51
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
52
|
Palusiak A. Proteus mirabilis and Klebsiella pneumoniae as pathogens capable of causing co-infections and exhibiting similarities in their virulence factors. Front Cell Infect Microbiol 2022; 12:991657. [PMID: 36339335 PMCID: PMC9630907 DOI: 10.3389/fcimb.2022.991657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/23/2023] Open
Abstract
The genera Klebsiella and Proteus were independently described in 1885. These Gram-negative rods colonize the human intestinal tract regarded as the main reservoir of these opportunistic pathogens. In favorable conditions they cause infections, often hospital-acquired ones. The activity of K. pneumoniae and P. mirabilis, the leading pathogens within each genus, results in infections of the urinary (UTIs) and respiratory tracts, wounds, bacteremia, affecting mainly immunocompromised patients. P. mirabilis and K. pneumoniae cause polymicrobial UTIs, which are often persistent due to the catheter biofilm formation or increasing resistance of the bacteria to antibiotics. In this situation a need arises to find the antigens with features common to both species. Among many virulence factors produced by both pathogens urease shows some structural similarities but the biggest similarities have been observed in lipids A and the core regions of lipopolysaccharides (LPSs). Both species produce capsular polysaccharides (CPSs) but only in K. pneumoniae these antigens play a crucial role in the serological classification scheme, which in Proteus spp. is based on the structural and serological diversity of LPS O-polysaccharides (OPSs). Structural and serological similarities observed for Klebsiella spp. and Proteus spp. polysaccharides are important in the search for the cross-reacting vaccine antigens.
Collapse
Affiliation(s)
- Agata Palusiak
- Laboratory of General Microbiology, Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Łódź, Poland
| |
Collapse
|
53
|
The Brief Case: Proteus mirabilis Causing Coraliform Lithiasis and Bacteremia in an Elderly Catheterized Patient. J Clin Microbiol 2022; 60:e0241321. [PMID: 36259775 PMCID: PMC9590588 DOI: 10.1128/jcm.02413-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
54
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
55
|
Gmiter D, Kaca W. Into the understanding the multicellular lifestyle of Proteus mirabilis on solid surfaces. Front Cell Infect Microbiol 2022; 12:864305. [PMID: 36118021 PMCID: PMC9478170 DOI: 10.3389/fcimb.2022.864305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Indwelling urinary catheterization can lead to the development of catheter-associated urinary tract infections (CAUTIs), an important type of nosocomial infection, as well as other medical issues among institutionalized adults. Recently, Proteus mirabilis was highlighted as the important cause of CAUTIs. The pathogenicity of P. mirabilis is dependent on two multicellular types of surface colonization: the adherence and swarming motility. Adhesion, mostly mediated by fimbrial and nonfimbrial adhesins, is important for the initiation of biofilm formation. Moreover, the production of urease frequently results in biofilm crystallization, which leads to the blockage of catheters. The heterologous polymeric matrix of the biofilm offers protection against antibiotics and the host immune system. P. mirabilis displays remarkable motility abilities. After contact with solid surfaces, hyper-flagellated cells are able to rapidly migrate. The importance of swarming motility in CAUTIs development remains controversial; however, it was indicated that swarming cells were able to co-express other virulence factors. Furthermore, flagella are strong immunomodulating proteins. On the other hand, both biofilm formation and swarming motility implicates multiple inter- and intraspecies interactions, which might contribute to the pathogenicity.
Collapse
|
56
|
Isolation and Identification of Multi-Drug Resistant (MDR) Pathogens from Patients with Urinary Tract Infection (UTI) in Dhaka City, Bangladesh. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infection (UTI) is the leading cause of death among patients and majority of people visiting the hospital worldwide. In the current quantitative study, urine samples were obtained using sterile method and 100 isolates, including 60 Escherichia coli, 28 Klebsiella sp., and 12 Proteus sp., were investigated in a laboratory. Current study showed that E. coli 60/100 (60%) was the most common cause of UTI followed by Klebsiella sp. 28/100 (28%) and Proteus sp. 12/100 (12%). Cefotaxime (86.67% sensitive) was found to be the best drug for treating infections with E. coli, ceftazidime (100% sensitive) for infections with Klebsiella sp., and imipenem and levofloxacin (100% sensitive) for infections with Proteus sp. Overall, 51% of the isolated strains showed high multidrug resistance (MDR). Because of the alarming increase in extensively drug-resistant and MDR uropathogens, which is a concern in public health, the rational use of antimicrobial therapy should be implemented.
Collapse
|
57
|
Molecular Characterizations and Antimicrobial Susceptibility of Extended-Spectrum ß-lactamase (ESBL) Producing Proteus spp. Clinical Isolates in Babol, Northern Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.3.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
58
|
Organic Acids Secreted by Lactobacillus spp. Isolated from Urine and Their Antimicrobial Activity against Uropathogenic Proteus mirabilis. Molecules 2022; 27:molecules27175557. [PMID: 36080323 PMCID: PMC9457960 DOI: 10.3390/molecules27175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The natural microbiota of the urinary tract includes Lactobacillus spp., which secrete molecules with antimicrobial properties and have antagonistic activity against many pathogens. This paper focuses on the antibacterial effect of Lactobacillus strains isolated from urine against clinical strains of Proteus mirabilis isolated from kidney stones and from urine with coexisting urolithiasis. The study involved analyzing the main antimicrobial molecules secreted by Lactobacillus. In order to indicate which agent had the strongest antimicrobial effect, the supernatants were made alkaline and treated with catalase and high temperature. Both treated and untreated supernatants were analyzed for their activity. Exposing uropathogens to all untreated cell-free supernatants of Lactobacillus significantly reduced their growth, and it was established that these properties were related to organic acid secretion by these strains. Using LC–MS/MS and spectrophotometric techniques, lactic, citric, and succinic acids were determined qualitatively and quantitatively. The influence of these acids on the P. mirabilis growth and biofilm formation and their influence on membrane permeability were also investigated. The results indicate that organic acids secreted by Lactobacillus strains have a high antibacterial potential and could be used as novel agents in the treatment of urinary tract infections caused by P. mirabilis.
Collapse
|
59
|
Li Y, Liu Q, Qiu Y, Fang C, Zhou Y, She J, Chen H, Dai X, Zhang L. Genomic characteristics of clinical multidrug-resistant Proteus isolates from a tertiary care hospital in southwest China. Front Microbiol 2022; 13:977356. [PMID: 36090113 PMCID: PMC9449695 DOI: 10.3389/fmicb.2022.977356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant (MDR) Proteus, especially those strains producing extended-spectrum β-lactamases (ESBL) and carbapenemases, represents a major public health concern. In the present work, we characterized 27 MDR Proteus clinical isolates, including 23 Proteus mirabilis, three Proteus terrae, and one Proteus faecis, by whole-genome analysis. Among the 27 isolates analyzed, SXT/R391 ICEs were detected in 14 strains, and the complete sequences of nine ICEs were obtained. These ICEs share a common backbone structure but also have different gene contents in hotspots and variable regions. Among them, ICEPmiChn2826, ICEPmiChn2833, ICEPmiChn3105, and ICEPmiChn3725 contain abundant antibiotic resistance genes, including the ESBL gene blaCTX-M-65. The core gene phylogenetic analysis of ICEs showed their genetic diversity, and revealed the cryptic dissemination of them in Proteus strains from food animals and humans on a China-wide scale. One of the isolates, FZP3105, acquired an NDM-1-producing MDR plasmid, designated pNDM_FZP3105, which is a self-transmissible type 1/2 hybrid IncC plasmid. Analysis of the genetic organization showed that pNDM_FZP3105 has two novel antibiotic resistance islands bearing abundant antibiotic resistance genes, among which blaNDM-1 is located in a 9.0 kb ΔTn125 bracketed by two copies of IS26 in the same direction. In isolates FZP2936 and FZP3115, blaKPC-2 was detected on an IncN plasmid, which is identical to the previously reported pT211 in Zhejiang province of China. Besides, a MDR genomic island PmGRI1, a variant of PmGRI1-YN9 from chicken in China, was identified on their chromosome. In conclusion, this study demonstrates abundant genetic diversity of mobile genetic elements carrying antibiotic resistance genes, especially ESBL and carbapenemase genes, in clinical Proteus isolates, and highlights that the continuous monitoring on their transmission and further evolution is needed.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Liu
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yungang Zhou
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Junping She
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- Xiaoyi Dai,
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Luhua Zhang,
| |
Collapse
|
60
|
Adekanmbi AO, Akinlabi OC, Usidamen S, Olaposi AV, Olaniyan AB. High burden of ESBL- producing Klebsiella spp., Proteus mirabilis, Enterobacter cloacae and Pseudomonas aeruginosa in diagnosed cases of urinary tract infection in a Nigerian Teaching Hospital. Acta Microbiol Immunol Hung 2022; 69:127-134. [DOI: 10.1556/030.2022.01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022]
Abstract
Abstract
Infections of the urinary tract have been on the rise globally and these are also worsened by the increasing rate of antibiotic resistance in uropathogens. This study aimed to determine the susceptibility profile of extended spectrum β-lactamase (ESBL)- producing uropathogens to selected antibiotics and their carriage of ESBL genes. Bacterial uropathogens were obtained from the urine bench of a Microbiology laboratory in a Teaching Hospital in South-West Nigeria. Susceptibility to antibiotics was tested using the disc diffusion method, while detection of ESBL production was done using the double disc synergy test (DDST). Detection of ESBL genes was performed by PCR. A total of 21 ESBL- producing uropathogens were obtained namely: Klebsiella pneumoniae (11), Klebsiella oxytoca (6), Proteus mirabilis (2), Enterobacter cloacae (1) and Pseudomonas aeruginosa (1). The resistance to antibiotics in the uropathogens was: imipenem (0%), gentamicin (38.1%), sulfamethoxazole-trimethoprim (52.4%), amoxicillin-clavulanate (61.9%), aztreonam (66.7%), ceftazidime (66.7%), tetracycline (90.5%), cefpodoxime (100%) and cefotaxime (100%). Altogether, 90.5% (19/21) of the isolates were multidrug resistant (MDR). Of the 21 uropathogens, 61.9% (13/21) carried bla
CTX-M, 52.4% (11/21) carried bla
TEM while bla
SHV was detected in 47.6% (10/21) of the isolates. There was co-carriage of ESBL genes in 12 uropathogens. This study showed a high prevalence of multidrug resistance and a high carriage of ESBL genes in the ESBL- producing isolates obtained over the study period. There is a need for a review of antibiotic options in the treatment of UTI to clamp down on the ever-increasing tide of antibiotic resistance in uropathogens.
