link of TRP gating to the metabolic state of the cell is shared also by mammalian homologues of TRP and makes cells expressing TRP extremely vulnerable to metabolic stress, a mechanism that may underlie retinal degeneration and neuronal cell death.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University-Hadassah Medical School Jerusalem 91120, Israel.
| |
Collapse
|
86
|
Pace A, García-Marin LJ, Tapia JA, Bragado MJ, Jensen RT. Phosphospecific site tyrosine phosphorylation of p125FAK and proline-rich kinase 2 is differentially regulated by cholecystokinin receptor type A activation in pancreatic acini. J Biol Chem 2003; 278:19008-19016. [PMID: 12651850 DOI: 10.1074/jbc.m300832200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The focal adhesion kinases, p125FAK and proline-rich kinase 2 (PYK2), are involved in numerous processes as adhesion, cytoskeletal changes, and growth. These kinases have 45% homology and share three tyrosine phosphorylation (TyrP) sites. Little information exists on the ability of stimulants to cause TyrP of each kinase site and the cellular mechanism involved. We explored the ability of the neurotransmitter/hormone, CCK, to stimulate TyrP at each site. In rat pancreatic acini, CCK stimulated TyrP at each site in both kinases. TyrP was rapid except for pY397FAK. The magnitude of TyrP differed with the different FAK and PYK2 sites. The CCK dose-response curve for TyrP for sites in each kinase was similar. CCK-JMV, an agonist of the high affinity receptor state and antagonist of the low affinity receptor state, was less efficacious than CCK at each FAK/PYK2 site and inhibited CCK maximal stimulation. Thapsigargin decreased CCK-stimulated TyrP of pY402PYK2 and pY925FAK but not the other sites. GF109203X reduced TyrP of only the PYK2 sites, pY402 and pY580. GF109203X with thapsigargin decreased TyrP of pY402PYK2 and the three FAK sites more than either inhibitor alone. Basal TyrP of pY397FAK was greater than other sites. These results demonstrate that CCK stimulates tyrosine phosphorylation of each of the three homologous phosphorylation sites in FAK and PYK2. However, CCK-stimulated TyrP at these sites differs in kinetics, magnitude, and participation of the high/low affinity receptor states and by protein kinase C and [Ca2+]i. These results show that phosphorylation of these different sites is differentially regulated and involves different intracellular mechanisms in the same cell.
Collapse
Affiliation(s)
- Andrea Pace
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
87
|
Loewen CJR, Roy A, Levine TP. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 2003; 22:2025-35. [PMID: 12727870 PMCID: PMC156073 DOI: 10.1093/emboj/cdg201] [Citation(s) in RCA: 480] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 02/26/2003] [Accepted: 03/05/2003] [Indexed: 11/13/2022] Open
Abstract
Intracellular lipid traffic is mediated both by membrane vesicles and by a number of non-vesicular pathways facilitated by cytoplasmic lipid binding proteins. For these proteins to act effectively they must be targeted accurately to specific membranes. Here we identify a novel short conserved determinant called the FFAT motif that is shared by several seemingly unrelated lipid binding proteins and is also found in Opi1p, a transcriptional regulator of phospholipid synthesis in yeast. FFAT motifs act as membrane- targeting determinants by their direct interaction with homologues of VAMP-associated protein (VAP), a conserved endoplasmic reticulum (ER) protein. In budding yeast, all four proteins with FFAT motifs interact with Scs2p, a homologue of VAP, to target the ER to some extent. The precise intracellular distribution of each of these proteins depends on the integration of the FFAT-Scs2p interaction with other targeting determinants, and the interaction is functionally significant. We conclude that binding to a VAP homologue is a common mechanism by which proteins with FFAT motifs, most of which are involved in lipid metabolism, target ER membranes.
