51
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
52
|
Healey Bird B, Nally K, Ronan K, Clarke G, Amu S, Almeida AS, Flavin R, Finn S. Cancer Immunotherapy with Immune Checkpoint Inhibitors-Biomarkers of Response and Toxicity; Current Limitations and Future Promise. Diagnostics (Basel) 2022; 12:124. [PMID: 35054292 PMCID: PMC8775044 DOI: 10.3390/diagnostics12010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors are monoclonal antibodies that are used to treat over one in three cancer patients. While they have changed the natural history of disease, prolonging life and preserving quality of life, they are highly active in less than 40% of patients, even in the most responsive malignancies such as melanoma, and cause significant autoimmune side effects. Licenced biomarkers include tumour Programmed Death Ligand 1 expression by immunohistochemistry, microsatellite instability, and tumour mutational burden, none of which are particularly sensitive or specific. Emerging tumour and immune tissue biomarkers such as novel immunohistochemistry scores, tumour, stromal and immune cell gene expression profiling, and liquid biomarkers such as systemic inflammatory markers, kynurenine/tryptophan ratio, circulating immune cells, cytokines and DNA are discussed in this review. We also examine the influence of the faecal microbiome on treatment outcome and its use as a biomarker of response and toxicity.
Collapse
Affiliation(s)
- Brian Healey Bird
- School of Medicine, University College Cork, T12 K8AF Cork, Ireland
- Bon Secours Hospital, T12 K8AF Cork, Ireland
| | - Ken Nally
- School of Biochemistry and Cell Biology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
| | - Karine Ronan
- Department of Oncology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
- Department of Psychiatry, University College Cork, T12 K8AF Cork, Ireland
| | - Sylvie Amu
- Cancer Research at UCC, University College Cork, T12 K8AF Cork, Ireland;
| | - Ana S. Almeida
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland; (G.C.); (A.S.A.)
| | - Richard Flavin
- Department of Histopathology, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (R.F.); (S.F.)
- St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology, Trinity College Dublin, D08 NHY1 Dublin, Ireland; (R.F.); (S.F.)
- St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| |
Collapse
|
53
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
54
|
Rizzo A, Ricci AD, Di Federico A, Frega G, Palloni A, Tavolari S, Brandi G. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy in Hepatocellular Carcinoma: Where Do We Stand? Front Oncol 2022; 11:803133. [PMID: 34976841 PMCID: PMC8718608 DOI: 10.3389/fonc.2021.803133] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the sixth most commonly diagnosed malignancy worldwide, still representing an important cause of cancer-related death. Over the next few years, novel systemic treatment options have emerged. Among these, immune checkpoint inhibitors (ICIs) have been widely evaluated and are under assessment, as monotherapy or in combination with other anticancer agents in treatment-naïve and previously treated patients. In particular, the approval of the PD-L1 inhibitor atezolizumab plus the antiangiogenic agent bevacizumab as front-line treatment for advanced HCC has led to the adoption of this combination in this setting, and the IMbrave 150 phase III trial has established a novel standard of care. However, several questions remain unanswered, including the identification of reliable predictors of response to ICIs in HCC patients. In the current paper, we will provide an updated overview of potentially useful predictive biomarkers of response to immunotherapy in advanced HCC. A literature search was conducted in September 2021 of Pubmed/Medline, Cochrane library and Scopus databases.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giorgio Frega
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Palloni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
55
|
Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan AW, Zhang X, White MG, Peterson CB, Wong MC, Morad G, Rodgers T, Badger JH, Helmink BA, Andrews MC, Rodrigues RR, Morgun A, Kim YS, Roszik J, Hoffman KL, Zheng J, Zhou Y, Medik YB, Kahn LM, Johnson S, Hudgens CW, Wani K, Gaudreau PO, Harris AL, Jamal MA, Baruch EN, Perez-Guijarro E, Day CP, Merlino G, Pazdrak B, Lochmann BS, Szczepaniak-Sloane RA, Arora R, Anderson J, Zobniw CM, Posada E, Sirmans E, Simon J, Haydu LE, Burton EM, Wang L, Dang M, Clise-Dwyer K, Schneider S, Chapman T, Anang NAAS, Duncan S, Toker J, Malke JC, Glitza IC, Amaria RN, Tawbi HA, Diab A, Wong MK, Patel SP, Woodman SE, Davies MA, Ross MI, Gershenwald JE, Lee JE, Hwu P, Jensen V, Samuels Y, Straussman R, Ajami NJ, Nelson KC, Nezi L, Petrosino JF, Futreal PA, Lazar AJ, Hu J, Jenq RR, Tetzlaff MT, Yan Y, Garrett WS, Huttenhower C, Sharma P, Watowich SS, Allison JP, Cohen L, Trinchieri G, Daniel CR, Wargo JA. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 2021; 374:1632-1640. [PMID: 34941392 PMCID: PMC8970537 DOI: 10.1126/science.aaz7015] [Citation(s) in RCA: 428] [Impact Index Per Article: 142.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti–programmed cell death 1 (anti–PD-1)–based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ–positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.
