51
|
Lee J, Lim JW, Kim H. Lycopene Inhibits Oxidative Stress-Mediated Inflammatory Responses in Ethanol/Palmitoleic Acid-Stimulated Pancreatic Acinar AR42J Cells. Int J Mol Sci 2021; 22:ijms22042101. [PMID: 33672594 PMCID: PMC7924044 DOI: 10.3390/ijms22042101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
High alcohol intake results in the accumulation of non-oxidative ethanol metabolites such as fatty acid ethyl esters (FAEEs) in the pancreas. High FAEE concentrations mediate pancreatic acinar cell injury and are associated with alcoholic pancreatitis. Treatment with ethanol and the fatty acid palmitoleic acid (EtOH/POA) increased the levels of palmitoleic acid ethyl ester and induced zymogen activation and cytokine expression in pancreatic acinar cells. EtOH/POA induces nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production and pancreatic acinar cell injury. Lycopene, a bright-red carotenoid, is a potent antioxidant due to its high number of conjugated double bands. This study aimed to investigate whether lycopene inhibits the EtOH/POA-induced increase in ROS production, zymogen activation, and expression of the inflammatory cytokine IL-6 in EtOH/POA-stimulated pancreatic acinar AR42J cells. EtOH/POA increased the ROS levels, NADPH oxidase and NF-κB activities, zymogen activation, IL-6 expression, and mitochondrial dysfunction, which were inhibited by lycopene. The antioxidant N-acetylcysteine and NADPH oxidase 1 inhibitor ML171 suppressed the EtOH/POA-induced increases in ROS production, NF-κB activation, zymogen activation, and IL-6 expression. Therefore, lycopene inhibits EtOH/POA-induced mitochondrial dysfunction, zymogen activation, and IL-6 expression by suppressing NADPH oxidase-mediated ROS production in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
52
|
Liang G, Yang J, Liu T, Wang S, Wen Y, Han C, Huang Y, Wang R, Wang Y, Hu L, Wang G, Li F, Tyndall JDA, Deng L, Du D, Xia Q. A multi-strategy platform for quality control and Q-markers screen of Chaiqin chengqi decoction. PHYTOMEDICINE 2021; 85:153525. [PMID: 33740732 DOI: 10.1016/j.phymed.2021.153525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that is associated with substantial morbidity and mortality. Chaiqin chengqi decoction (CQCQD) has been proven clinically to be an effective treatment for AP for decades in West China Hospital. Quality control for CQCQD containing many hundreds of characteristic phytochemicals poses a challenge for developing robust quality assessment metrics. PURPOSE To evaluate quality consistency of CQCQD with a multi-strategy based analytical method, identify potential quality-markers (Q-markers) based on drug properties and effect characteristics, and endeavor to establish CQCQD as a globally-accepted medicine. METHODS A typical analysis of constitutive medicinal plant materials was performed following the Chinese Pharmacopoeia. The extraction process was optimized through an orthogonal array (L9(34)) to evaluate three levels of liquid to solid ratio, soaking time, duration of extraction, and the number of extractions. An ultra-high-performance liquid chromatography (UHPLC) fingerprinting combined with absolute quantitation of multi chemical marker compounds, coupled with similarity, hierarchical clustering analysis (HCA), and principal component analyses (PCA) were performed to evaluate 10 batches of CQCQD. On the basis of systematic analysis of fundamental features of CQCQD in treating AP, the potential Q-marker screen was proposed through detection of quality transfer and efficacy for chemical markers. UHPLC coupled with quadrupole orbitrap mass spectrometry were used to determine compounds in medicinal materials, decoctions and plasma. Network pharmacology and taurolithocholic acid 3-sulfate induced pancreatic acinar cell death were used to evaluate the correlation between chemical markers and anti-pancreatitis activity. A cerulein induced AP murine model was used to validate quality assessed CQCQD batches at clinically-equivalent dose. The effective content of chemical markers was predicted using linear regression analysis on quantitative information between validated batches and the other batches. RESULTS The chemical markers and other physical and chemical indices in the original materials met Chinese Pharmacopoeia standards. A total of 22 co-existing fingerprint peaks were selected and the similarity varied between 0.946 and 0.990. Batch D10 possessed the highest similarity index. HCA classified the 10 batches into 2 main groups: 7 batches represented by D10 and 3 batches represented by D1. During the initial Q-marker screen stage, 22 compounds were detected in both plant materials and decoctions, while 13 compounds were identified in plasma. Network pharmacology predicted the potential targets and pathway of AP related to the 22 compounds. All 10 batches showed reduced necrosis below 60% with the best effect achieved by D10 (~40%). The spectrum-efficacy relationship analyzed by Pearson correlation analysis indicated that emodin, rhein, aloe emodin, geniposide, hesperridin, chrysin, syringin, synephrine, geniposidic acid, magnolol, physcion, sinensetin, and baicalein showed positive correlation with pancreatic acinar cell death protection. Similar to the in vitro evaluation, batch D10 significantly reduced total histopathological scores and biochemical severity indices at a clinically-equivalent dose but batch D1 did not. The content of naringin, narirutin and baicalin in batches D1, D5 and D9 consistently exceeds the upper limit of the predicted value. Eight markers whose lower limit is predicted to be close to 0 contributed less to the material basis for AP protection. CONCLUSION Despite qualified materials used for CQCQD preparation, the clinical effect depends on appropriate content range of Q-markers. Emodin, rhein, aloe emodin, magnolol, hesperidin, synephrine, baicalein, and geniposide are considered as vital Q-markers in the primary screen. This study proposed a feasible platform for producing highly consistent batches of CQCQD in future study.
Collapse
Affiliation(s)
- Ge Liang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingyu Yang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongjian Wen
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxia Han
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiqin Wang
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangzhi Wang
- Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Li
- Laboratory of metabolomics and drug-induced liver injury, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Lihui Deng
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dan Du
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu 610041, China; Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qing Xia
- Department and Laboratory of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
53
|
Petersen OH. Different Effects of Alcohol on the Liver and the Pancreas. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab008. [PMID: 35330811 PMCID: PMC8788802 DOI: 10.1093/function/zqab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Wales, UK,Corresponding author: E-mail:
| |
Collapse
|
54
|
Coating of ferulic acid-loaded silk fibroin nanoparticles with neutrophil membranes: A promising strategy against the acute pancreatitis. Life Sci 2021; 270:119128. [PMID: 33508299 DOI: 10.1016/j.lfs.2021.119128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology-based approaches have enabled overcoming the challenging issues such as the rapid clearance, poor solubility, and non-specific action or cellular uptake of drugs. In this study, we have evaluated the therapeutic effects of the phenolic compound, ferulic acid (FA), in the acute pancreatitis (AP) as this phenolic compound has demonstrated promising effects against the oxidative stress and inflammatory reactions. In order to overcome the poor solubility and bioavailability of FA, it was entrapped into the nanoparticles (NPs) based on the silk fibroin (SF) as a biomimetic substance. Neutrophil membrane-coated SF-NPs with appropriate capacity of FA loading and physicochemical characteristics, released FA in a controlled fashion, selectively delivered FA into the inflammatory pancreas lesion, and demonstrated protective effects against the detrimental aspects of the disease. The prepared nanoformulation by improving the pharmacological profile of FA and targeted delivery could be of therapeutic importance against the AP via suppressing the inflammation and oxidative stress.
Collapse
|
55
|
Dai J, Jiang M, Hu Y, Xiao J, Hu B, Xu J, Han X, Shen S, Li B, Wu Z, He Y, Ren Y, Wen L, Wang X, Hu G. Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair. JCI Insight 2021; 6:138584. [PMID: 33491670 PMCID: PMC7934861 DOI: 10.1172/jci.insight.138584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/02/2020] [Indexed: 01/01/2023] Open
Abstract
Severe acute pancreatitis (AP) is a life-threatening disease with up to 30% mortality. Therefore, prevention of AP aggravation and promotion of pancreatic regeneration are critical during the course and treatment of AP. Hypertriglyceridemia (HTG) is an established aggravating factor for AP that hinders pancreatic regeneration; however, its exact mechanism remains unclear. Using miRNA sequencing and further verification, we found that miRNA-153 (miR-153) was upregulated in the pancreas of HTG animal models and in the plasma of patients with HTG-AP. Increased miR-153 aggravated HTG-AP and delayed pancreatic repair via targeting TRAF3. Furthermore, miR-153 was transcriptionally suppressed by sterol regulatory element-binding transcription factor 1c (SREBP1c), which was suppressed by lipoprotein lipase malfunction-induced HTG. Overexpressing SREBP1c suppressed miR-153 expression, alleviated the severity of AP, and facilitated tissue regeneration in vivo. Finally, therapeutic administration of insulin also protected against HTG-AP via upregulating SREBP1c. Collectively, our results not only provide evidence that HTG leads to the development of more severe AP and hinders pancreatic regeneration via inducing persistent dysregulation of SREBP1c/miR-153 signaling, but also demonstrate that SREBP1c activators, including insulin, might be used to treat HTG-AP in patients.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yangyang Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingbo Xiao
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiyao Xu
- Department of Emergency, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuangjun Shen
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingchun Ren
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology and.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
56
|
Gaspers LD, Thomas AP, Hoek JB, Bartlett PJ. Ethanol Disrupts Hormone-Induced Calcium Signaling in Liver. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab002. [PMID: 33604575 PMCID: PMC7875097 DOI: 10.1093/function/zqab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
Receptor-coupled phospholipase C (PLC) is an important target for the actions of ethanol. In the ex vivo perfused rat liver, concentrations of ethanol >100 mM were required to induce a rise in cytosolic calcium (Ca2+) suggesting that these responses may only occur after binge ethanol consumption. Conversely, pharmacologically achievable concentrations of ethanol (≤30 mM) decreased the frequency and magnitude of hormone-stimulated cytosolic and nuclear Ca2+ oscillations and the parallel translocation of protein kinase C-β to the membrane. Ethanol also inhibited gap junction communication resulting in the loss of coordinated and spatially organized intercellular Ca2+ waves in hepatic lobules. Increasing the hormone concentration overcame the effects of ethanol on the frequency of Ca2+ oscillations and amplitude of the individual Ca2+ transients; however, the Ca2+ responses in the intact liver remained disorganized at the intercellular level, suggesting that gap junctions were still inhibited. Pretreating hepatocytes with an alcohol dehydrogenase inhibitor suppressed the effects of ethanol on hormone-induced Ca2+ increases, whereas inhibiting aldehyde dehydrogenase potentiated the inhibitory actions of ethanol, suggesting that acetaldehyde is the underlying mediator. Acute ethanol intoxication inhibited the rate of rise and the magnitude of hormone-stimulated production of inositol 1,4,5-trisphosphate (IP3), but had no effect on the size of Ca2+ spikes induced by photolysis of caged IP3. These findings suggest that ethanol inhibits PLC activity, but does not affect IP3 receptor function. We propose that by suppressing hormone-stimulated PLC activity, ethanol interferes with the dynamic modulation of [IP3] that is required to generate large, amplitude Ca2+ oscillations.
