51
|
Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer's and Parkinson's disease. Curr Opin Neurobiol 2021; 72:1-7. [PMID: 34399146 DOI: 10.1016/j.conb.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
Retinal neurodegeneration and visual dysfunctions have been reported in a majority of Alzheimer's and Parkinson's patients, and, in light of the quest for novel biomarkers for these neurodegenerative proteinopathies, the retina has been receiving increasing attention as an organ for diagnosing, monitoring, and understanding disease. Thinning of retinal layers, abnormalities in vasculature, and protein deposition can be imaged at unprecedented resolution, which offers a unique systems biology view on the cellular and molecular changes underlying these pathologies. It makes the retina not only a promising target for biomarker development, but it also suggests that novel fundamental insights into the pathophysiology of Alzheimer's and Parkinson's disease can be obtained by studying the retina-brain axis.
Collapse
Affiliation(s)
- Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Biology Department, University of Leuven, Naamsestraat 61 Box 2464, Leuven, 3000, Belgium; Leuven Brain Institute, Leuven, 3000, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Biology Department, University of Leuven, Naamsestraat 61 Box 2464, Leuven, 3000, Belgium; Leuven Brain Institute, Leuven, 3000, Belgium
| |
Collapse
|
52
|
Hui J, Zhao Y, Yu S, Liu J, Chiu K, Wang Y. Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer's disease patients: A meta-analysis. PLoS One 2021; 16:e0255362. [PMID: 34379663 PMCID: PMC8357127 DOI: 10.1371/journal.pone.0255362] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To assess retinal microvascular network impairments in the eyes of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients with optical coherence tomography angiography (OCTA). Design Systematic review and meta-analysis. Methods A literature search was conducted in the PubMed and EMBASE databases to identify relevant studies detecting retinal microvascular attenuation among AD, MCI patients and cognitively healthy controls (HCs) by OCTA. Data were extracted by Review Manager V.5.4 and Stata V.14.0. Results Eight investigations were included in this meta-analysis, with 150 AD patients, 195 MCI patients and 226 HCs were eligible for meta-analysis. Evidence based on these studies demonstrated that there was a significantly decreased vessel density (VD) of the Optovue group in superficial capillary plexus (SCP): WMD = -2.26, 95% CI: -3.98 to -0.55, p = 0.01; in deep capillary plexus (DCP): WMD = -3.40, 95% CI: -5.99 to -0.81, p = 0.01, VD of the Zeiss group in SCP:WMD = -0.91, 95% CI: -1.79 to -0.02, p = 0.05 and an enlarged fovea avascular zone (FAZ):WMD = 0.06, 95% CI: 0.01 to 0.11, P = 0.02 in OCTA measurements of MCI patients. Additionally, in OCTA measurements of AD patients, there was a significantly decreased VD in the SCP: WMD = -1.88, 95% CI: -2.7 to -1.07, p<0.00001. In contrast, there was no significant decrease in DCP nor enlargement of FAZ in AD patients. Conclusion Retinal microvascular alternations could be optimally screened in MCI patients detected by OCTA, which could be a warning sign of relative changes in the MCI before progressing to AD. Retinal microvasculature changes worth further investigation in larger scale clinical trials.
Collapse
Affiliation(s)
- Jingwen Hui
- Tianjin Eye Hospital, Tianjin Eye Institute, Heping District, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
- Nankai University Eye Hospital, Tianjin, China
| | - Yun Zhao
- Tianjin Eye Hospital, Tianjin Eye Institute, Heping District, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
- Nankai University Eye Hospital, Tianjin, China
| | - Shasha Yu
- Tianjin Eye Hospital, Tianjin Eye Institute, Heping District, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
- Nankai University Eye Hospital, Tianjin, China
| | - Jinfeng Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (KC); (YW)
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Eye Institute, Heping District, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
- Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
- Nankai University Eye Hospital, Tianjin, China
- * E-mail: (KC); (YW)
| |
Collapse
|
53
|
Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2021; 69:101361. [PMID: 34000463 DOI: 10.1016/j.arr.2021.101361] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Retinal changes may reflect the pathophysiological processes in the central nervous system and can be assessed by imaging modalities non-invasively. We aim to localize candidate retinal biomarkers in Alzheimer's disease (AD), mild cognitive impairment (MCI), and preclinical AD. METHODS We systematically searched PubMed, EMBASE, Scopus, and Web of Science from inception to January 2021 for observational studies that investigated retinal imaging and electrophysiological markers in AD, MCI, and preclinical AD. Between-groups standardized mean differences (SMDs) with 95 % confidence intervals were computed using random-effects models. RESULTS Of 19,727 citations identified, 126 articles were eligible for inclusion. Compared with healthy controls, the thickness of peripapillary retinal nerve fiber layer (pRNFL; SMD = -0.723, p < 0.001), total macular (SMD = -0.612, p < 0.001), and subfoveal choroid (SMD = -0.888, p < 0.001) were significantly reduced in patients with AD. Compared with healthy controls, patients with MCI also had lower thickness of pRNFL (SMD = -0.324, p < 0.001), total macular (SMD = -0.302, p < 0.001), and subfoveal choroid (SMD = -0.462, p = 0.020). Other candidate biomarkers included the optic nerve head morphology, retinal amyloid deposition, microvascular morphology and densities, blood flow, and electrophysiological markers. CONCLUSIONS Retinal structural, vascular, and electrophysiological biomarkers hold great potential for the diagnosis, prognosis and risk assessment of AD and MCI. These biomarkers warrant further development in the future, especially in diagnostic test accuracy and longitudinal studies.
Collapse
|
54
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
55
|
The Value of OCT and OCTA as Potential Biomarkers for Preclinical Alzheimer's Disease: A Review Study. Life (Basel) 2021; 11:life11070712. [PMID: 34357083 PMCID: PMC8306512 DOI: 10.3390/life11070712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Preclinical Alzheimer's disease (AD) includes cognitively healthy subjects with at least one positive biomarker: reduction in cerebrospinal fluid Aβ42 or visualization of cerebral amyloidosis by positron emission tomography imaging. The use of these biomarkers is expensive, invasive, and not always possible. It has been shown that the retinal changes measured by optical coherence tomography (OCT) and OCT-angiography (OCTA) could be biomarkers of AD. Diagnosis in early stages before irreversible AD neurological damage takes place is important for the development of new therapeutic interventions. In this review, we summarize the findings of different published studies using OCT and OCTA in participants with preclinical AD. To date, there have been few studies on this topic and they are methodologically very dissimilar. Moreover, these include only two longitudinal studies. For these reasons, it would be interesting to unify the methodology, make the inclusion criteria more rigorous, and conduct longer longitudinal studies to assess the evolution of these subjects. If the results were consistent across repeated studies with the same methodology, this could provide us with insight into the value of the retinal changes observed by OCT/OCTA as potential reliable, cost-effective, and noninvasive biomarkers of preclinical AD.
Collapse
|
56
|
Kim TH, Son T, Klatt D, Yao X. Concurrent OCT and OCT angiography of retinal neurovascular degeneration in the 5XFAD Alzheimer's disease mice. NEUROPHOTONICS 2021; 8:035002. [PMID: 34277888 PMCID: PMC8271351 DOI: 10.1117/1.nph.8.3.035002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 05/15/2023]
Abstract
Significance: As one part of the central nervous system, the retina manifests neurovascular defects in Alzheimer's disease (AD). Quantitative imaging of retinal neurovascular abnormalities may promise a new method for early diagnosis and treatment assessment of AD. Previous imaging studies of transgenic AD mouse models have been limited to the central part of the retina. Given that the pathological hallmarks of AD frequently appear in different peripheral quadrants, a comprehensive regional investigation is needed for a better understanding of the retinal degeneration associated with AD-like pathology. Aim: We aim to demonstrate concurrent optical coherence tomography (OCT) and OCT angiography (OCTA) of retinal neuronal and vascular abnormalities in the 5XFAD mouse model and to investigate region-specific retinal degeneration. Approach: A custom-built OCT system was used for retinal imaging. Retinal thickness, vessel width, and vessel density were quantitatively measured. The artery and vein (AV) were classified for differential AV analysis, and trilaminar vascular plexuses were segmented for depth-resolved density measurement. Results: It was observed that inner and outer retinal thicknesses were explicitly reduced in the dorsal and temporal quadrants, respectively, in 5XFAD mice. A significant arterial narrowing in 5XFAD mice was also observed. Moreover, overall capillary density consistently showed a decreasing trend in 5XFAD mice, but regional specificity was not identified. Conclusions: Quadrant- and layer-specific neurovascular degeneration was observed in 5XFAD mice. Concurrent OCT and OCTA promise a noninvasive method for quantitative monitoring of AD progression and treatment assessment.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Taeyoon Son
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
| | - Xincheng Yao
- University of Illinois at Chicago, Department of Bioengineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States
| |
Collapse
|
57
|
Robbins CB, Grewal DS, Stinnett SS, Soundararajan S, Yoon SP, Polascik BW, Liu AJ, Burke JR, Fekrat S. Assessing the Retinal Microvasculature in Individuals With Early and Late-Onset Alzheimer's Disease. Ophthalmic Surg Lasers Imaging Retina 2021; 52:336-344. [PMID: 34185588 DOI: 10.3928/23258160-20210528-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE To evaluate retinal microvascular changes in early and late-onset Alzheimer's disease (AD). PATIENTS AND METHODS Eighty-six eyes of 50 late-onset AD participants, 27 eyes of 15 early onset AD participants, and 111 eyes of 57 cognitively normal controls were included. Optical coherence tomography angiography (OCTA) vessel density (VD) and perfusion density (PD) in Early Treatment Diabetic Retinopathy Study 3-mm and 6-mm circles and rings were assessed. RESULTS There was decreased PD in early onset AD 3-mm circle (P = .026) and ring (P = .026) versus controls as well as in late-onset AD 3-mm circle (P = .023) and ring (P = .023) versus controls. There was decreased VD in late-onset AD 3-mm circle (P = .012) and ring (P = .006). No parameters differed between early and late-onset AD (P > .05). CONCLUSIONS AD eyes exhibited decreased retinal microvascular density compared to controls. Retinal parameters may not differ between early onset AD and late-onset AD after adjusting for age. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:336-344.].
