51
|
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. MICROBIOME 2018; 6:204. [PMID: 30424821 PMCID: PMC6234677 DOI: 10.1186/s40168-018-0585-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. RESULTS The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii, and Aspergillus lentulus. Even though Rhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. The AMR signatures associated with β-lactam, cationic antimicrobial peptide, and vancomycin were detected. Prominent virulence factors were cobalt-zinc-cadmium resistance and multidrug-resistance efflux pumps. CONCLUSIONS There was an increase in AMR and virulence gene factors detected over the period sampled, and metagenome sequences of human pathogens persisted over time. Comparative analysis of the microbial compositions of ISS with Earth analogs revealed that the ISS environmental surfaces were different in microbial composition. Metagenomics coupled with PMA treatment would help future space missions to estimate problematic risk group microbial pathogens. Cataloging AMR/virulence characteristics, succession, accumulation, and persistence of microorganisms would facilitate the development of suitable countermeasures to reduce their presence in the closed built environment.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Jason M. Wood
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| |
Collapse
|
52
|
Abstract
PURPOSE OF THE REVIEW As the science of the microbiome advances, social epidemiologists can contribute to understanding how the broader social environment shapes the microbiome over the life course. This review summarizes current research and describes potential mechanisms of the social epidemiology of the microbiome. RECENT FINDINGS Most existing literature linking the social environment and the microbiome comes from animal models, focused on the impact of social interactions and psychosocial stress. Suggestive evidence of the importance of early life exposures, health behaviors, and the built environment also point to the importance of the social environment for the microbiome in humans. SUMMARY Social epidemiology as a field is well poised to contribute expertise in theory and measurement of the broader social environment to this new area, and to consider both the upstream and downstream mechanisms by which this environment gets "under the skin" and "into the gut." As population-level microbiome data becomes increasingly available, we encourage investigation of the multi-level determinants of the microbiome and how the microbiome may link the social environment and health.
Collapse
Affiliation(s)
- Jennifer Beam Dowd
- Department of Global Health and Social Medicine, King’s College London, The Strand, London, WC2R 2LS UK
- Epidemiology and Biostatistics, CUNY Graduate School of Public Health and Health Policy, 55 W 125th St, New York, NY 10027 USA
| | - Audrey Renson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr, Chapel Hill, NC 27599 USA
| |
Collapse
|
53
|
Bope A, Weir MH, Pruden A, Morowitz M, Mitchell J, Dannemiller KC. Translating research to policy at the NCSE 2017 symposium "Microbiology of the Built Environment: Implications for Health and Design". MICROBIOME 2018; 6:160. [PMID: 30219094 PMCID: PMC6138931 DOI: 10.1186/s40168-018-0552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/05/2018] [Indexed: 05/05/2023]
Abstract
Here, we summarize a symposium entitled "Microbiology of the Built Environment: Implications for Health and Design" that was presented at the National Council for Science and the Environment (NCSE) 17th National Conference and Global Forum in January 2017. We covered topics including indoor microbial exposures and childhood asthma, the influence of hospital design on neonatal development, the role of the microbiome in our premise (i.e., building) plumbing systems, antibiotic resistance, and quantitative microbial risk assessment. This symposium engaged the broader scientific and policy communities in a discussion to increase awareness of this critical research area and translate findings to practice.
Collapse
Affiliation(s)
- Ashleigh Bope
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Mark H Weir
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Michael Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
54
|
Egert M. Honor Thy Lodgers? – Structure and Function of the Human Built Environment Microbiome. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThe microbiome of the built environment (BE) and its interactions with the human occupants represent a new and highly interdisciplinary research field. The BE is characterized by a great microbial diversity as well as very fluctuating environmental conditions and sharp gradients of physicochemical parameters, which significantly shape the resident microbiomes. A great significance of the BE microbiome for human health is obvious, but far from being fully understood. However, there is a growing body of evidence that antimicrobial and probiotic strategies will have to be balanced in a well-considered manner to successfully manage the BE microbiome in a way that finally is most beneficial for human health.