Collapse
Affiliation(s)
- Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Olabisi Comfort Akinlabi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Sandra Usidamen
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- Pathogenic Microbiology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Adedolapo Victoria Olaposi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Adeola Boluwatife Olaniyan
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- Molecular Biology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
61
|
The effect of fluoroquinolones and antioxidans on biofilm formation by Proteus mirabilis strains. Ann Clin Microbiol Antimicrob 2022; 21:22. [PMID: 35655208 PMCID: PMC9161520 DOI: 10.1186/s12941-022-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Fluoroquinolones are a group of antibiotics used in urinary tract infections. Unfortunately, resistance to this group of drugs is currently growing. The combined action of fluoroquinolones and other antibacterial and anti-biofilm substances may extend the use of this therapeutic option by clinicians. The aim of the study was to determine the effect of selected fluoroquinolones and therapeutic concentrations of ascorbic acid and rutoside on biofilm formation by Proteus mirabilis. Materials and methods The study included 15 strains of P. mirabilis isolated from urinary tract infections in patients of the University Hospital No. 1 dr A. Jurasz in Bydgoszcz (Poland). The metabolic activity of the biofilm treated with 0.4 mg/ml ascorbic acid, 0.02 µg/ml rutoside and chemotherapeutic agents (ciprofloxacin, norfloxacin) in the concentration range of 0.125–4.0 MIC (minimum inhibitory concentration) was assessed spectrophotometrically. Results Both ciprofloxacin and norfloxacin inhibited biofilm formation by the tested strains. The biofilm reduction rate was correlated with the increasing concentration of antibiotic used. No synergism in fluoroquinolones with ascorbic acid, rutoside or both was found. The ascorbic acid and rutoside combination, however, significantly decreased biofilm production. Conclusions Our research proves a beneficial impact of ascorbic acid with rutoside supplementation on biofilm of P. mirabilis strains causing urinary tract infections.
Collapse
|
62
|
Emami E, Mt Sherwin C, Heidari-Soureshjani S. Effect of probiotics on urinary tract infections in children: A systematic review and meta-analysis. Curr Rev Clin Exp Pharmacol 2022; 19:CRCEP-EPUB-123117. [PMID: 35507743 DOI: 10.2174/2772432817666220501114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) are the most prevalent bacterial infections that occur in children worldwide. OBJECTIVE This meta-analysis aims to investigate the utility of probiotics as preventive therapy in children with a UTI. METHODS The Web of Science, PubMed, and Scopus were searched for articles that investigated the relationship between probiotic consumption and the risk of UTIs. The quality of the articles was evaluated using the Jadad scale. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effects model. Subgroup analyses and sensitivity analyses were also conducted. The Cochran Q test and the statistic I2 were used to evaluate heterogeneity. To determine any potential publication bias, the Egger's and Begg's tests were used. RESULTS In total, eleven studies were selected for systematic review and meta-analysis. Compared to children who did not receive probiotics, the OR of developing or having a recurring urinary tract infection in those who received probiotics was 0.94 (95% CI; 0.88-0.999; p-value=0.046). The Begg's and Egger's tests showed no evidence of publication bias between probiotics and the risk of developing new or recurring urinary tract infections. CONCLUSION Based on this systematic review and meta-analysis, probiotics could be an alternative therapy for children who are at risk of developing a UTI. They are non-pharmaceutical options and could be used as natural prophylaxis for UTIs. However, the currently published evidence does not irrefutably confirm that probiotics provide a protective effect against urinary bacterial infections. Therefore, there need to be large-scale randomized clinical trials undertaken to investigate the possible prophylaxis of probiotics.
Collapse
Affiliation(s)
- Elham Emami
- Emam Hossein Educational Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catherine Mt Sherwin
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children\'s Hospital, One Children\'s Plaza, Dayton, Ohio, USA
| | | |
Collapse
|
63
|
Jagadeesan S, Tripathi BK, Patel P, Muthathal S. Urinary tract infection and Diabetes Mellitus-Etio-clinical profile and antibiogram: A North Indian perspective. J Family Med Prim Care 2022; 11:1902-1906. [PMID: 35800584 PMCID: PMC9254764 DOI: 10.4103/jfmpc.jfmpc_2017_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Context A complex dysregulation of glucose homeostasis, Diabetes Mellitus (DM) is an iceberg disease with an ever-rising global (8.5%, 2018) and national prevalence (7.3% - ICMR-INDIAB study, 2017) amidst adults. Besides the micro and macrovascular complications, in virtue of diverse mechanisms that downplay the immune system culminating in an array of infections especially UTIs are commoner in routine diabetic clinics. The spectrum of UTI ranges from asymptomatic bacteriuria (ASB) to serious complications such as emphysematous pyelonephritis, renal abscesses that are encountered frequently among Diabetics than the general population. The risk stratification and varying modalities of presentation of UTIs in diabetics in contrast with non-diabetics are being studied. Methods and Material A prospective comparative cross-sectional study was conducted in 250 adult consenting participants with equal diabetics and non-diabetics with culture-proven UTI, at the Department of Internal Medicine in a tertiary care hospital of National Capital Territory (NCT) of India, after fulfilling appropriate criteria. Alongside socio-demographic details and vitals parameters, glycaemic status assessment and relevant investigations were done in either group. Results Mean age of the participants was 52.18 ± 9.06 with age and gender being reasonably distributed in both the groups. Fever (P <0.01), dysuria (P <0.01), urgency (P <0.01) and urinary frequency (P <0.01) found frequently among non-diabetics wherein vomiting (P <0.01) and incontinence (P <0.01) relatively commoner among diabetics. E. coli, Klebsiella sp., were the most common organisms in both groups with Proteus sp., and Pseudomonas sp., higher among diabetics. Severe infection and Pyelonephritis were frequent (AOR 2.64, 95% CI- 2.01-3.27, P <0.05) among diabetics. Antimicrobial sensitivity patterns were not significantly different among both groups. Conclusions Primary care physicians are to be acquinted with the possibility that UTI in diabetics could exhibit relatively lesser symptoms or more severe forms of UTI at presentation and less favorable outcomes. Further validation from a larger cohort of diabetics is warranted in terms of symptomatology, diagnostic approach, and sensitivity patterns.
Collapse
Affiliation(s)
| | | | - Pranav Patel
- Department of Internal Medicine, VMMC and Safdarjung Hospital, New Delhi, India
| | - Subramanian Muthathal
- Department of Community Medicine, Panimalar Medical College Hospital and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
64
|
A Method to Determine the Efficacy of a Commercial Phage Preparation against Uropathogens in Urine and Artificial Urine Determined by Isothermal Microcalorimetry. Microorganisms 2022; 10:microorganisms10050845. [PMID: 35630291 PMCID: PMC9147073 DOI: 10.3390/microorganisms10050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Urinary tract infections are commonly encountered and often treated with antibiotics. However, the inappropriate use of the latter has led to the appearance of resistant strains. In this context we investigate the use of calorimetry to rapidly determine if a phage cocktail can be used as alternative to antibiotics. Methods: We used a commercially available phage cocktail from an online pharmacy and tested it against a strain of Escherichia coli and a strain of Proteus mirabilis. We used isothermal microcalorimetry to follow the metabolic activity of the bacterial culture treated with the phage cocktail. Results: Isothermal microcalorimetry was able to follow the dynamic of the bacterial metabolic activity reduction by the phage cocktail. Both pathogens were strongly inhibited; however, some regrowth was observed for E. coli in urine. Conclusions: Isothermal microcalorimetry proved to be a valuable technique when investigating the efficacy of phage cocktails against uropathogens. We foresee that isothermal microcalorimetry could be used to obtain rapid phagograms.
Collapse
|
65
|
Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community. THE ISME JOURNAL 2022; 16:1004-1011. [PMID: 34759303 PMCID: PMC8940935 DOI: 10.1038/s41396-021-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
On a surface, microorganisms grow into a multi-cellular community. When a community becomes densely populated, cells migrate away to expand the community's territory. How microorganisms regulate surface motility to optimize expansion remains poorly understood. Here, we characterized surface motility of Proteus mirabilis. P. mirabilis is well known for its ability to expand its colony rapidly on a surface. Cursory visual inspection of an expanding colony suggests partial migration, i.e., one fraction of a population migrates while the other is sessile. Quantitative microscopic imaging shows that this migration pattern is determined by spatially inhomogeneous regulation of cell motility. Further analyses reveal that this spatial regulation is mediated by the Rcs system, which represses the expression of the motility regulator (FlhDC) in a nutrient-dependent manner. Alleviating this repression increases the colony expansion speed but results in a rapid drop in the number of viable cells, lowering population fitness. These findings collectively demonstrate how Rcs regulates cell motility dynamically to increase the fitness of an expanding bacterial population, illustrating a fundamental trade-off underlying bacterial colonization of a surface.