Collapse
|
58
|
Foveal Avascular Zone and Choroidal Thickness Are Decreased in Subjects with Hard Drusen and without High Genetic Risk of Developing Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9060638. [PMID: 34199664 PMCID: PMC8229973 DOI: 10.3390/biomedicines9060638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023] Open
Abstract
A family history (FH+) of Alzheimer’s disease (AD) and ɛ4 allele of the ApoE gene are the main genetic risk factors for developing AD, whereas ɛ4 allele plays a protective role in age-related macular degeneration. Ocular vascular changes have been reported in both pathologies. We analyzed the choroidal thickness using optical coherence tomography (OCT) and the foveal avascular zone (FAZ) using OCT-angiography and compared the results with ApoE gene expression, AD FH+, and the presence or absence of hard drusen (HD) in 184 cognitively healthy subjects. Choroidal thickness was statistically significantly different in the (FH−, ɛ4−, HD+) group compared with (i) both the (FH−, ɛ4−, HD−) and the (FH+, ɛ4+, HD+) groups in the superior and inferior points at 1500 μm, and (ii) the (FH+, ɛ4−, HD+) group in the superior point at 1500 μm. There were statistically significant differences in the superficial FAZ between the (FH+, ɛ4−, HD+) group and (i) the (FH+, ɛ4−, HD−) group and (ii) the (FH+, ɛ4+, HD−) group. In conclusion, ocular vascular changes are not yet evident in participants with a genetic risk of developing AD.
Collapse
|
59
|
Jiang H, Wang J, Levin BE, Baumel BS, Camargo CJ, Signorile JF, Rundek T. Retinal Microvascular Alterations as the Biomarkers for Alzheimer Disease: Are We There Yet? J Neuroophthalmol 2021; 41:251-260. [PMID: 33136677 PMCID: PMC8079547 DOI: 10.1097/wno.0000000000001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is a heterogeneous and multifactorial disorder with an insidious onset and slowly progressive disease course. To date, there are no effective treatments, but biomarkers for early diagnosis and monitoring of disease progression offer a promising first step in developing and testing potential interventions. Cerebral vascular imaging biomarkers to assess the contributions of vascular dysfunction to AD are strongly recommended to be integrated into the current amyloid-β (Aβ) [A], tau [T], and neurodegeneration [(N)]-the "AT(N)" biomarker system for clinical research. However, the methodology is expensive and often requires invasive procedures to document cerebral vascular dysfunction. The retina has been used as a surrogate to study cerebral vascular changes. There is growing interest in the identification of retinal microvascular changes as a safe, easily accessible, low cost, and time-efficient approach to enhancing our understanding of the vascular pathogenesis associated with AD. EVIDENCE ACQUISITION A systemic review of the literature was performed regarding retinal vascular changes in AD and its prodromal stages, focusing on functional and structural changes of large retinal vessels (vessels visible on fundus photographs) and microvasculature (precapillary arterioles, capillary, and postcapillary venules) that are invisible on fundus photographs. RESULTS Static and dynamic retinal microvascular alterations such as retinal arterial wall motion, blood flow rate, and microvascular network density were reported in AD, mild cognitive impairment, and even in the preclinical stages of the disease. The data are somewhat controversial and inconsistent among the articles reviewed and were obtained based on cross-sectional studies that used different patient cohorts, equipment, techniques, and analysis methods. CONCLUSIONS Retinal microvascular alterations exist across the AD spectrum. Further large scale, within-subject longitudinal studies using standardized imaging and analytical methods may advance our knowledge concerning vascular contributions to the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie E. Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard S. Baumel
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J. Camargo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Tania Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
60
|
Fereshetian S, Agranat JS, Siegel N, Ness S, Stein TD, Subramanian ML. Protein and Imaging Biomarkers in the Eye for Early Detection of Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:375-387. [PMID: 34189409 PMCID: PMC8203283 DOI: 10.3233/adr-210283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia worldwide. Although no formal curative therapy exists for the treatment of AD, considerable research has been performed to identify biomarkers for early detection of this disease, and thus improved subsequent management. Given that the eye can be examined and imaged non-invasively with relative ease, it has emerged as an exciting area of research for evidence of biomarkers and to aid in the early diagnosis of AD. This review explores the current understanding of both protein and retinal imaging biomarkers in the eye. Herein, primary findings in the literature regarding AD biomarkers associated with the lens, retina, and other ocular structures are reviewed.
Collapse
Affiliation(s)
- Shaunt Fereshetian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
| | - Joshua S. Agranat
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Nicole Siegel
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Steven Ness
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Manju L. Subramanian
- Boston University School of Medicine, Department of Ophthalmology, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
| |
Collapse
|
61
|
Rifai OM, McGrory S, Robbins CB, Grewal DS, Liu A, Fekrat S, MacGillivray TJ. The application of optical coherence tomography angiography in Alzheimer's disease: A systematic review. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12149. [PMID: 33718582 PMCID: PMC7927164 DOI: 10.1002/dad2.12149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Discovering non-invasive and easily acquired biomarkers that are conducive to the accurate diagnosis of dementia is an urgent area of ongoing clinical research. One promising approach is retinal imaging, as there is homology between retinal and cerebral vasculature. Recently, optical coherence tomography angiography (OCT-A) has emerged as a promising new technology for imaging the microvasculature of the retina. METHODS A systematic review and meta-analysis was conducted to examine the application of OCT-A in dementia. RESULTS Fourteen studies assessing OCT-A in preclinical Alzheimer's disease (AD), mild cognitive impairment, or AD were included. Exploratory meta-analyses revealed a significant increase in the foveal avascular zone area and a significant decrease in superficial parafoveal and whole vessel density in AD, although there was significant heterogeneity between studies. DISCUSSION Although certain OCT-A metrics may have the potential to serve as biomarkers for AD, the field requires further standardization to allow conclusions to be reached regarding their clinical utility.
Collapse
Affiliation(s)
- Olivia M. Rifai
- Translational Neuroscience PhD ProgrammeUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Sarah McGrory
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| | - Cason B. Robbins
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Dilraj S. Grewal
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Andy Liu
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sharon Fekrat
- Department of OphthalmologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Thomas J. MacGillivray
- Centre for Clinical Brain SciencesCollege of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
62
|
Ma Y, Hao H, Xie J, Fu H, Zhang J, Yang J, Wang Z, Liu J, Zheng Y, Zhao Y. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:928-939. [PMID: 33284751 DOI: 10.1109/tmi.2020.3042802] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging technique that has been increasingly used to image the retinal vasculature at capillary level resolution. However, automated segmentation of retinal vessels in OCTA has been under-studied due to various challenges such as low capillary visibility and high vessel complexity, despite its significance in understanding many vision-related diseases. In addition, there is no publicly available OCTA dataset with manually graded vessels for training and validation of segmentation algorithms. To address these issues, for the first time in the field of retinal image analysis we construct a dedicated Retinal OCTA SEgmentation dataset (ROSE), which consists of 229 OCTA images with vessel annotations at either centerline-level or pixel level. This dataset with the source code has been released for public access to assist researchers in the community in undertaking research in related topics. Secondly, we introduce a novel split-based coarse-to-fine vessel segmentation network for OCTA images (OCTA-Net), with the ability to detect thick and thin vessels separately. In the OCTA-Net, a split-based coarse segmentation module is first utilized to produce a preliminary confidence map of vessels, and a split-based refined segmentation module is then used to optimize the shape/contour of the retinal microvasculature. We perform a thorough evaluation of the state-of-the-art vessel segmentation models and our OCTA-Net on the constructed ROSE dataset. The experimental results demonstrate that our OCTA-Net yields better vessel segmentation performance in OCTA than both traditional and other deep learning methods. In addition, we provide a fractal dimension analysis on the segmented microvasculature, and the statistical analysis demonstrates significant differences between the healthy control and Alzheimer's Disease group. This consolidates that the analysis of retinal microvasculature may offer a new scheme to study various neurodegenerative diseases.