Collapse
Affiliation(s)
- Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA,Address correspondence to L.D.G. (e-mail: )
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
57
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
58
|
Dolai S, Takahashi T, Qin T, Liang T, Xie L, Kang F, Miao YF, Xie H, Kang Y, Manuel J, Winter E, Roche PA, Cattral MS, Gaisano HY. Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy 2020; 17:3068-3081. [PMID: 33213278 DOI: 10.1080/15548627.2020.1852725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Intrapancreatic trypsin activation by dysregulated macroautophagy/autophagy and pathological exocytosis of zymogen granules (ZGs), along with activation of inhibitor of NFKB/NF-κB kinase (IKK) are necessary early cellular events in pancreatitis. How these three pancreatitis events are linked is unclear. We investigated how SNAP23 orchestrates these events leading to pancreatic acinar injury. SNAP23 depletion was by knockdown (SNAP23-KD) effected by adenovirus-shRNA (Ad-SNAP23-shRNA/mCherry) treatment of rodent and human pancreatic slices and in vivo by infusion into rat pancreatic duct. In vitro pancreatitis induction by supraphysiological cholecystokinin (CCK) or ethanol plus low-dose CCK were used to assess SNAP23-KD effects on exocytosis and autophagy. Pancreatitis stimuli resulted in SNAP23 translocation from its native location at the plasma membrane to autophagosomes, where SNAP23 would bind and regulate STX17 (syntaxin17) SNARE complex-mediated autophagosome-lysosome fusion. This SNAP23 relocation was attributed to IKBKB/IKKβ-mediated SNAP23 phosphorylation at Ser95 Ser120 in rat and Ser120 in human, which was blocked by IKBKB/IKKβ inhibitors, and confirmed by the inability of IKBKB/IKKβ phosphorylation-disabled SNAP23 mutant (Ser95A Ser120A) to bind STX17 SNARE complex. SNAP23-KD impaired the assembly of STX4-driven basolateral exocytotic SNARE complex and STX17-driven SNARE complex, causing respective reduction of basolateral exocytosis of ZGs and autolysosome formation, with consequent reduction in trypsinogen activation in both compartments. Consequently, pancreatic SNAP23-KD rats were protected from caerulein and alcoholic pancreatitis. This study revealed the roles of SNAP23 in mediating pathological basolateral exocytosis and IKBKB/IKKβ's involvement in autolysosome formation, both where trypsinogen activation would occur to cause pancreatitis. SNAP23 is a strong candidate to target for pancreatitis therapy.
Collapse
Affiliation(s)
- Subhankar Dolai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yi-Fan Miao
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huanli Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justin Manuel
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Erin Winter
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paul A Roche
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
59
|
Jakkampudi A, Jangala R, Reddy R, Reddy B, Venkat Rao G, Pradeep R, Nageshwar Reddy D, Talukdar R. Fatty acid ethyl ester (FAEE) associated acute pancreatitis: An ex-vivo study using human pancreatic acini. Pancreatology 2020; 20:1620-1630. [PMID: 33077383 DOI: 10.1016/j.pan.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIM Fatty acid ethyl esters (FAEEs), are produced by non-oxidative alcohol metabolism and can cause acinar cell damage and subsequent acute pancreatitis in rodent models. Even though experimental studies have elucidated the FAEE mediated early intra-acinar events, these mechanisms have not been well studied in humans. In the present study, we evaluate the early intra-acinar events and inflammatory response in human pancreatic acinar tissues and cells in an ex-vivo model. METHODS Experiments were conducted using normal human pancreatic tissues exposed to FAEE. Subcellular fractionation was performed on tissue homogenates and trypsin and cathepsin B activities were estimated in these fractions. Acinar cell injury was evaluated by histology and immunohistochemistry. Cytokine release from exposed acinar cells was evaluated by performing Immuno-fluorescence. Serum was collected from patients with AP within the first 72 h of symptom onset for cytokine estimation using FACS. RESULTS We observed significant trypsin activation and acinar cell injury in FAEE treated tissue. Cathepsin B was redistributed from lysosomal to zymogen compartment at 30 min of FAEE exposure. IHC results indicated the presence of apoptosis in pancreatic tissue at 1 & 2hrs of FAEE exposure. We also observed a time dependent increase in secretion of cytokines IL-6, IL-8, TNF-α from FAEE treated acinar tissue. There was also a significant elevation in plasma cytokines in patents with alcohol associated AP within 72 h of symptom onset. CONCLUSION Our data suggest that alcohol metabolites can cause acute acinar cell damage and subsequent cytokine release which could eventually culminant in SIRS.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Ramaiah Jangala
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Ratnakar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - Balkumar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India
| | - G Venkat Rao
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Surgical Gastroenterology, Asian Institute of Gastroenterology, India
| | - Rebala Pradeep
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Surgical Gastroenterology, Asian Institute of Gastroenterology, India
| | - D Nageshwar Reddy
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, India
| | - Rupjyoti Talukdar
- Wellcome-DBT India Alliance Labs., Institute of Basic and Translational Research, Asian Healthcare Foundation, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, India.
| |
Collapse
|
60
|
Li B, Wu J, Bao J, Han X, Shen S, Ye X, Dai J, Wu Z, Niu M, He Y, Ni J, Wen L, Wang X, Hu G. Activation of α7nACh receptor protects against acute pancreatitis through enhancing TFEB-regulated autophagy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165971. [PMID: 32950676 DOI: 10.1016/j.bbadis.2020.165971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Acute pancreatitis (AP) is associated with impaired acinar cell autophagic flux, intracellular zymogen activation, cell necrosis and inflammation. Activation of the cholinergic system of vagus nerve has been shown to attenuate AP, but the effect of organ-intrinsic cholinergic system on pancreatitis remains unknown. In this study, we aim to examine the effect of α7 nicotinic acetylcholine receptor (α7nAChR) stimulation within the pancreas during AP. In vivo, AP was induced by caerulein plus LPS or ethanol plus palmitoleic acid in mice. In vitro, pancreatic acini were isolated and subjected to cholecystokinin (CCK) stimulation. Mice or acini were pre-treated with PNU-282987 (selective α7nAChR agonist) or methyllycaconitine citrate salt (selective α7nAChR antagonist). Pancreatitis severity, acinar cell injury, autophagic flux, and transcription factor EB (TFEB) pathway were analyzed. Both caerulein plus LPS in vivo and CCK in vitro led to an up-regulation of α7nAChR, indicating activation of pancreas-intrinsic α7nAChR signaling during AP. PNU-282987 decreased acinar cell injury, trypsinogen activation and pancreatitis severity. Conversely, methyllycaconitine citrate salt increased acinar cell injury and aggravated AP. Moreover, activation of α7nAChR by PNU-282987 promoted autophagic flux as indicated by reduced p62, increased LysoTracker staining and decreased number of autolysosomes with undegraded contents. Furthermore, PNU-282987 treatment significantly increased TFEB activity in pancreatic acinar cells. α7nAChR activation also attenuated pancreatic inflammation and NF-κB activation. Our results showed that activation of α7nAChR protected against experimental pancreatitis through enhancing TFEB-mediated acinar cell autophagy, suggesting that activation of pancreas-intrinsic α7nAChR may serve as an endogenous protective mechanism during AP.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangjun Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengya Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
61
|
Chaiqin chengqi decoction alleviates severity of acute pancreatitis via inhibition of TLR4 and NLRP3 inflammasome: Identification of bioactive ingredients via pharmacological sub-network analysis and experimental validation. PHYTOMEDICINE 2020; 79:153328. [PMID: 33007730 DOI: 10.1016/j.phymed.2020.153328] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects. PURPOSE Toll-like receptor 4 (TLR4) and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pro-inflammatory signaling pathways, play a central role in AP in determining the extent of pancreatic injury and systemic inflammation. In this study, we screened the bioactive ingredients using a pharmacological sub-network analysis based on the TLR4/NLRP3 signaling pathways followed by experimental validation. METHODS The main CQCQD bioactive compounds were identified by UPLC-QTOF/MS. The TLR4/NLRP3 targets in AP for CQCQD active ingredients were confirmed through a pharmacological sub-network analysis. Mice received 7 intraperitoneal injections of cerulein (50 μg/kg; hourly) to induce AP (CER-AP), while oral gavage of CQCQD (5, 10, 15 and 20 g/kg; 3 doses, 2 hourly) was commenced at the 3rd injection of cerulein. Histopathology and biochemical indices were used for assessing AP severity, while polymerase chain reaction, Western blot and immunohistochemistry analyses were used to study the mechanisms. Identified active CQCQD compounds were further validated in freshly isolated mouse pancreatic acinar cells and cultured RAW264.7 macrophages. RESULTS The main compounds from CQCQD belonged to flavonoids, iridoids, phenols, lignans, anthraquinones and corresponding glycosides. The sub-network analysis revealed that emodin, rhein, baicalin and chrysin were the compounds most relevant for directly regulating the TLR4/NLRP3-related proteins TLR4, RelA, NF-κB and TNF-α. In vivo, CQCQD attenuated the pancreatic injury and systemic inflammation of CER-AP and was associated with reduced expression of TLR4/NLRP3-related mRNAs and proteins. Emodin, rhein, baicalin and chrysin significantly diminished pancreatic acinar cell necrosis with varied effects on suppressing the expression of TLR4/NLRP3-related mRNAs. Emodin, rhein and chrysin also decreased nitric oxide production in macrophages and their combination had synergistic effects on alleviating cell death as well as expression of TLR4/NLRP3-related proteins. CONCLUSIONS CQCQD attenuated the severity of AP at least in part by inhibiting the TLR4/NLRP3 pro-inflammatory pathways. Its active ingredients, emodin, baicalin, rhein and chrysin contributed to these beneficial effects.
