51
|
Garg A, Gupta SK, Thum T. Long non-coding RNAs: A crucial part of the vasculature puzzle. Vascul Pharmacol 2019; 114:131-138. [DOI: 10.1016/j.vph.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/23/2022]
|
52
|
Tang D, Yang Z, Long F, Luo L, Yang B, Zhu R, Sang X, Cao G. Inhibition of MALAT1 reduces tumor growth and metastasis and promotes drug sensitivity in colorectal cancer. Cell Signal 2019; 57:21-28. [PMID: 30716387 DOI: 10.1016/j.cellsig.2019.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Abstract
Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA known to be highly expressed in several tumors. In colorectal cancer (CRC), MALAT1 promotes cell proliferation, metastasis, and invasion in vitro and in vivo. This study aimed to investigate the effect of MALAT1 on the proliferation, migration, and drug sensitivity of CRC cells in vitro and in vivo and the mechanisms involved therein. We observed increased expression of MALAT1 in six CRC cell lines compared to that in normal cells, suggesting its involvement in CRC progression. Downregulation of MALAT1 inhibited cell migration and induced apoptosis in vitro and inhibited tumor growth and metastasis in nude mice. Furthermore, MALAT1 silencing downregulated the expression of ATP-binding cassette transporters (ABC), breast cancer resistance protein (BCRP), and multi-drug resistance proteins including MDR1 and MRP1, resulting in decreased resistance of cancer cells to 5-FU. In addition, the metastasis and invasion of HCT-116 and HCT-116/5-FU cells were regulated via targeting miR-20b-5p. Based on these observations, we infer that inhibition of MALAT1 suppressed CRC progression and metastasis and improved the sensitivity of cancer cells to 5-FU. The present study proposes a new direction to investigate the molecular mechanisms underlying the invasion and metastasis of CRC, whereby the interaction between MALAT1 and miR-20b-5p could be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Dongxin Tang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, PR China
| | - Zhu Yang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, PR China
| | - Fengxi Long
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, PR China
| | - Li Luo
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, PR China
| | - Bing Yang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine (TCM), Guiyang, Guizhou, PR China
| | - Ruyi Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
53
|
Yang W, Han Y, Zhao X, Duan L, Zhou W, Wang X, Shi G, Che Y, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Advances in prognostic biomarkers for esophageal cancer. Expert Rev Mol Diagn 2018; 19:109-119. [PMID: 30582379 DOI: 10.1080/14737159.2019.1563485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xinhui Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gaokai Shi
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yinggang Che
- The First Brigade of Student, Air Force Military Medical University, Xi’an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Hongwei Zhang
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
54
|
Guo X, Wu X, Han Y, Tian E, Cheng J. LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J Cell Physiol 2018; 234:10842-10854. [PMID: 30536615 DOI: 10.1002/jcp.27925] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Investigating the molecular mechanisms of myocardial infarction (MI) and subsequent heart failure have gained considerable attention worldwide. Long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been previously demonstrated to regulate the proliferation and metastasis of several tumors. However, little is known about the effects of MALAT1 in MI and in regulating the cell date after MI. In our study, first, it was shown that the expression levels of MALAT1 were increased in the MI samples compared with normal tissues using quantitative reverse-transcription polymerase chain reaction. Then, MALAT1 knockdown could significantly decrease the cell viability and increase the apoptotic rates in isoproterenol (ISO)-treated H9C2 cells. In addition, we screened the possible target and found that miR-558 is its direct target using dual luciferase reporter assay, indicating that MALAT1 functioned as decoys sponging miR-558. Transfection of miR-558 mimic decreased the cell viability and enhanced the apoptosis. Furthermore, we revealed that miR-558 could downregulate ULK1 expression and suppressed ISO-induced protective autophagy. Activation of MALAT1/miR-558/ULK1 pathway protected H9C2 cells from ISO-induced mitochondria-dependent apoptosis. Finally, we used MALAT1-knockout mice to further demonstrated that MALAT1 protected cardiomyocytes from apoptosis and partially improved the cardiac functions upon ISO treatment. In conclusion, we elucidated that lncRNA MALAT1 protected cardiomyocytes from ISO-induced apoptosis by sponging miR-558 thus promoting ULK1-dependent autophagy. Targeting lncRNA MALAT1 might become a potential strategy in protecting cardiomyocytes during MI.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital Zhengzhou, Henan, China
| | - Xiaoguang Wu
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital Zhengzhou, Henan, China
| | - Yan Han
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital Zhengzhou, Henan, China
| | - Erhu Tian
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital Zhengzhou, Henan, China
| | - Jiangtao Cheng
- Henan Province People's Hospital, People's Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital Zhengzhou, Henan, China
| |
Collapse
|
55
|
Zhao W, Wang Z, Fang X, Li N, Fang J. Long noncoding RNA Breast cancer antiestrogen resistance 4 is associated with cancer progression and its significant prognostic value. J Cell Physiol 2018; 234:12956-12963. [PMID: 30537165 DOI: 10.1002/jcp.27962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer antiestrogen resistance 4 (BCAR4) is a novel long noncoding RNA. It was originally identified in a screen for genes responsible for the development of resistance to antiestrogens in breast cancer cells and plays a major role in various tumors. However, the clinical diagnostic role of BCAR4 in tumors is not completely understood. This current meta-analysis aimed to comprehensively explore the potential role of BCAR4 as a prognostic biomarker in a number of cancers. Five public databases PubMed, EMBASE, Web of Science, Wiley Online Library, and Medline were used to search for articles. Nine studies comprising 1,293 patients were included in this meta-analysis. The results of analysis showed that BCAR4 expression in human cancer was significantly associated with poor overall survival (hazard ratio [HR] = 1.98, confidence interval [CI]: [1.71-2.29]), p < 0.00001, and high BCAR4 expression was associated with clinical stage (OR and its 95% CI was 3.30 [1.99-5.46], p < 0.00001), distant metastasis (OR = 3.83, 95% CI: 2.15-6.82, p < 0.00001), and lymph node metastasis (OR and its 95% CI was 2.91 [1.62-5.25], p = 0.0004) in patients with cancer. Furthermore, the results revealed the prognostic significance of BCAR4 in gastrointestinal malignancy, breast cancer, and osteosarcoma (HR and its 95% CI were 2.05 [1.56-2.68], p < 0.00001; 1.78 [1.46-2.16], p < 0.00001; and 2.47 [1.41-4.34], p < 0.00001, respectively). This meta-analysis indicated the potential value of BCAR4 as a biomarker for predicting a poor prognosis in patients with cancer.
Collapse
Affiliation(s)
- Wenqiu Zhao
- Department of Clinical Laboratory, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
| | - Zhenlin Wang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Fang
- Department of Orthopaedic, Hefei Orthopaedics Hospital, Hefei, Anhui, China
| | - Na Li
- Department of transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Fang
- Department of transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
56
|
Xiao M, Feng Y, Liu C, Zhang Z. Prognostic values of long noncoding RNA PVT1 in various carcinomas: An updated systematic review and meta-analysis. Cell Prolif 2018; 51:e12519. [PMID: 30252166 PMCID: PMC6528925 DOI: 10.1111/cpr.12519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cancers have been a worldwide health problem with a high mortality rate, but ideal biomarkers are not available to effectively screen and diagnose patients. Currently, an increasing number of long noncoding RNAs have been reported to be abnormally expressed in human carcinomas and play a vital role in tumourigenesis. Plasmacytoma variant translocation 1 (PVT1) is upregulated in various carcinomas, and its overexpression is associated with poor survival in cancer patients. We conduct an updated meta-analysis to determine its potential in prognosis for tumours. In total, 14 studies comprising 2435 patients were enrolled according to Reporting Recommendations for Tumour Marker Prognostic Studies guidelines. High PVT1 expression indicated poor overall survival (hazard ratio [HR] = 1.98, 95% confidence interval [CI]: 1.62-2.42, P < 0.00001) and disease-free survival (HR = 1.63, 95% CI: 1.45-1.84, P < 0.00001). Additionally, increased PVT1 expression was positively associated with lymphatic node metastasis (odd ratio [OR] = 2.87, 95% CI: 1.66-4.96, P = 0.0002), distant metastasis (OR = 2.47, 95% CI: 1.74-3.50, P < 0.00001), advanced tumour-node-metastasis stages (OR = 2.59, 95% CI: 1.38-4.88, P = 0.003). New findings highlight that PVT1 acts as competing RNA to microRNAs to protect mRNAs from miRNAs repression. Therefore, we also discuss PVT1-related microRNAs and their interaction in tumourigenesis. In conclusion, PVT1 may be a potential biomarker of poor prognosis for patients with different cancer types.