Collapse
|
63
|
Wang L, Mao X. Role of Retinal Amyloid-β in Neurodegenerative Diseases: Overlapping Mechanisms and Emerging Clinical Applications. Int J Mol Sci 2021; 22:2360. [PMID: 33653000 PMCID: PMC7956232 DOI: 10.3390/ijms22052360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
Amyloid-β (Aβ) accumulations have been identified in the retina for neurodegeneration-associated disorders like Alzheimer's disease (AD), glaucoma, and age-related macular degeneration (AMD). Elevated retinal Aβ levels were associated with progressive retinal neurodegeneration, elevated cerebral Aβ accumulation, and increased disease severity with a decline in cognition and vision. Retinal Aβ accumulation and its pathological effects were demonstrated to occur prior to irreversible neurodegeneration, which highlights its potential in early disease detection and intervention. Using the retina as a model of the brain, recent studies have focused on characterizing retinal Aβ to determine its applicability for population-based screening of AD, which warrants a further understanding of how Aβ manifests between these disorders. While current treatments directly targeting Aβ accumulations have had limited results, continued exploration of Aβ-associated pathological pathways may yield new therapeutic targets for preserving cognition and vision. Here, we provide a review on the role of retinal Aβ manifestations in these distinct neurodegeneration-associated disorders. We also discuss the recent applications of retinal Aβ for AD screening and current clinical trial outcomes for Aβ-associated treatment approaches. Lastly, we explore potential future therapeutic targets based on overlapping mechanisms of pathophysiology in AD, glaucoma, and AMD.
Collapse
Affiliation(s)
- Liang Wang
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
64
|
van Oostveen WM, de Lange ECM. Imaging Techniques in Alzheimer's Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int J Mol Sci 2021; 22:ijms22042110. [PMID: 33672696 PMCID: PMC7924338 DOI: 10.3390/ijms22042110] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting many individuals worldwide with no effective treatment to date. AD is characterized by the formation of senile plaques and neurofibrillary tangles, followed by neurodegeneration, which leads to cognitive decline and eventually death. INTRODUCTION In AD, pathological changes occur many years before disease onset. Since disease-modifying therapies may be the most beneficial in the early stages of AD, biomarkers for the early diagnosis and longitudinal monitoring of disease progression are essential. Multiple imaging techniques with associated biomarkers are used to identify and monitor AD. AIM In this review, we discuss the contemporary early diagnosis and longitudinal monitoring of AD with imaging techniques regarding their diagnostic utility, benefits and limitations. Additionally, novel techniques, applications and biomarkers for AD research are assessed. FINDINGS Reduced hippocampal volume is a biomarker for neurodegeneration, but atrophy is not an AD-specific measure. Hypometabolism in temporoparietal regions is seen as a biomarker for AD. However, glucose uptake reflects astrocyte function rather than neuronal function. Amyloid-β (Aβ) is the earliest hallmark of AD and can be measured with positron emission tomography (PET), but Aβ accumulation stagnates as disease progresses. Therefore, Aβ may not be a suitable biomarker for monitoring disease progression. The measurement of tau accumulation with PET radiotracers exhibited promising results in both early diagnosis and longitudinal monitoring, but large-scale validation of these radiotracers is required. The implementation of new processing techniques, applications of other imaging techniques and novel biomarkers can contribute to understanding AD and finding a cure. CONCLUSIONS Several biomarkers are proposed for the early diagnosis and longitudinal monitoring of AD with imaging techniques, but all these biomarkers have their limitations regarding specificity, reliability and sensitivity. Future perspectives. Future research should focus on expanding the employment of imaging techniques and identifying novel biomarkers that reflect AD pathology in the earliest stages.
Collapse
Affiliation(s)
- Wieke M. van Oostveen
- Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
| | - Elizabeth C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-527-6330
| |
Collapse
|
65
|
Chalkias E, Topouzis F, Tegos T, Tsolaki M. The Contribution of Ocular Biomarkers in the Differential Diagnosis of Alzheimer's Disease versus Other Types of Dementia and Future Prospects. J Alzheimers Dis 2021; 80:493-504. [PMID: 33554918 DOI: 10.3233/jad-201516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With dementia becoming increasingly prevalent, there is a pressing need to become better equipped with accurate diagnostic tools that will favorably influence its course via prompt and specific intervention. The overlap in clinical manifestation, imaging, and even pathological findings between different dementia syndromes is one of the most prominent challenges today even for expert physicians. Since cerebral microvasculature and the retina share common characteristics, the idea of identifying potential ocular biomarkers to facilitate diagnosis is not a novel one. Initial efforts included studying less quantifiable parameters such as aspects of visual function, extraocular movements, and funduscopic findings. However, the really exciting prospect of a non-invasive, safe, fast, reproducible, and quantifiable method of pinpointing novel biomarkers has emerged with the advent of optical coherence tomography (OCT) and, more recently, OCT angiography (OCTA). The possibility of analyzing multiple parameters of retinal as well as retinal microvasculature variables in vivo represents a promising opportunity to investigate whether specific findings can be linked to certain subtypes of dementia and aid in their earlier diagnosis. The existing literature on the contribution of the eye in characterizing dementia, with a special interest in OCT and OCTA parameters will be reviewed and compared, and we will explicitly focus our effort in advancing our understanding and knowledge of relevant biomarkers to facilitate future research in the differential diagnosis between Alzheimer's disease and common forms of cognitive impairment, including vascular dementia, frontotemporal dementia, and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Efthymios Chalkias
- A' Ophthalmology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Fotis Topouzis
- A' Ophthalmology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Thomas Tegos
- 1st Neurology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Magda Tsolaki
- 1st Neurology Department, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
66
|
Zhang Y, Wang Y, Shi C, Shen M, Lu F. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer's disease. Transl Neurodegener 2021; 10:6. [PMID: 33517891 PMCID: PMC7849105 DOI: 10.1186/s40035-021-00230-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
As the most common form of dementia, Alzheimer’s disease (AD) is characterized by progressive cognitive impairments and constitutes a major social burden. Currently, the invasiveness and high costs of tests have limited the early detection and intervention of the disease. As a unique window of the brain, retinal changes can reflect the pathology of the brain. In this review, we summarize current understanding of retinal structures in AD, mild cognitive impairment (MCI) and preclinical AD, focusing on neurodegeneration and microvascular changes measured using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) technologies. The literature suggests that the impairment of retinal microvascular network and neural microstructure exists in AD, MCI and even preclinical AD. These findings provide valuable insights into a better understanding of disease pathogenesis and demonstrate that retinal changes are potential biomarkers for early diagnosis of AD and monitoring of disease progression.
Collapse
Affiliation(s)
- Ying Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Yanjiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ce Shi
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, 325027, China.