Collapse
Affiliation(s)
- Christine N. Spencer
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - John A. McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Marie Vetizou
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alexandria P. Cogdill
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A. Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotao Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael G. White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew C. Wong
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Golnaz Morad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Theresa Rodgers
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan H. Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Beth A. Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Miles C. Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Richard R. Rodrigues
- Frederick National Laboratory for Cancer Research, and Microbiome and Genetics Core, Laboratory of Integrative Cancer Immunology, CCR, NCI, NIH, Bethesda, MD 20852, USA
| | - Andrey Morgun
- Department of Pharmaceutical Science, Oregon State University, Corvallis, OR 97331, USA
| | - Young S. Kim
- Nutritional Science Research Group, Division of Cancer Prevention, NCI, NIH, Rockville, MD 20850, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiali Zheng
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yusra B. Medik
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura M. Kahn
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson University of Texas Health Graduate School, Houston, TX 77030, USA
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Courtney W. Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pierre-Olivier Gaudreau
- Canadian Cancer Trials Group and Department of Oncology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Angela L. Harris
- Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed A. Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erez N. Baruch
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Barbara Pazdrak
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brooke S. Lochmann
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaime Anderson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chrystia M. Zobniw
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eliza Posada
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie Simon
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren E. Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth M. Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Clise-Dwyer
- Advanced Cytometry and Sorting Facility at South Campus, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah Schneider
- Advanced Cytometry and Sorting Facility at South Campus, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thomas Chapman
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nana-Ama A. S. Anang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheila Duncan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Toker
- Department of Neurosurgery, Harvard University, Cambridge, MA 02138, USA
- Department of Oncology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jared C. Malke
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isabella C. Glitza
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rodabe N. Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sapna P. Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott E. Woodman
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merrick I. Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E. Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vanessa Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadim J. Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly C. Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luigi Nezi
- Dipartimento di Oncologia Sperimentale, Instituto Europeo di Oncologia, Milan, P.I. 08691440153, Italy
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- MD Anderson University of Texas Health Graduate School, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Hu
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Stem Cell Transplant, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael T. Tetzlaff
- Departments of Pathology and Dermatology, Dermatopathology and Oral Pathology Unit, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yan Yan
- Department of Biostatistics and the Harvard T.H. Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Wendy S. Garrett
- Department of Molecular Metabolism, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Curtis Huttenhower
- Department of Biostatistics and the Harvard T.H. Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P. Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
56
|
Ao H, Xin Z, Jian Z. Liquid biopsy to identify biomarkers for immunotherapy in hepatocellular carcinoma. Biomark Res 2021; 9:91. [PMID: 34930486 PMCID: PMC8686238 DOI: 10.1186/s40364-021-00348-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The past years have witnessed the vigorous development of immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Indeed, ICIs have largely revolutionized the management and improved the prognosis of patients with intermediate and advanced hepatocellular carcinoma (HCC). However, biomarker-based stratification of HCC patients for optimal response to ICI treatment is still of unmet need and again, there exists the necessity to dynamically monitor treatment effect in real-time manner. The role of conventional biomarkers in immunotherapy surveillance is largely limited by spatial and temporal tumor heterogeneity whereas liquid biopsy seems to be promising to circumvent tumor heterogeneity to identify candidate patients who may response to immunotherapy, to dynamically monitor treatment effect and to unveil resistance mechanism. Herein, we provide a thorough review about the potential utility of liquid biopsy in immunotherapy for HCC and discuss its future perspectives.
Collapse
Affiliation(s)
- Huang Ao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhang Xin
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhou Jian
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
57
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
58
|
Sobhani I. DNA Methylation Is a Main Key for Bacteria-Related Colon Carcinogenesis. Microorganisms 2021; 9:microorganisms9122574. [PMID: 34946175 PMCID: PMC8707774 DOI: 10.3390/microorganisms9122574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer deaths in men and women combined [...].
Collapse
Affiliation(s)
- Iradj Sobhani
- Department of Gastroenterology Henri Mondor Hospital APHP, 94010 Créteil, France;
- EC2M3-EA7375, Université Paris-Est Créteil, 94010 Créteil, France
| |
Collapse
|
59
|
Sobhani I, Bergsten E, Charpy C, Chamaillard M, Mestivier D. Virulent Bacteria as Inflammatory and Immune Co-Factor in Colon Carcinogenesis: Evidence From Two Monozygotic Patients and Validation in CRC Patient and Healthy Cohorts. Front Cell Infect Microbiol 2021; 11:749750. [PMID: 34804993 PMCID: PMC8600479 DOI: 10.3389/fcimb.2021.749750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common disease, the incidence of which is increasing according to Western lifestyle; it remains to have a poor prognosis. Western nutriments are presumed to induce mild inflammation within the colonic mucosa, resulting in the accumulation of DNA alterations in colonocytes through a multistage carcinogenesis process. This suggests that most CRCs are related to the environment. Of interest, fecal microbiota composition has been shown yielding a novel approach regarding how environment changes may impact health and disease. Here, we compare whole shotgun metagenomic gut microbiota of two monozygotic twin sisters, one of whom is suffering from an advance colorectal tumor with a profound disequilibrium of the composition of the gut microbiota due to the overexpression of virulent bacteria such as E. coli, Shigella, and Clostridium species in the colon cancer patient’s feces contrasting with low levels of bacterial species such as Faecalibacterium and Akkermansia usually enriched in the healthy adults’ microbial flora. The disequilibrium in microbiota of the CRC patient’s feces as compared to her monozygotic twin sister is linked to inflammatory and immune cell infiltrates in the patient’s colonic tissue. We speculate on the role of microbiota disequilibrium on the immune-tolerant cell infiltrate within CRCs.
Collapse
Affiliation(s)
- Iradj Sobhani
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France.,Department of Gastroenterology, Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris and Creteil, France.,Oncomix, Bacterial Toxins Unit Department of Microbiology- Institut Pasteur de Paris-France, Paris and Creteil, France
| | - Emma Bergsten
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France
| | - Cecile Charpy
- Department of Pathology Henri Mondor Hospital, Assistance Publique Hopitaux de Paris (APHP), Paris and Creteil, France
| | | | - Denis Mestivier
- EC2M3-EA7375, Research Team, Université Paris Est Creteil-UPEC, Paris and Creteil, France.,Bioinformatic Platform Institut de Recherche, Créteil, France
| |
Collapse
|
60
|
Lee KA, Luong MK, Shaw H, Nathan P, Bataille V, Spector TD. The gut microbiome: what the oncologist ought to know. Br J Cancer 2021; 125:1197-1209. [PMID: 34262150 PMCID: PMC8548300 DOI: 10.1038/s41416-021-01467-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome (GM) has been implicated in a vast number of human pathologies and has become a focus of oncology research over the past 5 years. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation and protection against pathogens. Strong evidence is emerging to support the effects of the GM on the development of some malignancies but also on responses to cancer therapies, most notably, immune checkpoint inhibition. Tools for manipulating the GM including dietary modification, probiotics and faecal microbiota transfer (FMT) are in development. Current understandings of the many complex interrelationships between the GM, cancer, the immune system, nutrition and medication are ultimately based on a combination of short-term clinical trials and observational studies, paired with an ever-evolving understanding of cancer biology. The next generation of personalised cancer therapies focusses on molecular and phenotypic heterogeneity, tumour evolution and immune status; it is distinctly possible that the GM will become an increasingly central focus amongst them. The aim of this review is to provide clinicians with an overview of microbiome science and our current understanding of the role the GM plays in cancer.
Collapse
Affiliation(s)
- K A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK.