Collapse
|
62
|
Srinivasan MP, Bhopale KK, Caracheo AA, Amer SM, Khan S, Kaphalia L, Loganathan G, Balamurugan AN, Kaphalia BS. Activation of AMP-activated protein kinase attenuates ethanol-induced ER/oxidative stress and lipid phenotype in human pancreatic acinar cells. Biochem Pharmacol 2020; 180:114174. [PMID: 32717227 DOI: 10.1016/j.bcp.2020.114174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Primary toxicity targets of alcohol and its metabolites in the pancreas are cellular energetics and endoplasmic reticulum (ER). Therefore, the role of AMP-Activated Protein Kinase (AMPKα) in amelioration of ethanol (EtOH)-induced pancreatic acinar cell injury including ER/oxidative stress, inflammatory responses, the formation of fatty acid ethyl esters (FAEEs) and mitochondrial bioenergetics were determined in human pancreatic acinar cells (hPACs) and AR42J cells incubated with/without AMPKα activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)]. EtOH treated hPACs showed concentration and time-dependent increases for FAEEs and inactivation of AMPKα, along with the upregulation of ACC1 and FAS (key lipogenic proteins) and downregulation of CPT1A (involved β-oxidation of fatty acids). These cells also showed significant ER stress as evidenced by the increased expression for GRP78, IRE1α, and PERK/CHOP arm of unfolded protein response promoting apoptosis and activating p-JNK1/2 and p-ERK1/2 with increased secretion of cytokines. AR42J cells treated with EtOH showed increased oxidative stress, impaired mitochondrial biogenesis, and decreased ATP production rate. However, AMPKα activation by AICAR attenuated EtOH-induced ER/oxidative stress, lipogenesis, and inflammatory responses as well as the formation of FAEEs and restored mitochondrial function in hPACs as well as AR42J cells. Therefore, it is likely that EtOH-induced inactivation of AMPKα plays a crucial role in acinar cell injury leading to pancreatitis. Findings from this study also suggest that EtOH-induced inactivation of AMPKα is closely related to ER/oxidative stress and synthesis of FAEEs, as activation of AMPKα by AICAR attenuates formation of FAEEs, ER/oxidative stress and lipogenesis, and improves inflammatory responses and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Anna A Caracheo
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Samir M Amer
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA; Department of Forensic Medicine and Clinical Toxicology, Tanta University, Tanta, Egypt
| | - Shamis Khan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Lata Kaphalia
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Appakalai N Balamurugan
- Department of Surgery, University of Louisville, Louisville, KY 40202, USA; Islet Biology Laboratory, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA.
| |
Collapse
|
63
|
Chvanov M, Voronina S, Zhang X, Telnova S, Chard R, Ouyang Y, Armstrong J, Tanton H, Awais M, Latawiec D, Sutton R, Criddle DN, Tepikin AV. Knockout of the Mitochondrial Calcium Uniporter Strongly Suppresses Stimulus-Metabolism Coupling in Pancreatic Acinar Cells but Does Not Reduce Severity of Experimental Acute Pancreatitis. Cells 2020; 9:cells9061407. [PMID: 32516955 PMCID: PMC7349284 DOI: 10.3390/cells9061407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the molecular mechanisms of acute pancreatitis is essential for the development of new therapeutics. Several inducers of acute pancreatitis trigger sustained Ca2+ increases in the cytosol and mitochondria of pancreatic acinar cells. The mitochondrial calcium uniporter (MCU) mediates mitochondrial Ca2+ uptake that regulates bioenergetics and plays an important role in cell survival, damage and death. Aberrant Ca2+ signaling and mitochondrial damage in pancreatic acinar cells have been implicated in the initiation of acute pancreatitis. The primary aim of this study was to assess the involvement of the MCU in experimental acute pancreatitis. We found that pancreatic acinar cells from MCU-/- mice display dramatically reduced mitochondrial Ca2+ uptake. This is consistent with the drastic changes of stimulus-metabolism coupling, manifested by the reduction of mitochondrial NADH/FAD+ responses to cholecystokinin and in the decrease of cholecystokinin-stimulated oxygen consumption. However, in three experimental models of acute pancreatitis (induced by caerulein, taurolithocholic acid 3-sulfate or palmitoleic acid plus ethanol), MCU knockout failed to reduce the biochemical and histological changes characterizing the severity of local and systemic damage. A possible explanation of this surprising finding is the redundancy of damaging mechanisms activated by the inducers of acute pancreatitis.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Xiaoying Zhang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Svetlana Telnova
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Robert Chard
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Yulin Ouyang
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Jane Armstrong
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Helen Tanton
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Muhammad Awais
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Diane Latawiec
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| |
Collapse
|
64
|
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca 2+ Signalling in the Pathogenesis of Acute Pancreatitis: Recent Advances and Translational Perspectives. Int J Mol Sci 2020; 21:ijms21114005. [PMID: 32503336 PMCID: PMC7312053 DOI: 10.3390/ijms21114005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ signalling is a major signal transductional pathway in non-excitable cells, responsible for the regulation of a variety of physiological functions. In the secretory epithelial cells of the exocrine pancreas, such as acinar and ductal cells, intracellular Ca2+ elevation regulates digestive enzyme secretion in acini or fluid and ion secretion in ductal cells. Although Ca2+ is a uniquely versatile orchestrator of epithelial physiology, unregulated global elevation of the intracellular Ca2+ concentration is an early trigger for the development of acute pancreatitis (AP). Regardless of the aetiology, different forms of AP all exhibit sustained intracellular Ca2+ elevation as a common hallmark. The release of endoplasmic reticulum (ER) Ca2+ stores by toxins (such as bile acids or fatty acid ethyl esters (FAEEs)) or increased intrapancreatic pressure activates the influx of extracellular Ca2+ via the Orai1 Ca2+ channel, a process known as store-operated Ca2+ entry (SOCE). Intracellular Ca2+ overload can lead to premature activation of trypsinogen in pancreatic acinar cells and impaired fluid and HCO3- secretion in ductal cells. Increased and unbalanced reactive oxygen species (ROS) production caused by sustained Ca2+ elevation further contributes to cell dysfunction, leading to mitochondrial damage and cell death. Translational studies of AP identified several potential target molecules that can be modified to prevent intracellular Ca2+ overload. One of the most promising drugs, a selective inhibitor of the Orai1 channel that has been shown to inhibit extracellular Ca2+ influx and protect cells from injury, is currently being tested in clinical trials. In this review, we will summarise the recent advances in the field, with a special focus on the translational aspects of the basic findings.
Collapse
Affiliation(s)
- Petra Pallagi
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Tamara Madácsy
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - Árpád Varga
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, H6720 Szeged, Hungary; (P.P.); (T.M.); (Á.V.)
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, H6720 Szeged, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, H6720 Szeged, Hungary
- Correspondence: or ; Tel.: +36-(62)-342-877 or +36-70-41-66500
| |
Collapse
|
65
|
Shen S, Li B, Dai J, Wu Z, He Y, Wen L, Wang X, Hu G. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol 2020; 11:618. [PMID: 32457617 PMCID: PMC7227015 DOI: 10.3389/fphar.2020.00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired autophagy has been shown to play a critical role in experimental and human acute pancreatitis (AP). However, the mechanism for transcriptional regulation of autophagy remains largely unknown. In this study, we aim to explore the role of BRD4 (bromodomain-containing protein 4), a transcriptional repressor of autophagy, during AP. Changes in pancreatic BRD4 expression and the effect of BRD4 inhibition were measured in mice with AP (induced by caerulein and ethanol and palmitoleic acid) and in isolated pancreatic acinar cells stimulated with cholecystokinin (CCK). Pancreatitis severity was evaluated by serum amylase and pancreatic histopathology. The autophagic flux, the fusion of autophagosome and lysosome, and lysosomal degradation were evaluated. Sirtuin 1 (SIRT1) expression and the effect of SIRT1 inhibition were assessed. We found that pancreatic BRD4 expression was upregulated during various models of AP. BRD4 inhibition reduced CCK-stimulated pancreatic acinar cell injury and pro-inflammatory expression in vitro and protected against two models of experimental AP. Mechanistically, BRD4 inhibition restored impaired autophagic flux via promoting autophagosome-lysosome fusion and lysosomal degradation. BRD4 inhibition also upregulated SIRT1 and inhibition of SIRT1 reversed the effects of BRD4 inhibition on autophagic flux. Our data suggest that BRD4 is a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Shuangjun Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Swain SM, Romac JMJ, Shahid RA, Pandol SJ, Liedtke W, Vigna SR, Liddle RA. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 2020; 130:2527-2541. [PMID: 31999644 PMCID: PMC7190979 DOI: 10.1172/jci134111] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Collapse
Affiliation(s)
- Sandip M. Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Rafiq A. Shahid
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Steven R. Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
67
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:biom10050669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Correspondence: ; Tel.: +1-402-995-3548; Fax: +1-402-995-4600
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
68
|
Ma X, Jin T, Han C, Shi N, Liang G, Wen Y, Yang J, Fu X, Lan T, Jiang K, Nunes QM, Chvanov M, Criddle DN, Philips AR, Deng L, Liu T, Windsor JA, Sutton R, Du D, Huang W, Xia Q. Aqueous extraction from dachengqi formula granules reduces the severity of mouse acute pancreatitis via inhibition of pancreatic pro-inflammatory signalling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112861. [PMID: 32315735 DOI: 10.1016/j.jep.2020.112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dachengqi decoction (DCQD) belongs to a family of purgative herbal formulas widely used in China for the treatment of acute pancreatitis (AP). AP is a prevalent digestive disease currently without an effective pharmacological intervention. Formula granules have become the preferred method for delivery of herbal formulation in China given its benefit of potency retention, dosing precision and ease of use. The efficacy of DCQD formula granules (DFGs) in experimental AP models has not been investigated. AIM OF THE STUDY To analyse and compare the differences in chemical composition of DFGs, with their aqueous extraction (AE) and chloroform extraction (CE) derivatives. To assess their efficacy on severity and targeted pancreatic pro-inflammatory signalling pathways in freshly isolated acinar cells and two models of experimental AP. MATERIAL AND METHODS UPLC-Q-TOF-MS was used to analyse chemical components of DFGs and their extractions. Freshly isolated mouse pancreatic acinar cells were treated with taurolithocholic acid 3-sulphate disodium salt (TLCS, 500 μM) with or without DFGs, AE and CE. Apoptotic and necrotic cell death pathway activation was measured by caspase 3/7 (10 μl/mL) and propidium iodide (PI, 1 μM), respectively, using a fluorescent plate reader. Necrotic acinar cells were also counted by epifluorescence microscopy. Mice received either 7 intraperitoneal injections of caerulein (50 μg/kg) at hourly intervals or retrograde infusion of TLCS (3 mM, 50 μl) to induce AP (CER-AP and TLCS-AP, respectively). In CER-AP, mice received oral gavage of DFGs (2.1, 4.2 and 5.2 g/kg), AE (0.6, 1.2, and 2.4 g/kg) and CE (4, 9 and 17 mg/kg), or matched DFGs (1.8 g/kg) and AE (1 g/kg) for 3 times at 2-hourly intervals, or a single intraperitoneal injection of DCQD-related monomers rhein (20 mg/kg), narigeinine (25 mg/kg), and honokiol (5 mg/kg) begun at the 3rd injection of caerulein. In TLCS-AP, DFGs (4.2 g/kg) were given orally at 1, 3 and 5 h post-surgery. Disease severity and pancreatic pro-inflammatory markers were determined. RESULTS The main effective anthraquinones and their glycosides, flavonoids and their glycosides, polyphenols and lignans were found in the DFGs. A higher proportion of polar components including glycosides attached to anthraquinones, phenols and flavonoids was found in AE. Conversely, lower polar components containing methoxy substituted flavonoids and anthraquinones were more abundant in CE. DFGs were given at 4.2 g/kg, a consistent reduction in the pancreatic histopathology score and severity indices was observed in both CER-AP and TLCS-AP. In vitro, AE significantly reduced both apoptotic and necrotic cell death pathway activation, while CE increased TLCS-induced acinar cell necrosis. In vivo, AE at dose of 1.2 g/kg consistently reduced pancreatic histopathological scores and myeloperoxidase in the CER-AP that were associated with suppressed expression of pro-inflammatory meditator mRNAs and proteins. CE increased lung myeloperoxidase and failed to protect against CER-AP in all dosages. AE was demonstrated to be more effective than DFGs in reducing pancreatic histopathological scores and myeloperoxidase. CONCLUSIONS AE from DFGs alleviated the severity of mouse AP models via an inhibition of pancreatic pro-inflammatory signalling pathways. Efficacy of AE on experimental AP was more potent than its original DFGs and DCQD monomers.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China; Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ge Liang
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjian Wen
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand; Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Jingyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Centre of Biotherapy, Chengdu, 610041, China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Quentin M Nunes
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Anthony R Philips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China; Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom.