| |
Collapse
|
67
|
Wang X, Zhao Q, Tao R, Lu H, Xiao Z, Zheng L, Ding D, Ding S, Ma Y, Lu Z, Xiao Y. Decreased Retinal Vascular Density in Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI): An Optical Coherence Tomography Angiography (OCTA) Study. Front Aging Neurosci 2021; 12:572484. [PMID: 33519415 PMCID: PMC7843508 DOI: 10.3389/fnagi.2020.572484] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To explore the retinal vascular density changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI) patients using optical coherence tomography angiography (OCTA). METHODS We recruit 62 AD patients, 47 MCI patients, and 49 cognitively healthy controls (HC) in this study. All participants in the study received a comprehensive ophthalmological and neurological evaluation, including global cognitive screening, as well as the Mini-Mental State Examination (MMSE), and completed the following eye examinations: visual acuity (VA), intraocular pressure (IOP), examination with slit-lamp, fundus photography (Version 1.5.0.0, NIDEK CO, LTD) and Optical coherence tomography imaging (software ReVue version 2017.1.0.155, Optovue Inc., Fremont, CA, United States). The visual rating scales for atrophy and white matter lesion in MRI was evaluated for all the patients with AD and MCI. RESULTS In the AD patient group, the superficial vascular density in the superior, inferior and whole retina was 44.64 ± 3.34, 44.65 ± 3.55, and 44.66 ± 3.36, respectively. These values were 44.24 ± 3.15, 43.72 ± 3.16, and 44 ± 3.07, respectively, in the MCI patient group. After multivariate analysis of the generalized linear model, adjustments for the confounding factors of sex, age, hypertension, diabetes and the quality index of OCTA image, the superficial vascular density in the AD and MCI patient groups was significantly lower than that in the HC group (P < 0.05): 46.94 ± 2.04, 46.67 ± 2.26, and 46.82 ± 2.08, respectively. No difference in the area of the FAZ among the three groups was observed (AD group: 0.34 ± 0.11 mm2; MCI group: 0.36 ± 0.12 mm2; control group: 0.33 ± 0.12 mm2, p > 0.05). The ganglion cell complex (GCC) thickness, inner parafovea thickness, and peripapillary retinal nerve fiber layer (p-RNFL) thickness were associated with the superficial vascular density. We found no significant correlation between the global cognition (MMSE scores) or between the Fazekas score and retinal OCT angiogram flow density. CONCLUSION The superficial vascular density in the AD and MCI patient groups was significantly lower than that in the HC group. Our findings suggest the retinal microvascular dysfunction occurred in MCI and AD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Tao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huimeng Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Saineng Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichen Ma
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaozeng Lu
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqin Xiao
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
68
|
Song A, Johnson N, Ayala A, Thompson AC. Optical Coherence Tomography in Patients with Alzheimer's Disease: What Can It Tell Us? Eye Brain 2021; 13:1-20. [PMID: 33447120 PMCID: PMC7802785 DOI: 10.2147/eb.s235238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Although Alzheimer's disease (AD) is a leading cause of dementia worldwide, its clinical diagnosis remains a challenge. Optical coherence tomography (OCT) and OCT with angiography (OCTA) are non-invasive ophthalmic imaging tools with the potential to detect retinal structural and microvascular changes in patients with AD, which may serve as biomarkers for the disease. In this systematic review, we evaluate whether certain OCT and OCTA parameters are significantly associated with AD and mild cognitive impairment (MCI). METHODS PubMed database was searched using a combination of MeSH terms to identify studies for review. Studies were organized by participant diagnostic groups, type of imaging modality, and OCT/OCTA parameters of interest. Participant demographic data was also collected and baseline descriptive statistics were calculated for the included studies. RESULTS Seventy-one studies were included for review, representing a total of 6757 patients (2350 AD, 793 MCI, 2902 healthy controls (HC), and 841 others with a range of other neurodegenerative diagnoses). The mean baseline ages were 72.78±3.69, 71.52±2.88, 70.55±3.85 years for AD, MCI and HC groups, respectively. The majority of studies noted significant structural and functional decline in AD patients when compared to HC. Although analysis of MCI groups yielded more mixed results, a similar pattern of decline was often noted amongst patients with MCI relative to HC. OCT and OCTA measurements were also shown to correlate with established measures of AD such as neuropsychological testing or neuroimaging. CONCLUSION OCT and OCTA show great potential as non-invasive technologies for the diagnosis of AD. However, further research is needed to determine whether there are AD-specific patterns of structural or microvascular change in the retina and optic nerve that distinguish AD from other neurodegenerative diseases. Development of sensitive and specific OCT/OCTA parameters will be necessary before they can be used to detect AD in clinical settings.
Collapse
Affiliation(s)
- Ailin Song
- Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
69
|
Galvin JE, Kleiman MJ, Walker M. Using Optical Coherence Tomography to Screen for Cognitive Impairment and Dementia. J Alzheimers Dis 2021; 84:723-736. [PMID: 34569948 PMCID: PMC10731579 DOI: 10.3233/jad-210328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Screening for Alzheimer's disease and related disorders (ADRD) and mild cognitive impairment (MCI) could increase case identification, enhance clinical trial enrollment, and enable early intervention. MCI and ADRD screening would be most beneficial if detection measures reflect neurodegenerative changes. Optical coherence tomography (OCT) could be a marker of neurodegeneration (part of the amyloid-tau-neurodegeneration (ATN) framework). OBJECTIVE To determine whether OCT measurements can be used as a screening measure to detect individuals with MCI and ADRD. METHODS A retrospective cross-sectional study was performed on 136 participants with comprehensive clinical, cognitive, functional, and behavioral evaluations including OCT with a subset (n = 76) completing volumetric MRI. Pearson correlation coefficients tested strength of association between OCT and outcome measures. Receiver operator characteristic curves assessed the ability of OCT, patient-reported outcomes, and cognitive performance measures to discriminate between individuals with and without cognitive impairment. RESULTS After controlling for age, of the 6 OCT measurements collected, granular cell layer-inner plexiform layer (GCL + IPL) thickness best correlated with memory, global cognitive performance, Clinical Dementia Rating, and hippocampal atrophy. GCL + IPL thickness provided good discrimination in cognitive status with a cut-off score of 75μm. Combining GCL + IPL thickness as a proxy marker for hippocampal atrophy with a brief patient-reported outcome and performance measure correctly classified 87%of MCI and ADRD participants. CONCLUSION Multimodal approaches may improve recognition of MCI and ADRD. OCT has the potential to be a practical, non-invasive biomarker for ADRD providing a screening platform to quickly identify at-risk individuals for further clinical evaluation or research enrollment.
Collapse
Affiliation(s)
- James E. Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael J. Kleiman
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcia Walker
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
70
|
Giarratano Y, Bianchi E, Gray C, Morris A, MacGillivray T, Dhillon B, Bernabeu MO. Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics. Transl Vis Sci Technol 2020; 9:5. [PMID: 33344049 PMCID: PMC7718823 DOI: 10.1167/tvst.9.13.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Purpose To generate the first open dataset of retinal parafoveal optical coherence tomography angiography (OCTA) images with associated ground truth manual segmentations, and to establish a standard for OCTA image segmentation by surveying a broad range of state-of-the-art vessel enhancement and binarization procedures. Methods Handcrafted filters and neural network architectures were used to perform vessel enhancement. Thresholding methods and machine learning approaches were applied to obtain the final binarization. Evaluation was performed by using pixelwise metrics and newly proposed topological metrics. Finally, we compare the error in the computation of clinically relevant vascular network metrics (e.g., foveal avascular zone area and vessel density) across segmentation methods. Results Our results show that, for the set of images considered, deep learning architectures (U-Net and CS-Net) achieve the best performance (Dice = 0.89). For applications where manually segmented data are not available to retrain these approaches, our findings suggest that optimally oriented flux (OOF) is the best handcrafted filter (Dice = 0.86). Moreover, our results show up to 25% differences in vessel density accuracy depending on the segmentation method used. Conclusions In this study, we derive and validate the first open dataset of retinal parafoveal OCTA images with associated ground truth manual segmentations. Our findings should be taken into account when comparing the results of clinical studies and performing meta-analyses. Finally, we release our data and source code to support standardization efforts in OCTA image segmentation. Translational Relevance This work establishes a standard for OCTA retinal image segmentation and introduces the importance of evaluating segmentation performance in terms of clinically relevant metrics.
Collapse
Affiliation(s)
| | | | - Calum Gray
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Andrew Morris
- Usher Institute, University of Edinburgh, Edinburgh, UK.,Health Data Research UK, London, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Baljean Dhillon
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
71
|
Chua J, Hu Q, Ke M, Tan B, Hong J, Yao X, Hilal S, Venketasubramanian N, Garhöfer G, Cheung CY, Wong TY, Chen CLH, Schmetterer L. Retinal microvasculature dysfunction is associated with Alzheimer's disease and mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2020; 12:161. [PMID: 33276820 PMCID: PMC7718666 DOI: 10.1186/s13195-020-00724-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Background The retina and brain share many neuronal and vasculature characteristics. We investigated the retinal microvasculature in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) using optical coherence tomography angiography (OCTA). Methods In this cross-sectional study, 24 AD participants, 37 MCI participants, and 29 controls were diagnosed according to internationally accepted criteria. OCTA images of the superficial and deep capillary plexus (SCP, DCP) of the retinal microvasculature were obtained using a commercial OCTA system (Zeiss Cirrus HD-5000 with AngioPlex, Carl Zeiss Meditec, Dublin, CA). The main outcome measures were vessel density (VD) and fractal dimension (FD) in the SCP and DCP within a 2.5-mm ring around the fovea which were compared between groups. Perfusion density of large vessels and foveal avascular zone (FAZ) area were additional outcome parameters. Results Age, gender, and race did not differ among groups. However, there was a significant difference in diabetes status (P = 0.039) and systolic blood pressure (P = 0.008) among the groups. After adjusting for confounders, AD participants showed significantly decreased VD in SCP and DCP (P = 0.006 and P = 0.015, respectively) and decreased FD in SCP (P = 0.006), compared to controls. MCI participants showed significantly decreased VD and FD only in SCP (P = 0.006 and P < 0.001, respectively) and not the DCP (P > 0.05) compared with controls. There was no difference in the OCTA variables between AD and MCI (P > 0.05). Perfusion density of large vessels and FAZ area did not differ significantly between groups (P > 0.05). Conclusions and relevance Eyes of patients with AD have significantly reduced macular VD in both plexuses whereas MCI participants only showed reduction in the superficial plexus. Changes in the retinal microvasculature and capillary network may offer a valuable insight on the brain in AD. Supplementary information The online version contains supplementary material available at 10.1186/s13195-020-00724-0.