Collapse
|
55
|
Alves LDF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni ME. Metagenomic Approaches for Understanding New Concepts in Microbial Science. Int J Genomics 2018; 2018:2312987. [PMID: 30211213 PMCID: PMC6126073 DOI: 10.1155/2018/2312987] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past thirty years, since the dawn of metagenomic studies, a completely new (micro) universe was revealed, with the potential to have profound impacts on many aspects of the society. Remarkably, the study of human microbiome provided a new perspective on a myriad of human traits previously regarded as solely (epi-) genetically encoded, such as disease susceptibility, immunological response, and social and nutritional behaviors. In this context, metagenomics has established a powerful framework for understanding the intricate connections between human societies and microbial communities, ultimately allowing for the optimization of both human health and productivity. Thus, we have shifted from the old concept of microbes as harmful organisms to a broader panorama, in which the signal of the relationship between humans and microbes is flexible and directly dependent on our own decisions and practices. In parallel, metagenomics has also been playing a major role in the prospection of "hidden" genetic features and the development of biotechnological applications, through the discovery of novel genes, enzymes, pathways, and bioactive molecules with completely new or improved biochemical functions. Therefore, this review highlights the major milestones over the last three decades of metagenomics, providing insights into both its potentialities and current challenges.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cauã Antunes Westmann
- Department of Cell Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Lencioni Lovate
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
56
|
Gilbert JA. Ecological medicine. Environ Microbiol 2018; 20:1917-1919. [PMID: 29614208 DOI: 10.1111/1462-2920.14115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, IL, 60637, USA.,The Microbiome Center, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
57
|
Deposition of Bacteria and Bacterial Spores by Bathroom Hot-Air Hand Dryers. Appl Environ Microbiol 2018; 84:AEM.00044-18. [PMID: 29439992 DOI: 10.1128/aem.00044-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Hot-air hand dryers in multiple men's and women's bathrooms in three basic science research areas in an academic health center were screened for their deposition on plates of (i) total bacteria, some of which were identified, and (ii) a kanamycin-resistant Bacillus subtilis strain, PS533, spores of which are produced in large amounts in one basic science research laboratory. Plates exposed to hand dryer air for 30 s averaged 18 to 60 colonies/plate; but interior hand dryer nozzle surfaces had minimal bacterial levels, plates exposed to bathroom air for 2 min with hand dryers off averaged ≤1 colony, and plates exposed to bathroom air moved by a small fan for 20 min had averages of 15 and 12 colonies/plate in two buildings tested. Retrofitting hand dryers with HEPA filters reduced bacterial deposition by hand dryers ∼4-fold, and potential human pathogens were recovered from plates exposed to hand dryer air whether or not a HEPA filter was present and from bathroom air moved by a small fan. Spore-forming colonies, identified as B. subtilis PS533, averaged ∼2.5 to 5% of bacteria deposited by hand dryers throughout the basic research areas examined regardless of distance from the spore-forming laboratory, and these were almost certainly deposited as spores. Comparable results were obtained when bathroom air was sampled for spores. These results indicate that many kinds of bacteria, including potential pathogens and spores, can be deposited on hands exposed to bathroom hand dryers and that spores could be dispersed throughout buildings and deposited on hands by hand dryers.IMPORTANCE While there is evidence that bathroom hand dryers can disperse bacteria from hands or deposit bacteria on surfaces, including recently washed hands, there is less information on (i) the organisms dispersed by hand dryers, (ii) whether hand dryers provide a reservoir of bacteria or simply blow large amounts of bacterially contaminated air, and (iii) whether bacterial spores are deposited on surfaces by hand dryers. Consequently, this study has implications for the control of opportunistic bacterial pathogens and spores in public environments including health care settings. Within a large building, potentially pathogenic bacteria, including bacterial spores, may travel between rooms, and subsequent bacterial/spore deposition by hand dryers is a possible mechanism for spread of infectious bacteria, including spores of potential pathogens if present.