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
69
|
Qiu Y, Huang L, Fu J, Han C, Fang J, Liao P, Chen Z, Mo Y, Sun P, Liao D, Yang L, Wang J, Zhang Q, Liu J, Liu F, Liu T, Huang W, Yang H, Jiang R. TREK Channel Family Activator with a Well-Defined Structure–Activation Relationship for Pain and Neurogenic Inflammation. J Med Chem 2020; 63:3665-3677. [PMID: 32162512 DOI: 10.1021/acs.jmedchem.9b02163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yunguang Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Jie Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jing Fang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Zhuo Chen
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Yiqing Mo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peihua Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu 610000, China
| |
Collapse
|
70
|
Takahashi T, Miao Y, Kang F, Dolai S, Gaisano HY. Susceptibility Factors and Cellular Mechanisms Underlying Alcoholic Pancreatitis. Alcohol Clin Exp Res 2020; 44:777-789. [PMID: 32056245 DOI: 10.1111/acer.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Alcohol is a major cause of acute and chronic pancreatitis. There have been some recent advances in the understanding of the mechanisms underlying alcoholic pancreatitis, which include perturbation in mitochondrial function and autophagy and ectopic exocytosis, with some of these cellular events involving membrane fusion soluble N-ethylmaleimide-sensitive factor receptor protein receptor proteins. Although new insights have been unraveled recently, the precise mechanisms remain complex, and their finer details have yet to be established. The overall pathophysiology of pancreatitis involves not only the pancreatic acinar cells but also the stellate cells and duct cells. Why only some are more susceptible to pancreatitis and with increased severity, while others are not, would suggest that there may be undefined protective factors or mechanisms that enhance recovery and regeneration after injury. Furthermore, there are confounding influences of lifestyle factors such as smoking and diet, and genetic background. Whereas alcohol and smoking cessation and a generally healthy lifestyle are intuitively the advice given to these patients afflicted with alcoholic pancreatitis in order to reduce disease recurrence and progression, there is as yet no specific treatment. A more complete understanding of the pathogenesis of pancreatitis from which novel therapeutic targets could be identified will have a great impact, particularly with the stubbornly high fatality (>30%) of severe pancreatitis. This review focuses on the susceptibility factors and underlying cellular mechanisms of alcohol injury on the exocrine pancreas.
Collapse
Affiliation(s)
- Toshimasa Takahashi
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Yifan Miao
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Fei Kang
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Subhankar Dolai
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- From the, Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
71
|
Asahina K, Balog S, Hwang E, Moon E, Wan E, Skrypek K, Chen Y, Fernandez J, Romo J, Yang Q, Lai K, French SW, Tsukamoto H. Moderate alcohol intake promotes pancreatic ductal adenocarcinoma development in mice expressing oncogenic Kras. Am J Physiol Gastrointest Liver Physiol 2020; 318:G265-G276. [PMID: 31760766 PMCID: PMC7052574 DOI: 10.1152/ajpgi.00218.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kras mutations are associated with pancreatic ductal adenocarcinoma (PDAC). Although tobacco smoking, pancreatitis, and obesity are known environmental risk factors for PDAC, the contribution of moderate alcohol intake to PDAC remains elusive. In the present study, we tested whether a combination of risk factors or moderate alcohol intake induces PDAC development in mice. Control Pdx1Cre and Pdx1Cre;LSL-KrasG12D mutant mice were fed a Western alcohol diet containing high levels of cholesterol and saturated fat, 3.5% alcohol, and lipopolysaccharide for 5 mo. In addition, mice were treated with cerulein, for induction of pancreatitis, and nicotine every month. Treatment with all of these risk factors promoted development of advanced pancreatic neoplasia and PDAC in the Pdx1Cre;LSL-KrasG12D mice but not in the control Pdx1Cre mice. Moderate alcohol intake or Western diet feeding also significantly promoted advanced neoplasia and PDAC development in Pdx1Cre;LSL-KrasG12D mice compared with mice fed a regular chow. Alcohol, but not Western diet, increased tumor development in the liver in the Pdx1Cre;LSL-KrasG12D mice, but its origin remained elusive due to leakiness of Pdx1Cre in hepatocytes. RNA-seq analysis revealed that alcohol feeding increases expression of markers for tumors (Epcam, Krt19, Prom1, Wt1, and Wwtr1), stroma (Dcn, Fn1, and Tnc), and cytokines (Tgfb1 and Tnf) and decreases expression of Fgf21 and Il6 in the pancreatic tumor tissues. Immunostaining showed heterogeneous expression of nephronectin, S100 calcium-binding protein A6, and vascular cell adhesion molecule 1 in pancreatic tumors surrounded by podoplanin-positive stromal cells. Our data indicate that moderate alcohol drinking is a risk factor for development of PDAC.NEW & NOTEWORTHY Heavy alcohol intake has been suspected to be a risk factor of pancreatic ductal adenocarcinoma (PDAC) in humans. However, the contribution of moderate alcohol intake to PDAC development remains elusive. In the present study, we experimentally show that moderate alcohol feeding significantly induces advanced stages of pancreatic intraepithelial neoplasia development and invasive PDAC in Pdx1Cre;LSL-KrasG12D mutant mice. Our data indicate that moderate alcohol drinking is a risk factor for PDAC.
Collapse
Affiliation(s)
- Kinji Asahina
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Steven Balog
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Edward Hwang
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Eugene Moon
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Emily Wan
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Kaitlin Skrypek
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yibu Chen
- 2Bioinformatics Service, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jay Fernandez
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Janet Romo
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Qihong Yang
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Keane Lai
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Samuel W. French
- 3Harbor-Univeristy of California, Los Angeles, Medical Center, Torrance, California
| | - Hidekazu Tsukamoto
- 1The Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California,4Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
72
|
Hernandez G, Luo T, Javed TA, Wen L, Kalwat MA, Vale K, Ammouri F, Husain SZ, Kliewer SA, Mangelsdorf DJ. Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. Sci Transl Med 2020; 12:eaay5186. [PMID: 31915301 PMCID: PMC7034981 DOI: 10.1126/scitranslmed.aay5186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
The exocrine pancreas expresses the highest concentrations of fibroblast growth factor 21 (FGF21) in the body, where it maintains acinar cell proteostasis. Here, we showed in both mice and humans that acute and chronic pancreatitis is associated with a loss of FGF21 expression due to activation of the integrated stress response (ISR) pathway. Mechanistically, we found that activation of the ISR in cultured acinar cells and mouse pancreata induced the expression of ATF3, a transcriptional repressor that directly bound to specific sites on the Fgf21 promoter and resulted in loss of FGF21 expression. These ATF3 binding sites are conserved in the human FGF21 promoter. Consistent with the mouse studies, we also observed the reciprocal expression of ATF3 and FGF21 in the pancreata of human patients with pancreatitis. Using three different mouse models of pancreatitis, we showed that pharmacologic replacement of FGF21 mitigated the ISR and resolved pancreatitis. Likewise, inhibition of the ISR with an inhibitor of the PKR-like endoplasmic reticulum kinase (PERK) also restored FGF21 expression and alleviated pancreatitis. These findings highlight the importance of FGF21 in preserving exocrine pancreas function and suggest its therapeutic use for prevention and treatment of pancreatitis.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Luo
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tanveer A Javed
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Li Wen
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Michael A Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin Vale
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Farah Ammouri
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sohail Z Husain
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
73
|
Tóth E, Maléth J, Závogyán N, Fanczal J, Grassalkovich A, Erdős R, Pallagi P, Horváth G, Tretter L, Bálint ER, Rakonczay Z, Venglovecz V, Hegyi P. Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis. J Physiol 2019; 597:5879-5898. [PMID: 31631343 DOI: 10.1113/jp278517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/11/2019] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS •Bile acids, ethanol and fatty acids affect pancreatic ductal fluid and bicarbonate secretion via mitochondrial damage, ATP depletion and calcium overload. •Pancreatitis-inducing factors open the membrane transition pore (mPTP) channel via cyclophilin D activation in acinar cells, causing calcium overload and cell death; genetic or pharmacological inhibition of mPTP improves the outcome of acute pancreatitis in animal models. •Here we show that genetic and pharmacological inhibition of mPTP protects mitochondrial homeostasis and cell function evoked by pancreatitis-inducing factors in pancreatic ductal cells. •The results also show that the novel cyclosporin A derivative NIM811 protects mitochondrial function in acinar and ductal cells, and it preserves bicarbonate transport mechanisms in pancreatic ductal cells. •We found that NIM811 is highly effective in different experimental pancreatitis models and has no side-effects. NIM811 is a highly suitable compound to be tested in clinical trials. ABSTRACT Mitochondrial dysfunction plays a crucial role in the development of acute pancreatitis (AP); however, no compound is currently available with clinically acceptable effectiveness and safety. In this study, we investigated the effects of a novel mitochondrial transition pore inhibitor, N-methyl-4-isoleucine cyclosporin (NIM811), in AP. Pancreatic ductal and acinar cells were isolated by enzymatic digestion from Bl/6 mice. In vitro measurements were performed by confocal microscopy and microfluorometry. Preventative effects of pharmacological [cylosporin A (2 µm), NIM811 (2 µm)] or genetic (Ppif-/- /Cyp D KO) inhibition of the mitochondrial transition pore (mPTP) during the administration of either bile acids (BA) or ethanol + fatty acids (EtOH+FA) were examined. Toxicity of mPTP inhibition was investigated by detecting apoptosis and necrosis. In vivo effects of the most promising compound, NIM811 (5 or 10 mg kg-1 per os), were checked in three different AP models induced by either caerulein (10 × 50 µg kg-1 ), EtOH+FA (1.75 g kg-1 ethanol and 750 mg kg-1 palmitic acid) or 4% taurocholic acid (2 ml kg-1 ). Both genetic and pharmacological inhibition of Cyp D significantly prevented the toxic effects of BA and EtOH+FA by restoring mitochondrial membrane potential (Δψ) and preventing the loss of mitochondrial mass. In vivo experiments revealed that per os administration of NIM811 has a protective effect in AP by reducing oedema, necrosis, leukocyte infiltration and serum amylase level in AP models. Administration of NIM811 had no toxic effects. The novel mitochondrial transition pore inhibitor NIM811 thus seems to be an exceptionally good candidate compound for clinical trials in AP.