Collapse
Affiliation(s)
- Jacqueline Chua
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Sha Tin, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore
| | - Qinglan Hu
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore
| | - Mengyuan Ke
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore
| | - Bingyao Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore.,Institute for Health Technologies, Nanyang Technological University, Sha Tin, Singapore
| | - Jimmy Hong
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore
| | - Xinwen Yao
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore.,Institute for Health Technologies, Nanyang Technological University, Sha Tin, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Sha Tin, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Sha Tin, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Sha Tin, Singapore.,Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Sha Tin, Singapore
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Sha Tin, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, 20 College Road, The Academia, Level 6, Discovery Tower, Singapore, 169856, Singapore. .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Sha Tin, Singapore. .,SERI-NTU Advanced Ocular Engineering (STANCE), Sha Tin, Singapore. .,Institute for Health Technologies, Nanyang Technological University, Sha Tin, Singapore. .,Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria. .,Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria. .,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| |
Collapse
|
72
|
Czakó C, Kovács T, Ungvari Z, Csiszar A, Yabluchanskiy A, Conley S, Csipo T, Lipecz A, Horváth H, Sándor GL, István L, Logan T, Nagy ZZ, Kovács I. Retinal biomarkers for Alzheimer's disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience 2020; 42:1499-1525. [PMID: 33011937 PMCID: PMC7732888 DOI: 10.1007/s11357-020-00252-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cognitive impairment and dementia are major medical, social, and economic public health issues worldwide with significant implications for life quality in older adults. The leading causes are Alzheimer's disease (AD) and vascular cognitive impairment/dementia (VCID). In both conditions, pathological alterations of the cerebral microcirculation play a critical pathogenic role. Currently, the main pathological biomarkers of AD-β-amyloid peptide and hyperphosphorylated tau proteins-are detected either through cerebrospinal fluid (CSF) or PET examination. Nevertheless, given that they are invasive and expensive procedures, their availability is limited. Being part of the central nervous system, the retina offers a unique and easy method to study both neurodegenerative disorders and cerebral small vessel diseases in vivo. Over the past few decades, a number of novel approaches in retinal imaging have been developed that may allow physicians and researchers to gain insights into the genesis and progression of cerebromicrovascular pathologies. Optical coherence tomography (OCT), OCT angiography, fundus photography, and dynamic vessel analyzer (DVA) are new imaging methods providing quantitative assessment of retinal structural and vascular indicators-such as thickness of the inner retinal layers, retinal vessel density, foveal avascular zone area, tortuosity and fractal dimension of retinal vessels, and microvascular dysfunction-for cognitive impairment and dementia. Should further studies need to be conducted, these retinal alterations may prove to be useful biomarkers for screening and monitoring dementia progression in clinical routine. In this review, we seek to highlight recent findings and current knowledge regarding the application of retinal biomarkers in dementia assessment.
Collapse
Affiliation(s)
- Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tibor Kovács
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Hajnalka Horváth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Trevor Logan
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
73
|
Ocular Vascular Changes in Mild Alzheimer's Disease Patients: Foveal Avascular Zone, Choroidal Thickness, and ONH Hemoglobin Analysis. J Pers Med 2020; 10:jpm10040231. [PMID: 33203157 PMCID: PMC7712569 DOI: 10.3390/jpm10040231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
In Alzheimer’s disease (AD), vascular changes could be caused by amyloid beta (Aβ) aggregates replacing the contractile smooth musculature of the arteriole walls. These changes happen in the brain vascular network, but also in the eye, and are related to decreased vascular density and low blood flow. In patients with Alzheimer’s disease, thinning of the choroid and the retina has been shown. The aim of this prospective study was to assess the retinal and choroidal vascular systems, analyzing the choroidal thickness with optical coherence tomography (OCT), the foveal avascular zone (FAZ) with OCT-angiography (OCTA), and the optic nerve head (ONH) hemoglobin with the Laguna ONhE program, to evaluate which of the two ocular vascular systems shows earlier changes in mild AD patients. These patients, compared to controls, showed a significantly thinner choroid at all the analyzed points, with the exception of the temporal macula (at 1000 and 1500 µm from the fovea). On the other hand, the FAZ and ONH hemoglobin did not show significant differences. In conclusion, a thinner choroid was the main ocular vascular change observed in mild AD patients, while the retinal vessels were not yet affected. Therefore, choroidal thickness could be used an early biomarker in AD.
Collapse
|
74
|
Lemmens S, Van Craenendonck T, Van Eijgen J, De Groef L, Bruffaerts R, de Jesus DA, Charle W, Jayapala M, Sunaric-Mégevand G, Standaert A, Theunis J, Van Keer K, Vandenbulcke M, Moons L, Vandenberghe R, De Boever P, Stalmans I. Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients. Alzheimers Res Ther 2020; 12:144. [PMID: 33172499 PMCID: PMC7654576 DOI: 10.1186/s13195-020-00715-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
Collapse
Affiliation(s)
- Sophie Lemmens
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Toon Van Craenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Van Eijgen
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Danilo Andrade de Jesus
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | | | | | - Gordana Sunaric-Mégevand
- Clinical Research Center, Mémorial A. de Rothschild, 22 Chemin Beau Soleil, 1208 Geneva, Switzerland
| | - Arnout Standaert
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Jan Theunis
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
| | - Karel Van Keer
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- Division of Psychiatry, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Alzheimer Research Center KU Leuven, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang 200, 2400 Mol, Belgium
- Hasselt University, Center of Environmental Sciences, Agoralaan, 3590 Diepenbeek, Belgium
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Neurosciences, Research Group Ophthalmology, KU Leuven, Biomedical Sciences Group, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
75
|
Optical coherence tomography angiography in neuro-ophthalmology: Current clinical role and future perspectives. Surv Ophthalmol 2020; 66:471-481. [PMID: 33157113 DOI: 10.1016/j.survophthal.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/02/2023]
Abstract
Optical coherence tomography angiography (OCTA) is a noninvasive, depth-resolved imaging tool for the appraisement of retinal vascular changes. Since its introduction, the understanding of diabetic retinopathy, age-related macular degeneration, central serous retinopathy, and other diseases has been enriched on many fronts. Its dyeless imaging property maps retinal as well as deeper choroidal vasculature in quick succession with good reproducibility. Hence, it can play an important role in the diagnosis and management of optic nerve-related diseases as well. A detailed literature review for its role in nonarteritic anterior ischemic optic neuropathy, papilledema, optic disc drusen, papillitis, hereditary optic neuropathies, central nervous system diseases, and others highlights its role. The whole spectrum of neuro-ophthalmological diseases shows consistent peripapillary and macular capillary changes with structural and functional correlation. The superficial and deeper retinal and choroidal vasculatures are affected depending on the nature of the disease process. Hence, OCTA positions itself as a useful, noninvasive tool in the armamentarium of a neuro-ophthalmologist in future; however, there are several limitations of the OCTA with respect to its technical abilities in challenging neuro-ophthalmic cases. Therefore, future research should be directed to enhance the technical capabilities of OCTA and to determine the more precise role of it in the prognosis of neuro-ophthalmic diseases.
Collapse
|
76
|
Szegedi S, Dal‐Bianco P, Stögmann E, Traub‐Weidinger T, Rainer M, Masching A, Schmidl D, Werkmeister RM, Chua J, Schmetterer L, Garhöfer G. Anatomical and functional changes in the retina in patients with Alzheimer's disease and mild cognitive impairment. Acta Ophthalmol 2020; 98:e914-e921. [PMID: 32212415 PMCID: PMC7687124 DOI: 10.1111/aos.14419] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE There is evidence that mild cognitive impairment (MCI) or Alzheimer's disease (AD) is accompanied by alterations in the retina. The current study was performed to investigate structural and functional changes in patients with systemic neurodegenerative disease. METHODS A total of 47 patients with either MCI or AD and 43 healthy age- and sex-matched control subjects were included. Inclusion criteria for MCI were abnormal memory function and a mini-mental state examination (MMSE) score >26 points, for patients with AD a diagnosis of probable AD of mild to moderate degree and an MMSE score in the range of 20-26. Retinal blood flow was measured using a Doppler optical coherence tomography (OCT) system. Retinal vessel diameter, oxygen saturation and flicker-induced vasodilatation were measured using a Vessel Analyzer. Retinal nerve fibre layer thickness (RNFLT) was assessed using an OCT system. RESULTS Global RNFLT was lower in patients compared to healthy controls (93.7 ± 12.8 µm versus 99.1 ± 9.0 µm, p = 0.02). The same was found in regards to retinal arterial blood flow, which was 9.3 ± 2.4 and 12.3 ± 3.2 μl/min in the patient and control groups, respectively (p < 0.001). Mean retinal arterial diameter was reduced in patients (76.0 ± 8.9 µm versus 80.6 ± 8.0 µm, p = 0.03). Arteriovenous difference in oxygen saturation was lower in patients (20.4 ± 5.1% versus 23.5 ± 4.0%, p < 0.01). No difference in the flicker response was observed. CONCLUSION In patients with MCI and AD, arteriovenous difference in oxygen saturation, retinal blood flow and arterial vessel diameter was reduced. No difference was found in flicker response between groups. This indicates alterations in retinal oxygen metabolism in patients with neurodegenerative disease.