Collapse
|
66
|
Olaniyi OO, Li H, Zhu Y, Cui L. Metabolic responses of indigenous bacteria in chicken faeces and maggots to multiple antibiotics via heavy water labeled single-cell Raman spectroscopy. J Environ Sci (China) 2022; 113:394-402. [PMID: 34963547 DOI: 10.1016/j.jes.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 06/14/2023]
Abstract
The use of maggots derived from chicken faeces as fish diets might serve as a vehicle for the widespread of multiple antibiotic resistant bacteria (ARB) in the environment. Heavy water labeled single-cell Raman spectroscopy (D2O-Raman) was applied to detect the metabolic responses of indigenous bacteria in chicken faeces and maggots to different concentrations of combined colistin, kanamycin, and vancomycin. By incubating the samples with D2O and antibiotics, metabolically active bacterial cells to antibiotics were distinguished from those inactive by the exhibition of C-D Raman band. Using the C-D band as a universal metabolic biomarker, 96% and 100% of cells in chicken faeces and maggots were revealed to be metabolically active to 1 × minimum inhibition concentration (MIC) of the afore-mentioned antibiotics. A noticeable decrease in the percentage of active cells from 96% to 76% in faeces and 100% to 93% in maggots was observed at 5 × MIC of antibiotics. However, these ratios were still far above that obtained from the same faeces (1.84%) and maggots (0.51%) samples using a cultivation method, indicating the wide presence of nongrowing but metabolically active bacterial cells under antibiotic treatment. Conclusively, the culture-independent D2O-Raman approach detected and quantified a large portion of metabolically active indigenous bacteria to multiple antibiotics in their native environments, illustrating the great potential risks of these active cells to spread antibiotic resistance via food chain.
Collapse
Affiliation(s)
- Oladipo Oladiti Olaniyi
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Microbiology, Federal University of Technology, PMB 704 Akure, Nigeria
| | - Hongzhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
67
|
Lin WY, Lee YJ, Yu PH, Tsai YL, She PY, Li TS, Liaw SJ. The QseEF Two-Component System-GlmY Small RNA Regulatory Pathway Controls Swarming in Uropathogenic Proteus mirabilis. Int J Mol Sci 2022; 23:ijms23010487. [PMID: 35008912 PMCID: PMC8745638 DOI: 10.3390/ijms23010487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial sensing of environmental signals through the two-component system (TCS) plays a key role in modulating virulence. In the search for the host hormone-sensing TCS, we identified a conserved qseEGF locus following glmY, a small RNA (sRNA) gene in uropathogenic Proteus mirabilis. Genes of glmY-qseE-qseG-qseF constitute an operon, and QseF binding sites were found in the glmY promoter region. Deletion of glmY or qseF resulted in reduced swarming motility and swarming-related phenotypes relative to the wild-type and the respective complemented strains. The qseF mutant had decreased glmYqseEGF promoter activity. Both glmY and qseF mutants exhibited decreased flhDC promoter activity and mRNA level, while increased rcsB mRNA level was observed in both mutants. Prediction by TargetRNA2 revealed cheA as the target of GlmY. Then, construction of the translational fusions containing various lengths of cheA 5′UTR for reporter assay and site-directed mutagenesis were performed to investigate the cheA-GlmY interaction in cheA activation. Notably, loss of glmY reduced the cheA mRNA level, and urea could inhibit swarming in a QseF-dependent manner. Altogether, this is the first report elucidating the underlying mechanisms for modulation of swarming motility by a QseEF-regulated sRNA GlmY, involving expression of cheA, rcsB and flhDC in uropathogenic P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Ping-Hung Yu
- Department of Nursing, National Taichung University of Science and Technology, Taichung City 404348, Taiwan;
| | - Yi-Lin Tsai
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Pin-Yi She
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Tzung-Shian Li
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan; (W.-Y.L.); (Y.-L.T.); (P.-Y.S.); (T.-S.L.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- Correspondence: ; Tel.: +886-02-23123456 (ext. 6911)
| |
Collapse
|
68
|
Chen X, Lei CW, Liu SY, Li TY, Chen Y, Wang YT, Li C, Wang Q, Yang X, Huang ZR, Gao YF, Wang HN. Characterization of novel Tn7-derivatives and Tn7-like transposon found in Proteus mirabilis of food-producing animal origin in China. J Glob Antimicrob Resist 2022; 28:233-237. [DOI: 10.1016/j.jgar.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022] Open
|
69
|
Harper A, Kepner S. Urinary Tract Infections in Pennsylvania Long-Term Care Facilities. PATIENT SAFETY 2021. [DOI: 10.33940/data/2021.12.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Urinary tract infections (UTIs) are common healthcare-associated infections (HAIs) in older adults that live in long-term care (LTC) facilities. A query of the Pennsylvania Patient Safety Reporting System (PA-PSRS) found that symptomatic UTI (SUTI) and catheter-associated UTI (CAUTI) rates increased from 2016 and peaked in the second quarter of 2020. Although the number of urinary catheter days reported by LTC facilities has trended downward from 2016 to the beginning of 2020, the urinary catheter utilization rate increased slightly in the second quarter of 2020. We also examined various epidemiological factors. An average of 47.6% of SUTIs and 32.3% of CAUTIs were associated with E. coli from 2016 through 2020. However, the percentage of CAUTIs associated with E. coli decreased while the percentage of CAUTIs associated with organisms of the tribe Proteeae (Proteus, Providencia, and Morganella genera) increased from 2016 through 2020. Furthermore, the percentage of CAUTIs associated with carbapenem-resistant Enterobacterales (CRE) and organisms producing extended-spectrum beta-lactamases (ESBL) also increased, while the percentage of CAUTIs associated with vancomycin-resistant Enterococci (VRE) decreased from 2016 through 2020. An average of 38.5% of SUTIs and 41.5% of CAUTIs were reported to be treated with fluoroquinolones from 2016 through 2020. However, the percentage of both SUTIs and CAUTIs treated with fluoroquinolones decreased from 2016 through 2020, while an increasing percentage of both SUTIs and CAUTIs was reported to have been treated with cephalosporins and carbapenems from 2016 through 2020. Thus, to further promote resident safety, we use these epidemiological trends to better understand current risks for residents and to further guide development of best practices for prevention, identification, and treatment of UTIs as well as to further advance antibiotic stewardship practices.
Collapse
|
70
|
Grossman LG, Sharkey JM, Grossman DS, Hartman A, Makaryus M, Shah KB. Rare case of Proteus mirabilis native mitral valve endocarditis in an immunocompromised patient. BMC Infect Dis 2021; 21:1250. [PMID: 34906094 PMCID: PMC8670115 DOI: 10.1186/s12879-021-06931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial infective endocarditis caused by Proteus mirabilis is rare and there are few cases in the literature. The natural history and treatment of this disease is not as clear but presumed to be associated with complicated urinary tract infection (cUTI). CASE PRESENTATION A 65-year-old female with a history of rheumatoid arthritis, factor V Leiden hypercoagulability, and prior saddle pulmonary embolism presented to the emergency department following a mechanical fall. Computed Tomography showed evidence of acute/subacute splenic emboli. Complicated UTI was likely secondary to a ureteral stone. Blood and urine cultures also grew out P. mirabilis. Transthoracic echocardiography revealed a mobile echogenic density on the anterior mitral valve (MV) leaflet consistent with a vegetation. The patient underwent MV replacement, and P. mirabilis was isolated from the surgically removed valve. CONCLUSIONS We hypothesize that the patient's immunocompromised status following steroid and Janus Kinase inhibitor usage for rheumatoid arthritis contributed to Gram-negative bacteremia following P. mirabilis UTI, ultimately seeding the native MV. Additional studies with larger numbers of Proteus endocarditis cases are needed to investigate an association between immunosuppression and Proteus species endocarditis.
Collapse
Affiliation(s)
- Lindsay G Grossman
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | | | | | - Alan Hartman
- Department of Cardiovascular and Thoracic Surgery, Northwell Health, Manhasset, NY, USA
| | - Mina Makaryus
- Division of Pulmonary, Critical Care, and Sleep Medicine, Northwell Health, Manhasset, NY, USA
| | - Kaushal B Shah
- Division of Critical Care Medicine, South Shore University Hospital, Bay Shore, NY, USA
| |
Collapse
|
71
|
Third-Generation Cephalosporin Resistance in Intrinsic Colistin-Resistant Enterobacterales Isolated from Retail Meat. Antibiotics (Basel) 2021; 10:antibiotics10121437. [PMID: 34943649 PMCID: PMC8698362 DOI: 10.3390/antibiotics10121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Consumption of retail meat contaminated with antimicrobial-resistant (AMR) bacteria is a common route for transmitting clinically relevant resistant bacteria to humans. Here, we investigated the genotypic and phenotypic resistance profiles of intrinsic colistin-resistant (ICR) Enterobacterales isolated from retail meats. ICR Enterobacterales were isolated from 103 samples of chicken, 103 samples of pork, and 104 samples of beef purchased from retail shops in Japan, using colistin-containing media, and their antimicrobial susceptibility was examined. Serratia spp. (440 isolates) showed resistance to cefotaxime (19 isolates, 4.3%), tetracycline (15 isolates, 3.4%), and other antimicrobials (<1%). Hafnia spp. (136) showed resistance to cefotaxime (12 isolates, 8.6%), ceftazidime (four isolates, 2.9%), and tetracycline (two isolates, 1.4%). Proteus spp. (39) showed resistance to chloramphenicol (four isolates, 10.3%), sulfamethoxazole-trimethoprim (four isolates, 10.3%), cefotaxime (two isolates, 5.1%), kanamycin (two isolates, 5.1%), and gentamicin (one isolate, 2.6%). Cedecea spp. (22) were resistant to tetracycline (two isolates, 9.1%) whereas Morganella spp. (11) were resistant to tetracycline (four isolates, 36.4%) and chloramphenicol (one isolate, 9.2%). The resistance genes blafonA, blaACC, and blaDHA were detected in cefotaxime-resistant Serratia spp., Hafnia spp., and Morganella spp. isolates, respectively. This emergence of antimicrobial resistance in ICR Enterobacterales may pose a public health risk.