Collapse
Affiliation(s)
- Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Noémi Závogyán
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Júlia Fanczal
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Anna Grassalkovich
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Réka Erdős
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithelial Cell Signalling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - László Tretter
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Emese Réka Bálint
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Institute for Translational Medicine and First Department of Medicine, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
74
|
Criddle DN. Keeping mitochondria happy - benefits of a pore choice in acute pancreatitis. J Physiol 2019; 597:5741-5742. [PMID: 31670384 PMCID: PMC6972976 DOI: 10.1113/jp279116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- David N Criddle
- Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
75
|
Zhang R, Deng L, Jin T, Zhu P, Shi N, Jiang K, Li L, Yang X, Guo J, Yang X, Liu T, Mukherjee R, Singh VK, Windsor JA, Sutton R, Huang W, Xia Q. Hypertriglyceridaemia-associated acute pancreatitis: diagnosis and impact on severity. HPB (Oxford) 2019; 21:1240-1249. [PMID: 30885545 DOI: 10.1016/j.hpb.2019.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The level of hypertriglyceridaemia (HTG) at which the risk of acute pancreatitis (AP) increases and the impact of HTG on AP attributable to other aetiologies remains unclear. METHODS We compared clinical outcomes of patients admitted within 48 h of the onset of abdominal pain from a first episode of AP and admission serum triglyceride levels of either <5.65 mmol/l (<500 mg/dl) or ≥5.65 to <11.3 mmol/l (moderate HTG) or ≥11.3 mmol/l (≥1000 mg/dl, severe HTG). RESULTS Among a cohort of 1,233 patients with AP there were significant progressive increases in all major deleterious clinical outcomes including mortality (all Ptrend < 0.05) that were directly dependent on admission triglyceride levels. Outcomes were improved by earlier presentation (<24 h compared to 24-48 h from abdominal pain onset). Patients with severe HTG and a concomitant aetiology (n = 68) had significantly more persistent organ failure, pancreatic necrosis and longer hospital stays (P < 0.05) than those with severe HTG alone (n = 206). CONCLUSIONS There appears to be an association between HTG grade and the severity of AP. Severe HTG significantly increased the severity of AP, over AP attributable to other aetiologies. Moderate as well as severe HTG can be used as a criterion for the diagnosis of HTG-associated AP.
Collapse
Affiliation(s)
- Ruwen Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Lihui Deng
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Lan Li
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Jia Guo
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Vikesh K Singh
- Pancreatitis Centre, Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, USA
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
76
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
77
|
Hypoxia-Inducible Factor-1 α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4363672. [PMID: 31281575 PMCID: PMC6589200 DOI: 10.1155/2019/4363672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
The present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular energy metabolism status. Wistar rats and AR42J cells were used to establish AP models. When indicated, a HIF-1α knockdown with or without a Gln supplementation was administered. In vivo, local and systemic inflammatory injuries were assessed by serum cytokine measurement, H&E staining, and transmission electron microscope (TEM) observation of pancreatic tissue. In vitro, intracellular energy metabolism status was evaluated by measuring the intracellular adenosine triphosphate (ATP), lactic acid, and Ca2+ concentrations and the mitochondrial potential. In addition, changes in the apoptotic activity were analyzed using TUNEL staining in vivo and an apoptosis assay in vitro. HIF-1α knockdown alleviated AP-related inflammatory injury as indicated by the measurements of serum cytokines and examinations of TEM and H&E staining of pancreatic tissues. HIF-1α knockdown played an antioxidative role against AP-related injuries by preventing the increase in the intracellular Ca2+ concentration and the decrease in the mitochondrial membrane potential and subsequently by suppressing the glycolysis pathway and increasing energy anabolism in AR42J cells after AP induction. Apoptosis was significantly upregulated when HIF-1α was knocked down before AP induction due to an attenuation of the translocation of nuclear factor-kappa B to the nuclei. Furthermore, these merits of HIF-1α knockdown in the relief of the metabolic stress and upregulation of apoptosis were more significant when Gln was administered concomitantly. In conclusion, Gln-supplemented HIF-1α knockdown might be promising for the future management of AP by relieving the intracellular energy stress, thereby attenuating the predominance of necrosis over apoptosis.
Collapse
|
78
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
79
|
Silva-Vaz P, Abrantes AM, Castelo-Branco M, Gouveia A, Botelho MF, Tralhão JG. Murine Models of Acute Pancreatitis: A Critical Appraisal of Clinical Relevance. Int J Mol Sci 2019; 20:E2794. [PMID: 31181644 PMCID: PMC6600324 DOI: 10.3390/ijms20112794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Acute pancreatitis (AP) is a severe disease associated with high morbidity and mortality. Clinical studies can provide some data concerning the etiology, pathophysiology, and outcomes of this disease. However, the study of early events and new targeted therapies cannot be performed on humans due to ethical reasons. Experimental murine models can be used in the understanding of the pancreatic inflammation, because they are able to closely mimic the main features of human AP, namely their histologic glandular changes and distant organ failure. These models continue to be important research tools for the reproduction of the etiological, environmental, and genetic factors associated with the pathogenesis of this inflammatory pathology and the exploration of novel therapeutic options. This review provides an overview of several murine models of AP. Furthermore, special focus is made on the most frequently carried out models, the protocols used, and their advantages and limitations. Finally, examples are provided of the use of these models to improve knowledge of the mechanisms involved in the pathogenesis, identify new biomarkers of severity, and develop new targeted therapies.
Collapse
Affiliation(s)
- Pedro Silva-Vaz
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Miguel Castelo-Branco
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - António Gouveia
- General Surgery Department, Unidade Local de Saúde de Castelo Branco, 6000-085 Castelo Branco, Portugal.
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- Biophysics and Biomathematics Institute, IBILI-Faculty of Medicine of University of Coimbra, 3000-548 Coimbra, Portugal.
- Surgery Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal.
| |
Collapse
|
80
|
Adaptive respiratory response of rat pancreatic acinar cells to mitochondrial membrane depolarization. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
81
|
Khatua B, Trivedi RN, Noel P, Patel K, Singh R, de Oliveira C, Trivedi S, Mishra V, Lowe M, Singh VP. Carboxyl Ester Lipase May Not Mediate Lipotoxic Injury during Severe Acute Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1226-1240. [PMID: 30954473 DOI: 10.1016/j.ajpath.2019.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Acute lipolysis of visceral fat or circulating triglycerides may worsen acute pancreatitis (AP)-associated local and systemic injury. The pancreas expresses pancreatic triacylglycerol lipase (PNLIP), pancreatic lipase-related protein 2 (PNLIPRP2), and carboxyl ester lipase (CEL), which may leak into the visceral fat or systemic circulation during pancreatitis. We, thus, aimed to determine the pancreatic lipase(s) regulating lipotoxicity during AP. For this AP, associated fat necrosis was analyzed using Western blot analysis. Bile acid (using liquid chromatography-tandem mass spectrometry) and fatty acid (using gas chromatography) concentrations were measured in human fat necrosis. The fat necrosis milieu was simulated in vitro using glyceryl trilinoleate because linoleic acid is increased in fat necrosis. Bile acid requirements to effectively hydrolyze glyceryl trilinoleate were studied using exogenous or overexpressed lipases. The renal cell line (HEK 293) was used to study lipotoxic injury. Because dual pancreatic lipase knockouts are lethal, exocrine parotid acini lacking lipases were used to verify the results. PNLIP, PNLIPRP2, and CEL were increased in fat necrosis. Although PNLIP and PNLIPRP2 were equipotent in inducing lipolysis and lipotoxic injury, CEL required bile acid concentrations higher than in human fat necrosis. The high bile acid requirements for effective lipolysis make CEL an unlikely mediator of lipotoxic injury in AP. It remains to be explored whether PNLIP or PNLIPRP2 worsens AP severity in vivo.
Collapse
Affiliation(s)
| | - Ram N Trivedi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Ravinder Singh
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Vivek Mishra
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Mark Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
82
|
Márta K, Hegyi P. Uncommon appearance of concurrent liver cirrhosis and chronic pancreatitis: The alcohol metabolism theory. Dig Liver Dis 2019; 51:559-560. [PMID: 30691775 DOI: 10.1016/j.dld.2018.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Katalin Márta
- Institute for Translational Medicine, University of Pécs, Medical School, János Szentágothai Research Centre, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, János Szentágothai Research Centre, Pécs, Hungary; Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences University of Szeged, Szeged, Hungary.
| |
Collapse
|
83
|
Weiss FU, Laemmerhirt F, Lerch MM. Etiology and Risk Factors of Acute and Chronic Pancreatitis. Visc Med 2019; 35:73-81. [PMID: 31192240 DOI: 10.1159/000499138] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022] Open
Abstract
Based on the recognition of common etiological and genetic risk factors, acute and chronic pancreatitis are increasingly regarded as a continuum of the same disease, with a significant overlap of clinical manifestations and phenotypes but distinct morphological and imaging appearances. Recent population-based and cohort studies have found that tobacco smoke conveys a greater risk than immoderate alcohol consumption for the development of chronic pancreatitis, and hypertriglyceridemia has been identified as a risk factor for acute pancreatitis - even when plasma levels are only mildly elevated. Hereditary pancreatitis, in its autosomal dominant form, is associated with mutations in the cationic trypsinogen gene (PRSS1), whereas a number of germline variations in other genes have been found to represent risk factors for chronic as well as acute pancreatitis. For now, most of these involve the pancreatic digestive protease/antiprotease system. Oftentimes, affected patients are burdened with multiple or accumulating risk factors, and genetic traits when combined with environmental toxins compound the chance of developing the disease. Determining the underlying etiology of pancreatitis is worth the effort since formerly intractable varieties such as autoimmune pancreatitis are now becoming increasingly treatable, and subtype-specific therapeutic modalities may become available.