Collapse
Affiliation(s)
- Meizhu Xiao
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Feng
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chongdong Liu
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Zhenyu Zhang
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
57
|
Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Biosci Rep 2018; 38:BSR20180516. [PMID: 30266744 PMCID: PMC6200703 DOI: 10.1042/bsr20180516] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an important process in endogenous substrate degradation by lysosomes within cells, with a degree of evolutionary conservation. Like apoptosis and cell senescence, cell autophagy is a very important biological phenomenon involving the development and growth of biological processes. Abnormal autophagy may lead to tumorigenesis. In recent years, increasing studies have demonstrated that long non-coding RNAs (lncRNAs) and miRNAs can regulate cell autophagy by modulating targetting gene expression. In this review, we will provide an overview of lncRNAs and miRNAs in autophagy modulation and new insights into the underlying mechanisms, as well as their potential utilization in disease diagnosis, prognosis, and therapy.
Collapse
|
58
|
Su M, Xiao Y, Tang J, Wu J, Ma J, Tian B, Zhou Y, Wang H, Yang D, Liao QJ, Wang W. Role of lncRNA and EZH2 Interaction/Regulatory Network in Lung Cancer. J Cancer 2018; 9:4156-4165. [PMID: 30519315 PMCID: PMC6277609 DOI: 10.7150/jca.27098] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts and longer than 200 nucleotides. LncRNAs have been demonstrated to modulate gene expression at transcriptional, post-transcriptional, as well as epigenetic levels in lung cancer. Interestingly, compelling studies have revealed that lncRNAs participated in the EZH2 oncogenic regulatory network. EZH2 plays an important role in the initiation, progression and metastasis of cancer. On one hand, lncRNAs can directly bind to EZH2, recruit EZH2 to the promoter region of genes and repress their expression. On the other hand, lncRNAs can also serve as EZH2 effectors or regulators. In this review, we summarized the types of lncRNA-EZH2 interaction and regulatory network identified till date and discussed their influence on lung cancer. Better understanding regarding the interaction and regulatory network will provide new insights on lncRNA- or EZH2-based therapeutic development in lung cancer.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410001, P.R. China
| | - Jinming Tang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Wu
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China.,Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Bo Tian
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Wang
- Department of Thoracic Radiotherapy, Key laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Desong Yang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qian-Jin Liao
- Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
59
|
Zhang X, Li DY, Reilly MP. Long intergenic noncoding RNAs in cardiovascular diseases: Challenges and strategies for physiological studies and translation. Atherosclerosis 2018; 281:180-188. [PMID: 30316538 DOI: 10.1016/j.atherosclerosis.2018.09.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/05/2018] [Accepted: 09/27/2018] [Indexed: 12/25/2022]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as important mediators of many biological processes relevant to human pathophysiologies, including cardiovascular diseases. In vitro studies have provided important knowledge of cellular functions and mechanisms for an increasing number of lincRNAs. Dysregulated lncRNAs have been associated with cell fate programming and development, vascular diseases, atherosclerosis, dyslipidemia and metabolic syndrome, and cardiac pathological hypertrophy. However, functional interrogation of individual lincRNAs in physiological and disease states is largely limited. The complex nature of lincRNA actions and poor species conservation of human lincRNAs pose substantial challenges to physiological studies in animal model systems and in clinical translation. This review summarizes recent findings of specific lincRNA physiological studies, including MALAT1, MeXis, Lnc-DC and others, in the context of cardiovascular diseases, examines complex mechanisms of lincRNA actions, reviews in vivo research strategies to delineate lincRNA functions and highlights challenges and approaches for physiological studies of primate-specific lincRNAs.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Daniel Y Li
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA; Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
60
|
Prognostic value of lncRNA ROR expression in various cancers: a meta-analysis. Biosci Rep 2018; 38:BSR20181095. [PMID: 30076198 PMCID: PMC6165833 DOI: 10.1042/bsr20181095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Background: There is a dispute on the prognostic value of long non-coding RNA regulator of reprogramming (lncRNA ROR) in cancers. The purpose of the present study was to evaluate the prognostic significance of lncRNA ROR expression in human cancers. Methods: PubMed, Embase, and Cochrane Library were searched to look for relevant studies. The meta-analyses of prognostic and clinicopathological parameters (CPs) were conducted. Results: A total of ten studies were finally included into the meta-analysis. High lncRNA ROR expression was significantly associated with shorter overall survival (hazard ratio [HR] = 2.88, 95% confidence interval [CI] = 2.16-3.84, P<0.01) and disease-free survival (HR = 3.25, 95% CI = 2.30-4.60, P<0.01) compared with low lncRNA ROR expression. Besides, high lncRNA ROR expression was obviously related to more advanced clinical stage (P<0.01), earlier tumor metastasis (P=0.02), lymph node metastasis (P<0.01), and vascular invasion (P<0.01) compared with low lncRNA ROR expression. However, there was no significant correlation between lncRNA ROR expression and other CPs, including age (P=0.18), gender (P=0.33), tumor size (P=0.25), or tumor differentiation (P=0.13). Conclusion: High lncRNA ROR expression was associated with worse prognosis in cancers. LncRNA ROR expression could serve as an unfavorable prognostic factor in various cancers.
Collapse
|
61
|
Rivandi M, Pasdar A, Hamzezadeh L, Tajbakhsh A, Seifi S, Moetamani‐Ahmadi M, Ferns GA, Avan A. The prognostic and therapeutic values of long noncoding RNA PANDAR in colorectal cancer. J Cell Physiol 2018; 234:1230-1236. [DOI: 10.1002/jcp.27136] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/05/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Mahdi Rivandi
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Division of Applied Medicine Medical School, University of Aberdeen Aberdeen UK
| | - Leila Hamzezadeh
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Tajbakhsh
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Sima Seifi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Gordon A. Ferns
- Division of Medical Education Brighton & Sussex Medical School Sussex UK
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
62
|
Qi J, Chu Y, Zhang G, Li H, Yang D, Wang Q. Down-regulated LncR-MALAT1 suppressed cell proliferation and migration by inactivating autophagy in bladder cancer. RSC Adv 2018; 8:31019-31027. [PMID: 35548736 PMCID: PMC9085497 DOI: 10.1039/c8ra04876b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNA-metastasis-associated lung adenocarcinoma transcript (LncR-MALAT) is highly expressed in a variety of tumors, which can affect the progression of tumor cells. LncR-MALAT1 was reported to affect the proliferation of pancreatic cancer and glioma cells by regulating autophagy, but how LncR-MALAT1 affects the proliferation and invasion of various cancer cells by regulating autophagy in bladder cancer has not been reported. Therefore, in this study, we aimed to investigate the effect of LncR-MALAT1 on cell proliferation, apoptosis, invasion and autophagy of bladder cancer and the possible mechanism in vitro. The results showed that LncR-MALAT1 was highly expressed in bladder cancer tissues and cells. The silence of LncR-MALAT1 inhibited the proliferation and invasion and promoted apoptosis in bladder cancer cells. In addition, MALAT1 shRNA down-regulated the expression of Beclin1 and the LC3 II/I ratio, enhanced the expression of p62 and played a significant role in autophagy inhibition. By further investigating the relevant regulatory mechanisms, we found that MALATI shRNA reduced the phosphorylation of AMPK and increased the phosphorylation level of mTOR, thereby inhibiting the activation of the AMPK/mTOR pathway. It is noteworthy that the AMPK/mTOR pathway activator, metformin, partially reversed the effect of MALAT1 shRNA on the inhibition of autophagy in bladder cancer cells. At the same time, the proliferation and invasion ability of HT-1376 cells inhibited by MALAT1 shRNA were also enhanced. The results showed that down-regulation of LncR-MALAT1 could inhibit the proliferation and invasion of bladder cancer cells by attenuating autophagy via the regulation of the AMPK/mTOR pathway. Long non-coding RNA-metastasis-associated lung adenocarcinoma transcript (LncR-MALAT) is highly expressed in a variety of tumors, which can affect the progression of tumor cells.![]()
Collapse
Affiliation(s)
- Jiude Qi
- Department of Oncology, People's Hospital of Laiwu Shandong 271100 China
| | - Yanfeng Chu
- Department of Laboratory, Yantaishan Hospital Shandong 264000 China
| | - Guangyan Zhang
- Department of Laboratory, People's Hospital of Zhangqiu District Shandong 250200 China
| | - Hongjun Li
- Department of EGG Laboratory, Traditional Chinese Medicine Hospital of Zhangqiu Dirtrict Shandong 250200 China
| | - Dongdong Yang
- Department of Nursing, People's Hospital of Zhangqiu District Shandong 250000 China
| | - Qi Wang
- Department of Urology, Qingdao Municipal Hospital No. 5 Donghai Middle Road Shinan District Qingdao Shandong 266001 China +86-0523-82789159
| |
Collapse
|
63
|
Yuan F, Lu L, Zhang Y, Wang S, Cai YD. Data mining of the cancer-related lncRNAs GO terms and KEGG pathways by using mRMR method. Math Biosci 2018; 304:1-8. [PMID: 30086268 DOI: 10.1016/j.mbs.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs plays an important role in the regulation of gene expression. Identification of cancer-related lncRNAs GO terms and KEGG pathways is great helpful for revealing cancer-related functional biological processes. Therefore, in this study, we proposed a computational method to identify novel cancer-related lncRNAs GO terms and KEGG pathways. By using existing lncRNA database and Max-relevance Min-redundancy (mRMR) method, GO terms and KEGG pathways were evaluated based on their importance on distinguishing cancer-related and non-cancer-related lncRNAs. Finally, GO terms and KEGG pathways with high importance were presented and analyzed. Our literature reviewing showed that the top 10 ranked GO terms and pathways were really related to interpretable tumorigenesis according to recent publications.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China.