- Department of Medical Oncology, The Royal Marsden, London, UK.
| | - M K Luong
- Department of Medical Oncology, Guy's & St Thomas Hospital, London, UK
| | - H Shaw
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK
- Early Phase Trial Unit, Department of Medical Oncology, University College London Hospital, London, UK
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Hospital, Northwood, UK
| | - V Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, Mount Vernon Hospital, Northwood, UK
| | - T D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
61
|
Ho M, Moon D, Pires-Alves M, Thornton PD, McFarlin BL, Wilson BA. Recovery of microbial community profile information hidden in chimeric sequence reads. Comput Struct Biotechnol J 2021; 19:5126-5139. [PMID: 34589188 PMCID: PMC8453192 DOI: 10.1016/j.csbj.2021.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sample-dependent inconsistencies in PCR-based and metagenomic sequencing analyses. Caveats associated with contig-based assembly programs for microbiome studies. More sample diversity/complexity yields more chimeric reads from PCR amplification. BlastBin includes consideration of chimeric reads for assigning and counting taxa. BlastBin enables recovery of information lost due to chimera formation. BlastBin 16S rRNA profiles more closely resemble metagenomic read-based profiles.
The next frontier in the field of microbiome studies is identification of all microbes present in the microbiome and accurate determination of their abundance such that microbiome profiles can serve as reliable assessments of health or disease status. PCR-based 16S rRNA gene sequencing and metagenome shotgun sequencing technologies are the prevailing approaches used in microbiome analyses. Each poses a number of technical challenges associated with PCR amplification, sample availability, and cost of processing and analysis. In general, results from these two approaches rarely agree completely with each other. Here, we compare these methods utilizing a set of vaginal swab and lavage specimens from a cohort of 42 pregnant women collected for a pilot study exploring the effect of the vaginal microbiome on preterm birth. We generated the microbial community profiles from the sequencing reads of the V3V4 and V4V5 regions of the 16S rRNA gene in the vaginal swab and lavage samples. For a subset of the vaginal samples from 12 subjects, we also performed metagenomic shotgun sequencing analysis and compared the results obtained from the PCR-based sequencing methods. Our findings suggest that sample composition and complexity, particularly at the species level, are major factors that must be considered when analyzing and interpreting microbiome data. Our approach to sequence analysis includes consideration of chimeric reads, by using our chimera-counting BlastBin program, and enables recovery of microbial content information generated during PCR-based sequencing methods, such that the microbial profiles more closely resemble those obtained from metagenomic read-based approaches.
Collapse
Affiliation(s)
- Mengfei Ho
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Damee Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Melissa Pires-Alves
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| | - Patrick D Thornton
- Department of Human Development Nursing Science, College of Nursing, University of Illinois at Chicago, United States
| | - Barbara L McFarlin
- Department of Human Development Nursing Science, College of Nursing, University of Illinois at Chicago, United States
| | - Brenda A Wilson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
62
|
Rizzo A, Ricci AD. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin Investig Drugs 2021; 31:415-423. [PMID: 34429006 DOI: 10.1080/13543784.2021.1972969] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) represents the sixth most commonly diagnosed malignancy worldwide, accounting for millions of deaths annually. Despite immune checkpoint inhibitors (ICIs) reported important results, only a minority of HCC patients benefit from these treatments, and the identification of predictive biomarkers of response still remains a highly unmet need. AREAS COVERED Herein, we provide a timely overview of available evidence on biochemical predictors of response to immunotherapy in advanced HCC patients; we speculate on how PD-L1, TMB, and other emerging biomarkers could assist drug clinical trials in the near future. A literature search was conducted in June 2021 using Pubmed/Medline, Cochrane library, and Scopus databases. EXPERT OPINION Reliable predictors of response to ICIs are of pivotal importance to allow a proper stratification and selection of HCC patients that could derive more benefit from immunotherapy. Well-designed, multicenter clinical trials specifically focused on predictive biomarkers are warranted in this setting, where most of evidence currently derives from retrospective, single-center studies with small sample size.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Medical Oncology, Irccs Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Angela Dalia Ricci
- Medical Oncology, Irccs Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| |
Collapse
|
63
|
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021; 41:803-829. [PMID: 34165252 PMCID: PMC8441060 DOI: 10.1002/cac2.12178] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer greatly affects the quality of life of humans worldwide and the number of patients suffering from it is continuously increasing. Over the last century, numerous treatments have been developed to improve the survival of cancer patients but substantial progress still needs to be made before cancer can be truly cured. In recent years, antitumor immunity has become the most debated topic in cancer research and the booming development of immunotherapy has led to a new epoch in cancer therapy. In this review, we describe the relationships between tumors and the immune system, and the rise of immunotherapy. Then, we summarize the characteristics of tumor‐associated immunity and immunotherapeutic strategies with various molecular mechanisms by showing the typical immune molecules whose antibodies are broadly used in the clinic and those that are still under investigation. We also discuss important elements from individual cells to the whole human body, including cellular mutations and modulation, metabolic reprogramming, the microbiome, and the immune contexture. In addition, we also present new observations and technical advancements of both diagnostic and therapeutic methods aimed at cancer immunotherapy. Lastly, we discuss the controversies and challenges that negatively impact patient outcomes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Hao-Xiang Wu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
64
|
Luo B, Zhang Y, Zhang C, Liu X, Shi C. Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Lett 2021; 509:53-62. [PMID: 33845122 DOI: 10.1016/j.canlet.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that the intestinal microbiota is associated with the antitumor efficacy of immune checkpoint inhibitors (ICIs) and the occurrence of immune-related adverse events (irAEs) following ICI treatment. However, the mechanisms underlying these interactions remain unclear. Recent technological advances have allowed more extensive investigation into the interplay between the intestinal microbiota and the tumor immune microenvironment. Breakthroughs by two research groups revealed that Bifidobacterium enhanced the efficacy of ICIs via the stimulator of interferon genes (STING) and adenosine 2A receptor (A2AR) signaling pathways, highlighting the molecular mechanisms through which the intestinal microbiota modulates immunotherapy. In this review, we summarize recent findings related to the potential role and mechanisms of the gut microbiota in ICI therapy, available microbiota-targeting strategies, and ongoing clinical trials. Further we discuss the associated challenges that remain in this field of research. The current review aims to evaluate the potential of the intestinal microbiota in maximizing the antitumor efficacy of ICIs while minimizing their toxic effects and guiding the development of more specific treatment regimens.