Collapse
|
72
|
Virulence factors of Proteus mirabilis clinical isolates carrying bla KPC-2 and bla NDM-1 and first report bla OXA-10 in Brazil. J Infect Chemother 2021; 28:363-372. [PMID: 34815168 DOI: 10.1016/j.jiac.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Proteus mirabilis is one of the main pathogens that cause urinary tract infections. Therefore, the aim of this study was to analyze and compare the genetic profile of 36 clinical isolates of P. mirabilis that carry and do not carry the blaKPC and blaNDM gene with respect to virulence factors (mrpG, pmfA, ucaA, nrpG and pbtA) and antimicrobial resistance (blaVIM,blaIMP, blaSPM, blaGES,blaOXA-23-like, blaOXA-48-like, blaOXA-58-like and blaOXA-10-like). METHODS The virulence and resistance genes were investigated by using PCR and sequencing. RESULTS ERIC-PCR typing showed that the isolates showed multiclonal dissemination and high genetic variability. The gene that was most found blaOXA-10-like (n = 18), followed by blaKPC (n = 10) and blaNDM (n = 8). To our knowledge, this is the first report of blaOXA-10 in P. mirabilis in Brazil, as well as the first report of the occurrence of P. mirabilis co-carrying blaOXA-10/blaKPC and blaOXA-10/blaNDM. The blaNDM or blaKPC carrier isolates showed important virulence genes, such as ucaA (n = 8/44.4%), pbtA (n = 10/55.5%) and nrpG (n = 2/11.1%). However, in general, the non-carrier isolates of blaKPC and blaNDM showed a greater number of virulence genes when compared to the carrier group. CONCLUSION Clinical isolates of P. mirabilis, in addition to being multi-drug resistant, presented efficient virulence factors that can establish infection outside the gastrointestinal tract.
Collapse
|
73
|
Unraveling the Microbiome of Necrotizing Enterocolitis: Insights in Novel Microbial and Metabolomic Biomarkers. Microbiol Spectr 2021; 9:e0117621. [PMID: 34704805 PMCID: PMC8549755 DOI: 10.1128/spectrum.01176-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is among the most relevant gastrointestinal diseases affecting mostly prematurely born infants with low birth weight. While intestinal dysbiosis has been proposed as one of the possible factors involved in NEC pathogenesis, the role of the gut microbiota remains poorly understood. In this study, the gut microbiota of preterm infants was explored to highlight differences in the composition between infants affected by NEC and infants prior to NEC development. A large-scale gut microbiome analysis was performed, including 47 shotgun sequencing data sets generated in the framework of this study, along with 124 retrieved from publicly available repositories. Meta-analysis led to the identification of preterm community state types (PT-CSTs), which recur in healthy controls and NEC infants. Such analyses revealed an overgrowth of a range of opportunistic microbial species accompanying the loss of gut microbial biodiversity in NEC subjects. Moreover, longitudinal insights into preterm infants prior to NEC development indicated Clostridium neonatale and Clostridium perfringens species as potential biomarkers for predictive early diagnosis of this disease. Furthermore, functional investigation of the enzymatic reaction profiles associated with pre-NEC condition suggested DL-lactate as a putative metabolic biomarker for early detection of NEC onset. IMPORTANCE Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease occurring predominantly in premature infants whose etiology is still not fully understood. In this study, the analysis of infant fecal samples through shotgun metagenomics approaches revealed a marked reduction of the intestinal (bio)diversity and an overgrowth of (opportunistic) pathogens associated with the NEC development. In particular, dissection of the infant’s gut microbiome before NEC diagnosis highlighted the potential involvement of Clostridium genus members in the progression of NEC. Remarkably, our analyses highlighted a gastrointestinal DL-lactate accumulation among NEC patients that might represent a novel potential functional biomarker for the early diagnosis of NEC.
Collapse
|
74
|
The conserved serine transporter SdaC moonlights to enable self recognition. J Bacteriol 2021; 204:e0034721. [PMID: 34662238 DOI: 10.1128/jb.00347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells can use self recognition to achieve cooperative behaviors. Self-recognition genes are thought to principally evolve in tandem with partner self-recognition alleles. However, other constraints on protein evolution could exist. Here, we have identified an interaction outside of self-recognition loci that could constrain the sequence variation of a self-recognition protein. We show that during collective swarm expansion in Proteus mirabilis, self-recognition signaling co-opts SdaC, a serine transporter. Serine uptake is crucial for bacterial survival and colonization. Single-residue variants of SdaC reveal that self recognition requires an open conformation of the protein; serine transport is dispensable. A distant ortholog from Escherichia coli is sufficient for self recognition; however, a paralogous serine transporter, YhaO, is not. Thus, SdaC couples self recognition and serine transport, likely through a shared molecular interface. Self recognition proteins may follow the framework of a complex interaction network rather than an isolated two-protein system. Understanding molecular and ecological constraints on self-recognition proteins lays the groundwork for insights into the evolution of self recognition and emergent collective behaviors. Importance Bacteria can receive secret messages from kin during migration. For Proteus mirabilis, these messages are necessary for virulence in multi-species infections. We show that a serine transporter-conserved among gamma-enterobacteria- enables self recognition. Molecular co-option of nutrient uptake could limit the sequence variation of these message proteins. SdaC is the primary transporter for L-serine, a vital metabolite for colonization during disease. Unlike many self-recognition receptors, SdaC is sufficiently conserved between species to achieve recognition. The predicted open conformation is shared by transport and recognition. SdaC reveals the interdependence of communication and nutrient acquisition. As the broader interactions of self-recognition proteins are studied, features shared among microbial self-recognition systems, such as Dictyostelium spp. and Neurospora spp., could emerge.
Collapse
|
75
|
Identification of Three Novel PmGRI1 Genomic Resistance Islands and One Multidrug Resistant Hybrid Structure of Tn 7-like Transposon and PmGRI1 in Proteus mirabilis. Antibiotics (Basel) 2021; 10:antibiotics10101268. [PMID: 34680847 PMCID: PMC8532799 DOI: 10.3390/antibiotics10101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022] Open
Abstract
The widespread use of antibiotics in large-scale livestock production has led to serious antibiotic resistance. Proteus mirabilis is an important pathogenic bacterium on large-scale farms. Chromosomally localized mobilizable genetic elements (genomic islands) and mobile genetic elements (Tn7-like transposons) play an important role in the acquisition and transmission of resistance genes by P. mirabilis. To study the prevalence and resistance characteristics of antibiotic-resistant genomic islands in P. mirabilis of animal origin in China, we performed whole genome sequencing of P. mirabilis isolated from large-scale pig and chicken farms. Three new variants of PmGRI1 (HN31, YN8, and YN9), and a hybrid structure (HN2p) formed by the multidrug-resistant Tn7-like-HN2p transposon and a genomic island PmGRI1-HN2p, were identified from P. mirabilis. All variants underwent homologous recombination mediated by insertion sequence IS26. A genomic rearrangement in the chromosome between the Tn7-like-HN2p transposon and PmGRI1-HN2p occurred in HN2p. The heterozygous structure contained various antimicrobial resistance genes, including three copies of fluoroquinolone resistance gene qnrA1 and 16S rRNA methylase gene rmtB, which are rarely found in P. mirabilis. Our results highlight the structural genetic diversity of genomic islands by characterizing the novel variants of PmGRI1 and enrich the research base of multidrug resistance genomic islands.
Collapse
|
76
|
Use of Alternative Gelling Agents Reveals the Role of Rhamnolipids in Pseudomonas aeruginosa Surface Motility. Biomolecules 2021; 11:biom11101468. [PMID: 34680106 PMCID: PMC8533327 DOI: 10.3390/biom11101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a motile bacterium able to exhibit a social surface behaviour known as swarming motility. Swarming requires the polar flagellum of P. aeruginosa as well as the secretion of wetting agents to ease the spread across the surface. However, our knowledge on swarming is limited to observed phenotypes on agar-solidified media. To study the surface behaviour and the impact of wetting agents of P. aeruginosa on other surfaces, we assessed surface motility capabilities of the prototypical strain PA14 on semi-solid media solidified with alternative gelling agents, gellan gum and carrageenan. We found that, on these alternative surfaces, the characteristic dendritic spreading pattern of P. aeruginosa is drastically altered. One striking feature is the loss of dependence on rhamnolipids to spread effectively on plates solidified with these alternative gelling agents. Indeed, a rhlA-null mutant unable to produce its wetting agents still spreads effectively, albeit in a circular shape on both the gellan gum- and carrageenan-based media. Our data indicate that rhamnolipids do not have such a crucial role in achieving surface colonization of non-agar plates, suggesting a strong dependence on the physical properties of the tested surface. The use of alternative gelling agent provides new means to reveal unknown features of bacterial surface behaviour.
Collapse
|
77
|
Palusiak A. The Contribution of Polysaccharide Antigens From Clinical Proteus spp. and Klebsiella spp. Isolates to the Serological Cross-Reactions. Front Cell Infect Microbiol 2021; 11:707578. [PMID: 34513729 PMCID: PMC8428971 DOI: 10.3389/fcimb.2021.707578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Klebsiella spp. and Proteus spp. cause hospital-acquired urinary tract infections (UTIs), which are often related to the use of catheters. To create a vaccine preventing UTI, immunogenic bacterial antigens with common epitopes are still being looked for. In this work, the role of polysaccharide antigens of four Klebsiella spp. and eight Proteus spp. strains in serological cross-reactions with specific antisera was examined. Enzyme-linked immunosorbent assay (ELISA), Western blotting, and silver staining by Tsai method were performed. The Klebsiella and Proteus spp. LPSs and cells were used as antigens. Polyclonal rabbit sera specific to Klebsiella oxytoca 0.023 and 0.062 strains and four Klebsiella spp. LPSs were obtained. The ELISA and Western blotting results showed the strongest cross-reactions occurring between lipopolysaccharides (LPSs) from four Klebsiella strains and P. vulgaris O42 antiserum. The silver-staining procedure revealed the patterns typical of both slow- and fast-migrating mass species of the Klebsiella LPSs. The Klebsiella spp. antigens also cross-reacted with four P. penneri antisera, and most of the reactions were observed as low-migrating patterns. From two K. oxytoca antisera obtained in this work, only one, the K. oxytoca 0.062 antiserum, cross-reacted with satisfactory strength with P. penneri LPSs (19, 22, and 60). Obtaining cross-reactions between the antigens of Klebsiella strains and Proteus antisera and in the opposite systems is important for proving the immunogenic role of polysaccharide antigens in triggering the immunological response.