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York 10032, USA.
| | - YuHang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
64
|
Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci Rep 2018; 38:BSR20180365. [PMID: 29802154 PMCID: PMC6066654 DOI: 10.1042/bsr20180365] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
Several studies have suggested that long non-coding RNA (lncRNA) gene polymorphisms are associated with cancer risk. In the present study, we conducted a meta-analysis related to studies on the association between lncRNA single-nucleotide polymorphisms (SNPs) and the overall risk of cancer. A total of 12 SNPs in five common lncRNA genes were finally included in the meta-analysis. In the lncRNA antisense non-coding RNA (ncRNA) in the INK4 locus (ANRIL), the rs1333048 A/C, rs4977574 A/G, and rs10757278 A/G polymorphisms, but not rs1333045 C/T, were correlated with overall cancer risk. Our study also demonstrated that other SNPs were correlated with overall cancer risk, namely, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, rs619586 A/G), HOXA distal transcript antisense RNA (HOTTIP, rs1859168 A/C), and highly up-regulated in liver cancer (HULC, rs7763881 A/C). Moreover, four prostate cancer-associated ncRNA 1 (PRNCR1, rs16901946 G/A, rs13252298 G/A, rs1016343 T/C, and rs1456315 G/A) SNPs were in association with cancer risk. No association was found between the PRNCR1 (rs7007694 C/T) SNP and the risk of cancer. In conclusion, our results suggest that several studied lncRNA SNPs are associated with overall cancer risk. Therefore, they might be potential predictive biomarkers for the risk of cancer. More studies based on larger sample sizes and more lncRNA SNPs are warranted to confirm these findings.
Collapse
|
65
|
Liu J, Dong H, Yang Y, Qian Y, Liu J, Li Z, Guan H, Chen Z, Li C, Zhang K, Zhang Q, Cao W, Lv J. Upregulation of long noncoding RNA MALAT1 in papillary thyroid cancer and its diagnostic value. Future Oncol 2018; 14:3015-3022. [PMID: 29987950 DOI: 10.2217/fon-2018-0416] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM To investigate the expression level of lncRNA MALAT1 in papillary thyroid cancer (PTC) and evaluate its clinical diagnostic value as a biomarker in PTC. METHODS MALAT1 lncRNA expression in tissues was detected by qRT-PCR. The diagnostic value of MALAT1 as a biomarker in PTC was evaluated with receiver operating characteristics. RESULTS MALAT1 expression was upregulated in PTC tissues compared with paired corresponding noncancerous tissues. We also found that upregulated MALAT1 expression was correlated with tumor size, lymph node metastases (p = 0.011) and WHO disease stage. The area under the curve was 0.6320, 0.7192, 0.7089 and 0.7000 for PTC, lymph node metastasis, extrathyroidal extension and WHO disease stage prediction, respectively. CONCLUSION Our finding suggests that MALAT1 may exert oncogenic function in PTC and may be a potential diagnostic marker for this cancer.
Collapse
Affiliation(s)
- Jia Liu
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Hanhua Dong
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Yingxu Yang
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Yuejun Qian
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Jianqiu Liu
- Thyroid surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Zhi Li
- Thyroid surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hongya Guan
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Zheng Chen
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Cuilin Li
- Thyroid surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ke Zhang
- Thyroid surgery, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Qingsong Zhang
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Wei Cao
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| | - Jing Lv
- Translational Medicine Center, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou 450007, PR China
| |
Collapse
|
66
|
Zhou Y, Chen S, Cheng S, Wei Q, Fathy AH, Shan T. The prognostic value of high LncRNA AFAP1-AS1 expression in various cancers: A systematic review and meta-analysis containing 21 studies. Clin Chim Acta 2018; 481:147-153. [DOI: 10.1016/j.cca.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
|
67
|
Su G, He Q, Wang J. Clinical Values of Long Non-coding RNAs in Bladder Cancer: A Systematic Review. Front Physiol 2018; 9:652. [PMID: 29899709 PMCID: PMC5988895 DOI: 10.3389/fphys.2018.00652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Increasing evidence shows that dysregulated expression of long non-coding RNAs (lncRNAs) can serve as diagnostic or prognostic markers in bladder cancer. The aim of this study was to evaluate the clinical values of dysregulated lncRNAs in bladder cancer. Methods: Eligible studies were systematically searched in PubMed, Embase, and Web of Science databases from inception to December 2017. Odds ratios (OR) were calculated to investigate the correlation between lncRNAs and clinicopathological parameters. Pooled hazard ratios (HR) and 95% confidence interval (CI) were calculated to explore the prognostic value of lncRNAs in bladder cancer. Pooled diagnostic parameters were also calculated to estimate the performance of lncRNAs in diagnosing bladder cancer. All statistical analyses were performed by using STATA 13.1 program. Results: A total of 37 relevant studies were included to the present systematic review according to the inclusion and exclusion criteria, including 26 on clinicopathological parameters, 19 on prognosis, and 7 on diagnosis. For clinicopathological parameters, MALAT1 expression was significantly associated with lymph node metastasis (OR = 2.731; 95% CI: 1.409–5.292; p = 0.003), and high-level expression of XIST was related to larger tumor size (OR = 2.473; 95% CI: 1.159–5.276; p = 0.019) and higher TNM stage (OR = 0.400; 95% CI, 0.184–0.868; p = 0.020). For the prognostic values, the most significant association was observed between increased expressions of SPRY4-IT1 and poor overall survival (OS) (HR = 3.716; 95% CI: 2.084–6.719; p < 0.001); high MALAT1 expression was significantly associated with poor OS (HR = 1.611; 95% CI: 1.076–2.412; p = 0.020). For the diagnostic values, UCA1 expression profile achieved a combined AUC of 0.92, with sensitivity of 0.84 and specificity of 0.89 in distinguishing patients with bladder cancer from non-cancerous controls. Conclusions: In summary, systematic review elaborated that abnormal lncRNAs expression can serve as potential markers for prognostic evaluation in bladder cancer patients. In addition, the diagnostic meta-analysis concluded that abnormally expressed UCA1 can function as potential diagnostic markers for bladder cancer.