Collapse
Affiliation(s)
- Stephan Szegedi
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - Peter Dal‐Bianco
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | - Tatjana Traub‐Weidinger
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Michael Rainer
- Department of PsychiatrySocial and Medical Centre East – Danube HospitalViennaAustria
- Karl Landsteiner Institute for Memory and Alzheimer ResearchViennaAustria
| | - Andreas Masching
- Department of PsychiatrySocial and Medical Centre East – Danube HospitalViennaAustria
| | - Doreen Schmidl
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Jacqueline Chua
- Singapore Eye Research InstituteSingapore National Eye CentreSingapore CitySingapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Leopold Schmetterer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Singapore Eye Research InstituteSingapore National Eye CentreSingapore CitySingapore
- Ophthalmology and Visual Sciences Academic Clinical ProgramDuke‐NUS Medical SchoolSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
- Institute of Molecular and Clinical OphthalmologyBaselSwitzerland
| | - Gerhard Garhöfer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
77
|
Sardone R, Sborgia G, Niro A, Giuliani G, Pascale A, Puzo P, Guerra V, Castellana F, Lampignano L, Donghia R, Bortone I, Zupo R, Griseta C, Logroscino G, Lozupone M, Giannelli G, Panza F, Boscia F, Alessio G, Quaranta N. Retinal Vascular Density on Optical Coherence Tomography Angiography and Age-related Central and Peripheral Hearing Loss in a Southern Italian Older Population. J Gerontol A Biol Sci Med Sci 2020; 76:2169-2177. [PMID: 33064801 DOI: 10.1093/gerona/glaa269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL) and retinal vessel changes have both been associated to neurodegeneration/dementia, suggesting a possible link between these two conditions in older age. We aimed to determine whether superficial and deep vascular density (SVD and DVD) of the capillary plexi of macular vasculature can be associated with peripheral ARHL and age-related central auditory central processing (CAPD). METHODS We analyzed data on 886 older participants (65 years+, age range:65-92 years) in the cross-sectional population-based Salus in Apulia Study. Optical coherence tomography angiography (OCT-A) was used to measure SVD and DVD of the capillary plexi of the macula at the 3-mm circle area centered on the fovea (whole retina), the parafoveal quadrant, and foveal quadrant. Disabling peripheral ARHL was defined as >40 dB HL of pure tone average on the frequencies from 0.5, 1, 2, and 4 KHz in the better ear, and age-related CAPD as <50% at the Synthetic Sentence Identification with Ipsilateral Competitive Message test in at least one ear. RESULTS DVD at the whole retina and at the parafoveal quadrant were inversely associated only with age-related CAPD [odds ratio (OR):0.93; 95% confidence interval (CI): 0.88-0.96 and OR:0.94; 95 CI:0.90-0.99, respectively]. No further associations with peripheral ARHL were evident. CONCLUSIONS Retinal vasculature is associated with central auditory processing pathology, possibly playing an important role in early detection and intervention. The association of retinal vascular density with age-related CAPD may bring us a further step forward in understanding the biological mechanisms underlying the links between neurodegeneration/dementia and ARHL.
Collapse
Affiliation(s)
- Rodolfo Sardone
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Giancarlo Sborgia
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Alfredo Niro
- Eye Clinic, Hospital "S. G. MOSCATI," ASL TA, Taranto, Italy
| | - Gianluigi Giuliani
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Angelo Pascale
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Pasquale Puzo
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Vito Guerra
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Fabio Castellana
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Luisa Lampignano
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Rossella Donghia
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Roberta Zupo
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Chiara Griseta
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico," Tricase, Lecce, Italy
| | - Madia Lozupone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Gianluigi Giannelli
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Francesco Panza
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Francesco Boscia
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Giovanni Alessio
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Italy
| |
Collapse
|
78
|
Mejia-Vergara AJ, Restrepo-Jimenez P, Pelak VS. Optical Coherence Tomography in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:578698. [PMID: 33178120 PMCID: PMC7596384 DOI: 10.3389/fneur.2020.578698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose: The use of optical coherence tomography (OCT) of the retina to detect inner retinal degeneration is being investigated as a potential biomarker for mild cognitive impairment (MCI) and Alzheimer's disease (AD), and an overwhelming body of evidence indicates that discovery of disease-modifying treatments for AD should be aimed at the pre-dementia clinical stage of AD, i.e., MCI. We aimed to perform a systematic review and meta-analysis on retinal OCT in MCI. Methods: We performed a systematic review of the English literature in three databases (PubMed, Embase, and Latindex) for studies that measured retinal thickness using OCT in people with MCI and healthy controls, age 50 or older, between 1 January 2000 and 31 July 2019. Only cohort and case-control studies were reviewed, and independent extraction of quality data and established objective data was performed. We calculated the effect size for studies in the review that met the following criteria: (1) a statistically significant difference between MCI subjects and normal controls for several OCT variables, (2) use of spectral domain OCT, and (3) use of APOSTEL recommendations for OCT reporting. Weighted Hedges' g statistic was used to calculate the pooled effect size for four variables: ganglion cell layer-inner plexiform layer (GCL-IPL) complex thickness in micrometers (μm), circumpapillary retinal nerve fiber layer (pRNFL) thickness in μm, macular thickness in μm, and macular volume in μm3. For variables with high heterogeneity, a multivariate meta-regression was performed. We followed the PRISMA guidelines for systematic reviews. Results: Fifteen articles met the inclusion criteria. A total of 58.9% of MCI patients had statistically significant thinning of the pRNFL compared with normal subjects, while 61.6% of all MCI patients who had macular volume measured had a statistically significant reduction in volume compared with controls, and 50.0% of the macular GCL-IPL complexes measured demonstrated significant thinning in MCI compared with normal controls. Meta-analysis demonstrated a large effect size for decreased macular thickness in MCI subjects compared with normal controls, but there was a substantial heterogeneity for macular thickness results. The other variables did not demonstrate a significant difference and also had substantial heterogeneity. Meta-regression analysis did not reveal an explanation for the heterogeneity. Conclusions: A better understanding of the cause of retina degeneration and longitudinal, standardized studies are needed to determine if optical coherence tomography can be used as a biomarker for mild cognitive impairment due to Alzheimer's disease.
Collapse
Affiliation(s)
- Alvaro J Mejia-Vergara
- Department of Neuro-Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, Pasadena, CA, United States.,Ophthalmology Department, San Ignacio University Hospital, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Paula Restrepo-Jimenez
- Ophthalmology Department, San Ignacio University Hospital, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Victoria S Pelak
- Departments of Neurology and Ophthalmology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
79
|
Lee CS, Apte RS. Retinal Biomarkers of Alzheimer Disease. Am J Ophthalmol 2020; 218:337-341. [PMID: 32387435 DOI: 10.1016/j.ajo.2020.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To address challenges associated with identifying retinal biomarkers for Alzheimer's disease (AD) and strategies for future investigation of novel ophthalmologic biomarkers. DESIGN Perspective. METHODS Summarization of the current understanding of retinal changes that have been identified using advances in imaging technology, analysis of current research into how these changes reflect neurodegenerative pathology, and recommendations for further research in this area that will allow for the identification of unique biomarkers for early AD. RESULTS Some retinal changes detectable using various imaging modalities may reflect neurodegeneration or other AD-related pathology on a cellular level. Structural changes in both the peripapillary and macular retina and changes in vascular parameters have been identified. Some imaging findings correlate with known histopathologic findings, and some are associated with cognitive decline. However, multiple challenges exist, such as identifying retinal biomarkers that are specific to biomarker-positive AD, clinical syndrome of AD, and/or pathologic AD brain, finding features that are highly sensitive and specific to AD in patients with other eye diseases, and validating potential biomarkers in population-based longitudinal cohorts. CONCLUSIONS Further research is needed to validate retinal biomarkers for AD, with accurate classification of patients according to diagnosis and cognitive symptoms. Advances in imaging technology, big data, and machine learning, as well as carefully designed studies, will help to identify and confirm potential biomarkers and may lead to novel treatment approaches.