Collapse
Affiliation(s)
- Agata Palusiak
- Department of Biology of Bacteria, Laboratory of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, Banacha, Poland
| |
Collapse
|
78
|
Costea RM, Maniu I, Dobrota L, Pérez-Elvira R, Agudo M, Oltra-Cucarella J, Dragomir A, Bacilă C, Banciu A, Banciu DD, Cipăian CR, Crișan R, Neamtu B. Exploring Inflammatory Status in Febrile Seizures Associated with Urinary Tract Infections: A Two-Step Cluster Approach. Brain Sci 2021; 11:1168. [PMID: 34573189 PMCID: PMC8465625 DOI: 10.3390/brainsci11091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are considered common facilitating factors, along with other infections, in triggering febrile seizures (FS). The main purpose of our study was to identify specific inflammatory patterns of UTI cases from other infections in a specific cluster, using a combination of inflammatory biomarkers to differentiate UTIs from other bacterial diseases triggering FS. METHOD This prospective study included a number of 136 patients with 197 distinct FS events, from patients hospitalized in the Pediatric Clinical Hospital Sibiu, among which 10.2% were diagnosed with UTIs. RESULTS In one-third of the patients with UTIs (20 cases), the symptoms were limited to fever and FS. Using two-step cluster analysis, a distinct UTI inflammatory pattern has emerged: highest platelet values (PLT), median value 331 × 103/mm3 and intermediate C-reactive protein (CRP), median value 15 mg/dL, platelet distribution width (PDW), median value 9.65%, platelet-large cell ratio (P-LCR), median value 14.45%, mean platelet volume (MPV), median value 8.60 fL and neutrophil-to-lymphocyte values (NLR), median value 3.64. Furthermore, higher PDW (median value 12.25%), P-LCR (median value 28.55%), MPV (median value 10.40 fL), CRP (median value 74.00 mg/dL) and NLR values (median value 4.11) were associated mainly (85.7%) with bacterial lower respiratory infections. UTIs were highly unlikely in these patients with significantly increased CRP values and normal values of platelet indices. CONCLUSIONS Considering the nonspecific clinical picture of UTIs at an early age, to optimize the management of FS, a fast diagnosis of UTI is mandatory. The analysis of the inflammatory biomarker clusters (rather than individual parameters) correlated with urine leukocyte and nitrite stick evaluation for specific age groups could help in identifying even oligosymptomatic UTIs patients. The study limitation (20 UTI cases) recommends future multicentric trials on larger datasets to validate the model.
Collapse
Affiliation(s)
- Raluca Maria Costea
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania;
- Pediatric Neurology Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
| | - Ionela Maniu
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania;
- Research Center in Informatics and Information Technology, Mathematics and Informatics Department, Faculty of Sciences, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Luminita Dobrota
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
| | - Rubén Pérez-Elvira
- Neuropsychophysiology Laboratory, NEPSA Rehabilitación Neurológica, 37003 Salamanca, Spain; (R.P.-E.); (M.A.)
| | - Maria Agudo
- Neuropsychophysiology Laboratory, NEPSA Rehabilitación Neurológica, 37003 Salamanca, Spain; (R.P.-E.); (M.A.)
| | - Javier Oltra-Cucarella
- Department of Health Psychology, Universidad Miguel Hernández de Elche, 03202 Elche, Spain;
| | - Andrei Dragomir
- N.1 Institute for Health, National University of Singapore, Singapore 117575, Singapore;
| | - Ciprian Bacilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
| | - Adela Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politechnic University of Bucharest, 011061 Bucharest, Romania; (A.B.); (D.D.B.)
| | - Daniel Dumitru Banciu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politechnic University of Bucharest, 011061 Bucharest, Romania; (A.B.); (D.D.B.)
| | - Călin Remus Cipăian
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
| | - Roxana Crișan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
| | - Bogdan Neamtu
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania;
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania; (L.D.); (C.B.); (C.R.C.); (R.C.)
- Computer and Electrical Engineering Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
79
|
Ahmad S, Cutrone M, Ikram S, Yousaf A. Septic discitis and septic pulmonary emboli: rare complications of Proteus mirabilis urinary tract infection. BMJ Case Rep 2021; 14:e243785. [PMID: 34426427 PMCID: PMC8383856 DOI: 10.1136/bcr-2021-243785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Proteus mirabilis is a gram-negative bacterium frequently considered a pathogen of the urinary tract. Septic discitis and septic pulmonary emboli resulting from P. mirabilis urosepsis is a rare phenomenon. We report a 39-year-old woman who was admitted to our hospital with a complicated urinary tract infection resulting in bacteraemia, septic discitis, paraspinal abscesses and septic emboli. She was treated with a prolonged course of intravenous antibiotics resulting in the clinical resolution of her symptoms. Based on our PubMed search of the English literature, this is only the second reported case of septic discitis caused by P. mirabilis This paper illustrates that physicians should include septic discitis caused by P. mirabilis as a possible aetiology of low back pain in patients with active or recently treated urinary tract infection. Additionally, this article discusses the pathogenesis and other complications resulting from P. mirabilis bacteraemia.
Collapse
Affiliation(s)
- Soban Ahmad
- Internal Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Madeleine Cutrone
- Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Sundus Ikram
- General Surgery, SEGi University College Kota Damansara, Greenville, South Carolina, USA
| | - Amman Yousaf
- Internal Medicine, McLaren Health Care Corp, Flint, Michigan, USA
| |
Collapse
|
80
|
A Novel SXT/R391 Integrative and Conjugative Element Carries Two Copies of the blaNDM-1 Gene in Proteus mirabilis. mSphere 2021; 6:e0058821. [PMID: 34378988 PMCID: PMC8386438 DOI: 10.1128/msphere.00588-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rapid spread of the blaNDM-1 gene is a major public health concern. Here, we describe the multidrug-resistant Proteus mirabilis strain XH1653, which contains a novel SXT/R391 integrative and conjugative element (ICE), harboring two tandem copies of blaNDM-1 and 21 other resistance genes. XH1653 was resistant to all antibiotics tested, apart from aztreonam. Whole-genome data revealed that two copies of blaNDM-1 embedded in the ISCR1 element are located in HS4 of the novel ICE, which we named ICEPmiChnXH1653. A circular intermediate of ICEPmiChnXH1653 was detected by PCR, and conjugation experiments showed that the ICE can be transferred to the Escherichia coli strain EC600 with frequencies of 1.5 × 10-7. In the recipient strain, the ICE exhibited a higher excision frequency and extrachromosomal copy number than the ICE in the donor strain. We also observed that the presence of ICEPmiChnXH1653 has a negative impact on bacterial fitness and leads to changes in the transcriptome of the host. In vitro evolution experiments under nonselective conditions showed that the two tandem copies of the ISCR1 element and the ISVsa3 element can be lost during repeated laboratory passage. This is the first report of a novel SXT/R391 ICE carrying two tandem copies of blaNDM-1, which also illustrates the role that ICEs may play as platforms for the accumulation and transmission of antibiotic resistance genes. IMPORTANCE The occurrence of carbapenemase-producing Proteus mirabilis, especially those strains producing NDM-1 and its variants, is a major public health concern worldwide. The integrative conjugative element (ICE) plays an important role in horizontal acquisition of resistance genes. In this study, we characterized a novel SXT/R391 ICE from a clinical P. mirabilis isolate that we named ICEPmiChnXH1653, which contains two tandem copies of the carbapenemase gene blaNDM-1. We performed an integrative approach to gain insights into different aspects of ICEPmiChnXH1653 evolution and biology and observed that ICEPmiChnXH1653 obtained the carbapenemase gene blaNDM-1 by ISCR1-mediated homologous recombination. Our study reveals that the transmission of blaNDM-1 by ISCR1 elements or ICEs may be an important contributor to the carbapenem resistance development across species, which could improve our understanding of horizontal gene transfer in clinical environments.
Collapse
|
81
|
Stolarek P, Bernat P, Szczerbiec D, Różalski A. Phospholipids and Fatty Acids Affect the Colonization of Urological Catheters by Proteus mirabilis. Int J Mol Sci 2021; 22:ijms22168452. [PMID: 34445157 PMCID: PMC8395112 DOI: 10.3390/ijms22168452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Proteus mirabilis-mediated CAUTIs are usually initiated by the adherence of bacteria to a urinary catheter surface. In this paper, three isolates of different origin and exhibiting different adhesion abilities were investigated in search of any changes in lipidome components which might contribute to P. mirabilis adhesion to catheters. Using GC-MS and LC-MS/MS techniques, 21 fatty acids and 27 phospholipids were identified in the examined cells. The comparison of the profiles of phospholipids and fatty acids obtained for catheter-attached cells and planktonic cells of the pathogens indicated C11:0 and PE 37:2 levels as values which could be related to P. mirabilis adhesion to a catheter, as well as cis C16:1, PE 32:0, PE 33:0, PE 38:2, PG 33:1, PG 34:0, PE 30:1, PE 32:1 and PG 30:2 levels as values which could be associated with cell hydrophobicity. Based on DiBAC4 (3) fluorescence intensity and an affinity to p-xylene, it was found that the inner membrane depolarization, as well as strong cell-surface hydrophobicity, were important for P. mirabilis adhesion to a silicone catheter. A generalized polarization of Laurdan showed lower values for P. mirabilis cells attached to the catheter surface than for planktonic cells, suggesting lower packing density of membrane components of the adherent cells compared with tightly packed, stiffened membranes of the planktonic cells. Taken together, these data indicate that high surface hydrophobicity, fluidization and depolarization of P. mirabilis cell membranes enable colonization of a silicone urinary catheter surface.