Collapse
Affiliation(s)
- Guoming Su
- Department of Pharmacy and Laboratory, Sichuan Nursing Vocational College, Chengdu, China
| | - Qili He
- Institute of Toxicological Detection, Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - June Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
68
|
Song X, Yao H, Liu J, Wang Q. The prognostic value of long noncoding RNA Sox2ot expression in various cancers: A systematic review and meta-analysis. Clin Chim Acta 2018; 484:52-59. [PMID: 29787741 DOI: 10.1016/j.cca.2018.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several investigations have explored the prognostic value of long noncoding RNA Sox2 overlapping transcript (lncRNA Sox2ot) expression in human cancers, however, with inconsistent results. The aim of this study was to evaluate the prognostic role of lncRNA Sox2ot expression in various cancers. METHODS PubMed, Web of Science, Embase, and Cochrane Library were comprehensively searched to retrieve relevant studies. The relationships between lncRNA Sox2ot expression and prognostic parameters were detected, including overall survival (OS), tumor differentiation, clinical stage, distant metastasis, lymph node metastasis and so on. RESULTS A total of 10 studies involving 943 cancer patients were finally included into the study. High lncRNA Sox2ot expression was significantly related to shorter OS in cancers (HR = 2.06, 95%CI = 1.67-2.55, P < 0.01). The cancer patients with high lncRNA Sox2ot expression tended to have worse tumor differentiation (P = 0.04), advanced clinical stage (P < 0.01), earlier distant metastasis (P < 0.01), and earlier lymph node metastasis (P = 0.01) compared to those with low lncRNA Sox2ot expression. However, there was no distinct correlation between lncRNA Sox2ot expression and age (P = 0.87), gender (P = 0.48), tumor size (P = 0.08), or vascular invasion (P = 0.07). CONCLUSION High lncRNA Sox2ot expression was significantly associated with worse OS, advanced clinical stage, worse tumor differentiation, earlier distant metastasis, and earlier lymph node metastasis in various cancers. LncRNA Sox2ot expression might a promising prognostic factor in various cancers.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Hongyan Yao
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China
| | - Jinlin Liu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qiang Wang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
69
|
Chu H, Chen Y, Yuan Q, Hua Q, Zhang X, Wang M, Tong N, Zhang W, Chen J, Zhang Z. The HOTAIR, PRNCR1 and POLR2E polymorphisms are associated with cancer risk: a meta-analysis. Oncotarget 2018; 8:43271-43283. [PMID: 28159929 PMCID: PMC5522144 DOI: 10.18632/oncotarget.14920] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) have been widely studied and aberrant expression of lncRNAs are involved in diverse cancers. Genetic variation in lncRNAs can influence the lncRNAs expression and function. At present, there are many studies to investigate the association between lncRNAs polymorphisms and cancer susceptibility. However, it has no systematic study to evaluate the association. We performed a meta-analysis to summarize the results of common lncRNAs (HOTAIR, PRNCR1, POLR2E and H19) polymorphisms on cancer risk, by using the random-effect model to obtain the odds ratio (ORs) and 95% confidence interval (95%CI). We also applied the meta-regression and publication bias analysis to seek the source of heterogeneity and evaluate the stability of results, respectively. The summary results indicated that HOTAIR rs920778 increased the cancer risk in recessive model (OR = 1.61, 95% CI = 1.08-2.41, Pheterogeneity<0.001). For PRNCR1 (rs1016343, rs16901946) and POLR2E (rs3787016), we also found the significant association with incresed risk of cancer (all P<0.05). However, we did not observe any significant association between H19 rs2107425 and cancer risk. Our meta-analysis results revealed that these four lncRNAs polymorphisms (HOTAIR rs920778, PRNCR1 rs1016343 and rs16901946, POLR2E rs3787016) can contribute to cancer risk. Further studies should confirm these findings.
Collapse
Affiliation(s)
- Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Oncology, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yaoyao Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinbo Yuan
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuhan Hua
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Na Tong
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinfei Chen
- Department of Oncology, The Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
70
|
Lin Q, Guan W, Ren W, Zhang L, Zhang J, Xu G. MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep 2018; 39:2644-2652. [PMID: 29693187 PMCID: PMC5983936 DOI: 10.3892/or.2018.6384] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC.
Collapse
Affiliation(s)
- Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Wencai Guan
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
71
|
Sookoian S, Flichman D, Garaycoechea ME, San Martino J, Castaño GO, Pirola CJ. Metastasis-associated lung adenocarcinoma transcript 1 as a common molecular driver in the pathogenesis of nonalcoholic steatohepatitis and chronic immune-mediated liver damage. Hepatol Commun 2018; 2:654-665. [PMID: 29881817 PMCID: PMC5983147 DOI: 10.1002/hep4.1184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are functional molecules that orchestrate gene expression. To identify lncRNAs involved in nonalcoholic fatty liver disease (NAFLD) severity, we performed a multiscale study that included: (a) systems biology modeling that indicated metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) as a candidate lncRNA for exploring disease‐related associations, (b) translational exploration in the clinical setting, and (c) mechanistic modeling. MALAT1 liver profiling was performed in three consecutive phases, including an exploratory stage (liver samples from patients with NAFLD who were morbidly obese [n = 47] and from 13 individuals with normal liver histology); a replication stage (patients with NAFLD and metabolic syndrome [n =49]); and a hypothesis‐driven stage (patients with chronic hepatitis C and autoimmune liver diseases, [n = 65]). Liver abundance of MALAT1 was associated with NAFLD severity (P = 1 × 10–6); MALAT1 expression levels were up‐regulated 1.75‐fold (P = 0.029) and 3.6‐fold (P = 0.012) in patients with nonalcoholic steatohepatitis compared to those diagnosed with simple steatosis (discovery and replication set, respectively; analysis of covariance adjusted by age, homeostasis model assessment, and body mass index). Quantification of liver vascular endothelial growth factor A messenger RNA, a target of MALAT1, revealed a significant correlation between the two RNAs (R, 0.58; P = 5 × 10–8). Increased levels of MALAT1 were also associated with autoimmune liver diseases. Interactome assessment uncovered significant biological pathways, including Janus kinase‐signal transducers and activators of transcription and response to interferon‐γ. Conclusion: Deregulated expression of MALAT1 stratifies patients into the histologic phenotypes associated with NAFLD severity. MALAT1 up‐regulation seems to be a common molecular mechanism in immune‐mediated chronic inflammatory liver damage. This suggests that convergent pathophenotypes (inflammation and fibrosis) share similar molecular mediators. (Hepatology Communications 2018;2:654‐665)
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, Institute of Medical Research A Lanari Buenos Aires Argentina.,National Scientific and Technical Research Council, University of Buenos Aires-Institute of Medical Research, Department of Clinical and Molecular Hepatology Buenos Aires Argentina
| | - Diego Flichman
- University of Buenos Aires, School of Pharmacy and Biochemistry, Department of Virology-National Scientific and Technical Research Council Buenos Aires Argentina
| | - Martin E Garaycoechea
- Hospital de Alta Complejidad en Red El Cruce, Department of Surgery-Centros de Medicina del Trabajo Florencio Valera Argentina
| | - Julio San Martino
- Hospital Diego Thompson, San Martin, Department of Pathology Buenos Aires Argentina
| | - Gustavo O Castaño
- Hospital Abel Zubizarreta, Department of Medicine and Surgery, Liver Unit Buenos Aires Argentina
| | - Carlos J Pirola
- University of Buenos Aires, Institute of Medical Research A Lanari Buenos Aires Argentina.,Hospital de Alta Complejidad en Red El Cruce, Department of Surgery-Centros de Medicina del Trabajo Florencio Valera Argentina.,National Scientific and Technical Research Council, University of Buenos Aires-Institute of Medical Research, Department of Molecular Genetics and Biology of Complex Diseases Buenos Aires Argentina
| |
Collapse
|
72
|
Li S, Mei Z, Hu H, Zhang X. The lncRNA MALAT1 contributes to non‐small cell lung cancer development via modulating miR‐124/STAT3 axis. J Cell Physiol 2018; 233:6679-6688. [DOI: 10.1002/jcp.26325] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Sen Li
- Department of Spinal Surgery, Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zhoufang Mei
- Department of Respiratory, The Fifth People's Hospital of ShanghaiFudan universityShanghaiChina
| | - Hai‐Bo Hu
- Department of Thoracic SurgeryHuai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Xin Zhang
- Department of Medical ImagingThe Fourth People's Hospital of Huai'anHuai'anChina
| |
Collapse
|
73
|
Jiang LT, Wan CH, Guo QH, Yang SJ, Wu JD, Cai J. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Renal Cell Carcinoma Progression via Sponging miRNA-429. Med Sci Monit 2018; 24:1794-1801. [PMID: 29588438 PMCID: PMC5887685 DOI: 10.12659/msm.909450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background It is well known that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is closely correlated with the tumorigenesis of multiple cancers, including renal cell carcinoma (RCC). However, the potential functional mechanism is still elusive. Material/Methods In our present research, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for the measurement of MALAT1 and miR-429. CCK-8 assay and Transwell assay were performed for the proliferation, migration, and invasion abilities of RCC cells. Dual-luciferase reporter assay was performed to validate the interaction within MALAT1 and miR-429. Results Data found that MALAT1 was overexpressed in RCC clinical samples and cell lines. Moreover, loss-of-functional experiments showed that MALAT1 knockdown suppress the proliferation, migration, and invasion abilities of RCC cells. RT-PCR showed that miR-429 expression was downregulated in RCC cell lines, which was negatively correlated with that of MALAT1. Bioinformatics analysis suggested that miR-429 had complementary binding sequences with MALAT1, which was confirmed by dual-luciferase reporter assay. Conclusions In summary, our results concluded that MALAT1 functioned as an oncogene in RCC by sponging miR-429, acting as its competing endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Lin-Tao Jiang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chun-Hua Wan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qing-Hao Guo
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shi-Jiang Yang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing-Dong Wu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jun Cai
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
74
|
Kim SH, Kim SH, Yang WI, Kim SJ, Yoon SO. Association of the long non-coding RNA MALAT1 with the polycomb repressive complex pathway in T and NK cell lymphoma. Oncotarget 2018; 8:31305-31317. [PMID: 28412742 PMCID: PMC5458209 DOI: 10.18632/oncotarget.15453] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/31/2017] [Indexed: 01/16/2023] Open
Abstract
Recently, various long non-coding RNAs (lncRNAs) have been reported to have significant therapeutic or prognostic value. However, the expression of lncRNAs has not been investigated in T and NK cell lymphoma. Thus, we evaluated the biological and prognostic role of lncRNAs related to the polycomb repressive complex (PRC) and PRC markers in tissue samples and cell lines of T and NK cell lymphoma. Among the tested lncRNAs, MALAT1 was most highly expressed in clinical samples and cell lines. High expression of MALAT1 as well as BMI1 was related to poor prognosis in patients with mature T cell lymphoma. In the tissue samples, BMI1 expression showed a positive correlation with EZH2, SUZ12, H3K27me3, and MALAT1. Multiple linear regression analysis showed that BMI1 expression was independently associated with H3K27me3. Direct binding of MALAT1 to the PRC2 components (EZH2 and SUZ12) was observed in a T cell lymphoma cell line; however, no direct binding of MALAT1 with H3K27me3 and BMI1 (a PRC1 component) was observed. In T and NK cell lymphomas, MALAT1 was related to poor prognosis. MALAT1 directly binds to EZH2 and SUZ12, and BMI1 activation may be induced possibly through H3K27me3.