Collapse
Affiliation(s)
- Frank Ulrich Weiss
- Department of Medicine A, Greifswald Medical School, Greifswald, Germany
| | - Felix Laemmerhirt
- Department of Medicine A, Greifswald Medical School, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, Greifswald Medical School, Greifswald, Germany
| |
Collapse
|
84
|
de Oliveira C, Khatua B, Bag A, El-Kurdi B, Patel K, Mishra V, Navina S, Singh VP. Multimodal Transgastric Local Pancreatic Hypothermia Reduces Severity of Acute Pancreatitis in Rats and Increases Survival. Gastroenterology 2019; 156:735-747.e10. [PMID: 30518512 PMCID: PMC6368865 DOI: 10.1053/j.gastro.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) of different etiologies is associated with the activation of different signaling pathways in pancreatic cells, posing challenges to the development of targeted therapies. We investigated whether local pancreatic hypothermia, without systemic hypothermia, could lessen the severity of AP induced by different methods in rats. METHODS A urethane balloon with 2 polyurethane tubes was placed inside the stomach of rats. AP was induced in Wistar rats by the administration of cerulein or glyceryl tri-linoleate (GTL). Then, cold water was infused into the balloon to cool the pancreas. Pancreatic temperatures were selected based on those found to decrease acinar cell injury. An un-perfused balloon was used as a control. Pancreatic and rectal temperatures were monitored, and an infrared lamp or heating pad was used to avoid generalized hypothermia. We collected blood, pancreas, kidney, and lung tissues and analyzed them by histology, immunofluorescence, immunoblot, cytokine and chemokine magnetic bead, and DNA damage assays. The effect of hypothermia on signaling pathways initiated by cerulein and GTL was studied in acinar cells. RESULTS Rats with pancreatic cooling developed less severe GTL-induced AP compared with rats that received the control balloon. In acinar cells, cooling decreased the lipolysis induced by GTL, increased the micellar form of its fatty acid, lowered the increase in cytosolic calcium, prevented the loss of mitochondrial membrane potential (by 70%-80%), and resulted in a 40%-50% decrease in the uptake of a fatty acid tracer. In rats with AP, cooling decreased pancreatic necrosis by 48%, decreased serum levels of cytokines and markers of cell damage, and decreased markers of lung and renal damage. Pancreatic cooling increased the proportions of rats surviving 6 hours after induction of AP (to 90%, from <10% of rats that received the control balloon). In rats with cerulein-induced AP, pancreatic cooling decreased pancreatic markers of apoptosis and inflammation. CONCLUSIONS In rats with AP, transgastric local pancreatic hypothermia decreases pancreatic necrosis, apoptosis, inflammation, and markers of pancreatitis severity and increases survival.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Biswajit Khatua
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Arup Bag
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sarah Navina
- Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Vijay P. Singh
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
85
|
Zhang X, Jin T, Shi N, Yao L, Yang X, Han C, Wen L, Du D, Szatmary P, Mukherjee R, Liu T, Xia Q, Criddle DN, Huang W, Chvanov M, Sutton R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front Physiol 2019; 9:1922. [PMID: 30697165 PMCID: PMC6341295 DOI: 10.3389/fphys.2018.01922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic acinar cells require high rates of amino acid uptake for digestive enzyme synthesis, but excessive concentrations can trigger acute pancreatitis (AP) by mechanisms that are not well understood. We have used three basic natural amino acids L-arginine, L-ornithine, and L-histidine to determine mechanisms of amino acid-induced pancreatic injury and whether these are common to all three amino acids. Caffeine markedly inhibited necrotic cell death pathway activation in isolated pancreatic acinar cells induced by L-arginine, but not L-ornithine, whereas caffeine accelerated L-histidine-induced cell death. Both necroptosis inhibitors of RIPK1 and RIPK3 and a necroptosis activator/apoptosis inhibitor z-VAD increased cell death caused by L-histidine, but not L-arginine or L-ornithine. Cyclophilin D knock-out (Ppif-/-) significantly attenuated cell death induced by L-histidine, but not L-arginine, or L-ornithine. Allosteric modulators of calcium-sensing receptor (CaSR) and G-protein coupled receptor class C group 6 member A (GPRC6A) had inhibitory effects on cell death induced by L-arginine but not L-ornithine or L-histidine. We developed a novel amino acid-induced AP murine model with high doses of L-histidine and confirmed AP severity was significantly reduced in Ppif-/- vs. wild type mice. In L-arginine-induced AP neither Ppif-/-, caffeine, or allosteric modulators of CaSR or GPRC6A reduced pancreatic damage, even though CaSR inhibition with NPS-2143 significantly reduced pancreatic and systemic injury in caerulein-induced AP. These findings demonstrate marked differences in the mechanisms of pancreatic injury induced by different basic amino acids and suggest the lack of effect of treatments on L-arginine-induced AP may be due to conversion to L-ornithine in the urea cycle.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wen
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
86
|
Rumbus Z, Toth E, Poto L, Vincze A, Veres G, Czako L, Olah E, Marta K, Miko A, Rakonczay Z, Balla Z, Kaszaki J, Foldesi I, Maleth J, Hegyi P, Garami A. Bidirectional Relationship Between Reduced Blood pH and Acute Pancreatitis: A Translational Study of Their Noxious Combination. Front Physiol 2018; 9:1360. [PMID: 30327613 PMCID: PMC6174522 DOI: 10.3389/fphys.2018.01360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is often accompanied by alterations in the acid-base balance, but how blood pH influences the outcome of AP is largely unknown. We studied the association between blood pH and the outcome of AP with meta-analysis of clinical trials, and aimed to discover the causative relationship between blood pH and AP in animal models. PubMed, EMBASE, and Cochrane Controlled Trials Registry databases were searched from inception to January 2017. Human studies reporting systemic pH status and outcomes (mortality rate, severity scores, and length of hospital stay) of patient groups with AP were included in the analyses. We developed a new mouse model of chronic metabolic acidosis (MA) and induced mild or severe AP in the mice. Besides laboratory blood testing, the extent of pancreatic edema, necrosis, and leukocyte infiltration were assessed in tissue sections of the mice. Thirteen studies reported sufficient data in patient groups with AP (n = 2,311). Meta-analysis revealed markedly higher mortality, elevated severity scores, and longer hospital stay in AP patients with lower blood pH or base excess (P < 0.001 for all studied outcomes). Meta-regression analysis showed significant negative correlation between blood pH and mortality in severe AP. In our mouse model, pre-existing MA deteriorated the pancreatic damage in mild and severe AP and, vice versa, severe AP further decreased the blood pH of mice with MA. In conclusion, MA worsens the outcome of AP, while severe AP augments the decrease of blood pH. The discovery of this vicious metabolic cycle opens up new therapeutic possibilities in AP.
Collapse
Affiliation(s)
- Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emese Toth
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Laszlo Poto
- Institute of Bioanalysis, Medical School, University of Pecs, Pecs, Hungary
| | - Aron Vincze
- Department of Gastroenterology, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Gabor Veres
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Laszlo Czako
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Marta
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Jozsef Kaszaki
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Jozsef Maleth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,Momentum Epithel Cell Signaling and Secretion Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences-University of Szeged, Szeged, Hungary.,Department of Translational Medicine, First Department of Medicine, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
87
|
Du D, Yao L, Zhang R, Shi N, Shen Y, Yang X, Zhang X, Jin T, Liu T, Hu L, Xing Z, Criddle DN, Xia Q, Huang W, Sutton R. Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:261-272. [PMID: 29870787 DOI: 10.1016/j.jep.2018.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxidative stress is a prominent feature of clinical acute pancreatitis (AP). Coreopsis tinctoria has been used traditionally to treat pancreas disorders like diabetes mellitus in China and Portugal and its flavonoid-rich fraction contain the main phytochemicals that have antioxidant and anti-inflammatory activities. AIM OF THE STUDY To investigate the effects of flavonoids isolated from C. tinctoria on experimental AP and explore the potential mechanism. MATERIALS AND METHODS LC-MS based online technique was used to analyse and isolate targeted flavonoids from C. tinctoria. Freshly isolated mouse pancreatic acinar cells were treated with taurocholic acid sodium salt hydrate (NaT, 5 mM) with or without flavonoids. Fluorescence microscopy and a plate reader were used to determine necrotic cell death pathway activation (propidium iodide), reactive oxygen species (ROS) production (H2-DCFDA) and ATP depletion (luminescence) where appropriate. AP was induced by 7 repeated intraperitoneal caerulein injections (50 μg/kg) at hourly interval in mice or retrograde infusion of taurolithocholic acid 3-sulfate disodium salt (TLCS; 5 mM, 50 μL) into the pancreatic duct in mice or infusion of NaT (3.5%, 1 mL/kg) in rats. A flavonoid was intraperitoneally administered at 0, 4, and 8 h after the first caerulein injection or post-operation. Disease severity, oxidative stress and antioxidant markers were determined. RESULTS Total flavonoids extract and flavonoids 1-6 (C1-C6) exhibited different capacities in reducing necrotic cell death pathway activation with 0.5 mM C1, (2 R,3 R)-taxifolin 7-O-β-D-glucopyranoside, having the best effect. C1 also significantly reduced NaT-induced ROS production and ATP depletion. C1 at 12.5 mg/kg and 8.7 mg/kg (equivalent to 12.5 mg/kg for mice) significantly reduced histopathological, biochemical and immunological parameters in the caerulein-, TLCS- and NaT-induced AP models, respectively. C1 administration increased pancreatic nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-medicated haeme oxygenase-1 expression and elevated pancreatic antioxidant enzymes superoxide dismutase and glutathione peroxidase levels. CONCLUSIONS Flavonoid C1 from C. tinctoria was protective in experimental AP and this effect may at least in part be attributed to its antioxidant effects by activation of Nrf2-mediated pathways. These results suggest the potential utilisation of C. tinctoria to treat AP.
Collapse
Affiliation(s)
- Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Rui Zhang
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yan Shen
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital/West China Medical School, Sichuan University, Chengdu 610041, China; Liverpool Pancreatitis Study Group, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK.