Collapse
|
58
|
Leung MHY, Tong X, Tong JCK, Lee PKH. Airborne bacterial assemblage in a zero carbon building: A case study. INDOOR AIR 2018; 28:40-50. [PMID: 28767182 DOI: 10.1111/ina.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/27/2017] [Indexed: 05/15/2023]
Abstract
Currently, there is little information pertaining to the airborne bacterial communities of green buildings. In this case study, the air bacterial community of a zero carbon building (ZCB) in Hong Kong was characterized by targeting the bacterial 16S rRNA gene. Bacteria associated with the outdoor environment dominated the indoor airborne bacterial assemblage, with a modest contribution from bacteria associated with human skin. Differences in overall community diversity, membership, and composition associated with short (day-to-day) and long-term temporal properties were detected, which may have been driven by specific environmental genera and taxa. Furthermore, time-decay relationships in community membership (based on unweighted UniFrac distances) and composition (based on weighted UniFrac distances) differed depending on the season and sampling location. A Bayesian source-tracking approach further supported the importance of adjacent outdoor air bacterial assemblage in sourcing the ZCB indoor bioaerosol. Despite the unique building attributes, the ZCB microbial assemblage detected and its temporal characteristics were not dissimilar to that of conventional built environments investigated previously. Future controlled experiments and microbial assemblage investigations of other ZCBs will undoubtedly uncover additional knowledge related to how airborne bacteria in green buildings may be influenced by their distinctive architectural attributes.
Collapse
Affiliation(s)
- M H Y Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - X Tong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - J C K Tong
- Building Sustainability Group, Arup, Kowloon, Hong Kong
| | - P K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
59
|
Shamarina D, Stoyantcheva I, Mason CE, Bibby K, Elhaik E. Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research. MICROBIOME 2017; 5:132. [PMID: 28978331 PMCID: PMC5628477 DOI: 10.1186/s40168-017-0349-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 05/07/2023]
Abstract
The public commonly associates microorganisms with pathogens. This suspicion of microorganisms is understandable, as historically microorganisms have killed more humans than any other agent while remaining largely unknown until the late seventeenth century with the works of van Leeuwenhoek and Kircher. Despite our improved understanding regarding microorganisms, the general public are apt to think of diseases rather than of the majority of harmless or beneficial species that inhabit our bodies and the built and natural environment. As long as microbiome research was confined to labs, the public's exposure to microbiology was limited. The recent launch of global microbiome surveys, such as the Earth Microbiome Project and MetaSUB (Metagenomics and Metadesign of Subways and Urban Biomes) project, has raised ethical, financial, feasibility, and sustainability concerns as to the public's level of understanding and potential reaction to the findings, which, done improperly, risk negative implications for ongoing and future investigations, but done correctly, can facilitate a new vision of "smart cities." To facilitate improved future research, we describe here the major concerns that our discussions with ethics committees, community leaders, and government officials have raised, and we expound on how to address them. We further discuss ethical considerations of microbiome surveys and provide practical recommendations for public engagement.
Collapse
Affiliation(s)
- Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Iana Stoyantcheva
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021 USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY 10021 USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021 USA
| | - Kyle Bibby
- University of Notre Dame Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dameᅟ, IN 46556 USA
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN UK
| |
Collapse
|
60
|
Teasdale MD, Fiddyment S, Vnouček J, Mattiangeli V, Speller C, Binois A, Carver M, Dand C, Newfield TP, Webb CC, Bradley DG, Collins MJ. The York Gospels: a 1000-year biological palimpsest. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 29134095 DOI: 10.5061/dryad.1p390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Medieval manuscripts, carefully curated and conserved, represent not only an irreplaceable documentary record but also a remarkable reservoir of biological information. Palaeographic and codicological investigation can often locate and date these documents with remarkable precision. The York Gospels (York Minster Ms. Add. 1) is one such codex, one of only a small collection of pre-conquest Gospel books to have survived the Reformation. By extending the non-invasive triboelectric (eraser-based) sampling technique eZooMS, to include the analysis of DNA, we report a cost-effective and simple-to-use biomolecular sampling technique for parchment. We apply this combined methodology to document for the first time a rich palimpsest of biological information contained within the York Gospels, which has accumulated over the 1000-year lifespan of this cherished object that remains an active participant in the life of York Minster. These biological data provide insights into the decisions made in the selection of materials, the construction of the codex and the use history of the object.