Collapse
Affiliation(s)
- Soo Hee Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.,Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
75
|
Altered long non-coding RNAs predict worse outcome in osteosarcoma patients: evidence from a meta-analysis. Oncotarget 2018; 8:35234-35243. [PMID: 28415638 PMCID: PMC5471049 DOI: 10.18632/oncotarget.16470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/10/2017] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as promising prognostic biomarkers in an expanding list of malignant neoplasms. Here, we sought to investigate the strength of associations between lncRNA signatures and clinical outcomes in osteosarcoma. We conducted a systematic search of the online databases from inception to July 2016. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) for the primary endpoints of overall survival (OS), progression-free survival (PFS) or event-free survival (EFS) were extracted and meta-analyzed. Our results manifested that altered lncRNAs expression was markedly associated with worse OS (univariate analysis: HR = 3.20, 95% CI: 2.42-4.24, P = 0.000; multivariate analysis: HR = 2.66, 95% CI: 1.92-3.69, P = 0.000), PFS (HR = 2.05, 95% CI: 1.32-3.18, P = 0.001) and EFS (HR = 4.37, 95% CI: 1.64-11.66, P = 0.003) times among osteosarcoma patients. In the pooled analyses stratified by clinicopathological features, levels of lncRNAs were closely correlated with tumor size (pooled P = 0.001), tumor stage (pooled P = 0.003), and distant metastasis (pooled P = 0.002) in osteosarcoma. The results obtained in our work suggest that altered lncRNA signatures predict unfavorable clinical outcomes and are acceptable to be potential prognostic biomarkers in forecasting prognosis of osteosarcoma.
Collapse
|
76
|
Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation. Oncotarget 2018; 8:3509-3518. [PMID: 27966454 PMCID: PMC5356899 DOI: 10.18632/oncotarget.13862] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 01/17/2023] Open
Abstract
Dysregulation of miR-183 has been recently elucidated in several carcinomas. However, the expression patterns and mechanisms of miR-183 involved in malignant melanoma remain unidentified. Here, we found down-regulation of miR-183 in melanoma tissues and cells. Decreased level of miR-183 was relevant to poor overall survival, while miR-183 up-regulation resulted in a marked suppression of cell growth in vitro and in vivo. We further found that the expression and function of miR-183 were suppressed by MALAT1. Integrin β1 (ITGB1) was then speculated and confirmed as a direct target of miR-183. We also illustrated that MALAT1 may function as a sponge competitive endogenous RNA (ceRNA) for miR-183, and thus regulate the molecular expression of ITGB1. Collectively, we found a new signaling pathway promoting melanoma development by MALAT1-miR-183-ITGB1 axis, which may be clinically valuable as new targets for malignant melanoma therapy.
Collapse
|
77
|
Huang J, Yang Y, Fang F, Liu K. MALAT1 modulates the autophagy of retinoblastoma cell through miR‐124‐mediated stx17 regulation. J Cell Biochem 2018; 119:3853-3863. [DOI: 10.1002/jcb.26464] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Huang
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuting Yang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fang Fang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ke Liu
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
78
|
Tehrani SS, Karimian A, Parsian H, Majidinia M, Yousefi B. Multiple Functions of Long Non-Coding RNAs in Oxidative Stress, DNA Damage Response and Cancer Progression. J Cell Biochem 2018; 119:223-236. [PMID: 28608608 DOI: 10.1002/jcb.26217] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
In addition to aberrant alternation of transcriptome, it is now suggested that dysregulation of the non-coding transcripts, particularly long non-coding RNAs (lncRNAs), which comprise the majority of the genome, is contributed to cancer initiation and progression. As the result of recent huge efforts, the possible roles of numerous lncRNAs in the human cancers were characterized, as well as various strategies with inhibitory effects to target these transcripts on the transformed cells. Moreover, DNA damage response (DDR) pathway is a complex regulatory network responsible for the identification of disruptions in DNA structure, integrity and stability- it is reported to be associated with the up-regulation and down-regulation of lncRNAs. This review explores the involvement of the various lncRNAs in different human cancers, afterwards discusses the association of the lncRNAs expression with the DDR and oxidative stress, which are implicated in a myriad pathophysiological and physiological intra- and extracellular damages. J. Cell. Biochem. 119: 223-236, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
79
|
Sun KK, Hu PP, Xu F. Prognostic significance of long non-coding RNA MALAT1 for predicting the recurrence and metastasis of gallbladder cancer and its effect on cell proliferation, migration, invasion, and apoptosis. J Cell Biochem 2017; 119:3099-3110. [PMID: 29058818 DOI: 10.1002/jcb.26451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
The objective of this study is to explore the role of MALAT1 as a molecular indicator in predicting the recurrence, metastasis, and prognosis of gallbladder cancer (GBC) and its effect on the proliferation, invasion, migration, and apoptosis of GBC cells in vitro. GBC tissues and adjacent normal tissues were collected from 102 patients. MALAT1 short hairpin RNA (shRNA) plasmids were first constructed to transfect the GBC-SD cells. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was applied to detect MALAT1 expression. CCK-8 assay, flow cytometry, and Transwell assay were applied to testify the cell proliferation, cell cycle, apoptosis, invasion, and migration. A receiver operating characteristic (ROC) curve was used to evaluate the values of MALAT1 in GBC recurrence, metastasis, and prognosis. COX regression analysis was applied to analyze the independent influencing factors of GBC patients' survival status. ROC curve results showed that the MALAT1 expression could be a predictor of the GBC recurrence, metastasis, and prognosis. According to the COX regression analysis, MALAT1 expression, tumor size, and TNM stage were independent influencing factors of GBC patients' survival condition. Compared with the GBC-SD cells transfected with empty plasmids, those transfected with MALAT1 shRNA plasmids showed higher apoptosis rates, weakened proliferation, migration, and invasion. In conclusion, our findings demonstrate that lncRNA MALAT1 can be considered as an indicator for evaluating the recurrence, metastasis, and prognosis of GBC patients. We also demonstrate how the overexpression of MALAT1 confers an oncogenic function in GBC.
Collapse
Affiliation(s)
- Ke-Ke Sun
- Department of Gastroenterology, Yinzhou Hospital Affiliated to Medical School of Ningbo University (Yinzhou People's Hospital), Ningbo, China
| | - Ping-Ping Hu
- Department of Gastroenterology, Yinzhou Hospital Affiliated to Medical School of Ningbo University (Yinzhou People's Hospital), Ningbo, China
| | - Feng Xu
- Department of Gastroenterology, Yinzhou Hospital Affiliated to Medical School of Ningbo University (Yinzhou People's Hospital), Ningbo, China
| |
Collapse
|
80
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
81
|
Identification of a progression-associated long non-coding RNA signature for predicting the prognosis of lung squamous cell carcinoma. Exp Ther Med 2017; 15:1185-1192. [PMID: 29434705 PMCID: PMC5774407 DOI: 10.3892/etm.2017.5571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/07/2017] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been indicated to have prognostic roles in various cancer types. However, the association between lncRNAs and lung squamous cell carcinoma (LSCC) progression, and the prognostic value of lncRNAs as a marker for early detection of LSCC have not been systematically investigated. The present study performed a genome-wide comparative analysis in order to determine the expression profiles of 10,207 lncRNAs to investigate the expression patterns between patients with early stages of LSCC (stage I–II) and those with late-stage disease (stage III–IV). It was found that 114 lncRNAs were significantly differentially expressed between late- and early-stage LSCC and therefore associated with the progression of the malignancy. By focusing on progression-associated lncRNAs, eight lncRNAs were found to be significantly associated with overall survival of LSCC patients according to univariate Cox proportional hazards regression analysis. These eight prognostic lncRNAs were integrated into a progression-associated eight-lncRNA signature, which stratified patients into two groups with significantly different overall survival (median survival, 2.25 vs. 7.68 years; P=2.06×10−5). In addition, the prognostic value of the progression-associated eight-lncRNA signature was independent of known clinical factors. Functional analysis suggested that eight prognostic lncRNAs may be involved in adipocytokine signaling pathway and glycerophospholipid metabolism. Taken together, the progression-associated eight-lncRNA signature identified by our study not only represents a candidate prognostic biomarker for LSCC patients but also provides insight into the molecular mechanisms in the progression of LSCC.