Collapse
Affiliation(s)
- Paulina Stolarek
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
- Correspondence: ; Tel.: +48-42-635-43-24; Fax: +48-42-665-58-18
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
| |
Collapse
|
82
|
Chinnam BK, Nelapati S, Tumati SR, Bobbadi S, Chaitanya Peddada V, Bodempudi B. Detection of β-Lactamase-Producing Proteus mirabilis Strains of Animal Origin in Andhra Pradesh, India and Their Genetic Diversity. J Food Prot 2021; 84:1374-1379. [PMID: 33725112 DOI: 10.4315/jfp-20-399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/15/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Proteus mirabilis is abundant in soil and water. Although this bacterium is part of the normal human intestinal flora, it can cause serious infections in humans, including complicated urinary tract infections. This pathogen is also commonly associated with multidrug resistance. In the present study, analysis of 1,093 samples from foods of animal origin and animal intestinal samples recovered 232 P. mirabilis isolates identified by PCR assay. Of these 232 isolates, 72 produced β-lactamase (determined by both phenotypic and genotypic methods), with the highest prevalence in poultry cloacal swabs (11.82%) followed by mutton (9.18%), khoa (6.32%), pork (5.63%), pig rectal swabs (5.52%), beef (5.45%), and chicken (5.13%) but none from sheep rectal swabs and bovine rectal swabs. Among β-lactamase genes, blaTEM was the predominant gene detected (59 isolates) followed by blaOXA (11 isolates), blaSHV (5 isolates), blaFOX (5 isolates), blaCIT (4 isolates), blaCTX-M1 and blaCTX-M9 (2 isolates each) and blaCTX-M2, blaDHA, and blaEBC (1 isolate each). None of the isolates carried blaACC, blaMOX, or carbapenemase genes (blaVIM, blaIMP, blaKPC, and blaNDM-1). Dendrogram analysis of enterobacterial repetitive intergenic consensus sequences and repetitive extragenic palindromic sequences obtained with PCR analysis of β-lactamase-producing isolates revealed 63 isolates, but 9 isolates did not yield bands. The analysis revealed that 6.58% of the samples had β-lactamase-producing P. mirabilis isolates that may affect food safety and contaminate the environment. Further genotyping revealed the genetic relationships between isolates of different origin. These findings emphasize the need for careful use of antibiotics to control the spread of β-lactamase-producing bacteria. HIGHLIGHTS
Collapse
Affiliation(s)
- Bindu Kiranmayi Chinnam
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| | - Subhashini Nelapati
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| | - Srinivasa Rao Tumati
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| | - Suresh Bobbadi
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| | - Venkata Chaitanya Peddada
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| | - Bhavana Bodempudi
- Department of Veterinary Public Health & Epidemiology, NTR College of Veterinary Science, Gannavaram, Krishna District 521102, Andhra Pradesh, India
| |
Collapse
|
83
|
Gazel D, Demirbakan H, Erinmez M. In vitro activity of hyperthermia on swarming motility and antimicrobial susceptibility profiles of Proteus mirabilis isolates. Int J Hyperthermia 2021; 38:1002-1012. [PMID: 34180748 DOI: 10.1080/02656736.2021.1943546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM Swarming motility is a virulence factor for Proteus mirabilis and is a coordinated multicellular movement of bacteria. In this study, we investigated the inhibitory effect of hyperthermia on bacterial swarming motility and antimicrobial resistance. METHODS Thirty-one P. mirabilis isolates were included in the study. Seven inoculated agar plates were incubated inside incubators with increasing temperature levels: at 36 °C (control) and 40-45 °C. On the next day, inhibition of swarming was evaluated and minimum paralyzing temperature (MPT) values were determined. An antimicrobial susceptibility test (antibiogram) is performed by exposing bacteria to increasing concentrations of antibiotics, in vitro. Thus, we used the Kirby-Bauer disk diffusion test as a screening method to analyze the antibiogram profiles of the isolates at 36 °C and 42 °C. Finally, a time-kill assay was performed to analyze the killing effect of hyperthermia (42 °C) on planktonic bacteria, in combination with the antibiotic meropenem at the first and third hours. A Wilcoxon signed-rank test was used to compare the killing effects of meropenem, hyperthermia and their combinations. RESULTS The median MPT value was determined as 44 °C. In the disk diffusion assay, susceptibility development was observed in 94% of isolates for at least one antibiotic. In the time-kill assay, we observed a significant killing effect of hyperthermia in combination with meropenem. Under the microscope, we observed the formation of spherical cells by the effect of heat. CONCLUSION We conclude that these findings might be useful when employing the hyperthermia method to treat infectious diseases caused by P. mirabilis in the future.
Collapse
Affiliation(s)
- Deniz Gazel
- Faculty of Medicine, Department of Medical Microbiology, Gaziantep University, Gaziantep, Turkey
| | - Hadiye Demirbakan
- Faculty of Medicine, Department of Medical Microbiology, Sanko University, Gaziantep, Turkey
| | - Mehmet Erinmez
- Faculty of Medicine, Department of Medical Microbiology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
84
|
Klein I, Sarkar S, Gutierrez-Aceves J, Levi N. Photothermal nanoparticles for ablation of bacteria associated with kidney stones. Int J Hyperthermia 2021; 38:760-770. [PMID: 33971781 DOI: 10.1080/02656736.2021.1916099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To determine whether photothermal polymer nanoparticles (NPs) can interface with bacteria associated with kidney stones, generate heat when stimulated with near infrared (NIR) light, and aid in reducing bacterial burden. METHODS Two types of kidney stones, artificial, and those removed during percutaneous nephrolithotomy (PCNL), were inoculated with Escherichia coli (E. coli) and then incubated with NPs composed of FITC-labeled Poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']-dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). Association of the PCPDTBSe NPs was evaluated using fluorescence microscopy. Infected stones were incubated with NPs and exposed to 800 nm light to generate temperature increases from 25.4 to 68.6 °C on the stones. Following photothermal treatment, the stones were homogenized and the bacteria was enumerated via colony counting assays to evaluate the bactericidal effect. The photothermal effect was also evaluated using scanning electron microscopy of the treated biofilms. RESULTS Both kidney stone types sequestered E. coli. Control stones and stones treated with laser only had growth of numerous bacterial colonies, while stones exposed to NPs and laser grew significantly less, or none (p = 0.02). CONCLUSIONS The polymer NPs interface with E. coli on artificial and patient-derived kidney stones, and they can impart a bactericidal effect, when stimulated with NIR to generate heat. This technique may possibly be extended to treating infected kidney stones in patients.
Collapse
Affiliation(s)
- Ilan Klein
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
85
|
Miguéis SDC, Tavares APM, Martins GV, Frasco MF, Sales MGF. Biosensors for European Zoonotic Agents: A Current Portuguese Perspective. SENSORS (BASEL, SWITZERLAND) 2021; 21:4547. [PMID: 34283108 PMCID: PMC8271446 DOI: 10.3390/s21134547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/24/2023]
Abstract
Emerging and recurrent outbreaks caused by zoonotic agents pose a public health risk. They result in morbidity and mortality in humans and significant losses in the livestock and food industries. This highlights the need for rapid surveillance methods. Despite the high reliability of conventional pathogen detection methods, they have high detection limits and are time-consuming and not suitable for on-site analysis. Furthermore, the unpredictable spread of zoonotic infections due to a complex combination of risk factors urges the development of innovative technologies to overcome current limitations in early warning and detection. Biosensing, in particular, is highlighted here, as it offers rapid and cost-effective devices for use at the site of infection while increasing the sensitivity of detection. Portuguese research in biosensors for zoonotic pathogens is the focus of this review. This branch of research produces exciting and innovative devices for the study of the most widespread pathogenic bacteria. The studies presented here relate to the different classes of pathogens whose characteristics and routes of infection are also described. Many advances have been made in recent years, and Portuguese research teams have increased publications in this field. However, biosensing still needs to be extended to other pathogens, including potentially pandemic viruses. In addition, the use of biosensors as part of routine diagnostics in hospitals for humans, in animal infections for veterinary medicine, and food control has not yet been achieved. Therefore, a convergence of Portuguese efforts with global studies on biosensors to control emerging zoonotic diseases is foreseen for the future.
Collapse
Affiliation(s)
- Samuel da Costa Miguéis
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, 1169-203 Lisboa, Portugal
| | - Ana P. M. Tavares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Gabriela V. Martins
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela F. Frasco
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maria Goreti Ferreira Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, 4249-015 Porto, Portugal; (A.P.M.T.); (G.V.M.); (M.F.F.)
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
86
|
Lei CW, Yao TG, Yan J, Li BY, Wang XC, Zhang Y, Gao YF, Wang HN. Identification of Proteus genomic island 2 variants in two clonal Proteus mirabilis isolates with coexistence of a novel genomic resistance island PmGRI1. J Antimicrob Chemother 2021; 75:2503-2507. [PMID: 32516381 DOI: 10.1093/jac/dkaa215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To characterize the MDR genomic islands (GIs) in Proteus mirabilis isolates. METHODS Two P. mirabilis strains (C55 and C74) of chicken origin were subjected to WGS (HiSeq and PacBio) and the MDR GIs were determined. RESULTS P. mirabilis strains C55 and C74 are clonal strains and harbour different Proteus genomic island 2 (PGI2) variants (PGI2-C55 and PGI2-C74). The MDR region of PGI2-C55 is composed of two class 1 integrons, separated by a region containing seven copies of IS26 and eight resistance genes, including blaCTX-M-3 and fosA3. The region in PGI2-C74 is a complete In4-type class 1 integron, harbouring five gene cassettes (dfrA16, blaCARB-2, aadA2, cmlA1 and aadA1). In addition, C55 and C74 carry an SXT/R391 integrative and conjugative element (ICEPmiJpn1), harbouring blaCMY-2, and a novel 50.46 kb genomic resistance island named PmGRI1-C55. PmGRI1-C55 harbours a tyrosine-type recombinase/integrase that might be responsible for the integration of PmGRI1-C55 at the 3' end of tRNA-Sec. It carries an MDR region derived from Tn2670 that harbours a Tn21 region and carries six resistance genes (catA1, blaTEM-1b, aphA1a, sul2, strA and strB). Blast analysis showed diverse PmGRI1 variants in P. mirabilis and Escherichia coli strains. CONCLUSIONS The finding of the two new PGI2 variants highlights that the homologous recombination between shared components of class 1 integrons and transposition by IS26 promote the diversity of MDR regions in PGI2. PmGRI1 is a new GI that carries various resistance genes identified in P. mirabilis and E. coli.