Collapse
Affiliation(s)
- Christopher J R Loewen
- Division of Cell Biology, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
88
|
Wang Q, Xie Y, Du QS, Wu XJ, Feng X, Mei L, McDonald JM, Xiong WC. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J Cell Biol 2003; 160:565-75. [PMID: 12578912 PMCID: PMC2173747 DOI: 10.1083/jcb.200207036] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoclast activation is important for bone remodeling and is altered in multiple bone disorders. This process requires cell adhesion and extensive actin cytoskeletal reorganization. Proline-rich tyrosine kinase 2 (PYK2), a major cell adhesion-activated tyrosine kinase in osteoclasts, plays an important role in regulating this event. The mechanisms by which PYK2 regulates actin cytoskeletal organization and osteoclastic activation remain largely unknown. In this paper, we provide evidence that PYK2 directly interacts with gelsolin, an actin binding, severing, and capping protein essential for osteoclastic actin cytoskeletal organization. The interaction is mediated via the focal adhesion-targeting domain of PYK2 and an LD motif in gelsolin's COOH terminus. PYK2 phosphorylates gelsolin at tyrosine residues and regulates gelsolin bioactivity, including decreasing gelsolin binding to actin monomer and increasing gelsolin binding to phosphatidylinositol lipids. In addition, PYK2 increases actin polymerization at the fibroblastic cell periphery. Finally, PYK2 interacts with gelsolin in osteoclasts, where PYK2 activation is required for the formation of actin rings. Together, our results suggest that PYK2 is a regulator of gelsolin, revealing a novel PYK2-gelsolin pathway in regulating actin cytoskeletal organization in multiple cells, including osteoclasts.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Takano N, Owada Y, Suzuki R, Sakagami H, Shimosegawa T, Kondo H. Cloning and characterization of a novel variant (mM-rdgBbeta1) of mouse M-rdgBs, mammalian homologs of Drosophila retinal degeneration B gene proteins, and its mRNA localization in mouse brain in comparison with other M-rdgBs. J Neurochem 2003; 84:829-39. [PMID: 12562526 DOI: 10.1046/j.1471-4159.2003.01591.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the cloning, characterization and localization in the brain of a novel isoform termed mM-rdgBbeta1 (mouse type of mammalian retinal degeneration Bbeta1 protein) in comparison with the localization of three known mammalian homologs (M-rdgBbeta, M-rdgB1, M-rdgB2). mM-rdgBbeta1 cDNA contains a sequence of 119 bp as a form of insertion in the open reading frame of the known mM-rdgBbeta, and encodes a protein of 269 amino acids with a calculated molecular mass of 31.7 kDa, different from the molecular mass of 38.3 kDa of mM-rdgBbeta. It also contains a phosphatidylinositol transfer protein (PITP)-like domain similar to the known three homologs, as well as D-rdgB. The recombinant mM-rdgBbeta1 protein shows the specific binding activity to phosphatidylinositol but not to other phospholipids. This novel molecule is localized not only in the cytoplasm but also in the nucleus, different from the cytoplasmic localization of mM-rdgBbeta. In in situ hybridization analysis, the gene expression for mM-rdgBbeta1 in the brain, though weak, is rather confined to the embryonic stage, different from wider expression of mM-rdgBbeta in the gray matters of pre- and post-natal brains. Taken together, mM-rdgBbeta1 is suggested to play a role in the phosphoinositide-mediated signaling in the neural development.
Collapse
Affiliation(s)
- Nobuo Takano
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
90
|
Halford S, Inglis S, Gwilliam R, Spencer P, Mohamed M, Ebenezer ND, Hunt DM. Genomic organization of human CDS2 and evaluation as a candidate gene for corneal hereditary endothelial dystrophy 2 on chromosome 20p13. Exp Eye Res 2002; 75:619-23. [PMID: 12457874 DOI: 10.1006/exer.2002.2052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
91
|
Litvak V, Shaul YD, Shulewitz M, Amarilio R, Carmon S, Lev S. Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr Biol 2002; 12:1513-8. [PMID: 12225667 DOI: 10.1016/s0960-9822(02)01107-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nir2, like its Drosophila homolog retinal degeneration B (RdgB), contains an N-terminal phosphatidylinositol-transfer protein (PI-TP)-like domain. Previous studies have suggested that RdgB plays an important role in the fly phototransduction cascade and that its PI-transfer domain is critical for this function. In this domain, a specific mutation, T59E, induces a dominant retinal degeneration phenotype. Here we show that a similar mutation, T59E in the human Nir2 protein, targets Nir2 to spherical cytosolic structures identified as lipid droplets by the lipophilic dye Nile red. A truncated Nir2T59E mutant consisting of only the PI-transfer domain was also targeted to lipid droplets, whereas neither the wild-type Nir2 nor the Nir2T59A mutant was associated with lipid droplets under regular growth conditions. However, oleic-acid treatment caused translocation of wild-type Nir2, but not translocation of the T59A mutant, to lipid droplets. This treatment also induced partial targeting of endogenous Nir2, which is mainly associated with the Golgi apparatus, to lipid droplets. Targeting of Nir2 to lipid droplets was attributed to its enhanced threonine phosphorylation. These results suggest that a specific threonine within the PI-transfer domain of Nir2 provides a regulatory site for targeting to lipid droplets. In conjunction with the role of PI-TPs in lipid transport, this targeting may affect intracellular lipid trafficking and distribution and may provide the molecular basis underlying the dominant effect of the RdgB-T59E mutant on retinal degeneration.