Collapse
Affiliation(s)
- Baohua Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongbin Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
65
|
Bolte LA, Klaassen MAY, Collij V, Vich Vila A, Fu J, van der Meulen TA, de Haan JJ, Versteegen GJ, Dotinga A, Zhernakova A, Wijmenga C, Weersma RK, Imhann F. Patient attitudes towards faecal sampling for gut microbiome studies and clinical care reveal positive engagement and room for improvement. PLoS One 2021; 16:e0249405. [PMID: 33831035 PMCID: PMC8031379 DOI: 10.1371/journal.pone.0249405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Faecal sample collection is crucial for gut microbiome research and its clinical applications. However, while patients and healthy volunteers are routinely asked to provide stool samples, their attitudes towards sampling remain largely unknown. Here, we investigate the attitudes of 780 Dutch patients, including participants in a large Inflammatory Bowel Disease (IBD) gut microbiome cohort and population controls, in order to identify barriers to sample collection and provide recommendations for gut microbiome researchers and clinicians. We sent questionnaires to 660 IBD patients and 112 patients with other disorders who had previously been approached to participate in gut microbiome studies. We also conducted 478 brief interviews with participants in our general population cohort who had collected stool samples. Statistical analysis of the data was performed using R. 97.4% of respondents reported that they had willingly participated in stool sample collection for gut microbiome research, and most respondents (82.9%) and interviewees (95.6%) indicated willingness to participate again, with their motivations for participating being mainly altruistic (57.0%). Responses indicated that storing stool samples in the home freezer for a prolonged time was the main barrier to participation (52.6%), but clear explanations of the sampling procedures and their purpose increased participant willingness to collect and freeze samples (P = 0.046, P = 0.003). To account for participant concerns, gut microbiome researchers establishing cohorts and clinicians trying new faecal tests should provide clear instructions, explain the rationale behind their protocol, consider providing a small freezer and inform patients about study outcomes. By assessing the attitudes, motives and barriers surrounding participation in faecal sample collection, we provide important information that will contribute to the success of gut microbiome research and its near-future clinical applications.
Collapse
Affiliation(s)
- Laura A. Bolte
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolein A. Y. Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Taco A. van der Meulen
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacco J. de Haan
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerbrig J. Versteegen
- Department of Medical Psychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
66
|
Abstract
Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
67
|
Shaikh FY, White JR, Gills JJ, Hakozaki T, Richard C, Routy B, Okuma Y, Usyk M, Pandey A, Weber JS, Ahn J, Lipson EJ, Naidoo J, Pardoll DM, Sears CL. A Uniform Computational Approach Improved on Existing Pipelines to Reveal Microbiome Biomarkers of Nonresponse to Immune Checkpoint Inhibitors. Clin Cancer Res 2021; 27:2571-2583. [PMID: 33593881 DOI: 10.1158/1078-0432.ccr-20-4834] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE While immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer by producing durable antitumor responses, only 10%-30% of treated patients respond and the ability to predict clinical benefit remains elusive. Several studies, small in size and using variable analytic methods, suggest the gut microbiome may be a novel, modifiable biomarker for tumor response rates, but the specific bacteria or bacterial communities putatively impacting ICI responses have been inconsistent across the studied populations. EXPERIMENTAL DESIGN We have reanalyzed the available raw 16S rRNA amplicon and metagenomic sequencing data across five recently published ICI studies (n = 303 unique patients) using a uniform computational approach. RESULTS Herein, we identify novel bacterial signals associated with clinical responders (R) or nonresponders (NR) and develop an integrated microbiome prediction index. Unexpectedly, the NR-associated integrated index shows the strongest and most consistent signal using a random effects model and in a sensitivity and specificity analysis (P < 0.01). We subsequently tested the integrated index using validation cohorts across three distinct and diverse cancers (n = 105). CONCLUSIONS Our analysis highlights the development of biomarkers for nonresponse, rather than response, in predicting ICI outcomes and suggests a new approach to identify patients who would benefit from microbiome-based interventions to improve response rates.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Joell J Gills
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taiki Hakozaki
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo City, Tokyo, Japan
| | - Corentin Richard
- University of Montreal Research Center (CRCHUM), Montreal, Quebec
| | - Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, Quebec
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo City, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Chuo City, Tokyo, Japan
| | - Mykhaylo Usyk
- Department of Population Health, NYU School of Medicine, New York, New York
| | - Abhishek Pandey
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Jeffrey S Weber
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Jiyoung Ahn
- Department of Population Health, NYU School of Medicine, New York, New York
| | - Evan J Lipson
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jarushka Naidoo
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
68
|
Gut microbiome a promising target for management of respiratory diseases. Biochem J 2021; 477:2679-2696. [PMID: 32726437 DOI: 10.1042/bcj20200426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut-lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut-lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.
Collapse
|
69
|
Rizzo A, Brandi G. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treat Res Commun 2021; 27:100328. [PMID: 33549983 DOI: 10.1016/j.ctarc.2021.100328] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the most commonly diagnosed liver cancer worldwide, and the overall survival of patients with unresectable disease is poor. In the last five years, immune checkpoint inhibitors (ICIs) have revolutionized the treatment scenario of several hematological and solid tumors, and these agents have been actively explored in unresectable HCC. Firstly, promising findings of phase I and II clinical studies reporting durable responses and a tolerable safety profile have led to the assessment of ICIs as single agents in phase III clinical studies; however, the latter have provided controversial results, and the activity of ICI monotherapy seems limited to a small subgroup of patients. Conversely, the IMbrave150 trial recently showed that, among patients with previously untreated unresectable HCC, treatment with atezolizumab plus bevacizumab resulted in significantly longer overall survival and progression-free survival compared to sorafenib monotherapy. In addition, the activity of several other ICIs is under investigation, as combination immunotherapy as well as combinations of immunotherapy with antiangiogenic agents. Nonetheless, there are currently no validated predictive biomarkers able to guide treatment choice in this setting, where the identification of specific predictors of response to ICIs represents a major challenge. In this review, we aim to provide a critical overview of recent evidence on biochemical predictors of response to ICIs in patients with unresectable HCC, especially focusing on PD-L1, TMB, MSI, and other emerging biomarkers.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy.