Collapse
Affiliation(s)
- Chang-Wei Lei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Tian-Ge Yao
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Jia Yan
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Bo-Yang Li
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xue-Chun Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Yu Zhang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Yu-Feng Gao
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hong-Ning Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
87
|
Yu Y, Singh H, Tsitrin T, Bekele S, Lin YH, Sikorski P, Moncera KJ, Torralba MG, Morrow L, Wolcott R, Nelson KE, Pieper R. Urethral Catheter Biofilms Reveal Plasticity in Bacterial Composition and Metabolism and Withstand Host Immune Defenses in Hypoxic Environment. Front Med (Lausanne) 2021; 8:667462. [PMID: 34249966 PMCID: PMC8260951 DOI: 10.3389/fmed.2021.667462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Yi-Han Lin
- J. Craig Venter Institute, Rockville, MD, United States
| | | | | | | | - Lisa Morrow
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Randall Wolcott
- Southwest Regional Wound Care Center, Lubbock, TX, United States
| | - Karen E. Nelson
- J. Craig Venter Institute, Rockville, MD, United States
- J. Craig Venter Institute, La Jolla, CA, United States
| | | |
Collapse
|
88
|
Bacterial Distribution, Biogenic Amine Contents, and Functionalities of Traditionally Made Doenjang, a Long-Term Fermented Soybean Food, from Different Areas of Korea. Microorganisms 2021; 9:microorganisms9071348. [PMID: 34206411 PMCID: PMC8304856 DOI: 10.3390/microorganisms9071348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Since doenjang quality depends on the bacterial composition, which ambient bacteria in the environment and production conditions influence, a complete understanding of the bacteria community in traditionally madetraditionally made doenjang (TMD) from different regions is needed. We aimed to investigate the bacteria composition and quality of TMD in the following areas: Chonbuk (CB), Chonnam (CN), Kyungsang (KS), Kangwon (KW), Chungchung (CC) provinces, and Jeju island (JJ) of Korea. Twenty-nine TMD samples from different regions were used to assess biogenic amine contents, bacteria composition using next-generation methods, and metabolic functions of the bacteria using Picrust2. Bacillus spp. were isolated, and their antioxidant and fibrinolytic activities were determined. Most TMD contained high amounts of beneficial bacteria (Bacillus, Lactobacillus, Pediococcus and Weissella). However, some KS samples contained harmful bacteria (Cronobacter, Proteus and Acinetobacter) and less beneficial B. velezensis bacteria. There was no similarity among the regional groups, and each TMD showed a different bacteria composition. Shannon index, α-diversity index, was lower in TMD from JJ and CB than the other areas, but there was no β-diversity among TMD from the six area groups. Picrust2 analysis revealed that the functional potential for arachidonic acid metabolism was lowest in JJ and CN, that for supporting insulin action was highest in KS and JJ, and that for carbohydrate digestion and absorption was lowest in CB and JJ among all groups (p < 0.05) according to the Kyoto Encyclopedia of Genes and Genomes Orthology. Histamine contents were lower in CN and CC, and tyramine contents did not differ significantly. B. velezensis, B. subtilis, B. licheniformis, B. siamensis, and B. amyloliquefaciens were isolated from TMD. None of the isolated Bacillus spp. contained the B. cereus gene. B. subtilis from CN had the highest fibrinolytic activity, and B. velezensis from CB had the highest antioxidant activity. In conclusion, TMD mainly contained various Bacillus spp., and the predominant one was B. velezensis, which had antioxidant and fibrinolytic activity regardless of the regional origin.
Collapse
|
89
|
Abstract
Gram-negative bacteremia is a devastating public health threat, with high mortality in vulnerable populations and significant costs to the global economy. Concerningly, rates of both Gram-negative bacteremia and antimicrobial resistance in the causative species are increasing. Gram-negative bacteremia develops in three phases. First, bacteria invade or colonize initial sites of infection. Second, bacteria overcome host barriers, such as immune responses, and disseminate from initial body sites to the bloodstream. Third, bacteria adapt to survive in the blood and blood-filtering organs. To develop new therapies, it is critical to define species-specific and multispecies fitness factors required for bacteremia in model systems that are relevant to human infection. A small subset of species is responsible for the majority of Gram-negative bacteremia cases, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii The few bacteremia fitness factors identified in these prominent Gram-negative species demonstrate shared and unique pathogenic mechanisms at each phase of bacteremia progression. Capsule production, adhesins, and metabolic flexibility are common mediators, whereas only some species utilize toxins. This review provides an overview of Gram-negative bacteremia, compares animal models for bacteremia, and discusses prevalent Gram-negative bacteremia species.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
90
|
Gresse R, Chaucheyras-Durand F, Denis S, Beaumont M, Van de Wiele T, Forano E, Blanquet-Diot S. Weaning-associated feed deprivation stress causes microbiota disruptions in a novel mucin-containing in vitro model of the piglet colon (MPigut-IVM). J Anim Sci Biotechnol 2021; 12:75. [PMID: 34078434 PMCID: PMC8170946 DOI: 10.1186/s40104-021-00584-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere. RESULTS Our results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production. CONCLUSIONS The MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.
Collapse
Affiliation(s)
- Raphaële Gresse
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
- Lallemand SAS, F-31702 Blagnac, Cedex France
| | - Sylvain Denis
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France
| | - Tom Van de Wiele
- Ghent University, Center for Microbial Ecology and Technology, B-9000 Ghent, Belgium
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
91
|
CRISPR-Cas systems in Proteus mirabilis. INFECTION GENETICS AND EVOLUTION 2021; 92:104881. [PMID: 33905883 DOI: 10.1016/j.meegid.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a bacterial defense mechanism against bacteriophages composed of two different parts: the CRISPR array and the Cas genes. The spacer acquisition is done by the adaptation module consisting of the hallmark Cas1 Cas2 proteins, which inserts new spacers into the CRISPR array. Here we aimed to describe the CRISPR-Cas system in Proteus mirabilis (P. mirabilis) isolates. CRISPR loci was observed in 30 genomic contents of 109 P. mirabilis isolates that each locus was consisted of two CRISPR arrays and each array had a different preserved leader sequences. Only the type I-E CRISPR-Cas system was common in these isolates. The source of the spacers was identified, including phages and prophages. CRISPR spacer origin analysis also identified a conserved PAM sequence of 5'-AAG-3' nucleotide stretch. Through collecting spacers, CRISPR arrays of P. mirabilis isolates were expanded mostly by integration of bacteriophageal source of spacers. This study shows novel findings in the area of the P-mirabilis CRISPR-Cas system. In this regard, among analyzed genome of P. mirabilis isolates, Class I CRISR-Cas systems were dominant, and all belonged to type I-E. In the flanks of the CRISPR, some other elements with regulatory role were also found. A motif of 11 nt size was found to be preserved among the analyzed genome. We believe that it might has a CRISPR-Cas system transcription facilitator by targeting the Rho element.
Collapse
|
92
|
Zhang H, Wang H, Ma Z, Liu Y, Wu Z, Xu H, Qiao M. Characterization of Proteus vulgaris Strain P3M, a Foodborne Multidrug-Resistant Bacterium Isolated from Penaeus vannamei in China. Microb Drug Resist 2021; 27:1360-1370. [PMID: 33877915 DOI: 10.1089/mdr.2020.0502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteus vulgaris is an important foodborne opportunistic pathogen, both environmentally and clinically. The use of appropriate antibiotics has significant therapeutic effects, but has led to the emergence and spread of drug-resistant strains. In this study, a P. vulgaris strain, designated "P3M," was isolated from Penaeus vannamei in Tianjin, China. The whole genome of P3M was sequenced, generating detailed information, including the key genes involved in important metabolic pathways and their physiological functions. A total of 218 antibiotic resistance genes (ARGs) were predicted in the genome. The determination of various minimum inhibitory concentrations indicated that P3M is a multidrug-resistant (MDR) bacterium, with significant resistance to 16 antibiotics in seven categories. Determination of fractional inhibitory concentration index showed that the combination of ciprofloxacin plus tetracycline exhibited synergistic antimicrobial activity. Bioinformatics and phylogenetic analyses detected the presence of two two-component systems that mediate multidrug resistance and several mobile genetic elements involved in the horizontal transfer of ARGs in P3M. P. vulgaris strains represent a serious challenge to clinicians and infection control teams for its ubiquity worldwide and close relevance with human life. To the best of our knowledge, we report the first isolation and characterization of an important foodborne MDR P. vulgaris strain, and this study will provide necessary theoretical basis for the selection and clinical use of the appropriate antibiotics.
Collapse
Affiliation(s)
- Hongyang Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hesuiyuan Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
93
|
Chong SM, Heng Y, Yeong CYF. Pyelonephritis and Cystic Endometrial Hyperplasia in a Captive Sunda Pangolin (Manis javanica). J Comp Pathol 2021; 184:101-105. [PMID: 33894871 DOI: 10.1016/j.jcpa.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/12/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
The Sunda pangolin (Manis javanica) is one of the most trafficked animal species globally, and is listed as Critically Endangered by the IUCN. There is limited information on reproductive biology or pathology of this species. We now document the clinical and pathological features of pyelonephritis and cystic endometrial hyperplasia in one of these animals. Ultrasonographic examination revealed pathological changes in the kidneys and uterus. On histopathological examination, there was marked interstitial infiltration of macrophages, neutrophils and lymphocytes in kidney tissue, fibrinonecrotic ureteritis and mild endometrial hyperplasia. This first report of these urogenital lesions in this species will be valuable for the conduct of health and reproductive assessments of the Sunda pangolin, which inform conservation and ex-situ management of this species.