Collapse
|
80
|
Shah A, Apte RS. Optical Coherence Tomography Angiography: A Window into Central Nervous System Neurodegeneration. Trends Mol Med 2020; 26:892-895. [DOI: 10.1016/j.molmed.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
|
81
|
Dumitrascu OM, Lyden PD, Torbati T, Sheyn J, Sherzai A, Sherzai D, Sherman DS, Rosenberry R, Cheng S, Johnson KO, Czeszynski AD, Verdooner S, Frautschy S, Black KL, Koronyo Y, Koronyo‐Hamaoui M. Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12109. [PMID: 33015311 PMCID: PMC7521595 DOI: 10.1002/dad2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Despite advances in imaging retinal amyloidosis, a quantitative and topographical investigation of retinal amyloid beta burden in patients with cognitive decline has never been reported. METHODS We used the specific amyloid-binding fluorophore curcumin and laser ophthalmoscopy to assess retinal amyloid imaging (RAI) in 34 patients with cognitive decline. We automatically quantified retinal amyloid count (RAC) and area in the superotemporal retinal sub-regions and performed correlation analyses with cognitive and brain volumetric parameters. RESULTS RAC significantly and inversely correlated with hippocampal volume (HV; r = -0.39, P = .04). The proximal mid-periphery (PMP) RAC and RA areas were significantly greater in patients with Montreal Cognitive Assessment (MOCA) score < 26 (P = .01; Cohen d = 0.83 and 0.81, respectively). PMP showed significantly more RAC and area in subjects with amnestic mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to cognitively normal (P = .04; Cohen d = 0.83). CONCLUSION Quantitative RAI is a feasible technique and PMP RAC may predict HV. Future larger studies should determine RAI's potential as a biomarker of early AD.
Collapse
Affiliation(s)
- Oana M. Dumitrascu
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Patrick D. Lyden
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tania Torbati
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Julia Sheyn
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ayesha Sherzai
- Department of NeurologyLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Dean Sherzai
- Department of NeurologyLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Dale S. Sherman
- Department of NeuropsychologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ryan Rosenberry
- Department of CardiologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Susan Cheng
- Department of CardiologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | - Sally Frautschy
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Keith L. Black
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yosef Koronyo
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Maya Koronyo‐Hamaoui
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
82
|
Subramanian ML, Vig V, Chung J, Fiorello MG, Xia W, Zetterberg H, Blennow K, Zetterberg M, Shareef F, Siegel NH, Ness S, Jun GR, Stein TD. Neurofilament light chain in the vitreous humor of the eye. Alzheimers Res Ther 2020; 12:111. [PMID: 32943089 PMCID: PMC7500015 DOI: 10.1186/s13195-020-00677-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament light chain (NfL) is a promising biomarker of neurodegeneration in the cerebrospinal fluid and blood. This study investigated the presence of NfL in the vitreous humor and its associations with amyloid beta, tau, inflammatory cytokines and vascular proteins, apolipoprotein E (APOE) genotypes, Mini-Mental State Examination (MMSE) scores, systemic disease, and ophthalmic diseases. METHODS This is a single-site, prospective, cross-sectional cohort study. Undiluted vitreous fluid (0.5-1.0 mL) was aspirated during vitrectomy, and whole blood was drawn for APOE genotyping. NfL, amyloid beta (Aβ), total Tau (t-Tau), phosphorylated Tau (p-Tau181), inflammatory cytokines, chemokines, and vascular proteins in the vitreous were quantitatively measured by immunoassay. The main outcome measures were the detection of NfL levels in the vitreous humor and its associations with the aforementioned proteins. Linear regression was used to test the associations of NfL with other proteins, APOE genotypes, MMSE scores, and ophthalmic and systemic diseases after adjustment for age, sex, education level, and other eye diseases. RESULTS NfL was detected in all 77 vitreous samples. NfL was not found to be associated with ophthalmic conditions, APOE genotypes, MMSE scores, or systemic disease (p > 0.05). NfL levels were positively associated with increased vitreous levels of Aβ40 (p = 7.7 × 10-5), Aβ42 (p = 2.8 × 10-4), and t-tau (p = 5.5 × 10-7), but not with p-tau181 (p = 0.53). NfL also had significant associations with inflammatory cytokines such as interleukin-15 (IL-15, p = 5.3 × 10-4), IL-16 (p = 2.2 × 10-4), monocyte chemoattractant protein-1 (MCP1, p = 4.1 × 10-4), and vascular proteins such as vascular endothelial growth factor receptor-1 (VEGFR1, p = 2.9 × 10-6), Vegf-C (p = 8.6 × 10-6), vascular cell adhesion molecule-1 (VCAM-1, p = 5.0 × 10-4), Tie-2 (p = 6.3 × 10-4), and intracellular adhesion molecular-1 (ICAM-1, p = 1.6 × 10-4). CONCLUSION NfL is detectable in the vitreous humor of the eye and significantly associated with amyloid beta, t-tau, and select inflammatory and vascular proteins in the vitreous. Additionally, NfL was not associated with patients' clinical eye condition. Our results serve as a foundation for further investigation of NfL in the ocular fluids to inform us about the potential utility of its presence in the eye.
Collapse
Affiliation(s)
- Manju L Subramanian
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA.
| | - Viha Vig
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Marissa G Fiorello
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Affairs Medical Center, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Farah Shareef
- Department of Ophthalmology, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Nicole H Siegel
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Steven Ness
- Department of Ophthalmology, Boston Medical Center, Boston University School of Medicine, 85 E Concord St. #8813, Boston, MA, 02118, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics Section), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
83
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
84
|
Chibhabha F, Yaqi Y, Li F. Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2019-0119/revneuro-2019-0119.xml. [PMID: 32804680 DOI: 10.1515/revneuro-2019-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- Department of Anatomy, Faculty of Medicine, Midlands State University, P. Bag 9055, Senga, Gweru, Zimbabwe
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Yang Yaqi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
85
|
Criscuolo C, Cennamo G, Montorio D, Carotenuto A, Strianese A, Salvatore E, Tranfa F, Cennamo G, Lanzillo R, Brescia Morra V. Assessment of retinal vascular network in amnestic mild cognitive impairment by optical coherence tomography angiography. PLoS One 2020; 15:e0233975. [PMID: 32492054 PMCID: PMC7269252 DOI: 10.1371/journal.pone.0233975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To assess the presence of retinal vascular network abnormalities in amnestic mild cognitive impairment (aMCI) patients and healthy subjects (HS) through optical coherence tomography angiography (OCTA). METHODS OCTA and SD-OCT were performed in aMCI patients and cognitive normal HS. A complete neuropsychological evaluation was performed. Differences in vessel density (VD) in each retinal vascular plexus and in foveal avascular zone (FAZ) were evaluated with linear mixed model after correction for age, sex and disease duration. RESULTS Twenty-seven aMCI patients (10 Single domain aMCI, 17 Multidomain aMCI) and 29 HS were enrolled. aMCI patients showed a statistically significant reduced VD in superficial capillary plexus (SCP), deep capillary plexus (DCP) and an increased FAZ compared to controls. When aMCI patients were divided in single domain (SD) and multiple domains (MD) aMCI, SD aMCI showed no VD differences in SCP, DCP and Radial Peripapillary Capillary, while the FAZ area was significantly larger compared to controls. In MD aMCI, VD values were lower and FAZ was increased compared to controls. Comparing both aMCI groups, MD aMCI showed a significant reduction in VD values of SCP. No correlation was found between mini mental state examination (MMSE) scores and OCTA parameters. CONCLUSIONS OCTA is able to detect changes in retinal microvascular network in early cognitive deficits and, the most sensitive alteration seems to be the enlargement of the FAZ. This non-invasive tool provides useful information on retinal involvement patterns in MCI diagnosis and follow up. Vascular network impairment seems to be related to the number of domains affected and not to MMSE.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Gilda Cennamo
- Public Health Department, Eye Clinic, University of Naples Federico II, Naples, Italy
| | - Daniela Montorio
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Alfonso Strianese
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Elena Salvatore
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Giovanni Cennamo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University Naples, Naples, Italy
| |
Collapse
|
86
|
Pellegrini M, Vagge A, Ferro Desideri L, Bernabei F, Triolo G, Mastropasqua R, Del Noce C, Borrelli E, Sacconi R, Iovino C, Di Zazzo A, Forlini M, Giannaccare G. Optical Coherence Tomography Angiography in Neurodegenerative Disorders. J Clin Med 2020; 9:E1706. [PMID: 32498362 PMCID: PMC7356677 DOI: 10.3390/jcm9061706] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Retinal microcirculation shares similar features with cerebral small blood vessels. Thus, the retina may be considered an accessible 'window' to detect the microvascular damage occurring in the setting of neurodegenerative disorders. Optical coherence tomography angiography (OCT-A) is a non-invasive imaging modality providing depth resolved images of blood flow in the retina, choroid, and optic nerve. In this review, we summarize the current literature on the application of OCT-A in glaucoma and central nervous system conditions such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Future directions aiming at evaluating whether OCT-A can be an additional biomarker for the early diagnosis and monitoring of neurodegenerative disorders are also discussed.