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy
| |
Collapse
|
70
|
Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, Yan J, Wu M. Gut microbiota influence tumor development and Alter interactions with the human immune system. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:42. [PMID: 33494784 PMCID: PMC7829621 DOI: 10.1186/s13046-021-01845-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent scientific advances have greatly enhanced our understanding of the complex link between the gut microbiome and cancer. Gut dysbiosis is an imbalance between commensal and pathogenic bacteria and the production of microbial antigens and metabolites. The immune system and the gut microbiome interact to maintain homeostasis of the gut, and alterations in the microbiome composition lead to immune dysregulation, promoting chronic inflammation and development of tumors. Gut microorganisms and their toxic metabolites may migrate to other parts of the body via the circulatory system, causing an imbalance in the physiological status of the host and secretion of various neuroactive molecules through the gut-brain axis, gut-hepatic axis, and gut-lung axis to affect inflammation and tumorigenesis in specific organs. Thus, gut microbiota can be used as a tumor marker and may provide new insights into the pathogenesis of malignant tumors.
Collapse
Affiliation(s)
- Yanshan Ge
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Xinhui Wang
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yali Guo
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Junting Yan
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Aliya Abuduwaili
- Basic School of Medicine, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | | | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China. .,Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
71
|
Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, Liu K, Huang Y, Luo H, Huang R, Luo L. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Front Immunol 2021; 11:612202. [PMID: 33488618 PMCID: PMC7817884 DOI: 10.3389/fimmu.2020.612202] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem, which includes many different types of cells, abnormal vascular systems, and immunosuppressive cytokines. TME serves an important function in tumor tolerance and escapes from immune surveillance leading to tumor progression. Indeed, there is increasing evidence that gut microbiome is associated with cancer in a variety of ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability, and efficacy of therapies. Studies over the past five years have shown that the composition of the intestinal microbiota has a significant impact on the efficacy of anticancer immunosurveillance, which contribute to the therapeutic activity of cancer immunotherapies based on targeting cytotoxic T lymphocyte protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)-programmed cell death 1 ligand 1 (PD-L1) axis. In this review, we mainly discuss the impact of TME on cancer and immunotherapy through immune-related mechanisms. We subsequently discuss the influence of gut microbiota and its metabolites on the host immune system and the formation of TME. In addition, this review also summarizes the latest research on the role of gut microbiota in cancer immunotherapy.
Collapse
Affiliation(s)
- Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China
| | - Juan Liang
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Zhiyan Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
72
|
Jiang W, Wang Y, Wargo JA, Lang FF, Kim BYS. Considerations for designing preclinical cancer immune nanomedicine studies. NATURE NANOTECHNOLOGY 2021; 16:6-15. [PMID: 33349682 PMCID: PMC8103921 DOI: 10.1038/s41565-020-00817-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/04/2020] [Indexed: 05/02/2023]
Abstract
Immunotherapy is known to be clinically beneficial for cancer patients and in many cases represents the new standard of care. Because of this success, the interest in integrating nanomedicine with cancer immunotherapy to further improve clinical response and toxicity profiles has grown. However, unlike conventional systemic therapies, which are directly cytotoxic to tumour cells, cancer immunotherapy relies on the host's immune system to generate tumouricidal effects. As such, proper design of cancer immune nanomedicine requires scrutiny of tumours' intrinsic and extrinsic factors that may impact host antitumour immunity. Here, we highlight key parameters that differentiate cancer immunotherapy from conventional cytotoxic agents, and we discuss their implications for designing preclinical cancer immune nanomedicine studies. We emphasize that these factors, including intratumoural genomic heterogeneity, commensal diversity, sexual dimorphism and biological ageing, which were largely ignored in traditional cancer nanomedicine experiments, should be carefully considered and incorporated into cancer immune nanomedicine investigations given their critical involvement in shaping the body's antitumour immune responses.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
73
|
Fedorov DE, Olekhnovich EI, Pavlenko AV, Klimina KM, Pokataev IA, Manolov AI, Konanov DN, Veselovsky VA, Ilina EN. [Intestinal microbiome as a predictor of the anti-PD-1 therapy success: metagenomic data analysis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:502-507. [PMID: 33372909 DOI: 10.18097/pbmc20206606502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anti-PD-1 immunotherapy has a large impact on cancer treatment but the rate of positive treatment outcomes is 40-45% and depends on many factors. One of the factors affecting the outcome of immunotherapy is the gut microbiota composition. This effect has been demonstrated both in model objects and in clinical patients groups. However, in order to identify clear causal relationships between microbiota and anti-PD1 immunotherapy response, it is necessary to expand the number of patients and experimental samples. This work presents an analysis of metagenomic data obtained using whole-genome sequencing of stool samples from melanoma patients (n=45) with different responses to anti-PD1 therapy. The analysis of the differential representation of microbial species has shown a difference in the composition of the microbiota between the experimental groups. Results of this study indicate existence of a strong link between the composition of the gut microbiota and the outcome of anti-PD1 therapy. Expansion of similar research may help develop additional predictive tools for the outcome of anti-PD1 cancer immunotherapy, as well as increase its effectiveness.
Collapse
Affiliation(s)
- D E Fedorov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - E I Olekhnovich
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A V Pavlenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - K M Klimina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - I A Pokataev
- Oncology Clinical Hospital No. 1, Moscow, Russia
| | - A I Manolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - D N Konanov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V A Veselovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - E N Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
74
|
Rezasoltani S, Yadegar A, Asadzadeh Aghdaei H, Reza Zali M. Modulatory effects of gut microbiome in cancer immunotherapy: A novel paradigm for blockade of immune checkpoint inhibitors. Cancer Med 2020; 10:1141-1154. [PMID: 33369247 PMCID: PMC7897953 DOI: 10.1002/cam4.3694] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal (GI) tract harbors gut microbiome, which plays a crucial role in preserving homeostasis at the intestinal host‐microbial interface. Conversely, specific gut microbiota may be altered during various pathological conditions and produce a number of toxic compounds and oncoproteins, in turn, to induce both inflammatory response and carcinogenesis. Recently, promising findings have been documented toward the implementation of certain intestinal microbiome in the next era of cancer biology and cancer immunotherapy. Notably, intestinal microbiota can cooperate with immune checkpoint inhibitors (ICIs) of its host, especially in enhancing the efficacy of programmed death 1 (PD‐1) protein and its ligand programmed death ligand 1 (PD‐L1) blockade therapy for cancer. Herein, we review the dual function of gut microbiota in triggering GI cancers, its association with host immunity and its beneficial functions in modulation of cancer immunotherapy responses. Furthermore, we consider the significance of gut microbiota as a potential biomarker for predicting the efficacy of cancer immunotherapy. Finally, we summarize the relevant limitations that affect the effectiveness and clinical applications of gut microbiome in response to immunotherapy.