Collapse
Affiliation(s)
- Vladimir Litvak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
92
|
Abbi S, Ueda H, Zheng C, Cooper LA, Zhao J, Christopher R, Guan JL. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol Biol Cell 2002; 13:3178-91. [PMID: 12221124 PMCID: PMC124151 DOI: 10.1091/mbc.e02-05-0295] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-L-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.
Collapse
Affiliation(s)
- Smita Abbi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Litvak V, Tian D, Carmon S, Lev S. Nir2, a human homolog of Drosophila melanogaster retinal degeneration B protein, is essential for cytokinesis. Mol Cell Biol 2002; 22:5064-75. [PMID: 12077336 PMCID: PMC139767 DOI: 10.1128/mcb.22.14.5064-5075.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis, the final stage of eukaryotic cell division, ensures the production of two daughter cells. It requires fine coordination between the plasma membrane and cytoskeletal networks, and it is known to be regulated by several intracellular proteins, including the small GTPase Rho and its effectors. In this study we provide evidence that the protein Nir2 is essential for cytokinesis. Microinjection of anti-Nir2 antibodies into interphase cells blocks cytokinesis, as it results in the production of multinucleate cells. Immunolocalization studies revealed that Nir2 is mainly localized in the Golgi apparatus in interphase cells, but it is recruited to the cleavage furrow and the midbody during cytokinesis. Nir2 colocalizes with the small GTPase RhoA in the cleavage furrow and the midbody, and it associates with RhoA in mitotic cells. Its N-terminal region, which contains a phosphatidylinositol transfer domain and a novel Rho-inhibitory domain (Rid), is required for normal cytokinesis, as overexpression of an N-terminal-truncated mutant blocks cytokinesis completion. Time-lapse videomicroscopy revealed that this mutant normally initiates cytokinesis but fails to complete it, due to cleavage furrow regression, while Rid markedly affects cytokinesis due to abnormal contractility. Rid-expressing cells exhibit aberrant ingression and ectopic cleavage sites; the cells fail to segregate into daughter cells and they form a long unseparated bridge-like cytoplasmic structure. These results provide new insight into the cellular functions of Nir2 and introduce it as a novel regulator of cytokinesis.
Collapse
Affiliation(s)
- Vladimir Litvak
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
94
|
Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J 2002; 21:2117-21. [PMID: 11980708 PMCID: PMC125982 DOI: 10.1093/emboj/21.9.2117] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphatidylinositol transfer protein alpha (PITP alpha) is a ubiquitous and highly conserved protein in multicellular eukaryotes that catalyzes the exchange of phospholipids between membranes in vitro and participates in cellular phospholipid metabolism, signal transduction and vesicular trafficking in vivo. Here we report the three-dimensional crystal structure of a phospholipid-free mouse PITP alpha at 2.0 A resolution. The structure reveals an open conformation characterized by a channel running through the protein. The channel is created by opening the phospholipid-binding cavity on one side by displacement of the C-terminal region and a hydrophobic lipid exchange loop, and on the other side by flattening of the central beta-sheet. The relaxed conformation is stabilized at the proposed membrane association site by hydrophobic interactions with a crystallographically related molecule, creating an intimate dimer. The observed open conformer is consistent with a membrane-bound state of PITP and suggests a mechanism for membrane anchoring and the presentation of phosphatidylinositol to kinases and phospholipases after its extraction from the membrane. Coordinates have been deposited in the Protein Data Bank (accession No. 1KCM).