Collapse
Affiliation(s)
- Marco Pellegrini
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (F.B.)
| | - Aldo Vagge
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Lorenzo Ferro Desideri
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Federico Bernabei
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (M.P.); (F.B.)
| | - Giacinto Triolo
- Ophthalmology Department, Fatebenefratelli and Ophthalmic Hospital, ASST-Fatebenefratelli-Sacco, 63631 Milan, Italy;
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Chiara Del Noce
- University Eye Clinic, DINOGMI, Polyclinic Hospital San Martino IRCCS, 16132 Genoa, Italy; (L.F.D.); (C.D.N.)
| | - Enrico Borrelli
- Department of Ophthalmology, Hospital San Raffaele, University Vita Salute San Raffaele, 20132 Milan, Italy; (E.B.); (R.S.)
| | - Riccardo Sacconi
- Department of Ophthalmology, Hospital San Raffaele, University Vita Salute San Raffaele, 20132 Milan, Italy; (E.B.); (R.S.)
| | - Claudio Iovino
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, 09124 Cagliari, Italy;
| | - Antonio Di Zazzo
- Department of Ophthalmology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Matteo Forlini
- Domus Nova Hospital, 48121 Ravenna, Italy;
- Department of Ophthalmology, Ospedale dello Stato della Repubblica di San Marino, 47893 Città di San Marino, San Marino
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
87
|
Czakó C, István L, Benyó F, Élő Á, Erdei G, Horváth H, Nagy ZZ, Kovács I. The Impact of Deterministic Signal Loss on OCT Angiography Measurements. Transl Vis Sci Technol 2020; 9:10. [PMID: 32821482 PMCID: PMC7401964 DOI: 10.1167/tvst.9.5.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose In this study, we aimed at investigating the impact of deterministic signal loss on image quality and, thus, on optical coherence tomography angiography (OCTA) measurements performed by the RTVue-XR Avanti System. Methods Absorptive filters with different optical densities (ODs) were used to simulate signal loss in a controlled way in 30 eyes from 15 healthy subjects. Scan Quality (SQ), provided by the AngioVue software, was applied as a measure of image quality. Results Assessing the effect of decreased light transmittance on SQ values as well as that of attenuated image quality on OCTA parameters revealed a strong systematic dependence between these quantities. Attenuated image quality was associated with significantly decreased macular and peripapillary vessel density (VD) values, and we calculated a correction factor of 2.27% to 3.97% for a one-unit change in SQ for the different VD parameters. Conclusions Our findings suggest that the influence of systematic changes in image quality on OCTA parameters needs to be considered during patient follow-up in order to make valid assessment of progression. Translational Relevance For accurate evaluation of longitudinal changes in OCTA parameters, equal scan quality or using a correction factor is suggested.
Collapse
Affiliation(s)
- Cecilia Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Fruzsina Benyó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Ágnes Élő
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Gábor Erdei
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Hajnalka Horváth
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
88
|
Risacher SL, WuDunn D, Tallman EF, West JD, Gao S, Farlow MR, Brosch JR, Apostolova LG, Saykin AJ. Visual contrast sensitivity is associated with the presence of cerebral amyloid and tau deposition. Brain Commun 2020; 2:fcaa019. [PMID: 32309804 PMCID: PMC7151662 DOI: 10.1093/braincomms/fcaa019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022] Open
Abstract
Visual deficits are common in neurodegenerative diseases including Alzheimer’s disease. We sought to determine the association between visual contrast sensitivity and neuroimaging measures of Alzheimer’s disease-related pathophysiology, including cerebral amyloid and tau deposition and neurodegeneration. A total of 74 participants (7 Alzheimer’s disease, 16 mild cognitive impairment, 20 subjective cognitive decline, 31 cognitively normal older adults) underwent the frequency doubling technology 24-2 examination, a structural MRI scan and amyloid PET imaging for the assessment of visual contrast sensitivity. Of these participants, 46 participants (2 Alzheimer’s disease, 9 mild cognitive impairment, 12 subjective cognitive decline, 23 cognitively normal older adults) also underwent tau PET imaging with [18F]flortaucipir. The relationships between visual contrast sensitivity and cerebral amyloid and tau, as well as neurodegeneration, were assessed using partial Pearson correlations, covaried for age, sex and race and ethnicity. Voxel-wise associations were also evaluated for amyloid and tau. The ability of visual contrast sensitivity to predict amyloid and tau positivity were assessed using forward conditional logistic regression and receiver operating curve analysis. All analyses first were done in the full sample and then in the non-demented at-risk individuals (subjective cognitive decline and mild cognitive impairment) only. Significant associations between visual contrast sensitivity and regional amyloid and tau deposition were observed across the full sample and within subjective cognitive decline and mild cognitive impairment only. Voxel-wise analysis demonstrated strong associations of visual contrast sensitivity with amyloid and tau, primarily in temporal, parietal and occipital brain regions. Finally, visual contrast sensitivity accurately predicted amyloid and tau positivity. Alterations in visual contrast sensitivity were related to cerebral deposition of amyloid and tau, suggesting that this measure may be a good biomarker for detecting Alzheimer’s disease-related pathophysiology. Future studies in larger patient samples are needed, but these findings support the power of these measures of visual contrast sensitivity as a potential novel, inexpensive and easy-to-administer biomarker for Alzheimer’s disease-related pathology in older adults at risk for cognitive decline.
Collapse
Affiliation(s)
- Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Darrell WuDunn
- Department of Ophthalmology, UF College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Eileen F Tallman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John D West
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
89
|
Zhang JF, Wiseman S, Valdés-Hernández MC, Doubal FN, Dhillon B, Wu YC, Wardlaw JM. The Application of Optical Coherence Tomography Angiography in Cerebral Small Vessel Disease, Ischemic Stroke, and Dementia: A Systematic Review. Front Neurol 2020; 11:1009. [PMID: 33013667 PMCID: PMC7511809 DOI: 10.3389/fneur.2020.01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Objective: To investigate the application of optical coherence tomography angiography (OCTA) in cerebral small vessel disease (SVD), ischemic stroke and dementia. Methods: We conducted a systematic search in MEDLINE (from inception) and EMBASE (from 1980) to end 2019 for human studies that measured retinal parameters in cerebral SVD, ischemic stroke, and dementia using OCTA. Results: Fourteen articles (n = 989) provided relevant data. Ten studies included patients with Alzheimer disease (AD) and mild cognitive impairment (n = 679), two investigated pre-symptomatic AD participants (n = 154), and two investigated monogenic SVD patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (n = 32) and Fabry disease (n = 124). Methods to reduce bias and risk factor adjustment were poorly reported. Substantial methodological variations between studies precluded a formal meta-analysis. Quantitative measurements revealed significant yet inconclusive changes in foveal avascular zone, perfusion density, and vessel density (VD) in AD, presymptomatic AD, and SVD patients. Two (n = 160) of three studies (n = 192) showed association between decreased VD and increased white matter hyperintensities. In three (n = 297) of seven studies (n = 563), better cognitive function was associated with increased VD. One study (n = 52) suggested increased VD was associated with increased ganglion cell-inner plexiform layer thickness in AD yet with no covariate adjustment. Conclusions: Changes in retinal microvasculature identified using OCTA are associated with monogenic SVD and different stages of AD, but data are limited and partly confounded by methodological differences. Larger studies with risk factors adjustment and more consistent OCTA methods are needed to fully exploit this technology. PROSPERO registration number: CRD42020166929.
Collapse
Affiliation(s)
- Jun-Fang Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart Wiseman
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria C. Valdés-Hernández
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fergus N. Doubal
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, United Kingdom
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yun-Cheng Wu
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Science, Edinburgh Imaging and UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Joanna M. Wardlaw
| |
Collapse
|
90
|
Ngolab J, Honma P, Rissman RA. Reflections on the Utility of the Retina as a Biomarker for Alzheimer's Disease: A Literature Review. Neurol Ther 2019; 8:57-72. [PMID: 31833024 PMCID: PMC6908534 DOI: 10.1007/s40120-019-00173-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
As a part of the central nervous system, the retina may reflect both physiologic processes and abnormalities related to diseases of the brain. Indeed, a concerted effort has been put forth to understand how Alzheimer's disease (AD) pathology may manifest in the retina as a means to assess the state of the AD brain. The development and refinement of ophthalmologic techniques for studying the retina in vivo have produced evidence of retinal degeneration in AD diagnosed patients. In this review, we will discuss retinal imaging techniques implemented to study the changes in AD retina as well as highlight the recent efforts made to correlate such findings to other clinical hallmarks of AD to assess the viability of the retina as a biomarker for AD.
Collapse
Affiliation(s)
- Jennifer Ngolab
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Patrick Honma
- Department of Neurosciences, University of California, San Diego, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, CA, USA.
| |
Collapse
|