Collapse
|
82
|
Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel) 2017; 8:genes8110339. [PMID: 29165379 PMCID: PMC5704252 DOI: 10.3390/genes8110339] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022] Open
Abstract
According to data of the International Agency for Research on Cancer and the World Health Organization (Cancer Incidence in Five Continents, GLOBOCAN, and the World Health Organization Mortality), bladder is among the top ten body locations of cancer globally, with the highest incidence rates reported in Southern and Western Europe, North America, Northern Africa and Western Asia. Males (M) are more vulnerable to this disease than females (F), despite ample frequency variations in different countries, with a M:F ratio of 4.1:1 for incidence and 3.6:1 for mortality, worldwide. For a long time, bladder cancer was genetically classified through mutations of two genes, fibroblast growth factor receptor 3 (FGFR3, for low-grade, non-invasive papillary tumors) and tumor protein P53 (TP53, for high-grade, muscle-invasive tumors). However, more recently scientists have shown that this disease is far more complex, since genes directly involved are more than 150; so far, it has been described that altered gene expression (up- or down-regulation) may be present for up to 500 coding sequences in low-grade and up to 2300 in high-grade tumors. Non-coding RNAs are essential to explain, at least partially, this ample dysregulation. In this review, we summarize the present knowledge about long and short non-coding RNAs that have been linked to bladder cancer etiology.
Collapse
|
83
|
Liu G, Dong C, Wang X, Hou G, Zheng Y, Xu H, Zhan X, Liu L. Regulatory activity based risk model identifies survival of stage II and III colorectal carcinoma. Oncotarget 2017; 8:98360-98370. [PMID: 29228695 PMCID: PMC5716735 DOI: 10.18632/oncotarget.21312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/26/2017] [Indexed: 02/07/2023] Open
Abstract
Clinical and pathological indicators are inadequate for prognosis of stage II and III colorectal carcinoma (CRC). In this study, we utilized the activity of regulatory factors, univariate Cox regression and random forest for variable selection and developed a multivariate Cox model to predict the overall survival of Stage II/III colorectal carcinoma in GSE39582 datasets (469 samples). Patients in low-risk group showed a significant longer overall survival and recurrence-free survival time than those in high-risk group. This finding was further validated in five other independent datasets (GSE14333, GSE17536, GSE17537, GSE33113, and GSE37892). Besides, associations between clinicopathological information and risk score were analyzed. A nomogram including risk score was plotted to facilitate the utilization of risk score. The risk score model is also demonstrated to be effective on predicting both overall and recurrence-free survival of chemotherapy received patients. After performing Gene Set Enrichment Analysis (GSEA) between high and low risk groups, we found that several cell-cell interaction KEGG pathways were identified. Funnel plot results showed that there was no publication bias in these datasets. In summary, by utilizing the regulatory activity in stage II and III colorectal carcinoma, the risk score successfully predicts the survival of 1021 stage II/III CRC patients in six independent datasets.
Collapse
Affiliation(s)
- Gang Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chuanpeng Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yu Zheng
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilin Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaohui Zhan
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
84
|
Li Y, Wang Z, Nair A, Song W, Yang P, Zhang X, Sun Z. Comprehensive Profiling of lincRNAs in Lung Adenocarcinoma of Never Smokers Reveals Their Roles in Cancer Development and Prognosis. Genes (Basel) 2017; 8:genes8110321. [PMID: 29137177 PMCID: PMC5704234 DOI: 10.3390/genes8110321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
Long intergenic non-coding RNA (lincRNA) is a family of gene transcripts, the functions of which are largely unknown. Although cigarette smoking is the main cause for lung cancer, lung cancer in non-smokers is a separate entity and its underlying cause is little known. Growing evidence suggests lincRNAs play a significant role in cancer development and progression; however, such data is lacking for lung cancer in non-smokers, or those who have never smoked. This study conducted comprehensive profiling of lincRNAs from RNA sequencing (RNA-seq) data of non-smoker patients with lung adenocarcinoma. Both known and novel lincRNAs distinctly segregated tumors from normal tissues. Approximately one third of lincRNAs were differentially expressed between tumors and normal samples and most of them were coordinated with their putative protein gene targets. More importantly, lincRNAs defined two clusters of tumors that were associated with tumor aggressiveness and patient survival. We identified a subset of lincRNAs that were differentially expressed and also associated with patient survival. Very high concordance (R2 = 0.9) was observed for the differentially expressed lincRNAs in the Cancer Genome Atlas (TCGA) validation set of 85 transcriptomes and the lincRNAs associated with survival from the discovery set were similarly predictive in the validation set. These lincRNAs warrant further investigation as potential diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Ying Li
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Pulmonary Medicine, People's Hospital of Henan Province, Zhengzhou 450003, China.
| | - Zheng Wang
- Department of Pulmonary Medicine, People's Hospital of Henan Province, Zhengzhou 450003, China.
| | - Asha Nair
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Wei Song
- Department of Pulmonary Medicine, People's Hospital of Henan Province, Zhengzhou 450003, China.
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| | - Xiaoju Zhang
- Department of Pulmonary Medicine, People's Hospital of Henan Province, Zhengzhou 450003, China.
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
85
|
Peng R, Luo C, Guo Q, Cao J, Yang Q, Dong K, Wang S, Wang K, Song C. Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and mRNA expression of MALAT1 in Chinese Han population. Gene 2017; 642:241-248. [PMID: 29146194 DOI: 10.1016/j.gene.2017.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 01/23/2023]
Abstract
The long non-coding RNA (lncRNA) Metastasis-associated lung adenocarcinoma transcript 1(MALAT1) has been implicated in breast cancer (BC). Polymorphisms in MALAT1 may play a vital role in the progress of breast cancer by its regulation function. However, potential genetic variants in MALAT1 affecting the development of BC is rarely explored. In our current molecular epidemiology study, all three tagging SNPs (rs3200401, rs619586 and rs7927113) in lncRNA MALAT1 were selected for genotyping in 487BCE patients and 489 cancer-free controls in Chinese Han population, and futher experiment of quantitative real-time (qRT) PCR was conducted to examine the relative expression of MALAT1. The results showed that individuals with genotype AG of rs619586 has a decreased risk of BC in codominant model (OR: 0.684, 95%CI: 0.478-0.979), dominant mode (OR: 0.675, 95%CI: 0.479-0.951) and over-dominant model (OR: 0.692, 95%CI: 0484-0.989). Also, qRT-PCR results revealed that the expression for MALAT1 with AG (0.827±0.490), GG (0.511±0.149) and AG+GG genotypes (0.743±0.447) of rs619586 was significantly lower than that with genotype AA (1.511±0.737). In addition, females with genotype CT of rs3200401 had a lower risk of BC in the codominant model (OR: 0.75, 95%CI: 0.559-1.007) and over-dominant model (OR: 0.741, 95%CI: 0.552-0.993). In summary, our results implied that the genetic variants of lncRNA MALAT1 were associated with the susceptibility of BC, and meaningful genetic alteration might affect the corresponding mRNA expression of lncRNA MALAT1.
Collapse
Affiliation(s)
- Rui Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Chenglin Luo
- Department of Biological Sciences, The University of Texas at El Paso, TX 79968, USA
| | - Qiaoyun Guo
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Jingjing Cao
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Qian Yang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Kaiyan Dong
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Shuaibing Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Kaijuan Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou 450001, Henan, PR China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Henan Key Laboratory of Tumor Epidemiology, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
86
|
Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol 2017; 75:13-22. [PMID: 28919308 DOI: 10.1016/j.semcdb.2017.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment.
Collapse
Affiliation(s)
- Xiaowei Song
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China.