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
88
|
Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, Awais M, Tepikin AV, Sutton R, Criddle DN. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem 2018; 293:8032-8047. [PMID: 29626097 PMCID: PMC5971444 DOI: 10.1074/jbc.ra118.003200] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial dysfunction lies at the core of acute pancreatitis (AP). Diverse AP stimuli induce Ca2+-dependent formation of the mitochondrial permeability transition pore (MPTP), a solute channel modulated by cyclophilin D (CypD), the formation of which causes ATP depletion and necrosis. Oxidative stress reportedly triggers MPTP formation and is elevated in clinical AP, but how reactive oxygen species influence cell death is unclear. Here, we assessed potential MPTP involvement in oxidant-induced effects on pancreatic acinar cell bioenergetics and fate. H2O2 application promoted acinar cell apoptosis at low concentrations (1-10 μm), whereas higher levels (0.5-1 mm) elicited rapid necrosis. H2O2 also decreased the mitochondrial NADH/FAD+ redox ratio and ΔΨm in a concentration-dependent manner (10 μm to 1 mm H2O2), with maximal effects at 500 μm H2O2 H2O2 decreased the basal O2 consumption rate of acinar cells, with no alteration of ATP turnover at <50 μm H2O2 However, higher H2O2 levels (≥50 μm) diminished spare respiratory capacity and ATP turnover, and bioenergetic collapse, ATP depletion, and cell death ensued. Menadione exerted detrimental bioenergetic effects similar to those of H2O2, which were inhibited by the antioxidant N-acetylcysteine. Oxidant-induced bioenergetic changes, loss of ΔΨm, and cell death were not ameliorated by genetic deletion of CypD or by its acute inhibition with cyclosporine A. These results indicate that oxidative stress alters mitochondrial bioenergetics and modifies pancreatic acinar cell death. A shift from apoptosis to necrosis appears to be associated with decreased mitochondrial spare respiratory capacity and ATP production, effects that are independent of CypD-sensitive MPTP formation.
Collapse
Affiliation(s)
- Jane A Armstrong
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Nicole J Cash
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Yulin Ouyang
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Jack C Morton
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Michael Chvanov
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Diane Latawiec
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Muhammad Awais
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Alexei V Tepikin
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Robert Sutton
- Departments of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - David N Criddle
- Departments of Cellular & Molecular Physiology, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| |
Collapse
|
89
|
Protective Effect of Scopoletin Against Cerulein-Induced Acute Pancreatitis and Associated Lung Injury in Mice. Pancreas 2018; 47:577-585. [PMID: 29595543 DOI: 10.1097/mpa.0000000000001034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the protective effects of scopoletin (SC) on cerulein-induced acute pancreatitis (AP) and associated lung injury in mice. METHODS Acute pancreatitis was induced in male Swiss mice by 6 consecutive hourly intraperitoneal injections of cerulein (50 μg/kg). Scopoletin was administered 1 hour (intraperitoneal, 10 mg/kg) after the first cerulein injection. RESULTS Administration of SC attenuated the severity of AP and associated lung injury as shown by histology, reduced myeloperoxidase, and serum amylase activity. Further, the anti-inflammatory effect of SC was associated with a reduction of pancreatic and pulmonary proinflammatory cytokines (interleukin 1β and tumor necrosis factor α) and hydrogen sulfide. Moreover, SC inhibited cerulein-induced nuclear factor κB activation in both pancreas and lung. Also, SC treatment further enhances the beneficial effect by reducing cerulein-induced mast cell activation as shown by reduced monocyte chemoattractant protein 1, interleukin 33, and preprotachykinin A expression (encodes neuropeptide substance P) in the pancreas and lungs. CONCLUSIONS The present findings show for the first time that in AP SC may exhibit an anti-inflammatory effect by down-regulating substance P and hydrogen sulfide signaling via nuclear factor κB pathway.
Collapse
|
90
|
Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q, Xia Q, Xing Z, Zeng Z, Niu H, Huang W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br J Pharmacol 2018; 175:1621-1636. [PMID: 29457828 DOI: 10.1111/bph.14169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is a painful and distressing disorder of the exocrine pancreas with no specific treatment. Diosgenyl saponins extracted from from Dioscorea zingiberensis C. H. Wright have been reported to protect against experimental models of AP. Diosgenin, or its derivatives are anti-inflammatory in various conditions. However, the effects of diosgenin and its spiroacetal ring opened analogue, dihydrodiosgenin (Dydio), on AP have not been determined. EXPERIMENTAL APPROACH Effects of diosgenin and Dydio on sodium taurocholate hydrate (Tauro)-induced necrosis were tested, using freshly isolated murine pancreatic acinar cells. Effects of Dydio on mitochondrial dysfunction in response to Tauro, cholecystokinin-8 and palmitoleic acid ethyl ester were also assessed. Dydio (5 or 10 mg·kg-1 ) was administered after the induction in vivo of Tauro-induced AP (Wistar rats), caerulein-induced AP and palmitoleic acid plus ethanol-induced AP (Balb/c mice). Pancreatitis was assessed biochemically and histologically. Activation of pancreatic PI3Kγ/Akt was measured by immunoblotting. KEY RESULTS Dydio inhibited Tauro-induced activation of the necrotic cell death pathway and prevented pancreatitis stimuli-induced mitochondrial dysfunction. Therapeutic administration of Dydio ameliorated biochemical and histopathological responses in all three models of AP through pancreatic mitochondrial protection and PI3Kγ/Akt inactivation. Moreover, Dydio improved pancreatitis-associated acute lung injury through preventing excessive inflammatory responses. CONCLUSION AND IMPLICATIONS These data provide in vitro and in vivo mechanistic evidence that the diosgenin analogue, Dydio could be potential treatment for AP. Further medicinal optimization of diosgenin and its analogue might be a useful strategy for identifying lead candidates for inflammatory diseases.
Collapse
Affiliation(s)
- Yan Shen
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Li Wen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC and School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rui Zhang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,College of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
91
|
Gryshchenko O, Gerasimenko JV, Peng S, Gerasimenko OV, Petersen OH. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology. J Physiol 2018; 596:2663-2678. [PMID: 29424931 PMCID: PMC6046068 DOI: 10.1113/jp275395] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
Key points Ca2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca2+ signals evoked by K+‐induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol‐related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation.
Abstract Physiological Ca2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca2+ signals in the peri‐acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization‐evoked Ca2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca2+ signals in response to membrane depolarization. The principal agent evoking Ca2+ signals in the stellate cells is bradykinin, but in experimental alcohol‐related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease‐activated receptors, induce Ca2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. Ca2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca2+ signals evoked by K+‐induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol‐related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | | | - Shuang Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | | | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
92
|
Hepatic alcohol dehydrogenase deficiency induces pancreatic injury in chronic ethanol feeding model of deer mice. Exp Mol Pathol 2018; 104:89-97. [PMID: 29337245 DOI: 10.1016/j.yexmp.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 01/12/2023]
Abstract
The single most common cause of chronic pancreatitis (CP, a serious inflammatory disease) is chronic alcohol abuse, which impairs hepatic alcohol dehydrogenase (ADH, a major ethanol oxidizing enzyme). Previously, we found ~5 fold greater fatty acid ethyl esters (FAEEs), and injury in the pancreas of hepatic ADH deficient (ADH-) vs. hepatic normal ADH (ADH+) deer mice fed 3.5g% ethanol via liquid diet daily for two months. Therefore, progression of ethanol-induced pancreatic injury was determined in ADH- deer mice fed ethanol for four months to delineate the mechanism and metabolic basis of alcoholic chronic pancreatitis (ACP). In addition to a substantially increased blood alcohol concentration and plasma FAEEs, significant degenerative changes, including atrophy and loss of acinar cells in some areas, ultrastructural changes evident by such features as swelling and disintegration of endoplasmic reticulum (ER) cisternae and ER stress were observed in the pancreas of ethanol-fed ADH- deer mice vs. ADH+ deer mice. These changes are consistent with noted increases in pancreatic injury markers (plasma lipase, pancreatic trypsinogen activation peptide, FAEE synthase and cathepsin B) in ethanol-fed ADH- deer mice. Most importantly, an increased levels of pancreatic glucose regulated protein (GRP) 78 (a prominent ER stress marker) were found to be closely associated with increased phosphorylated eukaryotic initiation factor (eIF) 2α signaling molecule in PKR-like ER kinase branch of unfolded protein response (UPR) as compared to X box binding protein 1S and activating transcription factor (ATF)6 - 50kDa protein of inositol requiring enzyme 1α and ATF6 branches of UPR, respectively, in ethanol-fed ADH- vs. ADH+ deer mice. These results along with findings on plasma FAEEs, and pancreatic histology and injury markers suggest a metabolic basis of ethanol-induced pancreatic injury, and provide new avenues to understand metabolic basis and molecular mechanism of ACP.
Collapse
|
93
|
Ethanol Induced Disordering of Pancreatic Acinar Cell Endoplasmic Reticulum: An ER Stress/Defective Unfolded Protein Response Model. Cell Mol Gastroenterol Hepatol 2018; 5:479-497. [PMID: 29930975 PMCID: PMC6009017 DOI: 10.1016/j.jcmgh.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Heavy alcohol drinking is associated with pancreatitis, whereas moderate intake lowers the risk. Mice fed ethanol long term show no pancreas damage unless adaptive/protective responses mediating proteostasis are disrupted. Pancreatic acini synthesize digestive enzymes (largely serine hydrolases) in the endoplasmic reticulum (ER), where perturbations (eg, alcohol consumption) activate adaptive unfolded protein responses orchestrated by spliced X-box binding protein 1 (XBP1). Here, we examined ethanol-induced early structural changes in pancreatic ER proteins. METHODS Wild-type and Xbp1+/- mice were fed control and ethanol diets, then tissues were homogenized and fractionated. ER proteins were labeled with a cysteine-reactive probe, isotope-coded affinity tag to obtain a novel pancreatic redox ER proteome. Specific labeling of active serine hydrolases in ER with fluorophosphonate desthiobiotin also was characterized proteomically. Protein structural perturbation by redox changes was evaluated further in molecular dynamic simulations. RESULTS Ethanol feeding and Xbp1 genetic inhibition altered ER redox balance and destabilized key proteins. Proteomic data and molecular dynamic simulations of Carboxyl ester lipase (Cel), a unique serine hydrolase active within ER, showed an uncoupled disulfide bond involving Cel Cys266, Cel dimerization, ER retention, and complex formation in ethanol-fed, XBP1-deficient mice. CONCLUSIONS Results documented in ethanol-fed mice lacking sufficient spliced XBP1 illustrate consequences of ER stress extended by preventing unfolded protein response from fully restoring pancreatic acinar cell proteostasis during ethanol-induced redox challenge. In this model, orderly protein folding and transport to the secretory pathway were disrupted, and abundant molecules including Cel with perturbed structures were retained in ER, promoting ER stress-related pancreas pathology.