Collapse
Affiliation(s)
- Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
75
|
Badgeley A, Anwar H, Modi K, Murphy P, Lakshmikuttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim Biophys Acta Rev Cancer 2020; 1875:188494. [PMID: 33346129 DOI: 10.1016/j.bbcan.2020.188494] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Bacteria present in probiotics, particularly the common Lactobacillus and Bifidobacterium microbes, have been found to induce anti-cancer action by enhancing cancer cell apoptosis and protecting against oxidative stress. Probiotics supplements also decrease the cancer-producing microorganism Fusobacterium. Studies have demonstrated that gut microbiota modifies the effect of chemo/radiation therapy. Gut microbes not only enhance the action of chemotherapy drugs but also reduce the side effects of these medications. Additionally, gut microbes reduce immunotherapy toxicity, in particular, the presence of Bacteroidetes or Bifidobacterium decreases the development of colitis by ipilimumab therapy. Probiotics supplements containing Bifidobacterium also reduce chemotherapy-induced mucositis and radiation-induced diarrhea. This review focused on elucidating the mechanism behind the anti-cancer action of Bifidobacterium species. Available studies have revealed Bifidobacterium species decrease cancer cell proliferation via the inhibition of growth factor signaling as well as inducing mitochondrial-mediated apoptosis. Moreover, Bifidobacterium species reduce the adverse effects of chemo/immuno/radiation therapy by inhibiting proinflammatory cytokines. Further clinical studies are needed to identify the powerful and suitable Bifidobacterium strain for the development of adjuvant therapy to support chemo/immuno/radiation therapy.
Collapse
Affiliation(s)
- Aja Badgeley
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hina Anwar
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karan Modi
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige Murphy
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashakumary Lakshmikuttyamma
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
76
|
Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu H, Zhang X, Gong JF, Li J, Lu M, Wang X, Zhou J, Lu Z, Zhang Q, Tzeng DTW, Bi D, Tan Y, Shen L. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunol Res 2020; 8:1251-1261. [PMID: 32855157 DOI: 10.1158/2326-6066.cir-19-1014] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
We report on a comprehensive analysis of the gut microbiomes of patients with gastrointestinal (GI) cancer receiving anti-PD-1/PD-L1 treatment. The human gut microbiota has been associated with clinical responses to anti-PD-1/PD-L1 immunotherapy in melanoma, non-small cell lung cancer, and renal cell carcinoma. We aimed to investigate this association in GI cancers. We also identified bacterial taxa with patient stratification potential. We recruited 74 patients with advanced-stage GI cancer receiving anti-PD-1/PD-L1 treatment and collected their fecal samples prior to and during immunotherapy, along with clinical evaluations. Our 16S rRNA taxonomy survey on the fecal samples revealed an elevation of the Prevotella/Bacteroides ratio in patients, with a preferred response to anti-PD-1/PD-L1 treatment, and a particular subgroup of responders harboring a significantly higher abundance of Prevotella, Ruminococcaceae, and Lachnospiraceae The shotgun metagenomes of the same samples showed that patients exhibiting different responses had differential abundance of pathways related to nucleoside and nucleotide biosynthesis, lipid biosynthesis, sugar metabolism, and fermentation to short-chain fatty acids (SCFA). Gut bacteria that were capable of SCFA production, including Eubacterium, Lactobacillus, and Streptococcus, were positively associated with anti-PD-1/PD-L1 response across different GI cancer types. We further demonstrated that the identified bacterial taxa were predictive of patient stratification in both our cohort and melanoma patients from two previously published studies. Our results thus highlight the impact of gut microbiomes on anti-PD-1/PD-L1 outcomes, at least in a subset of patients with GI cancer, and suggest the potential of the microbiome as a marker for immune-checkpoint blockade responses.See articles by Tomita et al., p. 1236, and Hakozaki et al., p. 1243.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Ziqi Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University, Beijing, China
| | | | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ji-Fang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - ZhiHao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | | | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
77
|
Park R, Umar S, Kasi A. Immunotherapy in Colorectal Cancer: Potential of Fecal Transplant and Microbiota-augmented Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2020; 16:81-88. [PMID: 32607098 PMCID: PMC7325521 DOI: 10.1007/s11888-020-00456-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the role of the microbiome in colorectal cancer (CRC) in the setting of immunotherapy and emphasizes the potential of microbiota-influencing strategies with a focus on the use of fecal microbiota transplant (FMT). RECENT FINDINGS Observations from preclinical and clinical studies suggest that the human gut microbiome is implicated in the CRC carcinogenesis and is integral in determining the clinical response and toxicity to immunotherapy. Among the therapeutic methods devised to exploit the microbiome, FMT is the most direct method and is backed by the highest level of evidence of efficacy in nonneoplastic disease settings. Furthermore, a favorable microbiome has the potential to overcome immunotherapy resistance and ameliorate immune-related adverse events (irAEs). To this end, clinical trials are underway to evaluate the potential of FMT and microbiota-augmented methods in the setting of immunotherapy in CRC. SUMMARY Evidence from animal studies, retrospective studies, and smaller-scale prospective human studies have led to initiation of a number of microbiota-augmented clinical trials in CRC. Given the intimate relationship between the gut microbiota and the immune system as well as antitumor immune responses, potentiating immunotherapy and managing its toxicity are major areas of research in microbiota-augmented therapies in cancer. Therefore, evaluation of the patient microbiome as a routine part of clinical outcome analysis is warranted in future clinical trials.
Collapse
Affiliation(s)
- Robin Park
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA, U.S.A
| | - Shahid Umar
- Department of Medicine, Division of Surgery, Kansas University Medical Center, Kansas City, KS, U.S.A
| | - Anup Kasi
- Department of Medicine, Division of Medical Oncology, Kansas University Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
78
|
Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat Rev Immunol 2020; 20:522-528. [PMID: 32661409 DOI: 10.1038/s41577-020-0374-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
There is currently much interest in defining how the microbiota shapes immune responses in the context of cancer. Various studies in both mice and humans have associated particular commensal species with better (or worse) outcomes in different cancer types and following treatment with cancer immunotherapies. However, the mechanisms involved remain ill-defined and even controversial. In this Viewpoint, Nature Reviews Immunology has invited six eminent scientists in the field to share their thoughts on the key questions and challenges for the field.