Collapse
Affiliation(s)
- Shin M Chong
- Conservation, Research & Veterinary Department, Wildlife Reserves Singapore, Singapore.
| | - Yirui Heng
- Conservation, Research & Veterinary Department, Wildlife Reserves Singapore, Singapore
| | | |
Collapse
|
94
|
Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T. An investigation of the impact of triclosan adaptation on Proteus mirabilis clinical isolates from an Egyptian university hospital. Braz J Microbiol 2021; 52:927-937. [PMID: 33826115 DOI: 10.1007/s42770-021-00485-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance is a main threat to the public health. It is established that the overuse and misuse of antibiotics are highly contributing to antibiotic resistance. However, the impact of nonantibiotic antimicrobial agents like biocides on antibiotic resistance is currently investigated and studied. Triclosan (TCS) is a broad-spectrum antibacterial agent widely used as antiseptic and disinfectant. In this study, we aimed to evaluate the effect of exposure of Proteus mirabilis clinical isolates to sublethal concentrations of TCS on their antibiotic susceptibility, membrane characteristics, efflux activity, morphology, and lipid profile. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of TCS were determined for 31 P. mirabilis clinical isolates. The tested isolates were adapted to increasing sublethal concentrations of TCS. The MICs of 16 antibiotics were determined before and after adaptation. Membrane characteristics, efflux activity, ultrastructure, and lipid profile of the tested isolates were examined before and after adaptation. Most adapted P. mirabilis isolates showed increased antibiotic resistance, lower membrane integrity, lower outer and inner membrane permeability, and higher membrane depolarization. Nonsignificant change in membrane potential and lipid profile was found in adapted cells. Various morphological changes and enhanced efflux activity was noticed after adaptation. The findings of the current study suggest that the extensive usage of TCS at sublethal concentrations could contribute to the emergence of antibiotic resistance in P. mirabilis clinical isolates. TCS could induce changes in the bacterial membrane properties and increase the efflux activity and in turn decrease its susceptibility to antibiotics which would represent a public health risk.
Collapse
Affiliation(s)
- Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Fatma Sonbol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tarek Elbanna
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
95
|
Genomes of Gut Bacteria from Nasonia Wasps Shed Light on Phylosymbiosis and Microbe-Assisted Hybrid Breakdown. mSystems 2021; 6:6/2/e01342-20. [PMID: 33824199 PMCID: PMC8547009 DOI: 10.1128/msystems.01342-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterium-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterium-assisted lethality in hybrids are (i) do the Nasonia bacterial genomes differ from other animal isolates and (ii) are the hybrid bacterial genomes the same as those in the parental species? Here, we report the cultivation, whole-genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis. Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and that, when grown in coculture, Proteus mirabilis significantly outcompetes Providencia rettgeri. Providencia rettgeri genomes from Nasonia are similar to each other and more divergent from pathogenic, human associates. Proteus mirabilis from Nasonia vitripennis, Nasonia giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown. IMPORTANCE Animal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species and host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus, which contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to those in parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.
Collapse
|
96
|
Czerwonka G, Gmiter D, Durlik-Popińska K. Draft Genome of Proteus mirabilis Serogroup O18 Elaborating Phosphocholine-Decorated O Antigen. Front Cell Infect Microbiol 2021; 11:620010. [PMID: 33842384 PMCID: PMC8027243 DOI: 10.3389/fcimb.2021.620010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is a pathogenic, Gram-negative, rod-shaped bacterium that causes ascending urinary tract infections. Swarming motility, urease production, biofilm formation, and the properties of its lipopolysaccharide (LPS) are all factors that contribute to the virulence of this bacterium. Uniquely, members of the O18 serogroup elaborate LPS molecules capped with O antigen polymers built of pentasaccharide repeats; these repeats are modified with a phosphocholine (ChoP) moiety attached to the proximal sugar of each O unit. Decoration of the LPS with ChoP is an important surface modification of many pathogenic and commensal bacteria. The presence of ChoP on the bacterial envelope is correlated with pathogenicity, as decoration with ChoP plays a role in bacterial adhesion to mucosal surfaces, resistance to antimicrobial peptides and sensitivity to complement-mediated killing in several species. The genome of P. mirabilis O18 is 3.98 Mb in size, containing 3,762 protein-coding sequences and an overall GC content of 38.7%. Annotation performed using the RAST Annotation Server revealed genes associated with choline phosphorylation, uptake and transfer. Moreover, amino acid sequence alignment of the translated licC gene revealed it to be homologous to LicC from Streptococcus pneumoniae encoding CTP:phosphocholine cytidylyltransferase. Recognized homologs are located in the O antigen gene clusters of Proteus species, near the wzx gene encoding the O antigen flippase, which translocates lipid-linked O units across the inner membrane. This study reveals the genes potentially engaged in LPS decoration with ChoP in P. mirabilis O18.
Collapse
Affiliation(s)
- Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Dawid Gmiter
- Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | |
Collapse
|
97
|
Yuan F, Huang Z, Yang T, Wang G, Li P, Yang B, Li J. Pathogenesis of Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Urol Int 2021; 105:354-361. [PMID: 33691318 DOI: 10.1159/000514097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/26/2020] [Indexed: 11/19/2022]
Abstract
Proteus mirabilis (PM) is a Gram-negative rod-shaped bacterium and widely exists in the natural environment, and it is most noted for its swarming motility and urease activity. PM is the main pathogen causing complicated urinary tract infections (UTIs), especially catheter-associated urinary tract infections. Clinically, PM can form a crystalline biofilm on the outer surface and inner cavity of the urethral indwelling catheter owing to its ureolytic biomineralization. This leads to catheter encrustation and blockage and, in most cases, is accompanied by urine retention and ascending UTI, causing cystitis, pyelonephritis, and the development of bladder or kidney stones, or even fatal complications such as septicemia and endotoxic shock. In this review, we discuss how PM is mediated by a catheter into the urethra, bladder, and then rose to the kidney causing UTI and the main virulence factors associated with different stages of infection, including flagella, pili or adhesins, urease, hemolysin, metal intake, and immune escape, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ziye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bowei Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China,
| |
Collapse
|
98
|
Identification of a novel genomic resistance island PmGRI1-STP3 and an SXT/R391 integrative conjugative element in Proteus mirabilis of swine origin in China. J Glob Antimicrob Resist 2021; 25:77-81. [PMID: 33667705 DOI: 10.1016/j.jgar.2021.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/27/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to determine the genetic environment of antimicrobial resistance genes in Proteus mirabilis strain STP3 isolated from a diarrhoeic pig on a swine farm in Sichuan Province, China. METHODS Strain STP3 was subjected to antimicrobial susceptibility testing. Illumina MiSeq (200× coverage) and Nanopore PromethION (100× coverage) platforms were used for genome sequencing. A conjugation experiment was performed to determine the transferability and stability of antimicrobial resistance genes in this strain. RESULTS The assembled circular genome of P. mirabilis STP3 was 4 115 975 bp with a GC content of 39.58%; no plasmid sequence was detected. A novel genomic resistance island (PmGRI1-STP3) and an SXT/R391 integrative conjugative element (ICE) variant (ICEPmiChnSTP3) were characterised in P. mirabilis STP3. PmGRI1-STP3 of 52.7 kb was located at the 3' end of tRNA-Sec and shared the greatest identity with PmGRI1-C55 (54% coverage, 99.99% identity). PmGRI1-STP3 carried 16 resistance genes, including the clinically important extended-spectrum β-lactamase (ESBL) gene blaCTX-M-3. ICEPmiChnSTP3 was inserted into the prfC gene. It carried 18 resistance genes, including the rRNA methyltransferase gene cfr and the fluoroquinolone resistance gene aac(6')-Ib-cr. A class 2 integron (dfrA1-sat2-aadA1) was also identified on transposon Tn7. Mobilisation experiments indicated that ICEPmiChnSTP3 was conjugally mobilised to Escherichia coli. However, PmGRI1-STP3 appeared to lose its mobilisation ability. CONCLUSION The identification of two genomic islands (GIs) in this study suggested that genetic elements might be key mediators for resistance gene acquisition in P. mirabilis and that IS26-mediated rearrangements promote the diversity of GIs.
Collapse
|
99
|
Computational analysis of LexA regulons in Proteus species. 3 Biotech 2021; 11:131. [PMID: 33680696 DOI: 10.1007/s13205-021-02683-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
To gain a general understanding of the SOS system in Proteus species, in this study LexA-binding sites and the LexA regulons in 23 Proteus genomes were first predicted by phylogenetic footprinting server, then with Proteus vulgaris as an example, the expression of LexA regulon in iron limitation was investigated by proteomic analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. The results showed that LexA proteins were highly conserved in Proteus species, and were in a close phylogenetic relationship with those in Gram-negative bacteria; the core SOS response genes lexA and recA were found in all the 23 genomes, indicating that this system was widely distributed in this genus; besides that, putative LexA-binding sites were also found in the upstream sequences of some genes involved in other biological processes such as biosynthesis, drug resistance, and stress response. Proteomic and RT-qPCR analyses showed that under iron deficient condition, the expression of lexA, recA and sulA was transcriptionally upregulated (p < 0.05), lexA was also translationally upregulated but recA was on the contrary (p < 0.05), whereas another SOS response gene dinI was transcriptionally downregulated (p < 0.01). These results indicated that in response to iron deficiency, the members of LexA regulon were not regulated by the same way, suggesting the existence of a precise regulation mechanism of SOS response in P. vulgaris. In conclusion, this study provided a preliminary understanding of the SOS system in Proteus species, which laid the foundation for further investigation of its roles in SOS response and other biological processes.
Collapse
|
100
|
Corban JE, Ramsey J. Characterization and complete genome sequence of Privateer, a highly prolate Proteus mirabilis podophage. PeerJ 2021; 9:e10645. [PMID: 33614267 PMCID: PMC7881722 DOI: 10.7717/peerj.10645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis causes a large proportion of catheter-associated urinary tract infections, which are among the world's most common nosocomial infections. Here, we characterize P. mirabilis bacteriophage Privateer, a prolate podophage of the C3 morphotype isolated from Texas wastewater treatment plant activated sludge. Basic characterization assays demonstrated Privateer has a latent period of ~40 min and average burst size around 140. In the 90.7 kb Privateer genome, 43 functions were assigned for the 144 predicted protein-coding genes. Genes encoding DNA replication proteins, DNA modification proteins, four tRNAs, lysis proteins, and structural proteins were identified. Cesium-gradient purified Privateer particles analyzed via LC-MS/MS verified the presence of several predicted structural proteins, including a longer, minor capsid protein apparently produced by translational frameshift. Comparative analysis demonstrated Privateer shares 83% nucleotide similarity with Cronobacter phage vB_CsaP_009, but low nucleotide similarity with other known phages. Predicted structural proteins in Privateer appear to have evolutionary relationships with other prolate podophages, in particular the Kuraviruses.
Collapse
Affiliation(s)
- James E Corban
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jolene Ramsey
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA.,Center for Phage Technology, Texas A&M University, College Station, TX, USA
| |
Collapse
|