Collapse
Affiliation(s)
- Arie Schouten
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Bogos Agianian
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Jan Westerman
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Jan Kroon
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Karel W.A. Wirtz
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| | - Piet Gros
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Lipid Biochemistry, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8,NL-3584 CH Utrecht, The Netherlands Present address: EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany Corresponding author e-mail: †Deceased
| |
Collapse
|
95
|
Tian D, Litvak V, Toledo-Rodriguez M, Carmon S, Lev S. Nir2, a novel regulator of cell morphogenesis. Mol Cell Biol 2002; 22:2650-62. [PMID: 11909959 PMCID: PMC133726 DOI: 10.1128/mcb.22.8.2650-2662.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis.
Collapse
Affiliation(s)
- Donghua Tian
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
96
|
Lu C, Peng YW, Shang J, Pawlyk BS, Yu F, Li T. The mammalian retinal degeneration B2 gene is not required for photoreceptor function and survival. Neuroscience 2002; 107:35-41. [PMID: 11744244 DOI: 10.1016/s0306-4522(01)00337-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The retinal degeneration B (rdgB) gene in Drosophila is essential for photoreceptor function and survival. The rdgB mutant fly exhibits an abnormal electroretinogram and a light-dependent photoreceptor degeneration. The function of RdgB is not fully understood, but the presence of a phosphatidylinositol transfer protein domain suggests a possible role in phosphatidylinositol metabolism and signaling. Two mammalian homologs, M-RdgB1 and M-RdgB2, are known. While M-RdgB1 is widely expressed, M-RdgB2 is found primarily in the retina and the dentate gyrus. Functional conservation between the Drosophila and mammalian RdgBs was demonstrated by the ability of both M-RdgBs to rescue the photoreceptor phenotype in rdgB mutant flies through transgenic expression. To investigate the role of M-RdgB2 in the mammalian retina, we disrupted the m-rdgB2 gene in mice by gene targeting. The homozygous knockout mice are fertile and apparently healthy. By light microscopy, immunocytochemistry and electroretinograms, mice up to 18 months of age showed normal photoreceptor function and survival. The inner retinal neurons were also examined by immunolabeling with a number of cell-specific markers and no apparent defects were found in the major cell populations. We conclude that M-rdgB2 is not essential for phototransduction and photoreceptor survival. Thus, m-rdgB2 is not a candidate gene for human retinal degenerations. Whether M-rdgB2 has a role in visual processing in the inner retina, or whether it is required for hippocampal function, remains to be determined.
Collapse
Affiliation(s)
- C Lu
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston 02114, USA
| | | | | | | | | | | |
Collapse
|
97
|
Xu Y, Seet LF, Hanson B, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signalling. Biochem J 2001; 360:513-30. [PMID: 11736640 PMCID: PMC1222253 DOI: 10.1042/0264-6021:3600513] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositides are key regulators of diverse cellular processes. The pleckstrin homology (PH) domain mediates the action of PtdIns(3,4)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), while the FYVE domain relays the pulse of PtdIns3P. The recent establishment that the Phox homology (PX) domain interacts with PtdIns3P and other phosphoinositides suggests another mechanism by which phosphoinositides can regulate/integrate multiple cellular events via a spectrum of PX domain-containing proteins. Together with the recent discovery that the epsin N-terminal homologue (ENTH) domain interacts with PtdIns(4,5)P(2), it is becoming clear that phosphoinositides regulate diverse cellular events through interactions with several distinct structural motifs present in many different proteins.
Collapse
Affiliation(s)
- Y Xu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
98
|
Abstract
Retinal degeneration, either acquired or inherited, is a major cause of visual impairment and blindness in humans. Inherited retinal degeneration comprises a large group of diseases that result in the loss of photoreceptor cells. To date, 131 retinal disease loci have been identified, and 76 of the genes at these loci have been isolated (RetNet Web site). Several of these genes were first considered candidates because of their chromosomal localization or homology to genes involved in retinal degeneration in other organisms. In this review, I will discuss recent advances in the identification of genes that cause retinal degeneration, and I will describe the mechanisms of photoreceptor death and potential treatments for retinal degenerative diseases.