Collapse
Key Words
- %-ox, percentage oxidized
- ATPase, adenosine triphosphatase
- Alcohol Pancreatitis
- Carboxyl Ester Lipase
- Cel, carboxyl ester lipase
- DTT, dithiothreitol
- Disulfide Bond
- ER, endoplasmic reticulum
- ERAD, endoplasmic reticulum–associated degradation
- FAEE, fatty acid ethyl esters
- FP, fluorophosphonate
- ICAT, isotope-coded affinity tags
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- MW, molecular weight
- RER, rough ER
- UPR, unfolded protein response
- Unfolded Protein Response
- WT, wild type
- sXBP1, spliced X box-binding protein 1
Collapse
|
94
|
TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester-Induced Mitochondrial Injury and Necrotic Cell Death. Pancreas 2018; 47:18-24. [PMID: 29200128 PMCID: PMC5753827 DOI: 10.1097/mpa.0000000000000953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Mitochondrial permeability transition pore inhibition is a promising approach to treat acute pancreatitis (AP). We sought to determine (i) the effects of the mitochondrial permeability transition pore inhibitor 3,5-seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) on murine and human pancreatic acinar cell (PAC) injury induced by fatty acid ethyl esters (FAEEs) or taurolithocholic acid-3-sulfate and (ii) TRO40303 pharmacokinetics and efficacy in experimental alcoholic AP (FAEE-AP). METHODS Changes in mitochondrial membrane potential (Δψm), cytosolic Ca ([Ca]c), and cell fate were examined in freshly isolated murine or human PACs by confocal microscopy. TRO40303 pharmacokinetics were assessed in cerulein-induced AP and therapeutic efficacy in FAEE-AP induced with palmitoleic acid and ethanol. Severity of AP was assessed by standard biomarkers and blinded histopathology. RESULTS TRO40303 prevented loss of Δψm and necrosis induced by 100 μM palmitoleic acid ethyl ester or 500 μM taurolithocholic acid-3-sulfate in murine and human PACs. Pharmacokinetic analysis found TRO40303 accumulated in the pancreas. A single dose of 3 mg/kg TRO40303 significantly reduced serum amylase (P = 0.043), pancreatic trypsin (P = 0.018), and histopathology scores (P = 0.0058) in FAEE-AP. CONCLUSIONS TRO40303 protects mitochondria and prevents necrotic cell death pathway activation in murine and human PACs, ameliorates the severity of FAEE-AP, and is a candidate drug for human AP.
Collapse
|
95
|
Acinar injury and early cytokine response in human acute biliary pancreatitis. Sci Rep 2017; 7:15276. [PMID: 29127325 PMCID: PMC5681596 DOI: 10.1038/s41598-017-15479-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Clinical acute pancreatitis (AP) is marked by an early phase of systemic inflammatory response syndrome (SIRS) with multiorgan dysfunction (MODS), and a late phase characterized by sepsis with MODS. However, the mechanisms of acinar injury in human AP and the associated systemic inflammation are not clearly understood. This study, for the first time, evaluated the early interactions of bile acid induced human pancreatic acinar injury and the resulting cytokine response. We exposed freshly procured resected human pancreata to taurolithocolic acid (TLCS) and evaluated for acinar injury, cytokine release and interaction with peripheral blood mononuclear cells (PBMCs). We observed autophagy in acinar cells in response to TLCS exposure. There was also time-dependent release of IL-6, IL-8 and TNF-α from the injured acini that resulted in activation of PBMCs. We also observed that cytokines secreted by activated PBMCs resulted in acinar cell apoptosis and further cytokine release from them. Our data suggests that the earliest immune response in human AP originates within the acinar cell itself, which subsequently activates circulating PBMCs leading to SIRS. These findings need further detailed evaluation so that specific therapeutic targets to curb SIRS and resulting early adverse outcomes could be identified and tested.
Collapse
|
96
|
Szatmary P, Liu T, Abrams ST, Voronina S, Wen L, Chvanov M, Huang W, Wang G, Criddle DN, Tepikin AV, Toh CH, Sutton R. Systemic histone release disrupts plasmalemma and contributes to necrosis in acute pancreatitis. Pancreatology 2017; 17:884-892. [PMID: 29102149 DOI: 10.1016/j.pan.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clinical and experimental acute pancreatitis feature histone release within the pancreas from innate immune cells and acinar cell necrosis. In this study, we aimed to detail the source of circulating histones and assess their role in the pathogenesis of acute pancreatitis. METHODS Circulating nucleosomes were measured in patient plasma, taken within 24 and 48 h of onset of acute pancreatitis and correlated with clinical outcomes. Using caerulein hyperstimulation, circulating histones were measured in portal, systemic venous and systemic arterial circulation in mice, and the effects of systemic administration of histones in this model were assessed. The sites of actions of circulating histones were assessed by administration of FITC-labelled histones. The effects of histones on isolated pancreatic acinar cells were further assessed by measuring acinar cell death and calcium permeability in vitro. RESULTS Cell-free histones were confirmed to be abundant in human acute pancreatitis and found to derive from pancreatitis-associated liver injury in a rodent model of the disease. Fluorescein isothianate-labelled histones administered systemically targeted the pancreas and exacerbated injury in experimental acute pancreatitis. Histones induce charge- and concentration-dependent plasmalemma leakage and necrosis in isolated pancreatic acinar cells, independent of extracellular calcium. CONCLUSION We conclude that histones released systemically in acute pancreatitis concentrate within the inflamed pancreas and exacerbate injury. Circulating histones may provide meaningful biomarkers and targets for therapy in clinical acute pancreatitis.
Collapse
Affiliation(s)
- Peter Szatmary
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Tingting Liu
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK; Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Li Wen
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wei Huang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK; Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - David N Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Alexey V Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK; Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, L69 3GA, UK
| |
Collapse
|
97
|
Peng S, Gerasimenko JV, Tsugorka T, Gryshchenko O, Samarasinghe S, Petersen OH, Gerasimenko OV. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0423. [PMID: 27377732 PMCID: PMC4938023 DOI: 10.1098/rstb.2015.0423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Shuang Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Department of Pathophysiology, Medical College, Jinan University, Guangzhou 510632, People's Republic of China
| | - Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Tatiana Tsugorka
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Sujith Samarasinghe
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
98
|
Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0425. [PMID: 27377719 PMCID: PMC4938025 DOI: 10.1098/rstb.2015.0425] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/23/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of hospitalization among non-malignant gastrointestinal disorders. The mortality of severe AP can reach 30-50%, which is most probably owing to the lack of specific treatment. Therefore, AP is a major healthcare problem, which urges researchers to identify novel drug targets. Studies from the last decades highlighted that the toxic cellular Ca(2+) overload and mitochondrial damage are key pathogenic steps in the disease development affecting both acinar and ductal cell functions. Moreover, recent observations showed that modifying the cellular Ca(2+) signalling might be beneficial in AP. The inhibition of Ca(2+) release from the endoplasmic reticulum or the activity of plasma membrane Ca(2+) influx channels decreased the severity of AP in experimental models. Similarly, inhibition of mitochondrial permeability transition pore (MPTP) opening also seems to improve the outcome of AP in in vivo animal models. At the moment MPTP blockers are under detailed clinical investigation to test whether interventions in MPTP openings and/or Ca(2+) homeostasis of the cells can be specific targets in prevention or treatment of cell damage in AP.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
99
|
Huang W, Haynes AC, Mukherjee R, Wen L, Latawiec D, Tepikin AV, Criddle DN, Prinjha RK, Smithers N, Sutton R. Selective inhibition of BET proteins reduces pancreatic damage and systemic inflammation in bile acid- and fatty acid ethyl ester- but not caerulein-induced acute pancreatitis. Pancreatology 2017. [PMID: 28648518 DOI: 10.1016/j.pan.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the therapeutic potential of I-BET-762, an inhibitor of the bromodomain and extra-terminal (BET) protein family, in experimental acute pancreatitis (AP). METHODS AP was induced by retrograde infusion of taurolithocholic acid sulphate into the biliopancreatic duct (TLCS-AP) or 2 intraperitoneal (i.p.) injections of ethanol and palmitoleic acid 1 h apart (FAEE-AP) or 12 hourly i.p. injections of caerulein (CER-AP). In all treatment groups, I-BET-762 (30 mg/kg, i.p.) was administered at the time of disease induction and again 12 h later. AP severity was assessed at 24 h by serum biochemistry, multiple cytokines and histopathology. RESULTS TLCS-AP, FAEE-AP and CER-AP resulted in characteristic elevations in serum amylase and cytokine levels, increased pancreatic trypsin and myeloperoxidase activity, typical pancreatic histopathological changes and lung injury. Treatment with I-BET-762 significantly reduced biochemical, cytokine and histopathological responses in TLCS-AP and FAEE-AP, but not CER-AP. CONCLUSIONS These results suggest that in different forms of AP there are significant differences in the epigenetic control of gene transcription contributing to the severity of disease responses. There is therapeutic potential in targeting bromodomains for the treatment of gallstone- and alcohol-related pancreatitis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea C Haynes
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Rajarshi Mukherjee
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Li Wen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Diane Latawiec
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Alexei V Tepikin
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David N Criddle
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rab K Prinjha
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Nicholas Smithers
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
100
|
Chai-Qin-Cheng-Qi Decoction and Carbachol Improve Intestinal Motility by Regulating Protein Kinase C-Mediated Ca 2+ Release in Colonic Smooth Muscle Cells in Rats with Acute Necrotising Pancreatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5864945. [PMID: 28529530 PMCID: PMC5424168 DOI: 10.1155/2017/5864945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/06/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
Chai-Qin-Cheng-Qi decoction (CQCQD) improves intestinal motility in acute pancreatitis (AP), but the mechanism(s) require elucidation. We investigated the effects of CQCQD and carbachol, a prokinetic agent, on colonic smooth muscle cells (SMCs) in L-arginine-induced necrotising AP model in rats. In treatment groups, intragastric CQCQD (20 g/kg, 2 hourly × 3 doses) or intraperitoneal carbachol (60 μg/kg) was given 24 hours after induction of AP. Both CQCQD and carbachol decreased the severity of pancreatic and colonic histopathology (all P < 0.05). Both CQCQD and carbachol reduced serum intestinal fatty acid binding protein, vasoactive intestinal peptide, and substance P and increased motility levels. CQCQD upregulated SMC phospholipase C-beta 1 (PLC-β1) mRNA and PLC protein (both P < 0.05), while both treatments upregulated protein kinase C-alpha (PKC-α) mRNA and PKC protein and downregulated adenylate cyclase (AC) mRNA and protein compared with no treatment (all P < 0.05). Neither treatment significantly altered L-arginine-induced PKC-β1 and PKC-ε mRNA reduction. Both treatments significantly increased fluorescence intensity of SMC intracellular calcium concentration [Ca2+]i (3563.5 and 3046.9 versus 1086.9, both P < 0.01). These data suggest CQCQD and carbachol improve intestinal motility in AP by increasing [Ca2+]i in colonic SMCs via upregulating PLC, PKC and downregulating AC.
Collapse
|