Collapse
|
79
|
Toker J, Arora R, Wargo JA. The Microbiome in Immuno-oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:325-334. [PMID: 32301026 DOI: 10.1007/978-3-030-41008-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of cancer therapy has been revolutionized through the use of immunotherapy, and treatment with these therapies now spans from early to late stage, and even into prevention. However, there are still a significant proportion of patients who do not derive long-term benefit from monotherapy and even combined therapy regimens, and novel approaches are needed to enhance therapeutic responses. Additionally, ideal biomarkers of response to immunotherapy are lacking and are critically needed. An emerging area of interest in immuno-oncology (IO) is the microbiome, which refers to the collection of microbes (and their genomes) that inhabit an individual and live in symbiosis. There is now evidence that these microbes (particularly those within the gut) impact host physiology and can impact responses to immunotherapy. The field of microbiome research in immuno-oncology is quickly emerging, with the potential use of the microbiome (in the gut as well as in the tumor) as a biomarker for response to IO as well as a therapeutic target. Notably, the microbiome may even have a role in toxicity to therapy. The state of the science in microbiome and IO are discussed and caveats and future directions are outlined to provide insights as we move forward as a field.
Collapse
Affiliation(s)
- Joseph Toker
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
80
|
Abstract
With the advent of next-generation sequencing approaches, there has been a renaissance in the microbiome field. Microbial taxonomy and function can now be characterized relatively easily and rapidly-no longer mandating complex culturing approaches. With this renaissance, there is now a strong and growing appreciation for the role of the microbiome (referring to microbes and their genomes) in modulating many facets of physiology-including overall immunity. This is particularly true of the gut microbiome, and there is now an evolving body of the literature demonstrating a role for gut microbes in modulating responses to cancer treatment-particularly immunotherapy. Gut microbes can modulate immunity and anti-tumor responses via a number of different interactions, and these will be discussed herein. Additionally, data regarding the impact of gut microbes on cancer immunotherapy response will be discussed, as will strategies to manipulate the microbiome to enhance therapeutic responses. These efforts to date are not completely optimized; however, there is evidence of efficacy though much additional work is needed in this space. Nonetheless, it is clear that the microbiome plays a central role in health and disease, and strategies to manipulate it in cancer and overall precision health are being explored.
Collapse
Affiliation(s)
- Md. Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
81
|
Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, Shmulevich I, Xie L, Caporaso JG, Crandall KA, Simone NL, Godoy-Vitorino F, Griffin TJ, Whiteson KL, Gustafson HH, Slade DJ, Schmidt TM, Walther-Antonio MRS, Korem T, Webb-Robertson BJM, Styczynski MP, Johnson WE, Jobin C, Ridlon JM, Koh AY, Yu M, Kelly L, Wargo JA. The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View. Trends Cancer 2020; 6:192-204. [PMID: 32101723 PMCID: PMC7098063 DOI: 10.1016/j.trecan.2020.01.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.
Collapse
Affiliation(s)
- Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph Skufca
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | | | - Traci Testerman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, IL, USA
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Amir Mitchell
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Lei Xie
- Hunter College, Department of Computer Science, New York, NY, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Nicole L Simone
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Heather H Gustafson
- Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research, Seattle, WA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Marina R S Walther-Antonio
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tal Korem
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - W Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Christian Jobin
- Departments of Medicine, Anatomy, and Cell Biology, and of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew Y Koh
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Yu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | | | - Jennifer A Wargo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
82
|
Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 2020; 17:53-64. [PMID: 31811279 DOI: 10.1038/s41575-019-0242-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
83
|
Kumar M, Singh P, Murugesan S, Vetizou M, McCulloch J, Badger JH, Trinchieri G, Al Khodor S. Microbiome as an Immunological Modifier. Methods Mol Biol 2020; 2055:595-638. [PMID: 31502171 PMCID: PMC8276114 DOI: 10.1007/978-1-4939-9773-2_27] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.
Collapse
Affiliation(s)
- Manoj Kumar
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Selvasankar Murugesan
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Marie Vetizou
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souhaila Al Khodor
- Division of Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
84
|
Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 2019; 12:1109-1125. [PMID: 31006995 PMCID: PMC6801136 DOI: 10.1111/1751-7915.13410] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila (A. muciniphila), an intestinal symbiont colonizing in the mucosal layer, is considered to be a promising candidate as probiotics. A. muciniphila is known to have an important value in improving the host metabolic functions and immune responses. Moreover, A. muciniphila may have a value in modifying cancer treatment. However, most of the current researches focus on the correlation between A. muciniphila and diseases, and little is known about the causal relationship between them. Few intervention studies on A. muciniphila are limited to animal experiments, and limited studies have explored its safety and efficacy in humans. Therefore, a critical analysis of the current knowledge in A. muciniphila will play an important foundation for it to be defined as a new beneficial microbe. This article will review the bacteriological characteristics and safety of A. muciniphila, as well as its causal relationship with metabolic disorders, immune diseases and cancer therapy.
Collapse
Affiliation(s)
- Ting Zhang
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Qianqian Li
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Lei Cheng
- Biogas Institute of Ministry of Agriculture and Rural AffairsChengdu610041China
- Center for Anaerobic Microbial Resources of Sichuan ProvinceChengdu610041China
| | - Heena Buch
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| |
Collapse
|
85
|
Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16:690-704. [PMID: 31554963 DOI: 10.1038/s41575-019-0209-8] [Citation(s) in RCA: 706] [Impact Index Per Article: 141.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) accounts for about 10% of all new cancer cases globally. Located at close proximity to the colorectal epithelium, the gut microbiota comprises a large population of microorganisms that interact with host cells to regulate many physiological processes, such as energy harvest, metabolism and immune response. Sequencing studies have revealed microbial compositional and ecological changes in patients with CRC, whereas functional studies in animal models have pinpointed the roles of several bacteria in colorectal carcinogenesis, including Fusobacterium nucleatum and certain strains of Escherichia coli and Bacteroides fragilis. These findings give new opportunities to take advantage of our knowledge on the gut microbiota for clinical applications, such as gut microbiota analysis as screening, prognostic or predictive biomarkers, or modulating microorganisms to prevent cancer, augment therapies and reduce adverse effects of treatment. This Review aims to provide an overview and discussion of the gut microbiota in colorectal neoplasia, including relevant mechanisms in microbiota-related carcinogenesis, the potential of utilizing the microbiota as CRC biomarkers, and the prospect for modulating the microbiota for CRC prevention or treatment. These scientific findings will pave the way to clinically translate the use of gut microbiota for CRC in the near future.