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Huanhuan Wei
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
87
|
Wang Y, Zhang Y, Yang T, Zhao W, Wang N, Li P, Zeng X, Zhang W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 2017; 8:59417-59434. [PMID: 28938647 PMCID: PMC5601743 DOI: 10.18632/oncotarget.19727] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in various biological processes and diseases including osteosarcoma. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overly expressed in osteosarcoma. But the function and mechanism it works on in osteosarcoma proliferation and metastasis mediated by Rho associated coiled-coil containing protein kinase 1 (ROCK1) and Rho associated coiled-coil containing protein kinase 2 (ROCK2) remain unclear. In the present study, an elevated MALAT1 was found in osteosarcoma tissues and cell lines, and the elevated MALAT1 was correlated with a poor prognosis in osteosarcoma patients. The functional experiments show that a decreased MALAT1 could remarkably inhibit osteosarcoma cell metastasis and proliferation but induce cell cycle arrest, indicating that MALAT1 functioned as an oncogene in osteosarcoma. Furthermore, we confirmed that MALAT1 and ROCK1/ROCK2 which were targeted by microRNA-144-3p (miR-144-3p) shared the same miR-144-3p combining site. Furthermore, the constructed luciferase assay verified that MALAT1 was a target of miR-144-3p. Additionally, the results of a qRT-PCR demonstrated that MALAT1 and miR-144-3p repressed each other's expression in a reciprocal manner. Finally, we affirmed that an overexpression of MALAT1 inhibited ROCK1/ROCK2 expression and its mediated metastasis and proliferation by working as a competitive endogenous RNA (ceRNA) via miR-144-3p. In summary, the findings of this study based on the ceRNA theory, combining the research foundation of miR-144-3p, ROCK1 and ROCK2, taking MALAT1 as a new point of study, provided new insights into molecular level proliferation reversal and metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Yueyang Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, Shenyang, P. R. China
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Ningning Wang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Pengcheng Li
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Xiandong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
88
|
Huang JL, Liu W, Tian LH, Chai TT, Liu Y, Zhang F, Fu HY, Zhou HR, Shen JZ. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia. Oncol Rep 2017; 38:1353-1362. [PMID: 28713913 PMCID: PMC5549035 DOI: 10.3892/or.2017.5802] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), a long non-coding RNA, has been documented to be a new prognostic marker and gene regulator in several types of cancer, but its potential involvement in acute myeloid leukemia (AML) remains unclear. This study investigated the expression and functional role of MALAT-1 in AML. MALAT-1 expression was assessed by real-time quantitative PCR. After lentiviral-mediated MALAT-1 knockdown, the proliferation of AML cells was determined by CCK-8 and colony formation assays. Cell cycle progression and apoptosis were evaluated by flow cytometry and the expression of caspase-3, −8 and −9 was assessed by western blot analysis. We found that MALAT-1 expression in patients with acute monocytic leukemia (M5) was significantly increased when compared with that of healthy controls, and the overall survival of M5 patients with high MALAT-1 expression was markedly reduced when compared with the overall survival of patients with low MALAT-1 expression. The analysis of cellular experiments showed that MALAT-1 silencing decreased the proliferation of M5 cells (U-937 and THP-1), inhibited cell cycle progression and increased apoptosis. Taken together, these findings suggest that high MALAT-1 expression is closely associated with poor prognosis in M5 patients and may play a role in leukemia cell proliferation and apoptosis, and may serve as a promising theranostic marker.
Collapse
Affiliation(s)
- Jin-Long Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wei Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Li-Hong Tian
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ting-Ting Chai
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yang Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Feng Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hai-Ying Fu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Rong Zhou
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Zhen Shen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
89
|
Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget 2017; 8:81538-81557. [PMID: 29113413 PMCID: PMC5655308 DOI: 10.18632/oncotarget.18432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far.
Collapse
|
90
|
Li J, Gao J, Tian W, Li Y, Zhang J. Long non-coding RNA MALAT1 drives gastric cancer progression by regulating HMGB2 modulating the miR-1297. Cancer Cell Int 2017; 17:44. [PMID: 28396617 PMCID: PMC5383984 DOI: 10.1186/s12935-017-0408-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/06/2017] [Indexed: 01/02/2023] Open
Abstract
Background Emerging evidences have verified that long non-coding RNAs (lncRNAs) play important regulatory roles in the pathogenesis and progression of cancers. lncRNAs metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been found to be up-regulated in some human cancers. The main objective of this study was to investigate the expression level and biological function of MALAT1 in gastric cancer (GC). Methods Quantificational real-time polymerase chain reaction (qRT-PCR) was performed to detect the mRNA levels of MALAT1 in 78 paired gastric carcinoma tissues and adjacent normal tissues, and the associations of MALAT1 expression with the clinicopathological features were analyzed, and the prognosis of gastric carcinoma patients was evaluated. The HMGB2 mRNA and protein expressions were detected by qRT-PCR and western-blot analysis. Luciferase reporter assay was used to determine miR-1297 was a target of MALAT1. Results In this study, we demonstrated MALAT1 was up-regulation in GC tissues compared with adjacent normal tissues and higher MALAT1 expression was correlated with local invasion, lymph node metastasis and TNM stage. Patients with higher MALAT1 expression predicted a shorter survival and poor prognosis. Functionally, we revealed that MALAT1 promoted cells proliferation and invasion in GC. Mechanistically, our results demonstrated that MALAT1 was negatively correlation with miR-1297 and functioned as a molecular sponging miR-1297, antagonizing its ability to suppress HMGB2 expression. Conclusions Taken together, these results demonstrated that MALAT1/miR-1297/HMGB2 axis acted as critical regulator pathway in GC tumorigenesis and progression, which provided a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jijun Li
- Department of Medical Oncology, Hebei Cang Zhou Central Hospital, No.16, Xinhuaxi Road, Cangzhou, Hebei 061000 China
| | - Jinghua Gao
- Department of Medical Oncology, Hebei Cang Zhou Central Hospital, No.16, Xinhuaxi Road, Cangzhou, Hebei 061000 China
| | - Wen Tian
- Department of Medical Oncology, Hebei Cang Zhou Central Hospital, No.16, Xinhuaxi Road, Cangzhou, Hebei 061000 China
| | - Yongsheng Li
- Department of Medical Oncology, Hebei Cang Zhou Central Hospital, No.16, Xinhuaxi Road, Cangzhou, Hebei 061000 China
| | - Jinghua Zhang
- Department of Medical Oncology, Hebei Cang Zhou Central Hospital, No.16, Xinhuaxi Road, Cangzhou, Hebei 061000 China
| |
Collapse
|
91
|
Seven LncRNA-mRNA based risk score predicts the survival of head and neck squamous cell carcinoma. Sci Rep 2017; 7:309. [PMID: 28331188 PMCID: PMC5428014 DOI: 10.1038/s41598-017-00252-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of mRNAs and long non-coding RNAs (lncRNAs) is one of the most important features of carcinogenesis and cancer development. However, studies integrating the expression of mRNAs and lncRNAs to predict the survival of head and neck squamous cell carcinoma (HNSC) are still limited, hitherto. In current work, we identified survival related mRNAs and lncRNAs in three datasets (TCGA dataset, E-TABM-302, GSE41613). By random forest, seven gene signatures (six mRNAs and lncRNA) were further selected to develop the risk score model. The risk score was significantly associated with survival in both training and testing datasets (E-TABM-302, GSE41613, and E-MTAB-1324). Furthermore, correlation analyses showed that the risk score is independent from clinicopathological features. According to Cox multivariable hazard model and nomogram, the risk score contributes the most to survival than the other clinical information, including gender, age, histologic grade, and alcohol taking. The Gene Set Enrichment Analysis (GSEA) indicates that the risk score is associated with cancer related pathways. In summary, the lncRNA-mRNA based risk score model we developed successfully predicts the survival of 755 HNSC samples in five datasets and two platforms. It is independent from clinical information and performs better than clinical information for prognosis.