Collapse
Affiliation(s)
- Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Jiří Vnouček
- BioArCh, University of York, York YO10 5DD, UK
- Department of Preservation, The Royal Library, København K DK-1016, Denmark
| | | | | | - Annelise Binois
- Department of Archaeology, University of Paris 1 Panthéon-Sorbonne, 3 rue Michelet, 75006 Paris, France
| | - Martin Carver
- Department of Archaeology, University of York, York YO10 5DD, UK
| | - Catherine Dand
- Borthwick Institute for Archives, University of York, York YO10 5DD, UK
| | - Timothy P Newfield
- Departments of History and Biology, Georgetown University, 37th and O Streets NW, ICC 600, Washington, DC 20057, USA
| | | | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew J Collins
- BioArCh, University of York, York YO10 5DD, UK
- Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
61
|
Teasdale MD, Fiddyment S, Vnouček J, Mattiangeli V, Speller C, Binois A, Carver M, Dand C, Newfield TP, Webb CC, Bradley DG, Collins MJ. The York Gospels: a 1000-year biological palimpsest. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170988. [PMID: 29134095 PMCID: PMC5666278 DOI: 10.1098/rsos.170988] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/22/2017] [Indexed: 05/10/2023]
Abstract
Medieval manuscripts, carefully curated and conserved, represent not only an irreplaceable documentary record but also a remarkable reservoir of biological information. Palaeographic and codicological investigation can often locate and date these documents with remarkable precision. The York Gospels (York Minster Ms. Add. 1) is one such codex, one of only a small collection of pre-conquest Gospel books to have survived the Reformation. By extending the non-invasive triboelectric (eraser-based) sampling technique eZooMS, to include the analysis of DNA, we report a cost-effective and simple-to-use biomolecular sampling technique for parchment. We apply this combined methodology to document for the first time a rich palimpsest of biological information contained within the York Gospels, which has accumulated over the 1000-year lifespan of this cherished object that remains an active participant in the life of York Minster. These biological data provide insights into the decisions made in the selection of materials, the construction of the codex and the use history of the object.
Collapse
Affiliation(s)
- Matthew D. Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- Authors for correspondence: Matthew D. Teasdale e-mail: ;
| | - Sarah Fiddyment
- BioArCh, University of York, York YO10 5DD, UK
- Authors for correspondence: Sarah Fiddyment e-mail:
| | - Jiří Vnouček
- BioArCh, University of York, York YO10 5DD, UK
- Department of Preservation, The Royal Library, København K DK-1016, Denmark
| | | | | | - Annelise Binois
- Department of Archaeology, University of Paris 1 Panthéon-Sorbonne, 3 rue Michelet, 75006 Paris, France
| | - Martin Carver
- Department of Archaeology, University of York, York YO10 5DD, UK
| | - Catherine Dand
- Borthwick Institute for Archives, University of York, York YO10 5DD, UK
| | - Timothy P. Newfield
- Departments of History and Biology, Georgetown University, 37th and O Streets NW, ICC 600, Washington, DC 20057, USA
| | | | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew J. Collins
- BioArCh, University of York, York YO10 5DD, UK
- Museum of Natural History, University of Copenhagen, Copenhagen, Denmark
- Authors for correspondence: Matthew J. Collins e-mail:
| |
Collapse
|
62
|
Abstract
The BE microbiome is a naturally embedded biosensor in urban infrastructure that can be used to monitor environmental quality and human activity. There are many potential opportunities for leveraging BE microbial communities to guide urban design and public health policy. ![]()
Collapse
Affiliation(s)
- Fangqiong Ling
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, 02139, USA
| |
Collapse
|
63
|