Collapse
Affiliation(s)
- S Lev
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
99
|
Lyons PD, Dunty JM, Schaefer EM, Schaller MD. Inhibition of the catalytic activity of cell adhesion kinase beta by protein-tyrosine phosphatase-PEST-mediated dephosphorylation. J Biol Chem 2001; 276:24422-31. [PMID: 11337490 DOI: 10.1074/jbc.m011080200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein-tyrosine phosphatase (PTP)-PEST is a cytoplasmic tyrosine phosphatase that can bind and dephosphorylate the focal adhesion-associated proteins p130(CAS) and paxillin. Focal adhesion kinase (FAK) and cell adhesion kinase beta (CAKbeta)/PYK2/CADTK/RAFTK are protein-tyrosine kinases that can colocalize with, bind to, and induce tyrosine phosphorylation of p130(CAS) and paxillin. Thus, we considered the possibility that these kinases might be substrates for PTP-PEST. Using a combination of substrate-trapping assays and overexpression of PTP-PEST in mammalian cells, CAKbeta was found to be a substrate for PTP-PEST. Both the major autophosphorylation site of CAKbeta (Tyr(402)) and activation loop tyrosine residues, Tyr(579) and Tyr(580), were targeted for dephosphorylation by PTP-PEST. Dephosphorylation of CAKbeta by PTP-PEST dramatically inhibited CAKbeta kinase activity. In contrast, FAK was a poor substrate for PTP-PEST, and treatment with PTP-PEST had no effect on FAK kinase activity. Tyrosine phosphorylation of paxillin, which is greatly enhanced by CAKbeta overexpression, was dramatically reduced upon coexpression of PTP-PEST. Finally, endogenous PTP-PEST and endogenous CAKbeta were found to localize to similar cellular compartments in epithelial and smooth muscle cells. These results suggest that CAKbeta is a substrate of PTP-PEST and that FAK is a poor PTP-PEST substrate. Further, PTP-PEST can negatively regulate CAKbeta signaling by inhibiting the catalytic activity of the kinase.
Collapse
Affiliation(s)
- P D Lyons
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
100
|
Sorokin A, Kozlowski P, Graves L, Philip A. Protein-tyrosine kinase Pyk2 mediates endothelin-induced p38 MAPK activation in glomerular mesangial cells. J Biol Chem 2001; 276:21521-8. [PMID: 11278444 DOI: 10.1074/jbc.m008869200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelin-1 (ET-1), a member of a family of 21 amino acid peptides possessing vasoconstrictor properties, is known to stimulate mesangial cell proliferation. In this study, ET-1 (100 nm) induced a rapid activation of p21(ras) in human glomerular mesangial cells (HMC). Inhibition of Src family tyrosine kinase activation with [4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or chelation of intracellular free calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester significantly decreased ET-1dependent p21(ras) activation and suggested the involvement of the cytoplasmic proline-rich tyrosine kinase Pyk2. We have observed that Pyk2 was expressed in HMC and was tyrosine-phosphorylated within 5 min of ET-1 treatment. ET-1-induced activation of Pyk2 was further confirmed using phospho-specific anti-Pyk2 antibodies. Surprisingly, Src kinase activity was required upstream of ET-1-induced autophosphorylation of Pyk2. To determine whether Pyk2 autophosphorylation mediated ET-1-dependent p21(ras) activation, adenovirus-mediated transfer was employed to express a dominant-negative form of Pyk2 (CRNK). CRNK expression inhibited ET-1-induced endogenous Pyk2 autophosphorylation, but did not abolish ET-1-mediated increases in GTP-bound p21(ras) levels. ET-1-induced activation of the p38 MAPK (but not ERK) pathway was inhibited in HMC and in rat glomerular mesangial cells expressing the dominant-negative form of Pyk2. These findings suggest that the engagement of Pyk2 is important for ET-1-mediated p38 MAPK activation and hence the biological effect of this peptide in mesangial cells.
Collapse
Affiliation(s)
- A Sorokin
- Department of Medicine, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|