Collapse
|
92
|
Chen Z, Zhang L, Zhu Q, Wang X, Wu J, Wang X. Clinical value of octamer-binding transcription factor 4 as a prognostic marker in patients with digestive system cancers: A systematic review and meta-analysis. J Gastroenterol Hepatol 2017; 32:567-576. [PMID: 28320060 DOI: 10.1111/jgh.13624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM The role of octamer-binding transcription factor 4 (Oct4) has been implicated in the clinical prognosis of various kinds of digestive system cancers, but the results remain controversial. The purpose of this meta-analysis is to assess the potential role of Oct4 as a prognostic marker in digestive system tumors. METHODS Relevant articles were retrieved from Pubmed, Web of Science, and Cochrane Library up to July 2016. The software Stata 12.0 was used to analyze the outcomes, including overall survival (OS), disease-free survival, recurrence-free survival, and clinicopathological characteristics. RESULTS A total of 13 eligible studies with 1538 patients were included. Elevated Oct4 expression was significantly associated with poor OS (pooled hazard ratio [HR] = 2.183, 95% confidence interval [CI]: 1.824-2.612), disease-free survival (pooled HR = 1.973, 95% CI: 1.538-2.532), and recurrence-free survival (pooled HR = 2.209, 95% CI: 1.461-3.338) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection method did not alter the significant prognostic value of Oct4. Additionally, Oct4 expression was found to be an independent predictive factor for OS (HR = 2.068, 95% CI: 1.633-2.619). No significant association was found between Oct4 and clinicopathological features of digestive system malignancies. CONCLUSION This study provided evidence of Oct4 and/or its closely related homolog protein as a predictive factor for patients with digestive system cancers. More large-scale clinical studies on the prognostic value of Oct4 are warranted.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Zhang
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Zhu
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jindao Wu
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Key Laboratory on Living Donor Liver Transplantation of Ministry of Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
93
|
Sun L, Sun P, Zhou QY, Gao X, Han Q. Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140. Am J Transl Res 2016; 8:3939-3946. [PMID: 27725873 PMCID: PMC5040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
Increasing evidences have demonstrated that long noncoding RNAs (LncRNAs) play a significant role in the development of tumor. However, the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in uveal melanoma remains unknown. In this study, we demonstrated that the expression of MALAT1 was upregulated in the uveal melanoma tissues compared to normal tissues. Among them, MALAT1 was upregulated in 72% (18/25) uveal melanoma tissues compared to their paired normal tissues. Knockdown of MALAT1 suppressed uveal melanoma cell proliferation, colony information, invasion and migration. Moreover, we showed that knockdown of MALAT1 promoted miR-140 expression and suppressed Slug and ADAM10 expression in the MUM-2C cell. In addition, we demonstrated that miR-140 was downregulated in the uveal melanoma tissues compared to normal tissues and cell lines. The expression level of MALAT1 was inversely correlated with the expression level of miR-140 in uveal melanoma tissues. These results suggested that MALAT1 served as an oncogenic LncRNA in the development of uveal melanoma.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi UniversityJiamusi 154002, Heilongjiang, China
| | - Qi-ying Zhou
- College of Computer Science and Technology (Network and Information Security) of Jilin UniversityChangchun 130012, Jilin, China
| | - Xiangchun Gao
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| | - Qing Han
- Department of Ophthalmology, The Fourth Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang, China
| |
Collapse
|
94
|
Xia J, Inagaki Y, Sawakami T, Song P, Cai Y, Hasegawa K, Sakamoto Y, Akimitsu N, Tang W, Kokudo N. Preliminary investigation of five novel long non-coding RNAs in hepatocellular carcinoma cell lines. Biosci Trends 2016; 10:315-9. [PMID: 27499103 DOI: 10.5582/bst.2016.01140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent cancer with a high mortality rate and HCC is always accompanied with a hepatitis B virus (HBV) infection, unlike many other types of cancers. Over the past few years, cancer-related long non-coding RNAs (lncRNAs) and virus-related lncRNAs have attracted the attention of many researchers, and a number of previous studies have examined the relationship between lncRNAs and various cancers and viruses. The current study used The Cancer Genome Atlas database to screen for lncRNAs up-regulated in HCC in order to identify cancer biomarkers. Results revealed five lncRNAs that were the most up-regulated. This result was then verified in 10 HCC cell lines and two normal liver cell lines. Quantitative real-time PCR revealed that the five lncRNAs were substantially up-regulated in HCC cell lines. Several of the five lncRNAs were expressed at higher levels in a few HCC cell lines that were infected with HBV or that were positive for its protein or DNA than in HCC cell lines that were not infected with HBV or that were negative for its protein or DNA. These findings suggest that the five lncRNAs might play a role in the progression of HCC and/or HBV infection, and these findings need to be studied in further detail.
Collapse
Affiliation(s)
- Jufeng Xia
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Biomarkers of genome instability and cancer epigenetics. Tumour Biol 2016; 37:13029-13038. [DOI: 10.1007/s13277-016-5278-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
|
96
|
Spans L, Fletcher CD, Antonescu CR, Rouquette A, Coindre JM, Sciot R, Debiec-Rychter M. Recurrent MALAT1-GLI1 oncogenic fusion and GLI1 up-regulation define a subset of plexiform fibromyxoma. J Pathol 2016; 239:335-43. [PMID: 27101025 DOI: 10.1002/path.4730] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022]
Abstract
Plexiform fibromyxomas are rare neoplasms, being officially recognized as a distinct entity among benign mesenchymal gastric tumours in the 2010 WHO Classification of Tumours of the Digestive System. Characteristically, these tumours have a multinodular/plexiform growth pattern, and histologically contain variably cellular areas of bland myofibroblastic-type spindle cells embedded in an abundant myxoid matrix, rich in capillary-type vessels. As yet, the molecular and/or genetic features of these tumours are unknown. Here we describe a recurrent translocation, t(11;12)(q11;q13), involving the long non-coding gene metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and the gene glioma-associated oncogene homologue 1 (GLI1) in a subgroup of these tumours. The presence of the fusion transcript in our index case was confirmed using polymerase chain reaction (PCR) on genomic DNA, followed by Sanger sequencing. We showed that the truncated GLI1 protein is overexpressed and retains its capacity to transcriptionally activate its target genes. A specific FISH assay was developed to detect the novel MALAT1-GLI1 translocation in formalin-fixed, paraffin-embedded (FFPE) material. This resulted in the identification of two additional cases with this fusion and two cases with polysomy of the GLI1 gene. Finally, immunohistochemistry revealed that the GLI1 protein is exclusively overexpressed in those cases that harbour GLI1/12q13 genomic alterations. In conclusion, overexpression of GLI1 through a recurrent MALAT1-GLI1 translocation or GLI1 up-regulation delineates a pathogenically distinct subgroup of plexiform fibromyxomas with activation of the Sonic Hedgehog signalling pathway. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lien Spans
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Belgium
| | | | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandre Rouquette
- Department of Pathology, Cochin Hospital, Assistance Publique-, Hôpitaux de Paris, France
| | | | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Belgium
| |
Collapse
|
97
|
Xin Y, Li Z, Shen J, Chan MTV, Wu WKK. CCAT1: a pivotal oncogenic long non-coding RNA in human cancers. Cell Prolif 2016; 49:255-60. [PMID: 27134049 DOI: 10.1111/cpr.12252] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) compose a group of non-protein-coding RNAs - more than 200 nucleotides in length. Recent studies have shown that lncRNAs play important roles in different cellular processes, including proliferation, differentiation, migration and invasion. Deregulation of lncRNAs has been widely reported in human tumours, in which they are able to function as either oncogenes (on the one hand) or tumour suppressor genes (on the other). Deregulation of CCAT1 (colon cancer-associated transcript-1), an oncogenic lncRNA, has been documented in different types of malignancy, such as gastric cancer, colorectal cancer and hepatocellular carcinoma. In this regard, enforced expression of CCAT1 exerts potent tumorigenic effects by promoting cell proliferation, invasion and migration. Recent evidence has also shown that CCAT1 may serve as a prognostic cancer biomarker. In this review, we provide an overview of current evidence relating to the role and biological function of CCAT1 in tumour development.
Collapse
Affiliation(s)
- Yu Xin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
98
|
Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics 2016; 291:1013-33. [PMID: 26885843 DOI: 10.1007/s00438-016-1179-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
It is well established that most of the human genome and those of other mammals and plants are transcribed into RNA without protein-coding capacity, which we define as non-coding RNA. From siRNA to microRNA, whose functions and features have been well characterized, non-coding RNAs have been a popular topic in life science research over the last decade. Long non-coding RNAs (lncRNAs), however, as a novel class of transcripts, are distinguished from these other small RNAs. Recent studies have revealed a diverse population of lncRNAs with different sizes and functions across different species. These populations are expressed dynamically and act as important regulators in a variety of biological processes, especially in gene expression. Nevertheless, the functions and mechanisms of most lncRNAs remain unclear. In this review, we present recent progress in the identification of lncRNAs, their functions and molecular mechanisms, their roles in human diseases, their potential diagnostic and therapeutic applications as well as newer technologies for identifying deregulated lncRNAs in disease tissues.
Collapse
Affiliation(s)
- Ruifang Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yuwen Su
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
99
|
Li Z, Yu X, Shen J. Long non-coding RNAs: emerging players in osteosarcoma. Tumour Biol 2015; 37:2811-6. [PMID: 26718212 DOI: 10.1007/s13277-015-4749-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/27/2015] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common kind of primary bone tumors with high morbidity in infants and adolescents. While the molecular mechanism of osteosarcoma has gained considerable attention, the mechanisms underlying its initiation and progression remain unclear. Recent studies have discovered that long non-coding RNAs (lncRNAs) play an important role in multiply biological processes including cell development, differentiation, proliferation, invasion, and migration. Deregulated expression of lncRNAs has been found in cancers including osteosarcoma. This review summarized the deregulation and functional role of lncRNAs in osteosarcoma and their potential application for diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
100
|
Long non-coding RNA MVIH is associated with poor prognosis and malignant biological behavior in breast cancer. Tumour Biol 2015; 37:5257-64. [DOI: 10.1007/s13277-015-4360-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022] Open
|