Cardinale M, Kaiser D, Lueders T, Schnell S, Egert M. Microbiome analysis and confocal microscopy of used kitchen sponges reveal massive colonization by Acinetobacter, Moraxella and Chryseobacterium species. Sci Rep 2017; 7:5791. [PMID: 28725026 PMCID: PMC5517580 DOI: 10.1038/s41598-017-06055-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/07/2017] [Indexed: 12/22/2022] Open
Abstract
The built environment (BE) and in particular kitchen environments harbor a remarkable microbial diversity, including pathogens. We analyzed the bacterial microbiome of used kitchen sponges by 454–pyrosequencing of 16S rRNA genes and fluorescence in situ hybridization coupled with confocal laser scanning microscopy (FISH–CLSM). Pyrosequencing showed a relative dominance of Gammaproteobacteria within the sponge microbiota. Five of the ten most abundant OTUs were closely related to risk group 2 (RG2) species, previously detected in the BE and kitchen microbiome. Regular cleaning of sponges, indicated by their users, significantly affected the microbiome structure. Two of the ten dominant OTUs, closely related to the RG2-species Chryseobacterium hominis and Moraxella osloensis, showed significantly greater proportions in regularly sanitized sponges, thereby questioning such sanitation methods in a long term perspective. FISH–CLSM showed an ubiquitous distribution of bacteria within the sponge tissue, concentrating in internal cavities and on sponge surfaces, where biofilm–like structures occurred. Image analysis showed local densities of up to 5.4 * 1010 cells per cm3, and confirmed the dominance of Gammaproteobacteria. Our study stresses and visualizes the role of kitchen sponges as microbiological hot spots in the BE, with the capability to collect and spread bacteria with a probable pathogenic potential.
Collapse
Affiliation(s)
- Massimiliano Cardinale
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Dominik Kaiser
- Faculty of Medical and Life Sciences, Institute of Precision Medicine (IPM), Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine (IPM), Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.
| |
Collapse
|
64
|
Macher JM, Mendell MJ, Chen W, Kumagai K. Development of a method to relate the moisture content of a building material to its water activity. INDOOR AIR 2017; 27:599-608. [PMID: 27740697 DOI: 10.1111/ina.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Subjective indicators of building dampness consistently have been linked to health, but they are, at best, semi-quantitative, and objective and quantitative assessments of dampness are also needed to study dampness-related health effects. Investigators can readily and non-destructively measure the "moisture content" (MC) of building materials with hand-held moisture meters. However, MC does not indicate the amount of the water in a material that is available to microorganisms for growth, that is, the "water activity" (Aw ). Unfortunately, Aw has not been readily measurable in the field and is not relatable to MC unless previously determined experimentally, because for the same moisture meter reading, Aw can differ across materials as well as during moisture adsorption vs desorption. To determine the Aw s that correspond to MC levels, stable air relative humidities were generated in a glove box above saturated, aqueous salt solutions, and the Aw of gypsum board and the relative humidity of the chamber air were tracked until they reached equilibrium. Strong correlations were observed between meter readings and gravimetrically determined MC (r=.91-1.00), among readings with three moisture meters (r=.87-.98), and between meter readings and gypsum board Aw (r=.77-.99).
Collapse
Affiliation(s)
- J M Macher
- California Department of Public Health, Environmental Health Laboratory Branch, Richmond, CA, USA
| | - M J Mendell
- California Department of Public Health, Environmental Health Laboratory Branch, Richmond, CA, USA
| | - W Chen
- California Department of Public Health, Environmental Health Laboratory Branch, Richmond, CA, USA
| | - K Kumagai
- California Department of Public Health, Environmental Health Laboratory Branch, Richmond, CA, USA
| |
Collapse
|