Collapse
|
86
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|
87
|
Schwartz DJ, Rebeck ON, Dantas G. Complex interactions between the microbiome and cancer immune therapy. Crit Rev Clin Lab Sci 2019; 56:567-585. [PMID: 31526274 DOI: 10.1080/10408363.2019.1660303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immuno-oncology has rapidly grown in the last thirty years, and immunotherapeutic agents are now approved to treat many disparate cancers. Immune checkpoint inhibitors (ICIs) are employed to augment cytotoxic anti-cancer activity by inhibiting negative regulatory elements of the immune system. Modulating the immune system to target neoplasms has improved survivability of numerous cancers in many individuals, but forecasting outcomes post therapy is difficult due to insufficient predictive biomarkers. Recently, the tumor and gastrointestinal microbiome and immune milieu have been investigated as predictors and influencers of cancer immune therapy. In this review, we discuss: (1) ways to measure the microbiome including relevant bioinformatic analyses, (2) recent developments in animal studies and human clinical trials utilizing gut microbial composition and function as biomarkers of cancer immune therapy response and toxicity, and (3) using prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplant (FMT) to modulate immune therapy. We discuss the respective benefits of 16S ribosomal RNA (rRNA) gene and shotgun metagenomic sequencing including important considerations in obtaining samples and in designing and interpreting human and animal microbiome studies. We then focus on studies discussing the differences in response to ICIs in relation to the microbiome and inflammatory mediators. ICIs cause colitis in up to 25% of individuals, and colitis is often refractory to common immunosuppressive medications. Researchers have measured microbiota composition prior to ICI therapy and correlated baseline microbiota composition with efficacy and colitis. Certain bacterial taxa that appear to enhance therapeutic benefit are also implicated in increased susceptibility to colitis, alluding to a delicate balance between pro-inflammatory tumor killing and anti-inflammatory protection from colitis. Pre-clinical and clinical models have trialed probiotic administration, e.g. Bifidobacterium spp. or FMT, to treat colitis when immune suppressive agents fail. We are excited about the future of modulating the microbiome to predict and influence cancer outcomes. Furthermore, novel therapies employed for other illnesses including bacteriophage and genetically-engineered microbes can be adapted in the future to promote increased advancements in cancer treatment and side effect management.
Collapse
Affiliation(s)
- Drew J Schwartz
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine , St. Louis , MO , USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis , MO , USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis , MO , USA.,Department of Biomedical Engineering, Washington University in St. Louis , St. Louis , MO , USA
| |
Collapse
|
88
|
D'Haens GR, Jobin C. Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology 2019; 157:624-636. [PMID: 31220424 PMCID: PMC7179251 DOI: 10.1053/j.gastro.2019.04.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 02/08/2023]
Abstract
As microbiome research has moved from associative to mechanistic studies, the activities of specific microbes and their products have been investigated in the development of inflammatory bowel diseases, cancer, metabolic syndrome, and neuropsychiatric disorders. Findings from microbiome research have already been applied to the clinic, such as in fecal microbiota transplantation for treatment of recurrent Clostridium difficile infection. We review the evidence for associations between alterations in the intestinal microbiome and gastrointestinal diseases and findings from clinical trials of fecal microbiota transplantation. We discuss opportunities for treatment of other diseases with fecal microbiota transplantation, based on findings from small clinical and preclinical studies.
Collapse
Affiliation(s)
- Geert R D'Haens
- Department of Gastroenterology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Christian Jobin
- Departments of Medicine, Anatomy and Cell Biology, and Infectious Diseases and Immunology, University of Florida, Gainesville, Florida.
| |
Collapse
|
89
|
Abstract
Collectively known as the microbiota, the commensal bacteria and other microorganisms that colonize the epithelial surfaces of our body have been shown to produce small molecules and metabolites that have both local and systemic effects on cancer onset, progression and therapy response. To date, most studies focusing on the microbiome have used traditional preclinical mouse models and identified correlative relationships between microbial species and cancer phenotypes. Now, the profound influence of the microbiota on the efficacy of cancer treatments, such as immunotherapies, has begun to be extensively characterized in humans. Paramount to the development of microbiota-based therapeutics, the next challenge in microbiome research will be to identify individual microbial species that causally affect cancer phenotypes and unravel the underlying mechanisms. In this Viewpoint article, we asked four scientists working on the cancer microbiome for their opinions on the current state of the field, where the research is heading and how we can advance our understanding to rationally design microbial-based therapeutics to transform treatment strategies for patients with cancer.
Collapse
Affiliation(s)
- Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, Heidelberg, Germany.
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jennifer Wargo
- Department of Surgical Oncology and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
90
|
Herrera S, Martínez-Sanz J, Serrano-Villar S. HIV, Cancer, and the Microbiota: Common Pathways Influencing Different Diseases. Front Immunol 2019; 10:1466. [PMID: 31316514 PMCID: PMC6610485 DOI: 10.3389/fimmu.2019.01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
HIV infection exerts profound and perhaps irreversible damage to the gut mucosal-associated lymphoid tissues, resulting in long-lasting changes in the signals required for the coordination of commensal colonization and in perturbations at the compositional and functional level of the gut microbiota. These abnormalities in gut microbial communities appear to affect clinical outcomes, including T-cell recovery, vaccine responses, HIV transmission, cardiovascular disease, and cancer pathogenesis. For example, the microbial signature associated with HIV infection has been shown to induce tryptophan catabolism, affect the butyrate synthesis pathway, impair anti-tumoral immunity and affect oxidative stress, which have also been linked to the pathogenesis of cancer. Furthermore, some of the taxa that are depleted in subjects with HIV have proved to modulate the anti-tumor efficacy of various chemotherapies and immunotherapeutic agents. The aim of this work is to provide a broad overview of recent advances in our knowledge of how HIV might affect the microbiota, with a focus on the pathways shared with cancer pathogenesis.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, Universidad de Alcalá (IRYCIS), Madrid, Spain
| |
Collapse
|
91
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|